

# https://downloads.gidemy.com/

# PHYSICS

### PREAMBLE

The syllabus is evolved from the Senior Secondary School teaching syllabus and is intended to indicate the scope of the course for Physics examination.

It is structured with the conceptual approach. The broad concepts of matter, position, motion and time; energy; waves; fields; Atomic and Nuclear Physics, electronics are considered and each concept forms a part on which other sub-concepts are further based.

### AIMS

The aims of the syllabus are to enable candidates

- (1)acquire proper understanding of the basic principles and applications of Physics;
- (2)develop scientific skills and attitudes as pre-requisites for further scientific activities:
- recognize the usefulness, and limitations of scientific method to appreciate (3) its applicability ion other disciplines and in every life;
- (4) develop abilities, attitudes and skills that encourage efficient and safe practice;
- (5) develop scientific attitudes such as accuracy, precision, objectivity, integrity, initiative and inventiveness.

### **ASSESSMENT OBJECTIVES**

The following activities appropriate to Physics will be tested:

(1)Acquisition of knowledge and understanding:

Candidates should be able to demonstrate knowledge and understanding of

- (a) Scientific phenomena, facts laws, definitions, concepts and theories;
- (b) Scientific vocabulary, terminology and conventions (including symbols, quantities and units):
- (c) The use of scientific apparatus, including techniques of operation and aspects of safety:
- (d) Scientific quantities and their determinations;
- Scientific and technological applications with their social economic and (e) environmental implications.



(2) Information Handling and Problem-solving

Candidates should be able, using visual, oral, aural and written (including symbolic, diagrammatic, graphical and numerical) information to

- (a) locate select, organize and present information from a variety of sources including everyday experience;
- (b) analyse and evaluate information and other data;
- (c) use information to identify patterns, report trends and draw inferences;
- (d) present reasonable explanations for natural occurrences, patterns and relationships;
- (e) make predictions from data.
- (3) Experimental and Problem-Solving Techniques

Candidates should be able to

- (a) follow instructions;
- (b) carry out experimental procedures using apparatus;
- (c) make and record observations, measurements and estimates with due regard to precision, accuracy and units;
- (d) interpret, evaluate and report on observations and experimental data;
- (e) identify problems, plan and carry out investigations, including the selection of techniques, apparatus, measuring devices and materials;
- (f) evaluate methods and suggest possible improvements;
- (g) state and explain the necessary precautions taken in experiments to obtain accurate results.

#### SCHEME OF EXAMINATION

There will be **three** papers, Papers 1, 2 and 3, all of which must be taken. Papers 1 and 2 will be a composite paper to be taken at one sitting.

- **PAPER 1**: Will consist of fifty multiple choice questions lasting 1<sup>1</sup>/<sub>4</sub> hours and carrying 50 marks.
- PAPER 2: Will consist of two sections, Sections A and B lasting 1<sup>1</sup>/<sub>2</sub> hours and carrying 60 marks.
  Section A Will comprise seven short-structured questions. Candidates will be required to answer any five questions for a total of 15 marks.



Section B - Will comprise five essay questions out of which candidates will be required to answer any three for 45 marks.

PAPER 3: Will be a practical test for school candidates or an alternative to practical work paper for private candidates. Each version of the paper will comprise three questions out of which candidates will be required to answer any two in 2<sup>3</sup>/<sub>4</sub> hours for 50 marks.

#### **DETAILED SYLLABUS**

It is important that candidates are involved in practical activities in covering this syllabus. Candidates will be expected to answer questions on the topics set in the column headed 'TOPIC'. The 'NOTES' are intended to indicate the scope of the questions which will be set but they are not to be considered as an exhaustive list of limitations and illustrations.

NOTE: Questions will be set in S.I. units. However, multiples or sub-multiples of the units may be used.

| TOPICS                                                                                                            | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Concepts of matter                                                                                             | Simple structure of matter should be discussed.<br>Three physics states of matter, namely solid,<br>liquid and gas should be treated. Evidence of<br>the particle nature of matter e.g. Brownian<br>motion experiment, Kinetic theory of matter.<br>Use of the theory to explain; states of matter<br>(solid, liquid and gas), pressure in a gas,<br>evaporation and boiling; cohesion, adhesion,<br>capillarity. Crystalline and amorphous<br>substances to be compared (Arrangement of<br>atoms in crystalline structure to be described e.g.<br>face centred, body centred. |
| <ul> <li>2. Fundamental and derived quantities and units</li> <li>(a) Fundamental quantities and units</li> </ul> | Length, mass, time, electric current luminous<br>intensity, thermodynamic temperature, amount<br>of substance as examples of fundamental<br>quantities and m, kg, s, A, cd, K and mol as their<br>respective units.                                                                                                                                                                                                                                                                                                                                                            |
| (b) Derived quantities and units                                                                                  | Volume, density and speed as derived quantities<br>and m <sup>3</sup> , kgm <sup>-3</sup> and ms <sup>-1</sup> as their respective units.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. Position, distance and displacement.                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (a) Concept of position as a location of                                                                          | Position of objects in space using the X,Y,Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### PART 1 INTERACTION OF MATTER, SPACE & TIME



|     | point-rectangular coordinates.                             | axes should be mentioned.                                                                                                                        |
|-----|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) | Measurement of distance                                    |                                                                                                                                                  |
| (c) | Concept of direction as a way of locating a point –bearing | Use of string, metre rule, vernier calipers and<br>micrometer screw gauge. Degree of accuracy<br>should be noted. Metre (m) as unit of distance. |
| (d) | Distinction between distance and displacement.             | Use of compass and a protractor.                                                                                                                 |
|     |                                                            | Graphical location and directions by axes to be stressed.                                                                                        |
|     |                                                            |                                                                                                                                                  |

|    | TOPICS                                                                        | NOTES                                                                                                                                                                                                                                                                                                                                                                           |
|----|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Mass and weight                                                               | Use of lever balance and chemical/beam balance<br>to measure mass and spring balance to measure<br>weight. Mention should be made of<br>electronic/digital balance.                                                                                                                                                                                                             |
|    | Distinction between mass and weight                                           | Kilogram (kg) as unit of mass and newton (N) as unit of weight.                                                                                                                                                                                                                                                                                                                 |
| 5. | Time                                                                          |                                                                                                                                                                                                                                                                                                                                                                                 |
|    | <ul><li>(a) Concept of time as interval between<br/>physical events</li></ul> | The use of heart-beat, sand-clock, ticker-timer, pendulum and stopwatch/clock.                                                                                                                                                                                                                                                                                                  |
|    | (b) Measurement of time                                                       | Second(s) as unit of time.                                                                                                                                                                                                                                                                                                                                                      |
| 6. | Fluid at rest                                                                 |                                                                                                                                                                                                                                                                                                                                                                                 |
|    | (a) Volume, density and relative density                                      | Experimental determination for solids and liquids.                                                                                                                                                                                                                                                                                                                              |
|    | (b) Pressure in fluids                                                        | Concept and definition of pressure. Pascal's<br>principle, application of principle to hydraulic<br>press and car brakes. Dependence of pressure<br>on the depth of a point below a liquid surface.<br>Atmospheric pressure. Simple barometer,<br>manometer, siphon, syringe and pump.<br>Determination of the relative density of liquids<br>with U-tube and Hare's apparatus. |
|    | (c) Equilibrium of bodies                                                     | Identification of the forces acting on a body<br>partially or completely immersed in a fluid.                                                                                                                                                                                                                                                                                   |



| (i) Archimedes' principle | Use of the principle to determine the relative densities of solids and liquids.                                                 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| (ii) Law of flotation     | Establishing the conditions for a body to float in a fluid. Applications in hydrometer, balloons, boats, ships, submarines etc. |

|    | TOPICS                                                                                                                                     | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Motion                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | <ul> <li>(a) Types of motion:<br/>Random, rectilinear, translational,<br/>Rotational, circular, orbital, spin,<br/>Oscillatory.</li> </ul> | Only qualitative treatment is required.<br>Illustration should be given for the various types of<br>motion.                                                                                                                                                                                                                                                                                                                                           |
|    | (b) Relative motion                                                                                                                        | Numerical problems on co-linear motion may be set.                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | (c) Cause of motion                                                                                                                        | Force as cause of motion.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | <ul> <li>(d) Types of force:</li> <li>(i) Contact force</li> <li>(ii) Non-contact force(field force)</li> </ul>                            | Push and pull<br>These are field forces namely; electric and magnetic<br>attractions and repulsions; gravitational pull.                                                                                                                                                                                                                                                                                                                              |
|    | (e) Solid friction                                                                                                                         | Frictional force between two stationary bodies<br>(static) and between two bodies in relative motion<br>(dynamic). Coefficients of limiting friction and their<br>determinations. Advantages of friction e.g. in<br>locomotion, friction belt, grindstone. Disadvantages<br>of friction e.g reduction of efficiency, wear and tear<br>of machines. Methods of reducing friction; e.g. use<br>of ball bearings, rollers, streamlining and lubrication. |
|    | (f) Viscosity (friction in fluids)                                                                                                         | Definition and effects. Simple explanation as<br>extension of friction in fluids. Fluid friction and its<br>application in lubrication should be treated<br>qualitatively. Terminal velocity and its<br>determination.                                                                                                                                                                                                                                |
|    | (g) Simple ideas of circular motion                                                                                                        | Experiments with a string tied to a stone at one end<br>and whirled around should be carried out to<br>(i) demonstrate motion in a<br>Vertical/horizontal circle.                                                                                                                                                                                                                                                                                     |



|    | TOPICS                                                                                                               | NOTES                                                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                      | (i) show the difference between angular speed and velocity.                                                                                                        |
|    |                                                                                                                      | <ul> <li>(ii) Draw a diagram to illustrate centripetal force.<br/>Banking of roads in reducing sideways friction<br/>should be qualitatively discussed.</li> </ul> |
| 8. | Speed and velocity                                                                                                   |                                                                                                                                                                    |
|    | (a) Concept of speed as change of distance with time                                                                 |                                                                                                                                                                    |
|    | (b) Concept of velocity as change of displacement with time                                                          | Metre per second (ms <sup>-1</sup> ) as unit of speed/velocity.                                                                                                    |
|    | (c) Uniform/non-uniform<br>speed/velocity                                                                            | Ticker-timer or similar devices should be used to determine speed/velocity. Definition of velocity as $\overline{\Delta s} / \Delta t$ .                           |
|    | (d) Distance/displacement-time graph                                                                                 | Determination of instantaneous speed/velocity from distance/displacement-time graph and by calculation.                                                            |
| 9. | Rectilinear acceleration                                                                                             |                                                                                                                                                                    |
|    | <ul> <li>(a) Concept of<br/>Acceleration/deceleration as<br/>increase/decrease in velocity with<br/>time.</li> </ul> | Unit of acceleration as ms <sup>-2</sup>                                                                                                                           |
|    | (b) Uniform/non-uniform acceleration                                                                                 | Ticker timer or similar devices should be used to determine acceleration. Definition of acceleration as $\Delta v / \Delta t$ .                                    |
|    | (c) Velocity-time graph                                                                                              | Determination of acceleration and displacement from velocity-time graph                                                                                            |
|    | (d) Equations of motion with constant acceleration;                                                                  | Use of equations to solve numerical problems.                                                                                                                      |



| Motion under gravity as a special case. |       |
|-----------------------------------------|-------|
| TOPICS                                  | NOTES |



Г

| 10. | Scalars and vectors                                                                                        |                                                                                                                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a) Concept of scalars as physical quantities with magnitude and no direction                              | Mass, distance, speed and time as examples of scalars.                                                                                                                                                                               |
|     | (b) Concept of vectors as physical quantities with both magnitude and direction.                           | Weight, displacement, velocity and acceleration as examples of vectors.                                                                                                                                                              |
|     | (c) Vector representation                                                                                  |                                                                                                                                                                                                                                      |
|     | (d) Addition of vectors                                                                                    | Use of force board to determine the resultant of two forces.                                                                                                                                                                         |
|     | (e) Resolution of vectors                                                                                  | Obtain the resultant of two velocities analytically                                                                                                                                                                                  |
|     | (f) Resultant velocity using vector representation.                                                        | and graphically.                                                                                                                                                                                                                     |
| 11. | Equilibrium of forces <ul> <li>(a) Principle of moments</li> </ul>                                         | Torque/Moment of force. Simple treatment of a couple, e.g. turning of water tap, corkscrew and steering wheel.)                                                                                                                      |
|     | (b) Conditions for equilibrium of rigid<br>bodies under the action of parallel<br>and non-parallel forces. | Use of force board to determine resultant and<br>equilibrant forces. Treatment should include<br>resolution of forces into two perpendicular directions<br>and composition of forces<br>Parallelogram of forces. Triangle of forces. |
|     |                                                                                                            | Should ne treated experimentally. Treatment should include stable, unstable and neutral equilibra.                                                                                                                                   |
|     | (c) Centre of gravity and stability                                                                        | Use of a loaded test-tube oscillating vertically in a liquid, simple pendulum, spiral spring and bifilar                                                                                                                             |
| 12. | Simple harmonic motion                                                                                     | suspension to demonstrate simple harmonic motion.                                                                                                                                                                                    |
|     | (a) Illustration, explanation and<br>definition of simple harmonic<br>motion (S.H.M)                       |                                                                                                                                                                                                                                      |
| L   | TOPICS                                                                                                     | NOTES                                                                                                                                                                                                                                |



|     | <ul> <li>(b) Speed and acceleration of S.H.M.</li> <li>(c) Period, frequency and amplitude of a body executing S.H.M.</li> <li>(d) Energy of S.H.M</li> <li>(e) Forced vibration and resonance</li> </ul>                                     | Relate linear and angular speeds, linear and angular<br>accelerations.<br>Experimental determination of 'g' with the simple<br>pendulum and helical spring. The theory of the<br>principles should be treated but derivation of the<br>formula for 'g' is not required<br>Simple problems may be set on simple harmonic<br>motion. Mathematical proof of simple harmonic<br>motion in respect of spiral spring, bifilar suspension<br>and loaded test-tube is not required. |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13. | <ul> <li>Newton's laws of motion:</li> <li>(a) First Law:<br/>Inertia of rest and inertia of<br/>motion</li> <li>(b) Second Law:<br/>Force, acceleration, momentum<br/>and impulse</li> <li>(c) Third Law:<br/>Action and reaction</li> </ul> | Distinction between inertia mass and weight<br>Use of timing devices e.g. ticker-timer to determine<br>the acceleration of a falling body and the<br>relationship when the accelerating force is constant.<br>Linear momentum and its conservation.<br>Collision of elastic bodies in a straight line.<br>Applications: recoil of a gun, jet and rocket<br>propulsions.                                                                                                     |

Т

# PART II



### **ENERGY: Mechanical and Heat**

| TOPICS                                                                       | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Energy:<br>(a) Forms of energy                                               | Examples of various forms of energy should be<br>mentioned e.g. mechanical (potential and kinetic),<br>heat chemical, electrical, light, sound, nuclear.                                                                                                                                                                                                                                                                                                                                                     |
| (b) World energy resources                                                   | Renewable (e.g. solar, wind, tides, hydro, ocean<br>waves) and non-renewable (e.g. petroleum, coal,<br>nuclear, biomass) sources of energy should be<br>discussed briefly.                                                                                                                                                                                                                                                                                                                                   |
| <ul><li>(c) Conservation of energy.</li><li>Work, Energy and Power</li></ul> | Statement of the principle of conservation of energy<br>and its use in explaining energy transformations.                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul><li>(a) Concept of work as a measure of energy transfer</li></ul>        | Unit of energy as the joule (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>(b) Concept of energy as capability to do work</li></ul>             | Unit of energy as the joule (J) while unit of electrical consumption is KWh.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (c) Work done in a gravitational field.                                      | Work done in lifting a body and by falling bodies<br>Derivation of P.E and K.E are expected to be known.                                                                                                                                                                                                                                                                                                                                                                                                     |
| (d) Types of mechanical energy                                               | Identification of types of energy possessed by a body<br>under given conditions.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (i) Potential energy (P.E.)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (ii) Kinetic energy (K.E)                                                    | Verification of the principle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (e) Conservation of mechanical energy.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                              | <ul> <li>Energy: <ul> <li>(a) Forms of energy</li> </ul> </li> <li>(b) World energy resources</li> <li>(c) Conservation of energy.</li> <li>(vork, Energy and Power</li> <li>(a) Concept of work as a measure of energy transfer</li> <li>(b) Concept of energy as capability to do work</li> <li>(c) Work done in a gravitational field.</li> <li>(d) Types of mechanical energy</li> <li>(i) Potential energy (P.E.)</li> <li>(ii) Kinetic energy (K.E)</li> <li>(e) Conservation of mechanical</li> </ul> |



|     | TOPICS                                                                                                                                                      | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | (f) Concept of power as time rate of doing work.                                                                                                            | Unit of power as the watt (W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|     | <ul><li>(g) Application of mechanical energy-<br/>machines.</li><li>Levers, pulleys, inclined plane,<br/>wedge, screw, wheel and axle,<br/>gears.</li></ul> | The force ratio (F.R), mechanical advantage (M.A),<br>velocity ratio (V.R) and efficiency of each machine<br>should be treated.<br>Identification of simple machines that make up a<br>given complicated machine e.g. bicycle.<br>Effects of friction on Machines. Reduction of<br>friction in machines.                                                                                                                                                                                                                                          |  |
| 16. | Heat Energy                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|     | (a) Temperature and its measurement                                                                                                                         | Concept of temperature as degree of hotness or<br>coldness of a body. Construction and graduation of<br>a simple thermometer.<br>Properties of thermometric liquids. The following<br>thermometer, should be treated:<br>Constant – volume gas thermometer, resistance<br>thermometer, thermocouple, liquid-in-glass<br>thermometer including maximum and minimum<br>thermometer and clinical thermometer, pyrometer<br>should be mentioned. Celsius and Absolute scales<br>of temperature. Kelvin and degree Celsius as units of<br>temperature. |  |
|     | (b) Effects of heat on matter e.g                                                                                                                           | Use of the Kinetic theory to explain effects of heat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|     | <ul><li>(i) Rise in temperature</li><li>(ii) Change of phase state</li><li>(iii) Expansion</li><li>(iv) Change of resistance</li></ul>                      | Mention should be made of the following effects:<br>Change of colour<br>Thermionic emission<br>Change in chemical properties                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|     | (c) Thermal expansion – Linear, area<br>and volume expansivities                                                                                            | Qualitative and quantitative treatment<br>Consequences and application of expansions.<br>Expansion in buildings and bridges, bimetallic strips,<br>thermostat, over-head cables causing sagging nd in<br>railway lines causing buckling. Real and apparent<br>expansion of liquids. Anomalous expansion of<br>water.                                                                                                                                                                                                                              |  |



| TOPICS                                                                                                                      | NOTES                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (d) Heat transfer –<br>Condition, convention and<br>radiation.                                                              | Per Kelvin (K <sup>-1</sup> ) as the unit of expansivity.<br>Use of the kinetic theory to explain the modes of<br>heat transfer. Simple experimental illustrations.<br>Treatment should include the explanation of land<br>and sea breezes, ventilation and application s in<br>cooling devices. The vacuum flask. |
| <ul><li>(e) The gas laws-Boyle's law<br/>Charles' law, pressure law and<br/>general gas law</li></ul>                       | The laws should be verified using simple apparatus.<br>Use of the kinetic theory to explain the laws. Simple<br>problems may be set. Mention should be made of<br>the operation of safety air bags in vehicles.                                                                                                    |
| <ul><li>(f) Measurement of heat energy:</li><li>(i) Concept of heat capacity</li><li>(ii) Specific heat capacity.</li></ul> | Use of the method of mixtures and the electrical method to determine the specific heat capacities of solids and liquids. Land and sea breezes related to the specific heat capacity of water and land, Jkg <sup>-1</sup> K <sup>-1</sup> as unit of specific heat capacity.                                        |
| <ul><li>(g) Latent heat</li><li>(i) Concept of latent heat</li></ul>                                                        | Explanation and types of latent heat.                                                                                                                                                                                                                                                                              |
| <ul><li>(ii) Melting point and boiling<br/>Point</li></ul>                                                                  | Determination of the melting point of solid and the<br>boiling point of a liquid. Effects of impurities and<br>pressure on melting and boiling points. Application<br>in pressure cooker.                                                                                                                          |
| (iii) Specific latent heat of fusion<br>and of vaporization                                                                 | Use of the method of mixtures and the electrical<br>method to determine the specific latent heats of<br>fusion of ice and of vaporization of steam.<br>Applications in refrigerators and air conditioners.<br>Jkg <sup>-1</sup> as unit of specific latent heat                                                    |
|                                                                                                                             | skg as unit of specific fatent ficat                                                                                                                                                                                                                                                                               |



|     | TOPICS                                    | NOTES                                                                                                                                                                 |
|-----|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (h) | Evaporation and boiling                   | Effect of temperature, humidity, surface area and draught on evaporation to be discussed.                                                                             |
| (i) | Vapour and vapour pressure                | Explanation of vapour and vapour pressure.<br>Demonstration of vapour pressure using simple<br>experiments. Saturated vapour pressure and its<br>relation to boiling. |
| (j) | Humidity, relative humidity and dew point | Measurement of dew point and relative humidity.<br>Estimation of humidity of the atmosphere using wet<br>and dry-bulb hygrometer.                                     |
| (k) | Humidity and the weather                  | Formation of dew, fog and rain.                                                                                                                                       |

### PART III

#### WAVES

| TOPICS                                                                                                                 | NOTES                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 17. Production and propagation of waves                                                                                |                                                                                                                                  |
| <ul><li>(a) Production and propagation of mechanical waves</li></ul>                                                   | Use of ropes and springs (slinky) to generate mechanical waves                                                                   |
| <ul><li>(b) Pulsating system:<br/>Energy transmitted with definite<br/>speed, frequency and wavelength.</li></ul>      | Use of ripple tank to show water waves and to demonstrate energy propagation by waves.<br>Hertz(Hz) as unit of frequency.        |
| (c) Waveform                                                                                                           | Description and graphical representation.<br>Amplitude, wave length, frequency and period.<br>Sound and light as wave phenomena. |
| <ul> <li>(d) Mathematical relationship connecting frequency (f), wavelength(λ), period (T) and velocity (v)</li> </ul> | V= $f\lambda$ and T = $\frac{1}{f}$ simple problems may be set.                                                                  |
| 18. Types of waves                                                                                                     | Examples to be given                                                                                                             |
| (a) Transverse and longitudinal                                                                                        |                                                                                                                                  |



| (b) Mathematical representation of wave motion.                                                                                                                                        | Equation y = A sin (wt $\pm \frac{2\pi x}{\lambda}$ ) to be explained<br>Questions on phase difference will not be set.                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>19. Properties of waves:<br/>Reflection, refraction, diffraction,<br/>Interference, superposition of<br/>progressive waves producing standing<br/>stationary waves</li> </ul> | Ripple tank should be extensively used to<br>demonstrate these properties with plane and circular<br>waves. Explanation of the properties. |
| <ul><li>20. Light waves</li><li>(a) Sources of light</li></ul>                                                                                                                         | Natural and artificial. Luminous and non-luminous bodies.                                                                                  |

| TOPICS                                                                                                 | NOTES                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) Rectilinear propagation of light                                                                   | Formation of shadows and eclipse. Pinhole camera.<br>Simple numerical problems may be set.                                                                                                                                                                  |
| <ul><li>(c) Reflection of light at plane surface:<br/>plane mirror</li></ul>                           | Regular and irregular reflections. Verification of<br>laws of reflection. Formation of images.<br>Inclined plane mirrors. Rotation of mirrors.<br>Applications in periscope, sextant and kaleidoscope.                                                      |
| (d) Reflection of light at curved<br>surfaces: concave and convex<br>mirrors                           | Laws of reflection. Formation of images.<br>Characteristics of images. Use of mirror formulae:<br>$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and magnification $m = \frac{v}{u}$ to solve<br>numerical problems.<br>(Derivation of formulae is not required) |
|                                                                                                        | Experimental determination of the focal length of concave mirror.<br>Applications in searchlight, parabolic and driving mirrors, car headlamps etc.                                                                                                         |
| (e) Refraction of light at plane surfaces:<br>rectangular glass prism (block) and<br>triangular prism. | Laws of refraction. Formation of images, real and<br>Apparent depths. Critical angle and total internal<br>reflection. Lateral displacement and angle of<br>deviation. Use of minimum deviation equation:                                                   |



| <ul><li>(f) Refraction of light at curved<br/>surfaces:<br/>Converging and diverging lenses</li></ul> | $\mu = \frac{\frac{2}{2}}{\frac{2}{5in A/2}}$ (Derivation of the formula is not required)<br>Applications: periscope, prism binoculars, optical<br>fibres. The mirage.<br>Formation of images. Use of lens formulae<br>$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ and magnification $\frac{v}{u}$ tp solve numerical<br>problems. |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Ι

|     | TOPICS                                                                      | NOTES                                                                                                                                                                                                                                                                                                          |
|-----|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                             | (derivation of the formulae not required).<br>Experimental determination of the focal length of<br>converging lens. Power of lens in dioptres (D)                                                                                                                                                              |
|     | (g) Application of lenses in optical instruments.                           | Simple camera, the human eye, film projector,<br>simple and compound microscopes, terrestrial and<br>astronomical telescopes. Angular magnification.<br>Prism binoculars. The structure and function of the<br>camera and the human eye should be compared.<br>Defects of the human eye and their corrections. |
|     | (h) Dispersion of white light by a triangular glass prism.                  | Production of pure spectrum of a white light.<br>Recombination of the components of the spectrum.<br>Colours of objects. Mixing coloured lights.                                                                                                                                                               |
| 21. | Electromagnetic waves:<br>Types of radiation in electromagnetic<br>Spectrum | Elementary description and uses of various types of<br>radiation: Radio, infrared, visible light, ultra-violet,<br>X-rays, gamma rays.                                                                                                                                                                         |
| 22. | Sound Waves                                                                 |                                                                                                                                                                                                                                                                                                                |
|     | (a) Sources of sound                                                        |                                                                                                                                                                                                                                                                                                                |



| (b) Transmission of sound waves                                            | Experiment to show that a material medium is required.                                                                                                          |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (c) Speed of sound in solid, liquid and air                                | To be compared. Dependence of velocity of sound<br>on temperature and pressure to be considered.                                                                |
| (d) Echoes and reverberation                                               | Use of echoes in mineral exploration, and<br>determination of ocean depth. Thunder and multiple<br>reflections in a large room as examples of<br>reverberation. |
| <ul><li>(e) Noise and music</li><li>(f) Characteristics of sound</li></ul> | Pitch, loudness and quality.                                                                                                                                    |
|                                                                            |                                                                                                                                                                 |

| TOPICS                                                                     | NOTES                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (g) Vibration in strings                                                   | The use of sonometer to demonstrate the dependence<br>of frequency (f) on length (1), tension (T) and mass<br>per unit length (liner density) (m) of string should be<br>treated. Use of the formula:<br>$f_{0} = \frac{1}{21} \sqrt{\frac{T}{m}}$                                                                        |
|                                                                            | In solving simple numerical problems.<br>Applications in stringed instruments: e.g. guitar, piano, harp and violin.                                                                                                                                                                                                       |
| (h) Forced vibration                                                       | Use of resonance boxes and sonometer to illustrate forced vibration.                                                                                                                                                                                                                                                      |
| <ul><li>(i) Resonance</li><li>(ii) Harmonies and overtones</li></ul>       | Use of overtones to explain the quality of a musical<br>note. Applications in percussion instruments: e.g<br>drum, bell, cymbals, xylophone.                                                                                                                                                                              |
| <ul><li>(i) Vibration of air in pipe – open<br/>and closed pipes</li></ul> | Measurement of velocity of sound in air or<br>frequency of tuning fork using the resonance tube.<br>Use of the relationship $v = f\lambda$ in solving numerical<br>problems. End correction is expected to be<br>mentioned. Applications in wind instruments e.g.<br>organ, flute, trumpet, horn, clarinet and saxophone. |



### PART IV FIELDS

|     | TOPICS                                                                                | NOTES                                                                                            |
|-----|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 23. | Description property of fields.                                                       |                                                                                                  |
|     | <ul><li>(a) Concept of fields:<br/>Gravitational, electric and<br/>Magnetic</li></ul> |                                                                                                  |
|     | (b) Properties of a force field                                                       | Use of compass needle and iron filings to show magnetic field lines.                             |
| 24. | Gravitational field                                                                   |                                                                                                  |
|     | (a) Acceleration due to gravity, (g)                                                  | G as gravitational field intensity should be mentioned, $g = F/m$ .                              |
|     | (b) Gravitational force between two masses:                                           | Masses include protons, electrons and planets                                                    |
|     | Newton's law of gravitation                                                           | Universal gravitational constant (G)<br>Relationship between 'G' and 'g'                         |
|     | (c) Gravitational potential and escape velocity.                                      | Calculation of the escape velocity of a rocket from the earth's gravitational field.             |
| 25. | Electric Field                                                                        |                                                                                                  |
|     | <ul><li>(1) Electrostatics</li><li>(a) Production of electric charges</li></ul>       | Production by friction, induction and contact.                                                   |
|     | (b) Types of distribution of charges                                                  | A simple electroscope should be used to detect and compare charges on differently-shaped bodies. |
|     | (c) Storage of charges                                                                | Application in light conductors.                                                                 |
|     | (d) Electric lines of force                                                           | Determination, properties and field patterns of charges.                                         |

Γ

| TOPICS                                                                                                                                       | NOTES                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (e) Electric force between point<br>charges: Coulomb's law                                                                                   | Permittivity of a medium.                                                                                                                                                                                                                                                                                       |
| (f) Concepts of electric field,<br>electric field intensity (potential<br>gradient) and electric potential.                                  | Calculation of electric field intensity and electric potential of simple systems.                                                                                                                                                                                                                               |
| (g) Capacitance-<br>Definition, arrangement and<br>application                                                                               | Factors affecting the capacitance of a parallel-plate<br>capacitor. The farad (F) as unit of capacitance.<br>Capacitors in series and in parallel.<br>Energy stored in a charged capacitor. Uses of<br>capacitors: e.g. in radio and Television.<br>(Derivation of formulae for capacitance is not<br>required) |
| <ul> <li>(2) Current electricity         <ul> <li>(a) Production of electric current from primary and secondary cells</li> </ul> </li> </ul> | Simple cell and its defects. Daniel cell, Lechanché<br>cell (wet and dry).<br>Lead-acid accumulator. Alkalne-cadium cell.<br>E.m.f. of a cell, the volt (V) as unit of e.m.f.                                                                                                                                   |
| (b) Potential difference and electric current                                                                                                | Ohm's law and resistance. Verification of Ohm's law. The volt (V), ampere (A) and ohm ( $\Omega$ ) as units of p.d., current and reisistance respectively.                                                                                                                                                      |
| (c) Electric circuit                                                                                                                         | Series and parallel arrangement of cells and resistors. Lost volt and internal resistance of batteries.                                                                                                                                                                                                         |
| (d) Electric conduction through materials                                                                                                    | Ohmic and non ohmic conductors. Examples of ohmic conductors are metals, non-ohmic conductors are semiconductors.                                                                                                                                                                                               |
| (e) Electric energy and power                                                                                                                | Quantitative definition of electrical energy and<br>power. Heating effect of an electric current and its<br>application. Conversion of electrical energy to<br>mechanical energy e.g. electric motors.                                                                                                          |



| Conversion of solar energy to electrical and heat energies: e.g. solar cells, solar heaters. |
|----------------------------------------------------------------------------------------------|
|                                                                                              |
|                                                                                              |

| TOPICS | NOTES |
|--------|-------|



|        | TOPICS                                                                                                                    | NOTES                                                                                                                                                                                                                                                                                        |
|--------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ) Concept of electromagnetic field                                                                                        | Identifying the directions of current, magnetic field<br>and force in an electromagnetic field (Fleming's left-<br>hand rule).                                                                                                                                                               |
| 27. El | ectromagnetic field                                                                                                       |                                                                                                                                                                                                                                                                                              |
|        | (g) Magnetic force on a moving<br>charged particle                                                                        | Solving simple problems involving the motion of a charged particle in a magnetic field, using $F=qvB \sin \theta$                                                                                                                                                                            |
|        | (f) The earth's magnetic field                                                                                            | Mariner's compass. Angles of dip and declination.                                                                                                                                                                                                                                            |
|        | <ul><li>(ii) between two parallel<br/>current-carrying conductors</li><li>(e) Use of electromagnets</li></ul>             | Examples in electric bell, telephone earpiece etc.                                                                                                                                                                                                                                           |
|        | <ul><li>(d) Magnetic force on:</li><li>(i) a current-carrying conductor placed in a magnetic field;</li></ul>             | Qualitative treatment only. Applications: electric motor and moving-coil galvanometer.                                                                                                                                                                                                       |
|        | (c) Concept of magnetic field                                                                                             | Magnetic flux and magnetic flux density.<br>Magnetic field around a permanent magnet, a<br>current-carrying conductor and a solenoid.<br>Plotting of line of force to locate neutral points<br>Units of magnetic flux and magnetic flux density as<br>weber (Wb) and tesla (T) respectively. |
|        | (b) Magnetization and demagnetization.                                                                                    | Temporary and permanent magnets. Comparison of iron and steel as magnetic materials.                                                                                                                                                                                                         |
|        | (a) Properties of magnets and magnetic materials.                                                                         | Practical examples such as soft iron, steel and alloys.                                                                                                                                                                                                                                      |
| 26.    | Magnetic field                                                                                                            |                                                                                                                                                                                                                                                                                              |
|        | (h) Measurement of electric<br>current, potential difference,<br>resistance, e.m.f. and internal<br>resistance of a cell. | Principle of operation and use of ammeter,<br>voltmeter, potentiometer. The wheatstone bridge<br>and metre bridge.                                                                                                                                                                           |
|        | (g) Resistivity and Conductivity                                                                                          | Factors affecting the electrical resistance of a material should be treated. Simple problems may be set.                                                                                                                                                                                     |
|        | (f) Shunt and multiplier                                                                                                  | Use in conversion of a galvanometer into an ammeter and a voltmeter.                                                                                                                                                                                                                         |



| <ul> <li>(i) Shunt and multiplier</li> <li>(i) Resistivity and Conductivity</li> <li>(j) Resistivity and Conductivity</li> <li>(k) Measurement of electric current, potential difference, resistance of a cell.</li> <li>26. Magnetic field</li> <li>(h) Properties of magnets and magnetic materials.</li> <li>(i) Magnetization and demagnetization.</li> <li>(j) Concept of magnetic field</li> <li>(k) Magnetic force on:</li> <li>(i) a current-carrying conductors</li> <li>(j) Use of electromagnetic field</li> <li>(k) Magnetic force on:</li> <li>(i) a current-carrying conductors</li> <li>(j) Use of electromagnetic field</li> <li>(k) Magnetic force on:</li> <li>(j) Lost of electromagnetic field</li> <li>(k) Magnetic force on:</li> <li>(j) Lost of electromagnetic field</li> <li>(k) Magnetic force on:</li> <li>(j) Lost of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Concept of negnetic field</li> <li>(j) Concept of magnetic field</li> <li>(j) Lost of electromagnetic field</li> <li>(j) Lost of electromagnetic field</li> <li>(j) Use of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <l< th=""><th></th><th></th><th></th></l<></ul>                                                                                                                                                   |         |                                                                |                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(k) Measurement of electric current, potential difference, resistance, e.m.f. and internal resistance of a cell.</li> <li>26. Magnetic field</li> <li>(h) Properties of magnets and magnetic materials.</li> <li>(i) Magnetization and demagnetization.</li> <li>(j) Concept of magnetic field</li> <li>(k) Magnetic force on:</li> <li>(i) a current-carrying conductors placed in a magnetic field;</li> <li>(ii) between two parallel current-carrying conductors.</li> <li>(j) Use of electromagnetic field</li> <li>(m) The earth's magnetic field</li> <li>(m) Magnetic force on a moving charged particle</li> <li>(j) Concept of electromagnetic field</li> <li>(k) Magnetic force on:</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Concept of lagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Concept of electromagnetic field</li> <li>(j) Luse of electromagnetic field</li> <li>(j) Lus</li></ul> |         | (i) Shunt and multiplier                                       | •                                                                                                                                                                                                      |
| current, potential difference,<br>resistance, e.m.f. and internal<br>resistance of a cell.voltmeter, potentiometer. The wheatstone bridge<br>and metre bridge.26. Magnetic field<br>(h) Properties of magnets and<br>magnetic materials.Practical examples such as soft iron, steel and alloys.(i) Magnetization and<br>demagnetization.Practical examples such as soft iron, steel and alloys.(j) Concept of magnetic fieldMagnetic flux density.<br>Magnetic flux dangetic flux density.<br>Magnetic flux and magnetic flux density.<br>Magnetic flux and magnetic flux density.<br>Magnetic flux and magnetic flux density as<br>weber (Wb) and tesla (T) respectively.(k) Magnetic force on:<br>(i) a current-carrying conductor<br>placed in a magnetic field<br>current-carrying conductors<br>(i) Use of electromagnetsQualitative treatment only. Applications: electric<br>motor and moving-coil galvanometer.(m) The earth's magnetic field<br>(n) Magnetic force on a moving<br>charged particleSolving simple problems involving the motion of a<br>charged particle in a magnetic field, using F=qvB<br>sin $\theta$ 27. Electromagnetic field<br>(a) Concept of electromagnetic field<br>(a) Concept of electromagnetic fieldIdentifying the directions of current, magnetic field<br>and force in an electromagnetic field (Fleming's left-<br>hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (j) Resistivity and Conductivity                               | material should be treated. Simple problems may be                                                                                                                                                     |
| (h)Properties of magnets and<br>magnetic materials.Practical examples such as soft iron, steel and alloys.(i)Magnetization and<br>demagnetization.Temporary and permanent magnets. Comparison of<br>iron and steel as magnetic flux density.<br>Magnetic field around a permanent magnet, a<br>current-carrying conductor<br>placed in a magnetic field;<br>(ii)Temporary and permanent magnets. Comparison of<br>iron and steel as magnetic flux density.<br>Magnetic field around a permanent magnet, a<br>current-carrying conductor<br>placed in a magnetic field;<br>(ii) between two paralle<br>current-carrying conductors<br>(i)Magnetic force on:<br>(i) a current-carrying conductors<br>placed in a magnetic field<br>(iii) between two parallel<br>current-carrying conductors<br>(i) Use of electromagnetsQualitative treatment only. Applications: electric<br>motor and moving-coil galvanometer.(m)The earth's magnetic field<br>(a)Solving simple problems involving the motion of a<br>charged particle27.Electromagnetic field<br>(a)Concept of electromagnetic field<br>and force in an electromagnetic field (Fleming's left-<br>hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | current, potential difference, resistance, e.m.f. and internal | voltmeter, potentiometer. The wheatstone bridge                                                                                                                                                        |
| <ul> <li>magnetic materials.</li> <li>(i) Magnetization and demagnetization.</li> <li>(j) Concept of magnetic field</li> <li>(k) Magnetic force on: <ul> <li>(i) a current-carrying conductor placed in a magnetic field;</li> <li>(ii) between two parallel current-carrying conductors</li> <li>(j) Use of electromagnets</li> <li>(m) The earth's magnetic field</li> <li>(n) Magnetic force on a moving charged particle</li> </ul> </li> <li>27. Electromagnetic field <ul> <li>(a) Concept of electromagnetic field</li> <li>(a) Concept of electromagnetic field</li> <li>(b) Concept of electromagnetic field</li> <li>(c) Concept of electromagnetic field</li> <li>(a) Concept of electromagnetic field</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.     | Magnetic field                                                 |                                                                                                                                                                                                        |
| <ul> <li>demagnetization.</li> <li>(i) Concept of magnetic field</li> <li>(ii) Concept of magnetic field</li> <li>(iii) Magnetic force on:</li> <li>(i) a current-carrying conductor placed in a magnetic field;</li> <li>(ii) between two parallel current-carrying conductors</li> <li>(i) Use of electromagnets</li> <li>(ii) The earth's magnetic field</li> <li>(iii) Magnetic force on a moving charged particle</li> <li>27. Electromagnetic field</li> <li>(a) Concept of electromagnetic field</li> <li>(b) Concept of electromagnetic field</li> <li>(c) Concept of electromagnetic field</li> <li>(a) Concept of electromagnetic field</li> <li>(b) Concept of electromagnetic field</li> <li>(c) C</li></ul>  |         | · · · · ·                                                      | Practical examples such as soft iron, steel and alloys.                                                                                                                                                |
| Magnetic field around a permanent magnet, a<br>current-carrying conductor and a solenoid.<br>Plotting of line of force to locate neutral points<br>Units of magnetic flux and magnetic flux density as<br>weber (Wb) and tesla (T) respectively.(k) Magnetic force on:<br>(i) a current-carrying conductor<br>placed in a magnetic field;<br>(ii) between two parallel<br>current-carrying conductors<br>(1) Use of electromagnetsQualitative treatment only. Applications: electric<br>motor and moving-coil galvanometer.(b) Use of electromagnets<br>(m) The earth's magnetic field<br>(n) Magnetic force on a moving<br>charged particleExamples in electric bell, telephone earpiece etc.27. Electromagnetic field<br>(a) Concept of electromagnetic field<br>(a) Concept of electromagnetic fieldIdentifying the directions of current, magnetic field<br>and force in an electromagnetic field (Fleming's left-<br>hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                                |                                                                                                                                                                                                        |
| <ul> <li>(i) a current-carrying conductor placed in a magnetic field;</li> <li>(ii) between two parallel current-carrying conductors</li> <li>(i) Use of electromagnets</li> <li>(m) The earth's magnetic field</li> <li>(n) Magnetic force on a moving charged particle</li> </ul> 27. Electromagnetic field <ul> <li>(a) Concept of electromagnetic field</li> <li>(b) Magnetic field</li> <li>(c) Concept of electromagnetic field</li> <li>(c) Concept of electromagnetic field</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | (j) Concept of magnetic field                                  | Magnetic field around a permanent magnet, a<br>current-carrying conductor and a solenoid.<br>Plotting of line of force to locate neutral points<br>Units of magnetic flux and magnetic flux density as |
| current-carrying conductors<br>(1) Use of electromagnetsExamples in electric bell, telephone earpiece etc.(m) The earth's magnetic field<br>(n) Magnetic force on a moving<br>charged particleMariner's compass. Angles of dip and declination.27. Electromagnetic field<br>(a) Concept of electromagnetic fieldIdentifying the directions of current, magnetic field<br>and force in an electromagnetic field (Fleming's left-<br>hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | (i) a current-carrying conductor placed in a magnetic field;   |                                                                                                                                                                                                        |
| <ul> <li>(m) The earth's magnetic field</li> <li>(n) Magnetic force on a moving charged particle</li> <li>27. Electromagnetic field</li> <li>(a) Concept of electromagnetic field</li> <li>(b) Concept of electromagnetic field</li> <li>(c) Concept of ele</li></ul>  |         | current-carrying conductors                                    | Examples in electric bell, telephone earpiece etc.                                                                                                                                                     |
| <ul> <li>(n) Magnetic force on a moving charged particle</li> <li>27. Electromagnetic field         <ul> <li>(a) Concept of electromagnetic field</li> <li>(b) Concept of electromagnetic field</li> <li>(c) Concept of electromagnetic field</li> </ul> </li> <li>Solving simple problems involving the motion of a charged particle in a magnetic field, using F=qvB sin θ</li> <li>Identifying the directions of current, magnetic field and force in an electromagnetic field (Fleming's left-hand rule).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                                | Mariner's compass. Angles of dip and declination.                                                                                                                                                      |
| (a) Concept of electromagnetic field Identifying the directions of current, magnetic field and force in an electromagnetic field (Fleming's left-hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | (n) Magnetic force on a moving                                 | charged particle in a magnetic field, using F=qvB                                                                                                                                                      |
| (a) Concept of electromagnetic field Identifying the directions of current, magnetic field and force in an electromagnetic field (Fleming's left-hand rule).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27. Ele | ectromagnetic field                                            |                                                                                                                                                                                                        |
| TOPIC NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | C .                                                            | and force in an electromagnetic field (Fleming's left-                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | TOPIC                                                          | NOTES                                                                                                                                                                                                  |



| (b) Electromogratic induction                                         |                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) Electromagnetic induction                                         |                                                                                                                                                                                                                                 |
| Faraday's law ,Lenz's law and motor-generator effect                  | Applications: Generator (d.c.and a.c.) induction coil<br>and transformer. The principles underlying the<br>production of direct and alternating currents should<br>be treated. Equation $E = E_0$ sinwt should be<br>explained. |
| (c) Inductance                                                        | Qualitative explanation of self and mutual inductance. The unit of inductance is henry (H).                                                                                                                                     |
|                                                                       | $(\mathbf{E} = \frac{1}{2} \mathbf{L} \mathbf{I}^2)$                                                                                                                                                                            |
|                                                                       | Application in radio, T.V., transformer.<br>(Derivation of formula is not required).                                                                                                                                            |
| (d) Eddy currents                                                     | A method of reducing eddy current losses should be<br>treated. Applications in induction furnace,<br>speedometer, etc.                                                                                                          |
| (e) Power transmission and distribution                               | Reduction of power losses in high-tension<br>transmission lines. Household wiring system should<br>be discussed.                                                                                                                |
| 28. Simple a.c. circuits                                              |                                                                                                                                                                                                                                 |
| (a) Graphical representation of e.m.f and current in an a.c. circult. | Graphs of equation I – Io sin wt and $E = E_0$ sinwt should be treated.                                                                                                                                                         |
| (b) Peak and rm.s. values                                             | Phase relationship between voltage and current in the circuit elements; resistor, inductor and capacitor.                                                                                                                       |
|                                                                       |                                                                                                                                                                                                                                 |
|                                                                       |                                                                                                                                                                                                                                 |
|                                                                       |                                                                                                                                                                                                                                 |
| TOPIC                                                                 |                                                                                                                                                                                                                                 |
|                                                                       | NOTES                                                                                                                                                                                                                           |



| (c) Series circuit containing resistor, inductor and capacitor                           | Simple calculations involving a.c. circuit.<br>(Derivation of formulae is not required.) |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| <ul><li>(d) Reactance and impedance</li><li>(e) Vector diagrams</li></ul>                | $X_L$ and $X_c$ should be treated. Simple numerical problems may be set.                 |
| <ul><li>(f) Resonance in an a.c, circuit</li><li>(g) Power in an a.c. circuit.</li></ul> | Applications in tuning of radio and T.V. should be discussed.                            |

PART V ATOMIC AND NUCELAR PHYSICS

| TOPICS                                              | NOTES                                                                                                                                                                                                                                 |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29. Structure of the atom<br>(a) Models of the atom | Thomson, Rutherford, Bohr and electron-<br>cloud (wave-mechanical) models should be<br>discussed qualitatively. Limitations of each<br>model. Quantization of angular momentum<br>(Bohr)                                              |
| (b) Energy quantization                             | Energy levels in the atom. Colour and light<br>frequency. Treatment should include the<br>following: Frank-Hertz experiment, Line<br>spectra from hot bodies, absorption spectra<br>and spectra of discharge lamps.                   |
| (c) Photoelectric effect                            | Explanation of photoelectric effect. Dual<br>nature of light. Work function and threshold<br>frequency. Einstein's photoelectric equation<br>and its explanation. Application in T.V.,<br>camera, etc.<br>Simple problems may be set. |
| (d) Thermionic emission                             | Explanation and applications.                                                                                                                                                                                                         |



|                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li>(e) X-rays</li><li>30. Structure of the nucleus</li><li>(a) Composition of the nucleus</li></ul>                 | <ul> <li>Production of X-rays and structure of X-ray tube.</li> <li>Types, characteristics, properties, uses and hazards of X-rays. Safety precautions</li> <li>Protons and neutrons. Nucleon number (A), proton number (Z), neutron number (N) and the equation: A-Z + N to be treated.</li> <li>Nuclides and their notation. Isotopes.</li> </ul>                                                                                                                                                                                                                                                      |
| TOPICS                                                                                                                   | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>(a) Radioactivity –<br/>Natural and artificial</li> <li>(b) Nuclear reactions<br/>Fusion and Fission</li> </ul> | Radioactive elements, radioactive emissions $(\alpha, \beta, \gamma)$ and their properties and uses.<br>Detection of radiations by G – M counter, photographic plates, etc. should be mentioned. Radioactive decay, half-life and decay constant.<br>Transformation of elements. Applications of radioactivity in agriculture, medicine, industry, archaeology, etc.<br>Distinction between fusion and fission.<br>Binding energy, mass defect and energy equation:<br>$E = \Delta mc^2$<br>Nuclear reactors. Atomic bomb. Radiation hazards and safety precautions. Peaceful uses of nuclear reactions. |
| <ul><li>31. Wave-particle paradox</li><li>(a) Electron diffraction</li><li>(b) Duality of matter</li></ul>               | Simple illustration of the dual nature of light.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



### HARMONISED TOPICS FOR SHORT STRUCTURED QUESTIONS FOR ALL MEMBER COUNTRIES

|    | TOPICS                                                                                              | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Derived quantities and dimensional<br>Analysis                                                      | <ul> <li>Fundamental quantities and units e.g. Length, mass, time, electric current, luminous intensity e.t.c., m, kg,s, A, cd, e.t.c. as their respective units</li> <li>Derived quantities and units. e.g. volume, density, speed e.t.c. m<sup>3</sup>, kgm<sup>-3</sup>, ms<sup>-1</sup> e.t.c. as their respective unit</li> <li>Explanation of dimensions in terms of fundamental and derived quantities. Uses of dimensions</li> <li>to verity dimensional correctness of a given equation</li> <li>to derive the relationship between quantities</li> <li>to obtain derived units.</li> </ul> |
| 2. | Projectile motion concept of projectiles as an object thrown/release into space                     | Applications of projectiles in warfare, sports etc.<br>Simple problems involving range, maximum height<br>and time of flight may be set.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. | Satellites and rockets                                                                              | Meaning of a satellite comparison of natural and<br>artificial satellites parking orbits, Geostationary<br>satellites and period of revolution and speed of a<br>satellite.<br>Uses of satellites and rockets                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. | Elastic Properties of solid:<br>Hooke's law, Young's modules and<br>work done in springs and string | Behaviour of elastic materials under stress – features<br>of load – extension graph<br>Simple calculations on Hook's law and Young's<br>modulus.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Thermal conductivity:<br>Solar energy collector and Black body<br>Radiation.                        | Solar energy; solar panel for heat energy supply.<br>Explanation of a blackbody. Variation of intensity<br>of black body radiation with wavelength at different<br>temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5. | Fibre Optics                                                                                        | Explanation of concept of fibre optics.<br>Principle of transmission of light through an optical<br>fibre<br>Applications of fibre optics e.g. local area Networks<br>(LAN) medicine, rensing devices, carrying laser<br>beams e.t.c.                                                                                                                                                                                                                                                                                                                                                                |



| TOPICS                                                  | NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6. Introduction to LASER                                | Meaning of LASER<br>Types of LASERS<br>(Solid state, gas, liquid and semi-conductor<br>LASERS<br>Application of LASERS<br>(in Scientific research, communication, medicine<br>military technology, Holograms e.t.c.<br>Dangers involved in using LASERS.                                                                                                                                                                                                       |
| 7. Magnetic materials                                   | Uses of magnets and ferromagnetic materials.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8. Electrical Conduction through materials [Electronic] | Distinction between conductors, semiconductors and<br>insulators in term of band theory.<br>Semi conductor materials (silicon and germanium)<br>Meaning of intrinsic semiconductors. (Example of<br>materials silicon and germanium). Charge carriers<br>Doping production of p-type and n-type extrinsic<br>semi conductors.<br>Junction diode – forward and reverse biasing,<br>voltage characteristics. Uses of diodes Half and full<br>wave rectification. |
| 9. Structure of matter                                  | Use of kinetic theory to explain diffusion.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10. Wave – particle paradox                             | Electron diffraction<br>Duality of matter<br>Simple illustrations of dual nature of light.                                                                                                                                                                                                                                                                                                                                                                     |