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Preface

Many books are available on the subject of cryptography. Most of 
these books focus on only the theoretical aspects of cryptography. 
Some books that include cryptographic algorithms with practical 
programming codes are by this time (i.e., at the preparation of this 
book) outdated. Though cryptography is a classical subject in which 
often “old is gold,” many new techniques and algorithms have been 
developed in recent years. These are the main points that motivated 
us to write and edit this book.

In fact, as students for life, we are constantly learning new needs in 
our fields of interest. When we were formally enrolled university stu-
dents completing our undergraduate and postgraduate studies, we felt 
the need for a book that would not only provide details of the theories 
and concepts of cryptography, but also provide executable program-
ming codes that the students would be able to try using their own 
computers. It took us a long time to commit to prepare such a book 
with both theory and practical codes.

Though some chapters of this book have been contributed by different 
authors from different countries, we, the editors, have also made our 
personal contributions in many parts. The content is a balanced mixture 
of the foundations of cryptography and its practical implementation 
with the programming language C++.



x Preface

What This Book Is For

The main objective of this book is not only to describe state-of-the-
art cryptographic algorithms (alongside classic schemes), but also to 
demonstrate how they can be implemented using a programming 
language, i.e., C++. As noted before, books that discuss cryptographic 
algorithms do not elaborate on implementation issues. Therefore, 
a gap between the understanding and the implementation remains 
unattained to a large extent. The motivation for this book is to bridge 
that gap and to cater to readers in such a way that they will be capable 
of developing and implementing their own designed cryptographic 
algorithm.

What This Book Is Not For

The book is not an encyclopedia-like resource. It is not for those who 
are completely outside the related fields, for example, readers with 
backgrounds in arts, business, economics, or other such areas. It may 
not contain the meanings and details of each technical term men-
tioned. While many of the technical matters have been detailed for 
easy understanding, some knowledge about computers, networking, 
programming, and aspects of computer security may be required. 
Familiarity with these basic topics will allow the reader to understand 
most of the materials.

Target Audience

This book is prepared especially for undergraduate or postgraduate 
students. It can be utilized as a reference book to teach courses such 
as cryptography, network security, and other security-related courses. 
It can also help professionals and researchers working in the field of 
computers and network security. Moreover, the book includes some 
chapters written in tutorial style so that general readers will be able 
to easily grasp some of the ideas in relevant areas. Additional material 
is available from the CRC Press website: http://www.crcpress.com/
product/isbn/9781482228892.

We hope that this book will be significantly beneficial for the 
readers. Any criticism, comments, suggestions, corrections, or updates 
about any portion of the book are welcomed.



xi

Acknowledgments

We are very grateful to the Almighty Allah for allowing us the time 
to complete this work. Thanks to the contributors who provided the 
programming codes for different algorithms, as well as the write-ups 
of various schemes. We express our sincere gratitude to our wives and 
family members who have been constant sources of inspiration for our 
works. Last, but not the least, we are grateful to CRC Press for accept-
ing our proposal for this project.





xiii

About the Editors

Saiful Azad earned his PhD in infor-
mation engineering from the University 
of Padova, Italy, in 2013. He completed 
his BSc in computer and information 
technology at the Islamic University of 
Technology (IUT) in Bangladesh, and 
his MSc in computer and information 
engineering at the International Islamic 
University Malaysia (IIUM). After the 
completion of his PhD, he joined the 
Department of Computer Science at 

the American International University–Bangladesh (AIUB) as a fac-
ulty member. His work on underwater acoustic networks began dur-
ing his PhD program and remains his main research focus. Dr. Azad’s 
interests also include the design and implementation of communica-
tion protocols for different network architectures, QoS issues, network 
security, and simulation software design. He is one of the developers 
of the DESERT underwater simulator. He is also the author of more 
than 30 scientific papers published in international peer-reviewed 
journals or conferences. Dr. Azad also serves as a reviewer for some 
renowned peer-reviewed journals and conferences.



xiv About the Editors

Al-Sakib Khan Pathan earned his 
PhD degree (MS leading to PhD) in 
computer engineering in 2009 from 
Kyung Hee University in South Korea. 
He earned his BS degree in computer 
science and information technology 
from IUT, Bangladesh, in 2003. He 
is currently an assistant professor in 
the Computer Science Department 
of IIUM. Until June 2010 he served 

as an assistant professor in the Computer Science and Engineering 
Department of BRAC University, Bangladesh. Prior to holding this 
position, he worked as a researcher at the networking lab of Kyung 
Hee University, South Korea, until August 2009. Dr. Pathan’s 
research interests include wireless sensor networks, network security, 
and e-services technologies. He has been a recipient of several awards/
best paper awards and has several publications in these areas. He has 
served as chair, an organizing committee member, and a technical 
program committee member in numerous international conferences/
workshops, including GLOBECOM, GreenCom, HPCS, ICA3PP, 
IWCMC, VTC, HPCC, and IDCS. He was awarded the IEEE 
Outstanding Leadership Award and Certificate of Appreciation for 
his role in the IEEE GreenCom 2013 conference. He is currently 
serving as area editor of International Journal of Communication 
Networks and Information Security, editor of International Journal of 
Computational Science and Engineering, Inderscience, associate editor of 
IASTED/ACTA Press International Journal of Computer Applications, 
guest editor of many special issues of top-ranked journals, and editor/
author of 12 books. One of his books has twice been included in Intel 
Corporation’s Recommended Reading List for Developers, the second 
half of 2013 and the first half of 2014; three other books are included 
in IEEE Communications Society’s (IEEE ComSoc) Best Readings 
in Communications and Information Systems Security, 2013; and a 
fifth book is in the process of being translated to simplified Chinese 
language from the English version. Also, two of his journal papers and 
one conference paper are included under different categories in IEEE 
Communications Society’s Best Readings Topics on Communications 



xvAbout the Editors

and Information Systems Security, 2013. Dr. Pathan also serves as a 
referee of numerous renowned journals. He is a senior member of 
the Institute of Electrical and Electronics Engineers (IEEE), United 
States; IEEE ComSoc Bangladesh Chapter; and several other inter-
national professional organizations.





xvii

Contributors

Sheikh Shaugat Abdullah
Department of Computer 

Science
American International 

University–Bangladesh 
(AIUB)

Dhaka, Bangladesh

Giovanni Agosta
Politecnico di Milano
Milano, Italy

Tanveer Ahmed
Dhaka University of 

Engineering and Technology 
(DUET)

Gazipur, Bangladesh

Saad Andalib
Department of Computer 

Science
American International 

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Saiful Azad
Department of Computer 

Science
American International 

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Alessandro Barenghi
Politecnico di Milano
Milano, Italy



xviii Contributors

Aymen Boudguiga
ESME Engineering School
Paris, France

Mohamed Hamdi
Sup’Com
Technopark El Ghazala
Ariana, Tunisia

Bayzid Ashik Hossain
Department of Computer 

Science
American International 

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Ezazul Islam
Department of Computer 

Science
American International 

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Mohammad Abul Kashem
Dhaka University of Engineering 

and Technology (DUET)
Gazipur, Bangladesh

Maryline Laurent
Telecom SudParis
Evry, France

Saef Ullah Miah
Department of Computer 

Science
American International 

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Saddam Hossain Mukta
Department of Computer Science
American International 

University–Bangladesh 
(AIUB)

Dhaka, Bangladesh

Al-Sakib Khan Pathan
Department of Computer Science
Kulliyyah (Faculty) 

of Information and 
Communication Technology

International Islamic University 
Malaysia (IIUM)

Gombak, Malaysia

Gerardo Pelosi
Politecnico di Milano
Milano, Italy

Asif Ur Rahman
Department of Computer Science
American International 

University–Bangladesh 
(AIUB)

Dhaka, Bangladesh

Hafizur Rahman
Department of Computer 

Science
American International 

University–Bangladesh 
(AIUB)

Dhaka, Bangladesh

Michele Scandale
Politecnico di Milano
Milano, Italy



xixContributors

Nasrin Sultana
Department of Computer 

Science
American International 

University–Bangladesh 
(AIUB)

Dhaka, Bangladesh

Marat Zhanikeev
Department of Artificial 

Intelligence
Computer Science and Systems 

Engineering
Kyushu Institute of Technology
Fukuoka, Japan





1

1
Basics of Security 
and Cryptography

A L - S A K I B  K H A N  PAT H A N

Keywords
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Security
Symmetric

To begin with, the purpose of this book is not to delve into the history 
of cryptography or to analyze the debate on the first occurrence of 
the technique in communications technologies. Instead, we aim to 
clarify various basic terminologies to give lucid understanding of the 
subject matter. Throughout the book, we will see various approaches 
to utilizing cryptographic techniques along with practical codes; 
however, the intent of this first chapter is to set the basics for the rest 
of the content.

The formal definition of cryptography could be noted in various ways; 
however, one is enough if that sums up all the associated meanings. 

Contents

Keywords	 1
1.1	 The Perimeter of Cryptography in Practice	 7
1.2	 Things That Cryptographic Technologies Cannot Do	 9
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Cryptography is basically the science that employs mathematical logic 
to keep the information secure (a formal definition is mentioned later 
in this chapter for quick reference). It enables someone to securely 
store sensitive information or transmit information securely through 
insecure networks to keep it from being hacked, masqueraded,  or 
altered. The history of cryptography starts from the ancient era 
when it was practiced by secret societies or by troops in battlefields. 
The necessity of such an approach increased with time. In the current 
information era, there is indeed no time at which information secu-
rity is not necessary, and hence cryptography stands with strength 
among various essential technologies. From military to civilian or 
from government to individual, information security is tremendously 
necessary. Consequently, several algorithms are proposed, and they are 
implemented with various hardware. The basic idea of a cryptographic 
algorithm is to scramble information in such a way that illegitimate 
entities cannot unearth the concealed information. Cryptographic 
algorithms are also used to preserve the integrity of a message.

There are various terminologies/words or set of words that are often 
associated with the fields of cryptography. Here, let us learn the basic 
definitions of the major terminologies that may be frequently used in 
the relevant fields and within this book.

Plaintext: This is the information that a sender wants to transmit 
to a receiver. A synonym of this is cleartext.

Encryption: Encryption is the process of encoding messages (or 
information) in such a way that eavesdroppers or hackers can-
not read it, but authorized parties can. In an encryption scheme, 
the message or information (i.e., plaintext) is encrypted using an 
encryption algorithm, turning it into an unreadable ciphertext.

Ciphertext: Ciphertext (sometimes spelled cyphertext) is the 
result of encryption performed on plaintext using an algorithm, 
called a cipher.

Cipher: A cipher (sometimes spelled cypher) is an algorithm for 
performing encryption or decryption—a series of well-defined 
steps that can be followed as a procedure. A relatively less com-
mon term is encipherment. A cipher is also called a cryptoalgorithm.

Decryption: This is the process of decoding the encrypted text 
(i.e., ciphertext) and getting it back in the plaintext format.
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Cryptographic key: Generally, a key or a set of keys is involved 
in encrypting a message. An identical key or a set of identical 
keys is used by the legitimate party to decrypt the message. 
A key is a piece of information (or a parameter) that deter-
mines the functional output of a cryptographic algorithm 
or cipher. Sometimes key means just some steps or rules to 
follow to twist the plaintext before transmitting it via a public 
medium (i.e., to generate ciphertext).

Stream cipher: A stream cipher is a method of encrypting text 
(to produce ciphertext) in which a cryptographic key and 
algorithm are applied to each binary digit in a data stream, 
one bit at a time. This method is not much used in modern 
cryptography. A typical operational flow diagram of stream 
cipher is shown in Figure 1.1.

Block cipher: A block cipher is a method of encrypting text (to 
produce ciphertext) in which a cryptographic key and algorithm 
are applied to a block of data (for example, 64 contiguous bits) 
at once as a group rather than one bit at a time. A sample 
diagram for a block cipher operation is shown in Figure 1.2. 
The feedback mechanism shown with a dotted line is optional 
but may be used to strengthen the process. A stronger mode is 
cipher feedback (CFB), which combines the plain block with 
the previous cipher block before encrypting it.

Cryptology: Cryptology is the general area of mathematics, 
such as number theory, and the application of formulas and 
algorithms, that underpin cryptography and cryptanalysis.

Cryptography: Cryptography and cryptology are often used as 
synonyms. However, a better understanding is that cryptol-
ogy is the umbrella term under which comes cryptography 

Ciphertext
byte stream

k k

Key (K) Key (K)

Pseudorandom Byte
Generator (Key Stream

Generator)

Pseudorandom Byte
Generator (Key Stream

Generator)

Plaintext
byte stream

DecryptionEncryption

Plaintext
byte stream

Figure 1.1  Operational diagram for a stream cipher.
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and cryptanalysis. Cryptography is the science of information 
security. Cryptography includes techniques such as micro-
dots, merging words with images, and other ways of hiding 
information in storage or transit. In today’s computer-centric 
world, cryptography is most of the time associated with 
scrambling plaintext into ciphertext, and then back again 
(i.e., decryption). Individuals who practice this field are known 
as cryptographers.

Cryptanalysis: Cryptanalysis refers to the study of ciphers, 
ciphertext, or cryptosystems (that is, secret code systems) with 
the goal of finding weaknesses in these that would permit 
retrieval of the plaintext from the ciphertext, without neces-
sarily knowing the key or the algorithm used for that. This is 
also known as breaking the cipher, ciphertext, or cryptosystem.

Cryptosystem: This is the shortened version of cryptographic 
system. A cryptosystem is a pair of algorithms that take a key 
and convert plaintext to ciphertext and back.

Symmetric cryptography: Symmetric cryptography (or sym-
metric key encryption) is a class of algorithms for cryptography 
that use the same cryptographic keys for both encryption of 
plaintext and decryption of ciphertext. Figure 1.3 shows the 
overview of the steps in symmetric cryptography.

		  Symmetric key ciphers are valuable because
•	 It is relatively inexpensive to produce a strong key for these 

types of ciphers.
•	 The keys tend to be much smaller in size for the level of 

protection they afford.
•	 The algorithms are relatively inexpensive to process.

CiphertextCipher Block

More Blocks?

Feedback

Encrypt BlockPlaintext

Figure 1.2  Sample operational diagram of a block cipher.
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Public-key cryptography or asymmetric cryptography: 
Public-key cryptography (PKC), also known as asymmetric 
cryptography, refers to a cryptographic algorithm that requires 
two separate keys, one of which is secret (or private) and the 
other public. Although different, the two parts of this key 
pair are mathematically linked. Figure 1.4 shows a pictorial 
view of PKC operations.

		  Public-key cryptography enables the following:
	 1.	 Encryption and decryption, which allow two communi-

cating parties to disguise data that they send to each other. 
The sender encrypts, or scrambles, the data before sending 
them via a communication medium (or such). The receiver 
decrypts, or unscrambles, the data after receiving them. 

Shared Secret Key

??

Encryption Decryption

Ciphertext

Plaintext Plaintext

�e
message

�e
message

Figure 1.3  Operational model of symmetric cryptography.

X’s Public Key X’s Private Key

Encryption Decryption

Ciphertext

??

Plaintext
Y X

Plaintext

�e
message

�e
message

Figure 1.4  Operational model of asymmetric key cryptography or public-key cryptography. 
The public key and the private key of user X are mathematically linked.
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While in transit, the encrypted data are not understood 
by an intruder (or illegitimate third party).

	 2.	 Nonrepudiation (formally defined later), which prevents:
−− The sender of the data from claiming, at a later date, 

that the data were never sent.
−− The data from being altered.

Digital signature: A digital signature is an electronic signature 
that can be used to authenticate the identity of the sender of 
a message or the signer of a document, and possibly to ensure 
that the original content of the message or document that has 
been sent is unchanged. Digital signatures are usually easily 
transportable, cannot be imitated by someone else, and can be 
automatically timestamped.

Digital certificate: There is a difference between digital sig-
nature and digital certificate. A digital certificate provides 
a means of proving someone’s identity in electronic transac-
tions. The function of it could be considered pretty much like 
a passport or driving license does in face-to-face interactions. 
For instance, a digital certificate can be an electronic “credit 
card” that establishes someone’s credentials when doing 
business or other transactions via the web. It is issued by a 
certification authority (CA). Typically, such a card contains 
the user’s name, a serial number, expiration dates, a copy 
of the certificate holder’s public key (used for encrypting 
messages and digital signatures), and the digital signature of 
the certificate-issuing authority so that a recipient can verify 
that the certificate is real.

Certification authority (CA): As understood from the defini-
tion above, a certification authority is an authority in a net-
work that issues and manages security credentials and public 
keys for message encryption.

Now, let us talk about the general aspects and issues of security. 
Security, with its dimensions in fact, is a vast field of research. 
Information security basically tries to provide five types of 
functionalities:

	 1.	Authentication
	 2.	Authorization
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	 3.	Confidentiality or privacy
	 4.	Integrity
	 5.	Nonrepudiation

1.1  The Perimeter of Cryptography in Practice

Most of the time, cryptography is associated with the confidentiality 
(or privacy) of information only. However, except authorization, it 
can offer other four functions of security (i.e., authentication, confi-
dentiality, integrity, and nonrepudiation). Let us now see what these 
terms mean in this context to talk about the functionalities that 
cryptography usually has or is supposed to provide.

Authentication: Authentication means the process of verifica-
tion of the identity of the entities that communicate over a 
network. Without authentication, any user with network access 
can use readily available tools to forge originating Internet 
Protocol (IP) addresses and impersonate others. Therefore, 
cryptosystems use various mechanisms to authenticate both 
the originators and recipients of information. An  example 
could be that a user needs to key in his or her login name 
and password for email accounts that are authenticated from 
the server.

Authorization: Authorization is a basic function of security 
that cryptography cannot provide. Authorization refers to the 
process of granting or denying access to a network resource 
or service. In other words, authorization means access con-
trol to any resource used for computer networks. Most of 
the computer security systems that we have today are based 
on a two-step mechanism. The first step is authentication, 
and the second step is authorization or access control, which 
allows the user to access various resources based on the user’s 
identity.

		  There is a clear difference between authentication and autho-
rization. We see that if a user is authenticated, only then may 
he or she have access to any system. Again, an authenticated 
person may not be authorized to access everything in a sys-
tem. Authentication is a relatively stronger aspect of secu-
rity than authorization, as it comes  before authorization. 
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An example case could be as follows: An employee in a company 
needs an authentication code to identify him- or herself to 
the network server. There may be several levels of employees 
who have different access permissions to the resources kept 
in the server. All of the employees here need authentication 
to enter the server, but not everybody is authorized to use all 
the resources available in the system. If someone is authorized 
and accesses the protected resources, that person has already 
authenticated him- or herself correctly to the system. Someone 
who is not authorized to use the system (or server’s resources) 
but gets access illegally might have used tricks to deceive the 
system to authenticate him- or herself (which the server has 
accepted mistakenly). In any case, accessing of the protected 
materials needs authorization that covers authentication. 
Authentication, only by itself, may not have authorization 
associated with it for a particular network or system resource.

Confidentiality or privacy: It means the assurance that only 
authorized users can read or use confidential information. 
Without confidentiality, anyone with network access can 
use readily available tools to eavesdrop on network traffic 
and intercept valuable proprietary information. If privacy or 
confidentiality is not guaranteed, outsiders or intruders could 
steal the information that is stored in plaintext. Hence, cryp-
tosystems use different techniques and mechanisms to ensure 
information confidentiality. When cryptographic keys are 
used on plaintext to create ciphertext, privacy is assigned to 
the information.

Integrity: Integrity is the security aspect that confirms that 
the original contents of information have not been altered or 
corrupted. If integrity is not ensured, someone might alter 
information or information might become corrupted, and 
the alteration could be sometimes undetected. This is the 
reason why many cryptosystems use techniques and mech-
anisms to verify the integrity of information. For example, 
an intruder might covertly alter a file, but change the unique 
digital thumbprint for the file, causing other users to detect 
the tampering by comparing the changed digital thumbprint 
to the digital thumbprint for the original contents.
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Nonrepudiation: For information communication, assurance is 
needed that a party cannot falsely deny that a part of the actual 
communication occurred. Nonrepudiation makes sure that 
each party is liable for its sent message. If nonrepudiation 
is not ensured, someone can communicate and then later 
either falsely deny the communication entirely or claim that it 
occurred at a different time, or even deny receiving any piece 
of information. Hence, this aspect ensures accountability of 
each entity taking part in any communication event.

		  Now, the question is: How can we ensure nonrepudiation? 
To provide nonrepudiation, systems must provide evidence 
of communications and transactions that should involve 
the identities or credentials of each party so that it is impos-
sible to refute the evidence. For instance, someone might deny 
sending an email message, but the messaging system adds 
a timestamp and digitally signs the message with the mes-
sage originator’s digital signature. As the message contains a 
timestamp and a unique signature, there is strong evidence to 
identify both the originator of the message and the date and 
time of origin. If the message originator later denies send-
ing the message, the false claim is easily refuted. Likewise, 
to provide nonrepudiation for mail recipients, mail systems 
might generate mail receipts that are dated and signed by the 
recipients.

1.2  Things That Cryptographic Technologies Cannot Do

Cryptographic technologies cannot provide solutions to all security 
issues. We previously have learned that they cannot provide the 
authorization aspect of security—that process is basically the task of the 
system or network operating system. In general, cryptography-based 
security systems provide sufficient security when used properly within 
the capabilities and limitations of the cryptographic technology. 
However, such a technology only provides part of the overall secu-
rity for any network and information. The overall strength of any 
security system depends on many factors, such as the suitability of 
the technology, adequate security procedures and processes, and how 
well people use the procedures, processes, and technology. To put it in 
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another way, security depends on the appropriate protection mechanism of 
the weakest link in the entire security system.

A company may have all the best cryptographic technologies 
installed in its computers and systems; however, all these protection 
efforts would collapse if someone (perhaps an intruder or an employee) 
can easily walk into offices and obtain valuable proprietary informa-
tion that has been printed out as plaintext hard copy. Hence, one must 
not simply rely on cryptography-based security technologies to over-
come other weaknesses and flaws in the security systems.

For example, if someone transmits valuable information as cipher-
text over communications networks to protect confidentiality but 
stores the information as plaintext on the sender or receiver computer, 
it’s still a vulnerable situation. Those computers must be protected to 
make sure the information is actually protected or kept confidential, 
possibly keeping the information in encrypted format as well—maybe 
with passwords to access the computer or folders or such. Also, the 
entire network must have strong firewalls and maintain those in 
secure  facilities. The latter tasks are not of cryptography or crypto-
graphic technologies. When building a secure system, we have to take 
into consideration a lot of issues of security, which are often dependent 
on the requirements and settings of the system.
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The  necessity of such an approach has increased with time. In the 
current information era, there is indeed no time at which information 
security is not necessary, and hence cryptography. From military to 
civilian, or from government to individual, information security is tre-
mendously necessary. Consequently, several algorithms are proposed, 
and they are implemented with various hardware. In this chapter, we 
discuss a couple of renowned classical encryption techniques.

2.1  Caesar Cipher

Caesar cipher or Caesar’s shift cipher is an extensively known and the 
easiest encryption technique, named after Julius Caesar, who used it 
in his military campaigns. Julius Caesar replaced each letter in the 
plaintext by the letter three positions further down the alphabet. 
It was the first recorded use of encryption for the sake of securing 
messages. Hence, it has become so important that it is still included in 
more advanced encryption technique at times (e.g., Vigenère cipher).

Actually, Caesar cipher is a type of substitution cipher in which 
each letter of the alphabet is substituted by a letter a certain distance 
away from that letter (Table 2.1). When the last letter, Z, is reached, 
it wraps back around to the beginning. For example, with a shift of 
three (i.e., key = 3) to the right, A would be replaced by D, B would 
become E, and so on.

2.1.1  Algorithm

Step 0: Mathematically, map the letters to numbers (i.e., A = 1, 
B = 2, and so on).

Step 1: Select an integer key K in between 1 and 25 (i.e., there 
are total 26 letters in the English language).

Step 2: The encryption formula is “Add k mod 26”; that is, the 
original letter L becomes (L + k)%26.

Step 3: The deciphering is “Subtract k mod 26”; that is, the 
encrypted letter L becomes (L – k)%26.

Table 2.1  Caesar Cipher, Plaintext–Ciphertext Conversion for Key Value 3 to the Right

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d e f g h i j k l m n o p q r s t u v w x y z a b c
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2.1.2  Implementation

#include <iostream>
#include <stdlib.h>
#include <string>
using namespace std;

cha�rcaesar(char c, int k)//’c’ holds the letter to be 
encrypted or decrypted and ‘k’ holds the key

{
if(isalpha(c) && c ! = toupper(c))
	 {
	 c = �toupper(c);//use upper to keep from having 

to use two separate for A..Z a..z
	 c = �(((c-65)+k)% 26) + 65; //Encryption, (add k 

with c) mod 26
	 }
else
	 {
	 c = �((((c-65)-k) + 26)% 26) + 65; //Decryption, 

(subtract k from c) mod 26
	 c = �tolower(c);//use lower to keep from having 

to use two separate for A..Z a..z
	 }
return c;
}

int main()
{
string input, output;
int choice = 0;

while (choice ! = 2) {
cout<<endl<< “Press 1: Encryption/Decryption; Press 2: 
quit: “ ;

try {
cin>> choice;
if (choice ! = 1 && choice ! = 2) throw “Incorrect 
Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;
return 1;
	 }
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if (choice = = 1) {
int key;
try {
cou�t<<endl<< “Choose key value (choose a number 

between 1 to 26): “;
cin>> key;
cin.ignore();
if (key < 1 || key > 26) throw “Incorrect key”;
	 }
catch (const char* k) {
cerr<< “INCORRECT KEY VALUE CHOSEN !!!” <<endl;
return 1;
	 }

try {
cout<<endl<< “NOTE: Put LOWER CASE letters for 
encryption and” <<endl;
cout<< “UPPER CASE letters for decryption” <<endl;
cout<<endl<< “Enter cipertext (only alphabets) and 
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) && 
(!(input[i] > = ‘A’ && input[i] < = ‘Z’))) throw 
“Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS 
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }

for(unsigned int x = 0; x <input.length(); x++) {
output + = caesar(input[x], key); //calling the Caesar 
function, where the actual encryption and decryption 
takes place
	 }

cout<< output <<endl;
output.clear();
	 }
	 }
}
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2.1.3  Limitations

The Caesar cipher was reasonably secure in earlier days (until the ninth 
century) because most of the enemies of  Julius Caesar were illiterate. 
They thought the encrypted text was written in some foreign language. 
However, there are several techniques to break Caesar cipher these days.

Caesar cipher is vulnerable to brute-force attack because it depends 
on a single key with 25 possible values if the plaintext is written in 
English. Therefore, by trying each option and checking which one 
results in a meaningful word, it is possible to find out the key. Once 
the key is found, the full ciphertext can be deciphered accurately.

Frequency analysis is another way to break Caesar cipher, which 
is smarter and faster than brute force. We will learn more about fre-
quency analysis later in this chapter.

2.2  Monoalphabetic Cipher

Another type of substitution cipher is monoalphabetic cipher, where 
the same letters of the plaintext are always replaced by the same let-
ters in the ciphertext. The word mono means “one,” and therefore, each 
letter is one-to-one mapped with a single ciphertext letter. A sample 
plaintext–ciphertext alphabet mapping is given in Table  2.2. Here, 
A in the plaintext will be replaced by q in the ciphertext, and so on.

Unlike Caesar cipher, this technique uses a random key for every 
single letter (i.e., total of 26 keys). So breaking the code for a single 
letter doesn’t necessarily decipher the whole encrypted text, which 
makes the monoalphabetic cipher secure against brute-force attack.

2.2.1  Algorithm

Step 0: �Generate plaintext–ciphertext pair by mapping each 
plaintext letter to a different random ciphertext letter.

Step 1: �To encipher, for each letter in the original text, replace 
the plaintext letter with a ciphertext letter.

Step 2: For deciphering, reverse the procedure in step 1.

Table 2.2  Sample Plaintext–Ciphertext Letters Mapping in Monoalphabetic Cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
q w E r t y u I o p a s d f g h j k L z x c v b n m
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2.2.2  Implementation

#include <iostream>
#include <vector>
#include <string>
#include <stdlib.h>
using namespace std;

typedef vector <char>CharVec;
CharVec Plain;
CharVec Cipher;

voidPutCharInVec ()
{
cout<< “Plain: “ <<endl;
for(inti = 0; i< 26; i++) {
Plain.push_back(i+97); //Assigning the plain 
characters in Vector
	 }

for(inti = 0; i< 26; i++) {
cout<< Plain[i] << “\t” ;
	 }
cout<<endl;
	 //Assigning the random characters in Vector to use 
as key
cout<< “Cipher: “ <<endl;
bool exist;
intnum;
for(inti = 0; i< 26; i++) {
	 // Generating unique random numbers as keys
while (exist) {
exist = false;
num = rand()% 26 + 1;
for (vector <char> :: iterator it = Cipher.begin(); it 
! = Cipher.end(); it++) {
if ((*it) = = num) {
exist = true;
break;
	 }
	 }
	 }
Cipher.push_back(((i + num)% 26) + 65);
	 }
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for(inti = 0; i< 26; i++) {
cout<< Cipher[i] << “\t” ;
	 }
cout<<endl;
}

charMonoalphabetic (char c)
{
	 //Encryption
if (c ! = toupper(c)) {
for (inti = 0; i< 26; i++) {
if (Plain[i] = = c) {
return Cipher[i];
	 }
	 }
	 }
	 //Decryption
else {
for (inti = 0; i< 26; i++) {
if (Cipher[i] = = c) {
return Plain[i];
	 }
	 }
	 }
return 0;
}

int main ()
{
string input, output;

PutCharInVec();
int choice = 0;
while (choice ! = 2) {
cout<<endl<< “Press 1: Encryption/Decryption; Press 2: 
quit: “ ;

try {
cin>> choice;
cin.ignore();
if (choice ! = 1 && choice ! = 2) throw “Incorrect 
Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;



18 ﻿Sheikh Shaugat Abdullah and Saiful Azad

return 1;
	 }
if (choice = = 1) {
try {
cout<<endl<< “NOTE: Put LOWER CASE letters for 
encryption and” <<endl;
cout<< “UPPER CASE letters for decryption” <<endl;
cout<<endl<< “Enter cipertext (only alphabets) and 
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) && 
(!(input[i] > = ‘A’ && input[i] < = ‘Z’))) throw 
“Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS 
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }

for(unsigned int x = 0; x <input.length(); x++) {
output + = Monoalphabetic(input[x]);
	 }
cout<< output <<endl;
output.clear();
	 }

	 }
return 0;
}

2.2.3  Limitations

Despite its advantages, the random key for each letter in monoal-
phabetic substitution has some downsides too. It is very difficult to 
remember the order of the letters in the key, and therefore, it takes a 
lot of time and effort to encipher or decipher the text manually.

On the other hand, monoalphabetic substitution is vulner-
able to frequency analysis because it does not change the relative 
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letter frequencies. As human language is not random, so frequencies 
of different letters are different in the regular text (e.g., e and t are 
most frequent; the, and, a, and an are very common). The frequency 
distribution of each letter in the ciphertext can be calculated by 
using the statistical analyzer. Then, the distribution result is com-
pared to the standard letter frequency statistics to make assumptions 
at possible letter replacements. Sometimes backtracking is necessary 
to confirm the assumptions.

To improve the security of monoalphabetic cipher, multiple cipher-
text letters need to be mapped with each corresponding plaintext 
letter. This technique is called polyalphabetic cipher, and it will be 
described later in the chapter.

2.3  Playfair Cipher

As seen in the previous section, not even a large number of keys in 
a monoalphabetic cipher provides the desired security. To improve 
the security, one approach is to use the digraph substitution cipher, 
where multiple letters are encrypted at a time. The Playfair cipher 
was the earliest practical digraph substitution cipher. The technique 
was invented by Charles Wheatstone in 1854. However, it was named 
after his friend Lord Playfair, who promoted the use of this cipher. 
Playfair was massively used by British forces in the Second Boer War 
and World War I. It was also used by the Australians for tactical pur-
poses during World War II.

Playfair actually encrypts digraphs or pairs of letters rather than 
single letters like the plain substitution cipher (e.g., Caesar cipher). 
It is equivalent to a monoalphabetic cipher with a set of 25 × 25 =  625 
characters (i.e., for each possible pair) for the English language. 
Therefore, security is significantly improved over the simple monoal-
phabetic cipher.

2.3.1  Algorithm

Step 0: �Select the character key. The maximum size of the key is 
25, and it can only be letters.

Step 1: Identify double letters in the key and count them as one.
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Step 2: �Set the 5 × 5 matrix by filling the first positions with the 
key. Fill the rest of the matrix with other letters. I and 
J will be placed in the same cell as shown in Table 2.3.

Step 3: �Identify double letters in the plaintext and replace the 
duplicate letter with x (e.g., killer will become kilxer).

Step 4: �Plaintext is encrypted in pairs, two letters at a time. If 
the plaintext has an odd number of characters, append 
an x to the end to make it even.

Step 5: �For encryption: (1) If both letters fall in the same row, 
substitute each with the letter to its right in a circular 
pattern. (2) If both letters fall in the same column, sub-
stitute each letter with the letter below it in a circular 
pattern. (3) Otherwise, each letter is substituted by the 
letter in the same row, but in the column of the other 
letter of the pair.

Step 6: �For deciphering, reverse the procedure in step 5, step 4, 
and finally, step 3, respectively.

2.3.2  Implementation

#include <iostream>
#include <string>
#include <vector>
using namespace std;

classPlayFair
{
public:

PlayFair ();
	 ~PlayFair () {}

voidsetKey (string k) {key = k;}
stringgetKey () {return key;}

Table 2.3  Sample Playfair Matrix for Key Simple

S I/J M P L
E A B C D
F G H K N
O Q R T U
V W X Y Z
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stringkeyWithoutDuplicateAlphabet (string k);
string encrypt (string str);
string decrypt (string str);

voidsetMatrix ();
voidshowMatrix ();

intfindRow (char ch);
intfindCol (char ch);

charfindLetter (intx_val, inty_val);

private:

char matrix[5][5];
string key;
};

PlayFair::PlayFair ()
{
	 // Initializing the playfair matrix
for (inti = 0; i< 5; i++) {
for (int j = 0; j < 5; j++) {
matrix[i][j] = 0;
	 }
	 }
}

stringPlayFair::keyWithoutDuplicateAlphabet (string k)
{
stringstr_wo_dup;//string without duplicate alphabets

for (string::iterator it = k.begin(); it ! = k.end(); 
it++) {
	 boolalphabet_exist = false;
	� for (string::iterator it1 = str_wo_dup.begin(); 

it1 ! = str_wo_dup.end(); it1++) {
	 if (*it1 = = *it) {
alphabet_exist = true;
	 }
	 }

if (!alphabet_exist) {
str_wo_dup.push_back(*it);
	 }
	 }
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returnstr_wo_dup;
}

voidPlayFair::setMatrix ()
{
stringkwda = keyWithoutDuplicateAlphabet(getKey()); 
// Getting the key with unique characters

inti_val, j_val;

int count = 0;
	 // Populating the Playfair matrix with the key and 
other letters
for (inti = 0; i< 5; i++) {
for (int j = 0; j < 5; j++) {
	 if (count = = kwda.length()) break;
	 else {
	 matrix[i][j] = toupper(kwda[(5 * i) + j]);
	 ++count;
	 }
	 }
if (count = = kwda.length()) break;
	 }

for (inti = 0; i< 26; i++) {
	 charch = 65 + i;
	 boolalphabet_exist = false;

	� for (string::iterator it = kwda.begin(); 
it ! = kwda.end(); it++) {

	 if (ch = = toupper(*it)) {
	 alphabet_exist = true;
	 }
	 }

	� if (ch = = ‘J’) alphabet_exist = true;//since 
i and j both co-exist in the same cell, we’ll 
only put i in the cell

	 bool exit = false;
	 if (!alphabet_exist) {
	 for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (!isalpha(matrix[i][j])) {
	 matrix[i][j] = toupper(ch);
	 exit = true;
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	 }
		  if (exit = = true) break;
		  }
		  if (exit = = true) break;
	 }
	 }
}
}

voidPlayFair::showMatrix()
{
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	� if (matrix[i][j] ! = ‘I’) cout<< matrix[i][j] << 

“\t”;
	 elsecout<< “I/J” << “\t”;
	 }
	 cout<<endl;
	 }
cout<<endl;
}

intPlayFair::findRow (char ch)
{
	 //Finding the specific row for a character
if (ch = = ‘j’) ch = ‘i’;
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (matrix[i][j] = = toupper(ch)) {return i;}
	 }
	 }
return -1; //If not found
}

intPlayFair::findCol (char ch)
{
	 //Finding the specific row for a character
if (ch = = ‘j’) ch = ‘i’;
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (matrix[i][j] = = toupper(ch)) {return j;}
	 }
	 }
return -1; //If not found
}
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stringPlayFair::encrypt (string str)
{
string output;

	 //replace (by x) the repeating plaintext letters 
that are in the same pair for (inti = 1; i<str.
length(); i = i + 2) {
	 if (str[i-1] = = str[i]) {
	 string temp1, temp2;

	 for (int j = 0; j <i; j++) {
	 temp1.push_back(str[j]);
	 }

	 for (int j = i; j <str.length(); j++) {
		  temp2.push_back(str[j]);
	 }

	 str.clear();
	 str = temp1 + ‘x’ + temp2;
	 }
}

for (inti = 0; i<str.length(); i = i + 2) {

	� //for the letter pair falls in the same row if 
(findRow(str[i]) = = findRow(str[i+1])) {

	� output.push_back(matrix[findRow(str[i])]
[(findCol(str[i]) + 1)% 5]);

	� output.push_back(matrix[findRow(str[i + 1])]
[(findCol(str[i + 1]) + 1)% 5]);

	 }
	� //for the letter pair falls in the same 

column
	� else if (findCol(str[i]) = = 

findCol(str[i+1])) {
	� output.push_back(matrix[(findRow(str[i]) 

+ 1)% 5][findCol(str[i])]);
	� output.push_back(matrix[(findRow(str[i + 1]) 

+ 1)% 5][findCol(str[i + 1])]);
	 }

	 //for other cases
	 else {
	� output.push_back(matrix[findRow(str[i])]

[findCol(str[i + 1])]);
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	� output.push_back(matrix[findRow(str[i + 1])]
[findCol(str[i])]);

	 }
}

if ((str.length()% 2) ! = 0) {
	 output[output.length() - 1] = 
toupper(str[str.length() - 1]);
	 }

return output;
}

stringPlayFair::decrypt (string str)
{
string output;

for (inti = 0; i<str.length(); i = i + 2) {
	� //for the letter pair falls in the same row if 

(findRow(str[i]) = = findRow(str[i+1])) {
	 int y;
	� if ((findCol(str[i]) - 1) > = 0) 

y = (findCol(str[i]) - 1);
	 else y = 4;
	� output.push_back(matrix[findRow(str[i])]

[y]);
	� if ((findCol(str[i + 1]) - 1) > = 0) 

y = (findCol(str[i + 1]) - 1);
	 else y = 4;
	� output.push_back(matrix[findRow(str[i + 1])]

[y]);
	 }

	� //for the letter pair falls in the same 
coloumn

	� else if (findCol(str[i]) = = 
findCol(str[i+1])) {

	 int x;
	� if ((findRow(str[i]) - 1) > = 0) x = 

(findRow(str[i]) - 1);
	 else x = 4;
	 output.push_back(matrix[x][findCol(str[i])]);

	� if ((findRow(str[i + 1]) - 1) > = 0) x = 
(findRow(str[i + 1]) - 1);

	 else x = 4;
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	� output.push_back(matrix[x][findCol(str[i 
+ 1])]);

	 }

	 //for other cases
	 else {
	� output.push_back(matrix[findRow(str[i])]

[findCol(str[i + 1])]);
	� output.push_back(matrix[findRow(str[i + 1])]

[findCol(str[i])]);
	 }
	 }

	 //remove x from the string
for (inti = 0; i<output.length(); i++) {
	 if (output[i] = = ‘X’) {
	 output.erase(output.begin() + i);
	 }
	 }

return output;
}
int main () {
PlayFair pf;
string key, input;
	 // Input the key to generate Playfair matrix
cout<< “Put key value (put alphabets/words): “ <<endl;
getline(cin,key);
cout<< key <<endl;
	 // Generating the Playfair matrix
pf.setKey(key);
pf.setMatrix();
pf.showMatrix();
	 // Input the data to encrypt or decrypt
cout<< “Put your text “ <<endl;
getline(cin,input);

cout<< “Press 1: Encrypt | 2: Decrypt” <<endl;
int choice;
cin>> choice;

if (choice = = 1) cout<<pf.encrypt(input) <<endl;
elsecout<<pf.decrypt(input) <<endl;
return 0;
}
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2.3.3  Limitations

Even though Playfair is considerably complicated to break, it is still 
vulnerable to frequency analysis because it leaves some formation 
of plaintext intact. However, in the case of Playfair, frequency 
analysis will be applied on the 25*25 = 625 possible digraphs rather 
than the 25  possible monographs (i.e., in the case of monoalpha-
betic). Frequency analysis thus needs a lot of ciphertext in order to 
work. Therefore, assuming some of the words from the plaintext 
using the knowledge of area, time, or context of the message can be 
helpful for retrieving the key, and so far this is the simplest way to 
crack this cipher.

2.4  Polyalphabetic Cipher

A polyalphabetic substitution cipher is a series of simple substitution 
ciphers. It is used to change each character of the plaintext with a 
variable length. The Vigenère cipher is a special example of the poly-
alphabetic cipher.

In 1467, the Alberti cipher introduced by Leon Battista Alberti 
was the first polyalphabetic cipher. Typically, Alberti used a mixed 
set of alphabet for encryption, but that set was not fixed. Based on 
the requirement, he occasionally switched to a different alphabet set, 
including uppercase letters or numbers.

To reduce the effectiveness of frequency analysis on the ciphertext, 
the polyalphabetic cipher uses a collection of standard Caesar ciphers. 
Usually, the polyalphabetic cipher defines a text string (i.e., a word) as 
a key. In the case of encryption/decryption, this key is repeated until it 
reaches the length of the plaintext/ciphertext. An example is depicted 
in Table 2.4.

As can be observed from the table, the key run is repeated until 
it reaches the length of the plaintext. Now, the Vigenère table is 
utilized to find out the ciphertext that is illustrated in Table  2.5. 

Table 2.4  Sample Polyalphabetic Encryption for Key Run

Plaintext t o b e o r n o t t o b e t h a t i s t h e
Key r u n r u n r u n r u n r u n r u n r u n r
Cipher K I O V I E E I G K I O V N U R N V J N U V
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Every plaintext letter tells the position of the row, and every keyword 
letter tells the position of the column. For instance, t is 20th in the 
alphabet and r is 18th in the English alphabet table. Therefore, t  is 
substituted by the alphabet that is in row 20 and column 18 in the 
Vigenère table, i.e., K. In this way, all the plaintext letters are sub-
stituted. As can be observed from the table, the letter t is sometimes 
enciphered as a K and sometimes as a G since the relative key letter is 
once r and another time n.

In case of decryption, a similar table is utilized, but in a differ-
ent way. First, the keyword letter needs to be found in the first row. 
After that, we have to trace down until the ciphertext letter is found. 
Once discovered, the plaintext letter is then found at the first column 
of that row.

Table 2.5  Vigenère Table (Also Known as Tabula Recta)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y



29Classical Cryptographic Algorithms

2.4.1  Algorithm

Step 0: �Select a multiple-letter key.
Step 1: �To encrypt, the first letter of the key encrypts the 

first letter of the plaintext, the second letter of the key 
encrypts the second letter of the plaintext, and so on.

Step 2: �When all letters of the key are used, start over with the 
first letter of the key.

Step 3: �The decryption process is the reverse of step 1. The 
number of letters in the key determines the period of the 
cipher.

2.4.2  Implementation

#include <iostream>
#include <string>
#include <cmath>
using namespace std;

charvigenere_table[26][26] = {
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, 
‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, 
‘W’, ‘X’, ‘Y’, ‘Z’,
‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, 
‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, 
‘X’, ‘Y’, ‘Z’, ‘A’,
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, 
‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, 
‘Y’, ‘Z’, ‘A’, ‘B’,
‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, 
‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, 
‘Z’, ‘A’, ‘B’, ‘C’,
‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, 
‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, 
‘A’, ‘B’, ‘C’, ‘D’,
‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, 
‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, 
‘B’, ‘C’, ‘D’, ‘E’,
‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, 
‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, 
‘C’, ‘D’, ‘E’, ‘F’,
‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, 
‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, 
‘D’, ‘E’, ‘F’, ‘G’,
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‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, 
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, 
‘E’, ‘F’, ‘G’, ‘H’,
‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, 
‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, 
‘F’, ‘G’, ‘H’, ‘I’,
‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, 
‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, 
‘G’, ‘H’, ‘I’, ‘J’,
‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, 
‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, 
‘H’, ‘I’, ‘J’, ‘K’,
‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, 
‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, 
‘I’, ‘J’, ‘K’, ‘L’,
‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, 
‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, 
‘J’, ‘K’, ‘L’, ‘M’,
‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, 
‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, 
‘K’, ‘L’, ‘M’, ‘N’,
‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, 
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, 
‘L’, ‘M’, ‘N’, ‘O’,
‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, 
‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, 
‘M’, ‘N’, ‘O’, ‘P’,
‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, 
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, 
‘N’, ‘O’, ‘P’, ‘Q’,
‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, 
‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, 
‘O’, ‘P’, ‘Q’, ‘R’,
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, 
‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, 
‘P’, ‘Q’, ‘R’, ‘S’,
‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, 
‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, 
‘Q’, ‘R’, ‘S’, ‘T’,
‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, 
‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, 
‘R’, ‘S’, ‘T’, ‘U’,
‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, 
‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, 
‘S’, ‘T’, ‘U’, ‘V’,
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‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, 
‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, 
‘T’, ‘U’, ‘V’, ‘W’,
‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, 
‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, 
‘U’, ‘V’, ‘W’, ‘X’,
‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, 
‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, 
‘V’, ‘W’, ‘X’, ‘Y’
};

void Encrypt (string in, string &out, string k) {
inti = 0;
for (string :: iterator it = in.begin(); it ! = 
in.end(); it++) {
if (*it ! = ‘ ‘) {
int row = toupper(*it) - ‘A’;
int column = toupper(k[i% k.length()]) - ‘A’;
out + = vigenere_table[row][column];
	 }
else {
out + = ‘ ‘;
	 }

i++;
	 }

}

void Decrypt (string in, string &out, string k) {
inti = 0;
for (string :: iterator it = in.begin(); it ! = 
in.end(); it++) {
if (*it ! = ‘ ‘) {
int column = toupper(k[i% k.length()]) - ‘A’;
int row;
for (row = 0; row < 26; row++) {
if (vigenere_table[row][column] = = *it) break;
	 }
out + = ‘A’ + row;
	 }
else {
out + = ‘ ‘;
	 }
i++;
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	 }
}

int main ()
{
string input, output, key;
	 cout<< “Put key value (put alphabets/words): “;
getline(cin,key);
int choice = 0;

while (choice ! = 3) {
cout<<endl<< “Press 1: Encryption, 2: Decryption; 3: 
quit: “ ;

try {
cin>> choice;
cin.ignore();
if (choice ! = 1 && choice ! = 2 && choice ! = 3) 
throw “Incorrect Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;
return 1;
	 }
if (choice = = 1 || choice = = 2) {
try {
cout<<endl<< “Enter cipertext (only alphabets) and 
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) && 
(!(input[i] > = ‘A’ && input[i] < = ‘Z’)) && 
(!(input[i] = = ‘ ‘)))
throw “Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS 
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }
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if (choice = = 1) {
Encrypt(input, output, key);
cout<<endl<< “Cipher text: “ << output <<endl;
	 }
else if (choice = = 2) {
input = output;
output.clear();
Decrypt(input, output, key);
cout<<endl<< “Plain text: “ << output <<endl;
	 }
	 }

	 }
return 0;
}

2.4.3  Limitations

Even though polyalphabetic is more secure than simple substitution 
cipher, it can still be broken by analyzing the period. In the above 
example, KOIV is repeated after nine letters, and NU is repeated after 
six letters. So the period being 3 is a good assumption here, as 3 is 
a common divisor of 6 and 9. Frequency analysis is applicable here 
again by knowing which letters were encoded with the same key.
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3
Rotor Machine

S H E I K H  S H A U G AT  A B D U L L A H 
A N D  S A I F U L  A Z A D

Keywords

Enigma
Polyalphabetic cipher
Rotor machine
Streamline cipher

The first mechanical encryption device was introduced in 1920 
and named the rotor machine. The most famous example of a rotor 
machine is the Enigma, invented by the Germans; it was extensively 
used during World War II.

The concept of the rotor machine was developed independently by 
a number of inventors at a similar time. Four inventors had been cred-
ited with inventing it: Edward Hebern, Arvid Damm, Hugo Koch, 
and Arthur Scherbius. However, in later discovery, it was found that 
the first inventors of the rotor machine were two Dutch naval officers, 
Theo A. van Hengel and R.P.C. Spengler, in 1915 [1].

Contents

Keywords	 35
3.1	 Background	 36
3.2	 Basic Concept	 36
3.3	 Systematization	 37
3.4	 Algorithm	 37
3.5	 Implementation	 37
3.6	 Limitations	 43
Reference	 43



36 ﻿Sheikh Shaugat Abdullah and Saiful Azad

3.1  Background

In classical cryptographic algorithms, which are discussed in 
Chapter 2, a simple technique of substitution is utilized where a plain-
text is replaced systematically using a secret scheme. For instance, 
monoalphabetic ciphers replace one character/letter with another 
character. This technique is vulnerable, since a simple frequency 
analysis could find out the plaintext easily. Therefore, polyalphabetic 
ciphers are proposed where a single character may be replaced by mul-
tiple alphabets. However, since ciphertext is calculated by hand, only 
a handful of different alphabets can be utilized. Anything more com-
plex using polyalphabetic would be impractical. The invention of rotor 
machines resolved that limitation, which provides a realistic way of 
using a huge number of alphabets.

3.2  Basic Concept

A rotor machine has a keyboard and a series of rotors, where the out-
put pins of one rotor are connected to the input of another. Moreover, 
a rotor is a mechanical wheel wired to perform a general substitution. 
So, the number of general substitution for each letter in the plaintext 
actually depends on the number of rotors. Figure 3.1 depicts a simple 
rotor machine.

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

Figure 3.1  A three-rotor machine for an eight-letter alphabet before and after the first rotor has 
rotated one place.
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For example, in a three-rotor machine, the first rotor might 
substitute A » E, the second rotor might substitute E » K, and the 
third rotor might substitute K » Y. Therefore, after encryption, A will 
become Y. To protect data frequency analysis, some of the rotors shift 
after each output. In rotor machine encryption, a combination of sev-
eral rotors and shifting of n number of rotors leads to a 26n. A large 
number of combinations makes it harder to break the code.

3.3  Systematization

It is relatively straightforward to create a machine to perform simple 
substitution in monoalphabetic algorithms. However, it is challeng-
ing to create a machine that can perform polyalphabetic substitutions. 
In the case of the rotor machine, the idea is to change the wiring of 
the machine with each keystroke. The wiring is placed inside a rotor. 
After a keystroke, the rotor is rotated with a gear. Therefore, a key-
stroke that outputs an S might generate an A the next time. Hence, for 
every keystroke a new substitution takes place.

3.4  Algorithm

Step 0: �Select how many rotors will be used and make the rotors 
ready by placing 26 unique random character pairs.

Step 1: �To encrypt, for each character in the alphabet set, for each 
rotor, find the match from the rotor pair sequentially. 
After each encryption, rotate the rotors accordingly.

Step 2: �To decrypt, apply the same procedure of step 1, with 
reverse sequential order of the rotors.

3.5  Implementation

#include <iostream>
#include <queue>
#include <vector>
#include <cstdlib>
#include <string>
using namespace std;

typedef pair<int,int>Rotor_Pair;
class Enigma {
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public:
voidcreate_rotor(vector <Rotor_Pair>&rtq);
voidshow_rotor(vector <Rotor_Pair>&rtq);
voidmanage_rotors ();
void encrypt();
void decrypt();
chartranspos_en (char ch);
chartranspos_de (char ch);
	 voiddisplay_rotors ();
private:
vector<Rotor_Pair>first_rotor;
vector<Rotor_Pair>second_rotor;
vector<Rotor_Pair>third_rotor;
vector< vector <Rotor_Pair>>all_rotors;
int count;
};

void Enigma::create_rotor(vector <Rotor_Pair>&rtq)
{
vector<int>temp_q;

int current = rand()% 26 + 1;
intnum = rand()% 26 + 1;

rtq.push_back(make_pair(current,num));
temp_q.push_back(num);

for (inti = 0; i< 25; i++) {
current = current% 26 + 1;
bool exist = true;

	 //Selecting unique random pairs for each of the 
rotors

while (exist) {
exist = false;
num = rand()% 26 + 1;
for� (vector <int> :: iterator it = temp_q.begin(); it 

! = temp_q.end(); it++) {
if ((*it) = = num) {
exist = true;
break;
	 }
	 }
	 }
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temp_q.push_back(num);
Rotor_Pairrp = make_pair(current,num);
rtq.push_back(rp);
	 }
}

void Enigma :: show_rotor (vector <Rotor_Pair>&rtq)
{
vector<Rotor_Pair>temp_q;
temp_q = rtq;
cout<<endl;

for (unsigned inti = 0; i<26; i++) {
Rotor_Pairrp = rtq[i];
cout<<rp.first<< “\t” <<rp.second<<endl;
	 }
}

void Enigma :: manage_rotors ()
{
count = 0;
srand (5);
create_rotor(first_rotor); //Creating the first rotor
all_rotors.push_back(first_rotor);//Assign the first 
rotor
create_rotor(second_rotor); //Creating the second rotor
all_rotors.push_back(second_rotor); //Assign the 
second rotor
create_rotor(third_rotor); //Creating the third rotor
all_rotors.push_back(third_rotor); //Assign the third 
rotor
}

void Enigma :: display_rotors ()
{
for (vector < vector <Rotor_Pair>> :: iterator it = 
all_rotors.begin(); it ! = all_rotors.end(); it++) {
	 show_rotor(*it);
	 }
}

char Enigma :: transpos_en (char ch)
{
count++;
ch = toupper (ch);
intpos = ch - 65 + 1; //Converting ASCII to decimal
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int index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = first_rotor.
begin(); it ! = first_rotor.end(); it++) {
if ((*it).second = = pos) break;
else index++;
	 }
	 // Rotating the first rotor
Rotor_Pairtrp = first_rotor.front();
first_rotor.erase(first_rotor.begin());
first_rotor.push_back(trp);

pos = (second_rotor[index]).first;
index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = second_
rotor.begin(); it ! = second_rotor.end(); it++) {
if ((*it).second = = pos) break;
else index++;
	 }
	 // Rotating the second rotor
if (count% 26 = = 0) {
Rotor_Pairtrp = second_rotor.front();
second_rotor.erase(second_rotor.begin());
second_rotor.push_back(trp);
	 }

pos = (third_rotor[index]).first;
index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = third_rotor.
begin(); it ! = second_rotor.end(); it++) {
if ((*it).second = = pos) break;
	 }
	 // Rotating the third rotor
if (count% 676 = = 0) {
Rotor_Pairtrp = third_rotor.front();
third_rotor.erase(third_rotor.begin());
third_rotor.push_back(trp);
	 }
ch = pos - 1 + 65; //Converting Decimal to ASCII
returntolower(ch);
}
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void Enigma :: encrypt ()
{
	 // Input the data to encrypt
cout<< “Put a text to encrypt” <<endl;
string input, output;
getline(cin, input);
	 // For each input character, call “transpos_en” 
function if found in alphabet set
for (string :: iterator it = input.begin(); it ! = 
input.end(); it++) {
if (isalpha(*it))
output + = transpos_en(*it);
else output + = 32;
	 }
cout<< output <<endl;
}

char Enigma :: transpos_de (char ch)
{
count++;
ch = toupper (ch);
intpos = ch - 65 + 1; //Converting ASCII to Deciaml
int index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = third_rotor.
begin(); it ! = third_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }
	 // Rotating the third rotor
if (count% 676 = = 0) {
Rotor_Pairtrp = third_rotor.front();
third_rotor.erase(third_rotor.begin());
third_rotor.push_back(trp);
	 }

pos = (second_rotor[index]).second;
index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = second_
rotor.begin(); it ! = second_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }
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	 // Rotating the second rotor
if (count% 26 = = 0) {
Rotor_Pairtrp = second_rotor.front();
second_rotor.erase(second_rotor.begin());
second_rotor.push_back(trp);
	 }

pos = (first_rotor[index]).second;
index = 0;
	 // Finding the specific position for each of the 
character
for (vector <Rotor_Pair> :: iterator it = first_rotor.
begin(); it ! = first_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }
	 // Rotating the first rotor
Rotor_Pairtrp = first_rotor.front();
first_rotor.erase(first_rotor.begin());
first_rotor.push_back(trp);

ch = pos - 1 + 65;//Converting Decimal to ASCII
returntolower(ch);
}

void Enigma :: decrypt ()
{
	 // Input the data to decrypt
cout<< “Put a text to decrypt” <<endl;
string input, output;
getline(cin, input);
	 // initializing the rotor settings
int count = 0;
for (vector < vector <Rotor_Pair>> :: iterator p = 
all_rotors.begin(); p ! = all_rotors.end(); p++) {
	 if (count = = 0) first_rotor = *p;
	 else if (count = = 1) second_rotor = *p;
	 elsethird_rotor = *p;
	 count++;
}

display_rotors(); //Showing the rotor pairs
	 //For each input character, call “transpos_de” 
function if found in alphabet set
for (string :: iterator it = input.begin(); it ! = 
input.end(); it++) {
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if (isalpha(*it))
output + = transpos_de(*it);
else output + = 32;
	 }

cout<< output <<endl;
}

int main()
{
	 Enigma enigma;
enigma.manage_rotors();//Creating the rotors and 
populate them with character pairs
enigma.display_rotors(); //Show the rotor pairs
enigma.encrypt();//Encryption
enigma.decrypt(); //Decryption
return 0;
}

3.6  Limitations

The technique used in the rotor machine was very strong if used 
correctly and securely. However, the German messages encrypted 
with the rotor machine Enigma were deciphered by the Allies during 
World War II. It has been claimed that as a result of this cryptanaly-
sis, World War II was shortened by 2 years. Using a reasonably small 
range of probable initial permutations, Polish mathematician and 
cryptologist Marian Rejewski was able to find the possible message 
keys. What he assumed, and later on discovered to be true, was that 
most of the time the German operators would choose very simple 
message keys, like AAA or XYZ or ABC. So, he expected that if he 
made lists of all the possible message keys, many simple keys would 
appear. Then that list could be used to find the key. His technique 
was proven to be correct when he managed to break a lot of ciphertext 
within a very short time.
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A stream cipher is one that encrypts/decrypts a data stream character 
by character, i.e., one character at a time. All the ciphers discussed in 
Chapter 3 are stream ciphers. On the other hand, a block cipher encrypts/
decrypts a block of n characters and produces an output of similar 
length. The Data Encryption Standard (DES), Advanced Encryption 
Standard (AES), etc., are examples of block ciphers. Most of the sym-
metric key-based block cipher algorithms currently in use are based on a 
structure known as Feistel block cipher [1]. It is worth mentioning that 
although this structure was proposed several years ago, it is still utilized 
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by many significant symmetric block ciphers currently in operation. 
In general, block cipher algorithms ensure higher security over stream 
cipher algorithms. In this chapter, we discuss the basic principles behind 
block cipher algorithms and Feistel block cipher in detail.

4.1  Block Cipher Principles

To enhance the security of symmetric key algorithms, Calude Shannon 
introduced two principles: confusion and diffusion [2]. He  argued 
that these principles should be followed to design any secure crypto-
graphic system. They are detailed below:

•	 Confusion: Shannon said confusion makes the relation 
between the key and the ciphertext as complex as possible. 
Actually, every character in the key influences every other 
character of the ciphertext block. This relationship needs to 
be loosened in such a way that even though the attacker gets 
some grip on the statistics of the ciphertext, he or she may not 
be able to deduce the key. A good confusion could be achieved 
if each character of the ciphertext depends on several parts of 
the key. For any attacker, it must appear that this dependence 
is random. This could be achieved by utilizing complex sub-
stitution techniques in the algorithm.

•	 Diffusion: This refers to the property that the statistical 
structure of the plaintext is dissipated into long-range sta-
tistics of the ciphertext [3]. In contrast to confusion, diffu-
sion spreads the influence of a single plaintext character over 
many ciphertext characters, or in other words, each ciphertext 
character is affected by many ciphertext characters. In binary 
block cipher, an algorithm must be designed with a combina-
tion of permutation and should be followed by a function. 
The binary block is permuted repeatedly, followed by applying 
a function to that permuted block.

4.2  The Feistel Block Structure

In Figure  4.1, the Feistel block structure is depicted. As can be 
observed from the figure, a plaintext of length n bits and a key K are 
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passed as input to the structure. This n-bit plaintext block is then 
divided into two halves, LE0 and RE0, i.e., LE0 = RE0 = n/2. These 
two halves of data blocks are passed through r rounds. In each round, 
a separate key Ki is utilized that is generally derived from K. All the 
subkeys that are derived from K are different from each other, i.e., K ≠ 
Ki ≠ Kj. A round i receives two inputs, LEi–1 and REi–1, from the 
previous round i – 1. Each round comprises both substitution and 
permutation operations. A substitution is performed on the left half 
of the block by XORing it with the output of a round function F. 
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Figure 4.1  Encryption and decryption of the Feistel network.
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Each F takes the right half block and a subkey Ki as input and 
produces an output of the same size. These activities can be expressed 
using the following expressions:

	 LEi = REi–1

	 REi = LEi–1 ⊗ F(REi–1, Ki)

Following the substitution, the two halves are interchanged to 
achieve permutation. After the last round, the two halves are com-
bined to produce the ciphertext block. In the case of decryption, simi-
lar procedures are followed, but in opposite order, i.e.,

	 REi–1 = LEi

	 LEi–1 = REi ⊗ F(REi–1, Ki) = REi ⊗ F(LEi, Ki)

The strength of a Feistel network depends on the selection of the 
following parameters:

•	 Block size: The larger the block, the greater the security. 
However, a larger block size reduces the speed of the encryp-
tion/decryption technique. Therefore, a reasonable trade-off 
is considered in terms of choosing the size of a block.

•	 Key size: Like the block size, larger is better. Again, a larger 
key may increase the processing time, and hence reduce the 
encryption/decryption speed.

•	 Number of rounds: In general, a single round is inadequate 
to assure a required level of security. But, multiple rounds 
offer increasing security.

•	 Subkey generation algorithm: For greater security, a subkey 
generation algorithm also plays an important role. A complex 
algorithm makes the cryptanalysis difficult. All the subkeys 
must be generated in such a way that they have greater resis-
tance to brute-force attacks and greater confusion.

•	 Round function: Again, a greater complex round function 
makes the cryptanalysis difficult, and hence increases the 
security.
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4.3  Block Cipher Modes

What if the size of a message is longer than the considered block 
size? To resolve this issue, there are five block cipher modes that have 
been defined by the National Institute of Standards and Technology 
(NIST). All these modes of operation are briefly described below.

4.3.1  Electronic Codebook (ECB) Mode

This is the simplest mode of operation. In this mode, a plaintext is 
divided into blocks of n bits and every block is encrypted/decrypted 
separately using a similar secret key. This is depicted in Figure 4.2. 
A plaintext is divided into m different blocks, i.e., P1, P2, P3, …, Pm. 
After encryption, it produces m blocks of ciphertext, namely, C1, C2, C3, 
…, Cm. The ECB encryption and decryption can be defined as follows:

Encryption:
	 C1 = EK (P1)

Decryption:

	 )() )( (= = −
1 1

1
1P D C E E PK K K

In this scheme, since all the blocks are independent of each other, 
it does not suffer any propagation error. There are a couple of prob-
lems with this approach, which is absent in the single-block case. If a 
plaintext block contains two identical n-bit blocks, the corresponding 

Decrypt

(b) Decryption(a) Encryption

Pi

Ci

KEncrypt

Ci

Pi

K

Figure 4.2  Electronic codebook (ECB) mode.
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ciphertext blocks will be also identical. These regularities provide 
sufficient hints to a cryptoanalyst to decipher the message.

4.3.2  Cipher Block Chaining (CBC)

To overcome the deficiencies of the ECB, IBM invented the CBC 
mode in 1976. In this mode, every block of the plaintext is XORed 
with the previous ciphertext block. Therefore, identical blocks in the 
plaintext would not produce identical ciphertext blocks. Since the 
decryption is dependent on the previous block, a single bit error in 
a block will cause the failure. Since there is no previous ciphertext 
block for the first plaintext block, a fixed initialization vector (IV) is 
XORed with this block. The IV is not secret and must be known to the 
receiver. To make every message unique, a different IV could be uti-
lized for every plaintext, which must be generated in such a way that 
a malicious user has no influence on it. The encryption/decryption of 
CBC can be expressed as follows:

Encryption:
	 C1 = EK (P1 ⊕ IV)

	 Ci = EK (Pi ⊕ Ci−1), where i ≥ 2

Decryption:

	

= ⊕

= ⊕ ≥

−

−
−

( )

( ), 2

1
1

1

1
1

P E C IV

P E C C where i

K

i K i i

Figure 4.3 illustrates the CBC scheme. The CBC also suffers from 
a couple of problems. For instance, if someone predictably changes 
bits in IV intentionally, the corresponding bits of the received value of 
P1 can be changed.

4.3.3  Cipher Feedback (CFB) Mode

All the modes discussed previously require a fixed data block. If there 
are not enough bits to fill up a block, the padding bits are affixed 
to make it of a desirable size. Unlike the ECB and CBC, the CFB 
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mode is a stream cipher. One desirable property of a stream cipher 
is that it produces the ciphertext of the same length as the plaintext. 
Like the CBC, the CFB requires an IV for the initial input block 
that is n bits long. It also requires an integer value, denoted by s, that 
is assumed to be the unit of transmission. Figure 4.4 illustrates the 
CFB scheme. As can be observed from the figure, the first input block 
is the IV, and the forward cipher operation is performed over it to 
produce the first output block. Keeping the s most significant bits, 
the remaining n – s bits are discarded. Then, s bits are XORed with 
the first plaintext segment of s bits to produce a first ciphertext seg-
ment of s bits. To produce the second input block, the IV is circularly 
shifted s bits to the left and the recently produced ciphertext segment 
is placed in the least significant s bits. This process continues until 
all  the plaintext segments  produce the relative ciphertext segment. 
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CNC2C1

C2C1

P2P1

CN

PN

EncryptEncrypt

(a) Encryption

(b) Decryption

Encrypt

DecryptDecryptDecrypt

+++IV

+++

KKK

K

IV

K K

CN–1

CN–1

Figure 4.3  Cipher block chaining (CBC) mode.
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The decryption utilizes a scheme similar to that for encryption, except 
that the received ciphertext segment is XORed with the output block 
of the encryption function. Note that there is no decryption function 
utilized to decrypt a ciphertext, but an encryption function is used. 
All the operations can be expressed as below:

Encryption:

	 C1 = EK (IV) ⊕ P1

	 Ci = EK (Ci−1) ⊕ P1, where i ≥ 2

Decryption:

	 P1 = EK (IV) ⊕ C1

	 Pi = EK (Ci−1) ⊕ C1, where i ≥ 2
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Figure 4.4  Cipher feedback (CFB) mode.
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The CFB suffers from error propagation since all the ciphertext 
segments are related to each other.

4.3.4  Output Feedback (OFB) Mode

The OFB mode is similar in terms of structure to that of the CFB. 
Like the CFB, the first input block requires the IV, which is then 
encrypted with a secret key to produce an output block of n bits. 
Unlike the CFB, the ciphertext segment is not fed back to the next 
input block. Instead, the output of the encryption function is fed back 
to the next input block. In the first input block, the IV and a secret key 
are required by an encryption function that produces an output block. 
All the bits except the most significant s bits are discarded. These bits 
are fed back to the next input block. These s bits are also XORed with 
the plaintext to produce a ciphertext segment of s bits. To produce the 
second input block, the IV is circularly left shifted to s number of bits, 
and the least significant s bits are replaced by the s bits received from 
the previous output block. The OFB mode is illustrated in Figure 4.5. 
In case of decryption, no ciphertext segment is required, unlike CFB. 
The encryption/decryption operations can be expressed as follows:

Encryption:

	 s1 = EK (IV)  and  C1 = (s1 ⊕ P1)

	 si = EK (si−1)  and  Ci = (si ⊕ Pi), where i ≥ 2

Decryption:

	 s1 = EK (IV)  and  C1 = (s1 ⊕ C1)

	 si = EK (si−1)  and  Ci = (si ⊕ Ci), where i ≥ 2

Since all the ciphertext segments are independent of each other, 
this mode is more vulnerable to a message stream modification attack 
than CFB.

4.3.5  Counter (CTR) Mode

In this mode, a counter equal to the plaintext block is used to produce 
an output block. If there is a sequence of plaintext blocks, in that case, 
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a sequence of counters is utilized. Each counter is distinct from the 
other. In general, the counter is initialized to some value that is then 
incremented by 1 for every subsequent block. Every block receives a 
counter and a key, and produces an output block. The resultant output 
block is XORed with the corresponding plaintext block to produce the 
ciphertext block. The encryption/decryption scheme can be expressed 
as below:

Encryption:
	 Ci = EK (CTRi) ⊕ Pi

Decryption:

	 Pi = EK (CTRi) ⊕ Ci

One notable advantage of this technique is that unlike the CFB 
and OFB modes, both the CTR encryption and the CTR decryption 
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can be parallelized since the second encryption can begin before the 
first one has finished. Moreover, if necessary, any particular cipher-
text block/plaintext block can be recovered independently if the 
corresponding counter block can be determined. Figure 4.6 illustrates 
the CTR mode.
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The Data Encryption Standard (DES) was developed in the early 
1970s at IBM, and later, in 1977, the algorithm was submit-
ted to the National Bureau of Standards (NBS) to be approved as 
Federal Information Processing Standard 46 (FIPS 46). With the 
consultation of the National Security Agency (NSA), the NBS 
accepted a slightly changed version of DES as FIPS 46 in the same 
year to provide security for the unclassified electronic data of the 
U.S. government. The data are encrypted using DES in 64-bit 
blocks, which are encrypted using a 56-bit symmetric key to provide 
confidentiality and privacy.

Some experts refer to DES as an encryption standard and Data 
Encryption Algorithm (DEA) as the basic algorithm. In recent times, 
DEA and DES are used interchangeably. On the other hand, there 
is another extension of DEA that is named Triple DEA (TDEA). 
The Triple DEA and DEA are typically referred to as Triple DES 
and DES, respectively. For our readers’ convenience, we use DES and 
3DES in this chapter to refer to these algorithms.

Like most of the symmetric block algorithms, DES is also based 
on a structure referred to as a Feistel cipher, which was already 
introduced to the reader in Chapter 4. The DES is comprised of 
16  rounds, where a separate key is utilized in each round. All 
16 keys are generated from a 56-bit key. Before introducing DES 
to the reader in detail, it is necessary to know the primitive opera-
tions that DES utilizes. Consequently, in the following section, we 
discuss various primitive operations related to DES with relevant 
examples.

5.1  Primitive Operations

All the primitive operations utilized in DES can be separated into 
two groups: (1) operations for encryption/decryption and (2) opera-
tions for key generation. All these operations are discussed below.
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5.1.1  Operations for Encryption/Decryption

DES encryption/decryption is based on the following primitive 
operations:

	 1.	Exclusive disjunction/exclusive or (XOR). Exclusive dis-
junction or exclusive or is a logical operation that outputs 
true whenever both inputs differ from each other (e.g., one 
is true and the other is false) (Table 5.1). It is symbolized by 
the prefix operator J and by the infix operators XOR, EOR, 
EXOR, ⊻, ⊕, ↮, and ≢.

	 2.	Initial permutation (IP). In initial permutation, the 64 bits 
of the data are rearranged to another 64 bits of data accord-
ing to a given table (Table 5.2 in this example). Each entry in 
the table shows the new arrangement of a bit from its initial 
position. For instance, the 58th bit of data becomes the first 
bit of the output data after the permutation, and the 1st bit 
of data becomes the 40th bit of the output data after per-
mutation. An  example is given below to demonstrate the 
rearrangements of the bits after permutation.

Table 5.1  XOR Truth Table

INPUT OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

Table 5.2  Table Utilized for Initial Permutation (IP)

INITIAL PERMUTATION (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
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Example

Actual bit sequence:

11001000001111111010100100100110101011101101101110100
11111100100

After initial permutation:

10100001001000101101101001100110111101011101111000110
11101111010

	 3.	Inverse permutation (IP–1). Like initial permutation, a block 
of code again needs to be rearranged (according to Table 5.3). 
This is known as inverse permutation (IP–1). Using IP–1, the 
original ordering of the bits is rearranged.

Example

Actual bit sequence:

10100001001000101101101001100110111101011101111000110
11101111010

After inverse permutation:

11001000001111111010100100100110101011101101101110100
11111100100

		  From this example, we can observe that if no other 
operation is performed, we can get the actual bit sequence 
returns if we do inverse permutation immediately after 
initial permutation.

Table 5.3  Table Utilized for Inverse Permutation (IP–1)

INVERSE PERMUTATION (IP–1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
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	 4.	Expansion permutation. In every round of DES, a 64-bit 
block is divided into two halves of 32 bits each, namely, left 
and right blocks. Again, since each round utilizes a key of 
48 bits, it is necessary to enlarge a block to be equivalent to 
the round key size. Generally, a right-side block has expanded 
to a 48-bit block, which is then XORed with the selected 
round key. A 32-bit block is expanded utilizing Table 5.4.

Example

Bits sequence in right block:

11001000001111111010100100100110

After expansion permutation:

011001010000000111111111110101010010100100001101

	 5.	Substitution. The expanded 48-bit block is required to shrink 
into a 32-bit block again. For this purpose, a 48-bit block is 
broken into a 6-bit chunk that is then fed into a substitu-
tion box (also known as S-box), which produces a 4-bit output 
for each 6-bit output. There are eight S-boxes utilized in the 
substitution procedure, which are given in Table  5.5. Since 
there are 64 possible input values (6 bits) and only 16 pos-
sible output values (4 bits), the S-box could map several input 
values to a single output value. The leftmost 6-bit chunk is 
substituted by S1-box, the next 6-bit chunk is substituted by 
S2-box, and so on. Consequently, the rightmost chunk is sub-
stituted by S8-box. Again, among the 6 bits, the first and last 
bit form a 2-bit binary number that indicates the row number, 

Table 5.4  Table Utilized in Expansion Permutation

EXPANSION PERMUTATION

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1
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and the middle four bits select one among the 16 columns. 
For instance, in S5, a 6-bit chunk 011101 is substituted with 
a 4-bit chunk 1000. Here, the first bit and last bit form 01, 
which means row number 1 is selected. Then, the middle four 
bits 1110 indicate the column number, i.e., 14. If we look at 
row 2 and column 14, the value is 8, whose binary equivalent 
is 1000.

	 6.	Permutation. The 32-bit block generated after substitution 
is rearranged using a permutation operation where a 32-bit 
output comes from a 32-bit input by permuting the bits of 
the input block. The table that is utilized in this operation is 
shown in Table 5.6.

Example

Before permutation:

11001000001111111010100100100110

After permutation:

10010101110010101011010011100100

5.1.2  Operations for Subkey Generation

DES subkey generation is based on the following primitive operations:

	 1.	Permuted choice 1 (PC-1). DES takes a 64-bit symmetric 
key from the user, which is then permuted according to 
Table 5.7. It could be observed from the table that the first 
entry is 57; this means that the 57th bit of the original key 
K becomes the first bit of the permuted key KP. Again, the 
49th bit of the original key becomes the second bit of the 
permuted key.

Table 5.6  Permutation Table

PERMUTATION

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25
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Example

Before permutation:

K = �11001000001111111010100100100110101011101101101110
10011111100100

After permutated choice 1:

KP = �1111010110100001110111100010011110101101101000110
1110010

	 2.	Left shifting. A permuted key is then separated into two 
blocks, left and right, where each of them is 28 bits long. After 
that, each block is shifted to the left to a fixed number of bits, 
which again depends on the round. For a different round, 
the bits to be left shifted are different, which are shown in 
Table 5.8. For instance, in the eighth round, 2-bit left shifting 
takes place, whereas, in the ninth round, it is only 1 bit. When 
a block is shifted to the left, each bit moves one place to the left, 
except for the first bit, which is cycled to the end of the block.

Example

Let us assume that the shifting operation is for generating a key 
of round 8. First, we can find out how many bits are to be shifted 
from Table 5.8, which is 2 bits in this example.
Before left shifting:

1111010110100001110111100010

After left shifting:

1101011010000111011110001011

Table 5.7  Table for Permuted Choice 1

PERMUTED CHOICE 1

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4



66 ﻿Ezazul Islam and Saiful Azad

	 3.	Permuted choice 2 (PC-2). After the left shifting operation, 
both separated blocks are combined together, which form 
a block of 56 bits. Then, they are rearranged and shrunk to 
produce a round key of 48 bits. This permuted choice 2 is 
performed utilizing Table 5.9.

Example

Before permuted choice 2:

11001000001111111010100100100110101011101101101110100111

After permutated choice 2:

111111001010011000101011101111101111111100010000

Table 5.8  Schedule of Left Shifting

ROUND NUMBER BITS ROTATED

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

Table 5.9  Table for Permuted Choice 2

PERMUTED CHOICE 2

14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32
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5.2  Basic Structure

A basic structure of DES is portrayed in Figure 5.1. DES supports 
a 64-bit block that is subjected to go through an initial permutation. 
This permuted block is then passed through 16 rounds, where every 
round is comprised of various operations, depicted in Figure 5.2. The 
operations of 48-bit key generations for every round from a 64-bit key 
are also portrayed in both figures. After visiting the last round, a 32-bit 
swapping is performed on the 64-bit block. Finally, the ciphertext is 
generated after the inverse permutation operation.

64-bit Plaintext 64-bit Key

Initial Permutation

Round 1

48-bit K1

Permuted Choice 2

Permuted Choice 2

Permuted Choice 2 Left Circular Shift

Left Circular Shift

Left Circular Shift

Permuted Choice 1

48-bit K2

48-bit K16

Round 2

Round 16

32-bit Swap

Inverse Initial
Permutation

64-bit Ciphertext

Figure 5.1  A basic DES structure is depicted.
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5.3  DES Encryption Algorithm

Following is the pseudocode for DES encryption in which the 
function named Encrypt takes the plaintext message as a parameter 
and performs the essential operations to produce the ciphertext.

Algorithm 5.1: Encrypt (M)

Begin
	 C ← IP(M)
	 for round ← 1 to 16
		  KEYi ← SubKey (K, round)
		  L(i-1) ← LEFT (C)
		  R(i-1) ← RIGHT (C)
		  Li ← R(i-1)

28-bit

DK[i-1]CK[i-1]Right[i-1]Left[i-1]

Ki(48-bit)

CK[i]Right[i]Left[i] DK[i]

48-bit

32-bit 32-bit 28-bit

48-bit

32-bit

XOR

XOR

Left
Shift(s)

Permuted Choice 2

Permutation
(P)

Left
Shift(s)

Expansion
(E Table)

Substitution
(S-Box)

Figure 5.2  Single-round operations in DES.
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		  Ri ← L(i-1) xor (Permutation (Substitution 
(KEYi xor Expansion(R(i-1)))))
	 end for
	 C ← swap(C)
	 C ← IP-1(C)
	 return C
End

5.4  DES Decryption Algorithm

For decryption, the steps are the same as for encryption, but the 
difference is in the order of using the keys for each of the rounds.

Algorithm 5.2: Decrypt (C)

Begin
	 M ← IP(C)
	 for round ← 16 to 1
		  KEYi ← SubKey (K, round)
		  Li ← LEFT (M)
		  Ri ← RIGHT (M)
		  R(i-1) ← Li
		  L(i-1) ← Ri xor (Permutation (Substitution 
(KEYi xor Expansion(R(i-1)))))
	 end for
	 M← swap(M)
	 M← IP-1(M)
	 return M
End 

5.5  Implementation

DES implementation using C++ is described below.

5.5.1  C++ Library Headers

The following built-in headers are utilized in the program:

cstring: Used for the purpose of string manipulation, string 
length measurement, and moving the contents of the mes-
sage to work with and the ciphertext. When working with 
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message encryption and decryption, there is a need for string 
handling. During the process of encryption and decryption, 
the functionalities are like string length calculation, string 
copy from one place to another, and the input-output of a 
string message or ciphertext.

iostream: The basic header file of the C++ library. It is the header 
that consists of the core library of C++. The core library is 
mostly focused on the input-output stream-related functions. 
I and O refer to input and output, respectively. On the other 
hand, stream refers to the flow of bits in the input and output 
buffers of the computer system.

cstdlib: Defines multiple general purpose functions, such as the 
functions related to random number generation, communica-
tion with the system, and arithmetic operations.

5.5.2  The DES Class

class DES{
public:
	 int keyi[16][48],
	 total[64],
	 left[32],
	 right[32],
	 ck[28],
	 dk[28],
	 expansion[48],
	 z[48],
	 xor1[48],
	 sub[32],
	 p[32],
	 xor2[32],
	 temp[64],
	 pc1[56],
	 ip[64],
	 inv[8][8];

	 char final[1000];
	 void keygen();
	 void PermChoice1();
	 void split_key();
//left circular shifts take place
	 void PermChoice2();
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//16 keys of 56 bits keys are created
	 void IP();
//L0 and R0 are created using IP : 64 bit total
//32 bit R(n-1) is expanded into 48 bit
	 void Expansion();
	 //Expansion applied on the right half, R(n-1)
	 //32 bit R(n-1) becomes 48 bit R(n-1) now
	 void xor_oneE(int);
	 //xor the 48 bit key(n) with 48 bit R(n-1)
	 void substitution();
	 //�48 bit resultant becomes 32 bit now using 16 S 

boxes
	 void permutation();
	 //�permutation operation takes place on 32 bit 

message bit
	 void xor_two();
	 //�now the resultant of 32 bit is xored with 

L(n-1)
	 //xored resultant becomes R(n)
	 void inverse();
	 //inver permutation of R(n)L(n)
	 void xor_oneD(int);
	 //�xor of 48 bit key and expanded message for 

decryption
	 char *Encrypt(char *);
	 char *Decrypt(char *);
};

All the member variables and functions of the DES class are 
publicly accessible. For this reason, the members are declared in the 
public scope. No private or public differentiation is needed due to our 
basic target of this presentation being to provide a technical knowl-
edge of how DES works, but not to provide the concept of object 
orientation.

5.5.3  Introducing the Member Variables of DES Class

Here, in the above class declaration, int keyi[16][48] is a two-
dimensional array that holds all 16 keys that are made after applying 
permutation choice 2. Permutation choice 2 is applied with the help of 
the C++ function void PermChoice2(), defined in class DES.
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5.5.4  Introducing the Member Functions of DES Class

The member function IP() is responsible for the initial permutation 
operation on the message text that is to be encrypted.

5.5.5  The Keygen() Function

1.	 void DES::keygen(){
2.		  PermChoice1();
3.		  split_key();
4.		  int noshift = 0,round;
5.		  for(round = 1; round< = 16; round++){
6.			�   if(round = =1||round = =2||round = 

=9||round = =16)
7.				    noshift = 1;
8.			   else
9.				    noshift = 2;
10.
11.			   while(noshift>0){
12.				    int t;
13.				    t = ck[0];
14.				    for(int i = 0; i<28; i++)
15.					     ck[i] = ck[i+1];
16.				    ck[27] = t;
17.				    t = dk[0];
18.				    for(int i = 0; i<28; i++)
19.					     dk[i] = dk[i+1];
20.				    dk[27] = t;
21.				    noshift— ;
22.			   }
23.			�   cout << endl << "round " << round 

<< endl;
24.			   PermChoice2();
25.			�   for(int i = 0; i<48; i++)	//stores 

each of the subkeys
26.			   keyi[round-1][i] = z[i];
27.		  }
28.	 }

A key is utilized to create the 16 different subkeys. To make those 
subkeys, various operations have to be conducted so that the subkeys 
show proper variations that will help make those keys as strong as 
possible. Basic functionalities of the function keygen() are selecting 
a secret key, operating permutation choice 1 on that key, splitting 
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that  single key into two parts, conducting a left circular shift to 
produce 16 subkeys, and finally, generating 16 secret keys by applying 
permutation choice 2 on them.

PermChoice1() converts the actual 64-bit secret key into a 56-bit 
secret key. The details of the PermChoice1() function are described in 
the next section of this chapter. Another function, named split_key(), 
splits the 56-bit permuted key into two parts so that each of the parts 
becomes 28 bits in length. In the fourth line of the above code, the 
variables to track the number of shift and round are declared. There 
are 16 rounds of processing steps, as the subkeys are 16 in number.

The sixth line shows the number of left circular shifts, which varies 
according to the round. All the rounds do not have the same number of 
left circular shifts. From lines 11 to 22 left circular shift operations take 
place. The shifting operations are applied on the arrays named ck and 
dk, as the split subkeys are stored in these arrays. Line 23 outputs the 
current round number. The scope of the for loop is from lines 5 to 27; 
the code inside this scope is repeated for each of the 16 rounds. Shifted 
bits are stored into ck and dk arrays in lines 15 and 19 respectively. 
Then in the 24th line, permutation choice 2 comes into action, actually 
permuting each of the 56-bit subkeys to convert all of them into 48-bit 
subkeys. After the execution of the PermChoice2() function, the array 
named z[] holds the permuted bits of the 48-bit subkey, and in line 26 
the 48-bit subkey is stored in the keyi[][] array. Thus, each of the 16 
subkeys of 48 bits is created and stored into the keyi[][] array.

5.5.6  The PermChoice1() Function

1.	void DES::PermChoice1(){//Permutation Choice-1
2.	 cout << "key: " << endl;
3.	 for (int i = 0; i < 64; i++) {
4.			   cout << key[i] << "\t";
5.		  if (((i + 1)% 8) = = 0) cout << endl;
6.	 }
7.	 int k = 57,i;
8.	 for(i = 0; i<28; i++){
9.	 pc1[i] = key[k-1];
10.	 if(k-8>0) k = k-8;
11.	 else k = k+57;
12.	 }
13.	 k = 63;
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14.	 for(i = 28; i<52; i++){
15.		  pc1[i] = key[k-1];
16.		  if(k-8>0) k = k-8;
17.		  else	 k = k+55;
18.	 }
19.	 k = 28;
20.	 for(i = 52; i<56; i++){
21.		  pc1[i] = key[k-1];
22.		  k = k-8;
23.	 }
24.	� cout << endl << "After permutation choice 1:" 

<< endl;
25.	 for (i = 0; i < 56; i++){
26.		  cout << pc1[i] << "\t";
27.		  if (((i + 1)% 7) = = 0) cout << endl;
28.	 }
29.	 }

In the above function definition, at first the PermChoice1() 
function was called to make the first permutation operation on the 
single secret key. After conducting the first permutation operations 
on the 64-bit secret key, the resultant key holds 56 bits. The rest of 
the bits are removed from the actual key. The final product of the 
above function is the 56-bit secret key. All of the cout keywords in 
the source code are to provide a proper output so that the user can 
get a proper idea of how the program is running and whether all the 
statements are giving the correct output or not.

For each of the blocks in a 64-bit key, the last bit of every octet is 
removed. There are eight blocks in a 64-bit key. If each of them loses 
1 bit, the total number of bits becomes 56 bits. Thus, 56-bit key is 
produced and is stored in the array named pc1[].

5.5.7  The Split_Key() Function

1.	 void DES::split_key(){
2.			   int i,k = 0;
3.			�   for(i = 0; i<28; i++){ //creates 56 

bits key with Permutation by PC-1
4.				    ck[i] = pc1[i];
5.			   }
6.			   for(i = 28; i<56; i++){
7.				    dk[k] = pc1[i];
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8.				    k++;
9.			   }
10.			   cout << endl << "Print C0 " << endl;
11.			�   for(i = 0; i<28; i++){ //left 28 

bits of permuted 56 bit key
12.				    cout << ck[i] << "\t";
13.				�    if (((i + 1)% 7) = = 0) cout 

<< endl;
14.			   }
15.			   cout << endl << "Print D0 " << endl;
16.			�   for(i = 28; i<56; i++){ //right 28 

bits of permuted 56 bit key
17.				    cout << dk[i] << "\t";
18.				�    if (((i + 1)% 7) = = 0) cout 

<< endl;
19.			   }
20.	 }

After executing the function split_key(), the 56-bit key stored in 
pc1[64] is divided into two parts. One is stored in ck[28] and 
another in dk[28]. Both of the arrays can hold 28 bits of values, so 
that lines 3 to 9 are executed to split the 56-bit key into two parts and 
store them in the ck[28] and dk[28] arrays. The rest of the lines, 
10 to 19, are outputting the split key for test purposes, whether the 
split has taken place perfectly or not.

5.5.8  The PermChoice2() Function

1.	 void DES::PermChoice2(){
2.			   int per[56],i,k;
3.			�   for(i = 0; i<28; i++) per[i] = 

ck[i];
4.			�   for(k = 0,i = 28; i<56; i++) per[i] 

= dk[k++];
5.			   z[0] = per[13];
6.			   z[1] = per[16];
7.			   z[2] = per[10];
8.			   z[3] = per[23];
9.			   z[4] = per[0];
10.			   z[5] = per[4];
11.			   z[6] = per[2];
12.			   z[7] = per[27];
13.			   z[8] = per[14];
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14.			   z[9] = per[5];
15.			   z[10] = per[20];
16.			   z[11] = per[9];
17.			   z[12] = per[22];
18.			   z[13] = per[18];
19.			   z[14] = per[11];
20.			   z[15] = per[3];
21.			   z[16] = per[25];
22.			   z[17] = per[7];
23.			   z[18] = per[15];
24.			   z[19] = per[6];
25.			   z[20] = per[26];
26.			   z[21] = per[19];
27.			   z[22] = per[12];
28.			   z[23] = per[1];
29.			   z[24] = per[40];
30.			   z[25] = per[51];
31.			   z[26] = per[30];
32.			   z[27] = per[36];
33.			   z[28] = per[46];
34.			   z[29] = per[54];
35.			   z[30] = per[29];
36.			   z[31] = per[39];
37.			   z[32] = per[50];
38.			   z[33] = per[46];
39.			   z[34] = per[32];
40.			   z[35] = per[47];
41.			   z[36] = per[43];
42.			   z[37] = per[48];
43.			   z[38] = per[38];
44.			   z[39] = per[55];
45.			   z[40] = per[33];
46.			   z[41] = per[52];
47.			   z[42] = per[45];
48.			   z[43] = per[41];
49.			   z[44] = per[49];
50.			   z[45] = per[35];
51.			   z[46] = per[28];
52.			   z[47] = per[31];
53.			�   cout << endl << "After permutation 

choice 2 " << endl;
54.			�   for(int i = 0; i<48; i++){ 

//creates the 48 bits permutation 
table(PC-2)

55.				    cout << z[i] << "\t";
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56.				�    if (((i + 1)% 6) = = 0) cout 
<< endl;

57.			   }//for ends here
58.		  } //PermChoice2 function ends here

The above function, PermChoice2(), is called separately for each of the 
16 rounds. Hence, the function is called 16 times. The basic target of 
the function is to reduce the 56-bit key of the current round to a 48-bit 
key. After permuting the secret key into 48 bits, the result is stored in 
the array named z[48], which holds the 48-bit key. When the per-
muting operation is finished, the next step starts automatically to store 
the 48-bit permuted key into another array, declared keyi[16][48]. 
That holds all 16 keys, which are 48 bits in size individually.

5.5.9  The Encrypt(char *) Function

Here comes the part to do something with the plaintext that is the 
actual message to be encrypted. For this situation, the plaintext 
also has 64 bits; the whole message/plaintext is divided into blocks 
of 64 bits.

1.	 char* DES::Encrypt(char *Text1){
2.				�    int i,a1,j,nB,m,iB,k,K,B[8],n,

t,d,round, mc = 0;
3.				    char *Text = new char[1000];
4.				    strcpy(Text,Text1);
5.				    i = strlen(Text);
6.				    a1 = i%8;
7.
8.				    if(a1 ! = 0)
9.					�     for(j = 0; j<8-a1; 

j++,i++) Text[i] = ' ';
					�     //add padding bits with 

space
10.				    Text[i] = '\0';
11.				�    for(iB = 0,nB = 0,m = 0; 

m<(strlen(Text)/8); m++){
12.				�    //Repeat for TextLength/8 

times.
13.				�    for(iB = 0,i = 0; i<8; 

i++,nB++){
14.					     n = (int)Text[nB];
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15.					�     cout << " n is " << n 
<< endl;

16.					�     for(K = 7; n> = 1; K— )
{

17.						      B[K] = n%2;
						�      //Converting 

8-Bytes to 
64-bit Binary 
Format

18.						�      cout << "B[" << 
K << "] is " << 
B[K] << endl;

19.						      n/= 2;
20.					     }
21.					�     for(; K> = 0; K— ) B[K] 

= 0;
22.					�     for(K = 0; K<8; 

K++,iB++) total[iB] = 
B[K];

23.					�     //Now 'total' contains 
the 64-Bit binary 
format of Bytes

24.				    }
25.				    IP();
26.				�    for(i = 0; i<64; i++) 

total[i] = ip[i];
				�    //Store values of ip[64] into 

total[64]
27.				�    for(i = 0; i<32; i++) left[i] 

= total[i];
28.				�    for(; i<64; i++) right[i-32] 

= total[i];
29.				�    for(round = 1; round< = 16; 

round++){
30.					�     Expansion();	//E bit 

selection
31.					�     //Performing expansion 

on 'right[32]' to get 
'expansion[48]'

32.					     xor_oneE(round);
33.					�     //Performing XOR 

operation on 
expansion[48],z[48] to 
get xor1[48]

34.					     substitution();
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35.					�     //Perform substitution 
on xor1[48] to get 
sub[32]

36.					     permutation();
37.					�     //Performing 

Permutation on sub[32] 
to get p[32]

38.					�     xor_two();	 //xor with 
32 bit L0 and f value

39.					�     //Performing XOR 
operation on 
left[32],p[32] to get 
xor2[32]

40.					�     for(i = 0; i<32; i++) 
left[i] = right[i];

41.					�     //Dumping right[32] 
into left[32]

42.					�     for(i = 0; i<32; i++) 
right[i] = xor2[i];

43.					�     //Dumping xor2[32] into 
right[32]

44.				    }
45.				�    for(i = 0; i<32; i++) temp[i] 

= right[i];//Dumping— 
>[swap32bit]

46.				�    for(; i<64; i++) temp[i] = 
left[i-32];// 
left[32],right[32] into 
temp[64]

47.				    inverse();
48.				�    //Inversing the bits of 

temp[64] to get inv[8][8]
49.				�    /* Obtaining the Cypher-Text 

into final[1000]*/
50.				    k = 128;
51.				    d = 0;
52.				    for(i = 0; i<8; i++){
53.					     for(j = 0; j<8; j++){
54.						�      d = d+inv[i]

[j]*k;
55.						      k = k/2;
56.					     }
57.					     final[mc++] = (char)d;
58.					     k = 128;
59.					     d = 0;
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60.				    }
61.			   }//for loop ends here
62.			   final[mc] = '\0';
63.			   return(final);
64.	 }

Before executing the encryption process, the plaintext is padded 
with some space characters to make the plaintext string length divis-
ible by 8; thus, the number of bits in the plaintext is always a multiple 
of 64. A character size is 1 byte, and 1 byte represents 8 bits. After 
padding the plaintext with an empty space character, the for loop in 
the 11th line rotates for each of the eight characters in the plaintext, 
because eight characters consist of 64 bits. In lines 13 to 23, each of 
the 8 bytes is converted into 64 bits and stored in the total[64] 
array. Thus, the for loop continues for each of the 64 bits in the 
plaintext bit stream.

The function Encrypt(char *) takes a parameter that will receive the 
plaintext message and continue its next steps. In lines 8 and 9, extra 
bits are added to make the size of the plaintext string a multiple of 8. 
In this way, it is ensured that each of the blocks has 8 bits. After the 
execution of lines 10 to 24, the array total[64] contains the 64-bit 
format of the plaintext message.

In line 25, the initial permutation operation is done over the 64-bit 
block of plaintext message. It actually reorganizes the bit stream into 
some predefined sequences. The operations of the function IP() will 
be discussed in the latter sections of this chapter. In lines 26, 27, and 
28, three operations are done. In line 26, initial permuted bits are 
copied into total[64]. In line 27, half of the 64 bits of the total 
bit stream are copied into the left[32] array, and the second half 
of the same array is copied into right[32] array. Thus, the 64-bit 
plaintext message is divided into two parts and stored into two arrays, 
left[32] and right[32].

From lines 29 to 44, several rounds of the same operations have 
been conducted to continue the whole encryption process—16 
rounds in the process. Now, before starting the for loop, assuming 
that the left[32] array holds the 32 bits of the plaintext message 
and  the  right[32] array contains the right bits of the plaintext 
message, the operations are briefly mentioned below.
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Calling the function Expansion() actually expands the content of 
right[32] into 48 bits and stores the bit stream into the array named 
expansion[48]. So, next time, for the current round, it is possible 
to XOR with the content of expansion[48] with the content of 
keyi[round-1][i], where round denotes the current round and 
i  is the index of the bit that ranges from the 1st to the 48th bit. 
Another function, defined as substitution(), converts the 48-bit con-
tent of the expansion[48] into 32 bits and stores the resulting 
bit stream in the sub[32] array. On the other hand, the function 
permutation() in line 36 makes the permutation of the 32-bit content 
in sub[32] and copies the result into the array that is declared p[32]. 
The xor_two() function works on left[32] content and p[32]; the 
result is copied into the xor2[32] array. Using the code of lines 
40 and 42, the content of the right[32] array is dumped into the 
left[32] array, and the content of the xor2[32] array is dumped 
into the right[32] array.

In lines 45 and 46, two arrays, left[32] and right[32], swap 
their positions; the content of the left[32] array takes the rightmost 
side of the temp[64] array, and the content of right[32] takes the 
leftmost position of the temp[64] array. After that, in line 47, an 
inverse permutation operation is conducted over the bit stream of the 
temp[64] array.

5.5.10  The IP() Function

1.	 void DES::IP(){//Initial Permutation
2.			   int k = 58,i;
3.			   for(i = 0; i<32; i++){
4.				    ip[i] = total[k-1];
5.				    if(k-8>0) k = k-8;
6.				    else k = k+58;
7.			   }
8.			   k = 57;
9.			   for(i = 32; i<64; i++){
10.				    ip[i] = total[k-1];
11.				    if(k-8>0) k = k-8;
12.				    else k = k+58;
13.			   }
14.			�   cout << "Actual bit sequence:" 

<<endl;
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15.			   for (int i = 0; i < 64; i++){
16.				    cout << total[i] << "\t";
17.				�    if (((i + 1)% 8) = = 0) cout 

<<endl;
18.			   }
19.			   cout << endl;
20.			�   cout << "After initial permutation: 

" <<endl;
21.			   for (int i = 0; i < 64; i++){
22.				    cout << ip[i] << "\t";
23.				�    if (((i + 1)% 8) = = 0) cout 

<<endl;
24.			   }
25.	 }

The initial permutation operation is conducted over the 64 bits 
contained in the total[64] array. Thus, the plaintext message is 
reorganized according to the initial permutation table, and finally, the 
result is stored in the ip[64] array. That holds the initial permuted 
bit stream.

5.5.11  The Expansion() Function

1.	�� void DES::Expansion(){//Expansion Function 
applied on 'right' half

2.			   int exp[8][6],i,j,k;
3.			   for(i = 0; i<8; i++){
4.				    for(j = 0; j<6; j++){
5.					     if((j! = 0)||(j! = 5)){
6.						      k = 4*i+j;
7.						      exp[i][j] = 		
						      right[k-1];
8.					     }
9.					     if(i ! = 0 && j = =0){
10.						      k = 4*i;
11.						      exp[i][j] = 		
						      right[k-1];
12.					     }
13.					     if(i ! = 7 && j = =5){
14.						      k = 4*i+j;
15.						      exp[i][j] = 		
						      right[k-1];
16.					     }
17.				    }
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18.			   }
19.			   exp[0][0] = right[31];
20.			   exp[7][5] = right[0];
21.			   k = 0;
22.			   for(i = 0; i<8; i++){
23.				�    for(j = 0; j<6; j++)

expansion[k++] = exp[i][j];
24.			   }
25.	 }

The function Expansion() is responsible for converting each of  the 
4 bits  into 6 bits, so after the execution of the function, content of 
right[32] is converted into 48 bits. In line 23, the array named 
expansion[48] contains all 48 bits; thus, the bits of right[32] are 
expanded into a block of 48 bits. Now, it has become more convenient, 
so that the XOR operation between the expanded content and the 48-bit 
key is possible, because all of the bits are the same in length, which is 48.

5.5.12  The xor_oneE(int round) Function

1.	 void DES::xor_oneE(int round){
2.		  //for Encrypt
3.		  int i;
4.		  for(i = 0; i<48; i++)
5.			�   xor1[i] = expansion[i]^keyi[round-1]

[i];
6.	 }

For each of the rounds out of 16, the function xor_oneE(int) is called. 
There is one array expansion, and another one is keyi[round][48]. 
The first array holds the previously expanded 48-bit content of the 
plaintext, and the second one holds the 48-bit secret key that is sepa-
rate according to the round. There are 16 separate keys for each of the 
16 rounds. Now, after executing the xor_oneE(int), the XORed result is 
stored in the xor1[48] array.

5.5.13	 The Substitution() Function

1.	 void DES::substitution(){
2.	 int s1[4][16] = {
	 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
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	 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
	 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
	 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13
3.	 };
4.	 int s2[4][16] = {
	 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
	 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
	 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
	 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9
5.	 };
6.	 int s3[4][16] = {
	 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
	 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
	 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
	 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12
7.	 };
8.	 int s4[4][16] = {
	 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
	 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
	 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
	 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14
9.	 };
10.	 int s5[4][16] = {
	 2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
	 14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
	 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
	 11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3
11.	 };
12.	 int s6[4][16] = {
	 12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
	 10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
	 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
	 4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13
13.	 };
14.	 int s7[4][16] = {
	 4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
	 13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
	 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
	 6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12
15.	 };
16.	 int s8[4][16] = {
	 13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
	 1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
	 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
	 2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11
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17.	 };
18.	 int a[8][6],k = 0,i,j,p,q,count = 0,g = 0,v;
19.	 for(i = 0; i<8; i++){
20.	 for(j = 0; j<6; j++){
21.	 a[i][j] = xor1[k++];
22.	 }
23.	 }
24.	 for(i = 0; i<8; i++){
25.	 p = 1;
26.	 q = 0;
27.	 k = (a[i][0]*2)+(a[i][5]*1);
28.	 j = 4;

29.	 while(j>0){
30.	 q = q+(a[i][j]*p);
31.	 p = p*2;
32.	 j— ;
33.	 }

34.	 count = i+1;
35.	 switch(count){
36.	 case 1:
37.	 v = s1[k][q];
38.	 break;
39.	 case 2:
40.	 v = s2[k][q];
41.	 break;
42.	 case 3:
43.	 v = s3[k][q];
44.	 break;
45.	 case 4:
46.	 v = s4[k][q];
47.	 break;
48.	 case 5:
49.	 v = s5[k][q];
50.	 break;
51.	 case 6:
52.	 v = s6[k][q];
53.	 break;
54.	 case 7:
55.	 v = s7[k][q];
56.	 break;
57.	 case 8:
58.	 v = s8[k][q];
59.	 break;
60.	 }
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61.	 int d,i = 3,a[4];
62.	 while(v>0){
63.	 d = v%2;
64.	 a[i— ] = d;
65.	 v = v/2;
66.	 }
67.	 while(i> = 0){
68.	 a[i— ] = 0;
69.	 }
70.	 for(i = 0; i<4; i++)
71.	 sub[g++] = a[i];
72.	 }
73.	 }

The function substitution has eight S-boxes that are used for 
substituting the extra bits from the 48-bit XORed result. Now, the 
basic target of this function is to reduce the bit size of the 48-bit con-
tent that was XORed with the 48-bit key; the new size of that XORed 
content will be 32 after the execution of the function. For the 48-bit 
content there are eight blocks of bits in which each of the blocks has 
six bits. The first and the last bit together indicate the row number of 
the S-box, and the other four bits indicate the column number in the 
S-box array. Out of eight blocks, each of them indicates the respective 
S-boxes; for example, the first block of 6 bits refers to s1[4][16], the 
second block refers to s2[4][16], and so on up to s8[4][16]. After 
finishing the function call, the 48-bit content is converted into 32-bit 
content and stored in the sub[32] array. With this bit value the next 
function, permutation(), continues.

5.5.14  The Permutation() Function

void DES::permutation(){
	 p[0] = sub[15];
	 p[1] = sub[6];
	 p[2] = sub[19];
	 p[3] = sub[20];
	 p[4] = sub[28];
	 p[5] = sub[11];
	 p[6] = sub[27];
	 p[7] = sub[16];
	 p[8] = sub[0];
	 p[9] = sub[14];
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	 p[10] = sub[22];
	 p[11] = sub[25];
	 p[12] = sub[4];
	 p[13] = sub[17];
	 p[14] = sub[30];
	 p[15] = sub[9];
	 p[16] = sub[1];
	 p[17] = sub[7];
	 p[18] = sub[23];
	 p[19] = sub[13];
	 p[20] = sub[31];
	 p[21] = sub[26];
	 p[22] = sub[2];
	 p[23] = sub[8];
	 p[24] = sub[18];
	 p[25] = sub[12];
	 p[26] = sub[29];
	 p[27] = sub[5];
	 p[28] = sub[21];
	 p[29] = sub[10];
	 p[30] = sub[3];
	 p[31] = sub[24];
}

The above function is utilized to permute the content of the 
sub[32] and stores all 32 bits in another array named p[32]. Finishing 
the function execution, the p[32] array holds the 32 permuted bits.

5.5.15  The xor_two() Function

1.	 void DES::xor_two(){
2.	 int i;
3.	 for(i = 0; i<32; i++){
4.		  xor2[i] = left[i]^p[i];
5.	 }
6.	 }

The above function actually makes an XOR operation between 
the content of the left[32] array and the immediately permuted 
32 bits of p[32]. The result of 32 bits is saved in xor2[32]. After 
the  function  execution, the next operations continue from line 40 
in the function named Encrypt(char *). Readers are requested to jump 
into that specific line of code to have a look at the next steps.
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5.5.16  The Decrypt(char *) Function

1.	 char * DES::Decrypt(char *Text1){

2.		  int i,a1,j,nB,m,iB,k,K,B[8],n,t,d,round;

3.		  char *Text = new char[1000];

4.		  unsigned char ch;

5.		  strcpy(Text,Text1);

6.		  i = strlen(Text);

7.		  //keygen();

8.		  int mc = 0;

9.		�  for(iB = 0,nB = 0,m = 0; 
m<(strlen(Text)/8); m++){

10.			   /*Repeat for TextLength/8 times*/

11.			   for(iB = 0,i = 0; i<8; i++,nB++){

12.				    ch = Text[nB];

13.				    n = (int)ch;//(int)Text[nB];

14.				    for(K = 7; n> = 1; K— ){

15.					�     B[K] = n%2; //
Converting 8-Bytes to 
64-bit Binary Format

16.					     n/= 2;

17.				    }

18.				    for(; K> = 0; K— ) B[K] = 0;

19.				�    for(K = 0; K<8; K++,iB++) 
total[iB] = B[K];

20.				�    /*Now 'total' contains the 
64-Bit binary format of 
8-Bytes*/

21.			   }

22.			   IP();

23.			�   for(i = 0; i<64; i++) total[i] = 
ip[i];

24.			�   for(i = 0; i<32; i++) left[i] = 
total[i];

25.			�   for(; i<64; i++) right[i-32] = 
total[i];

26.			   for(round = 1; round< = 16; 		
				    round++){

27.				    Expansion();

28.				    xor_oneD(round);

29.				    substitution();

30.				    permutation();
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31.				    xor_two();

32.				�    for(i = 0; i<32; i++) left[i] 
= right[i];

33.				�    for(i = 0; i<32; i++) 
right[i] = xor2[i];

34.			   }//16 rounds end here
35.			�   for(i = 0; i<32; i++) temp[i] = 

right[i];
36.			�   for(; i<64; i++) temp[i] = 

left[i-32];
37.			   inverse();
38.			�   /* Obtaining the Cypher-Text into 

final[1000]*/
39.			   k = 128;
40.			   d = 0;
41.			   for(i = 0; i<8; i++){
42.				    for(j = 0; j<8; j++){
43.					     d = d+inv[i][j]*k;
44.					     k = k/2;
45.				    }
46.				    final[mc++] = (char)d;
47.				    k = 128;
48.				    d = 0;
49.			   }
50.		  }	 //for loop ends here
51.		  final[mc] = '\0';
52.		  char *final1 = new char[1000];
53.		�  for(i = 0,j = strlen(Text); 

i<strlen(Text); i++,j++)
54.		  final1[i] = final[j];
55.		  final1[i] = '\0';
56.		  return(final);
57.	 }

The function prototype of the function Decrypt(char *) indicates 
that it takes a character pointer as a parameter and returns another 
memory address so that the type is also a pointer. This is a function 
responsible for decrypting or deciphering the encrypted message. 
For the decryption process, all the steps are the same, but the way 
of choosing the keys is different. During decryption, the order of 
the key is reversed. That means when decrypting the ciphertext, the 
last key will be used first, then the second last, and so on. Both of 
the functions Encrypt(char *) and Decrypt(char *) are the same, but in 
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the Decrypt(char *) function xor_oneD(round) is called instead of xor_
oneE(round). Among the previously selected 16 keys, xor_oneD(round) 
chooses the key in reverse order. That is the main difference between 
the encryption and decryption.

5.5.17  The Main() Function

1.	 int main(){
2.		  DES d1;
3.		  d1.keygen();
4.		  char *str = new char[1000];
5.		  cout<<"\nEnter a string : ";
6.		  cin >> str;
7.		  char *str1 = new char[1000];
8.		  str1 = d1.Encrypt(str);
9.		  cout<<"\nEncrypted Text: "<<str1<<endl;
10.		�  cout<<"\no/p Text: "<<d1.

Decrypt(str1)<<endl;
11.	 }

The main() function is the supreme controller in most of the pro-
gramming languages. In this chapter, C++ language is used to dem-
onstrate the DES encryption-decryption, and there is also a main() 
function in this program, as usual. The function main() at first creates 
an object of the DES class; in this program DES is a user-defined 
class for demonstration purposes. The details of the DES class have 
been discussed in the prior sections of this chapter.

Now for creating an object of DES class, the function keygen() is 
called in the third line using the object created so far. Then, a string 
variable is declared to store the input string, which can store 1000 char-
acters. After declaring the string variable, the string gets the input 
in the sixth line. In the eighth line, the function Encrypt(char  *) is 
called to encrypt the plaintext and return the decrypted message into 
the string variable str1. A statement in line 9 shows the encrypted 
text that is already stored in str1. After all, the 10th line of the 
code calls the Decrypt(char *) function, and that function returns 
the decrypted plaintext so that users can see the decrypted text on the 
screen. Finally, a plaintext string is inputted through the keyboard, 
which is then encrypted and also decrypted to demonstrate that the 
program is working fine.
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Keywords
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Block cipher

6.1  Overview

The Advanced Encryption Standard (AES) is a renowned sym-
metric key algorithm that utilizes a same secret key to encrypt 
and decrypt a message. It overcomes the limitation of the smaller 
key size of the Data Encryption Standard (DES) by utilizing 
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a bigger and variable-length key that may take 149 trillion years 
to crack (assuming a machine could try 255 keys per second—
National Institute of Standards and Technology [NIST]). Moreover, 
it also resolves the slow processing speed of Triple DES (3DES) and 
utilizes lower resources than that. Therefore, it is preferred as the 
encryption and decryption standard by the U.S. government. This 
standard is described in Federal Information Processing Standard 
(FIPS). AES is now being used worldwide for encrypting digital 
information, including financial, telecommunications, and govern-
ment data.

AES supports secret keys of length 128, 192, or 256 bits to 
encrypt and decrypt a data block of 128 bits. Like other block cipher 
techniques, it is based on permutations and substitutions. Its design 
supports implementation in both hardware and software. Moreover, it 
is royalty-free to use, unlike some commercial encryption algorithms.

6.2  History

Because of the limitations of the previous encryption standard 
(i.e., DES), the NIST was searching for a new symmetric block cipher 
technique that could be considered a more robust replacement. In the 
new proposed technique, it was looking for a cipher that could support 
multiple key sizes (i.e., key lengths), capable of running efficiently in 
both hardware and software, and also have a good defense mechanism 
against various attacking techniques. Thus, a process was initiated on 
January 2, 1997, where it published a Request for Comments (RFC) 
for the “Development of a Federal Information Processing Standard 
for Advanced Encryption Standard.” The entire selection process was 
fully made open to public scrutiny and comments, because full vis-
ibility of any process would ensure the best possible analysis of the 
designs.

In this flow of the process, NIST publicly called for nominees for 
the new algorithm on September 12, 1997. The first AES conference 
was held from August 20–23, 1998. At that conference NIST 
selected 15 candidates for the AES, which were then subjected to 
preliminary analysis by the world cryptographic community, includ-
ing the National Security Agency (NSA). All the selected algorithms 
were presented, analyzed, and tested at the second AES conference, 
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which was held on March 22–23, 1999. On August 9, 1999, NIST 
selected five algorithms for extensive analysis:

	 1.	MARS, submitted by a team from IBM
	 2.	RC6, submitted by RSA Security
	 3.	Rijndael, submitted by two Belgian cryptographers, Joan 

Daemen and Vincent Rijmen
	 4.	Serpent, submitted by Ross Anderson, Eli Biham, and Lars 

Knudsen
	 5.	Twofish, submitted by a team of researchers, including Bruce 

Schneier

Finally, on October 2, 2000, Rijndael, by Joan Daemen and 
Vincent Rijmen, was chosen as the Advanced Encryption Standard. 
On February 28, 2001, the algorithm was included in the publica-
tion of a draft by FIPS. Then it was open for public review for 90 
days. After that, it was finally included in the Federal Register on 
December 6, 2001.

6.3  Design Consideration

One of the principal design goals of AES was to keep it simpler to 
implement in both hardware and software. Therefore, unlike DES, 
instead of operating on bits, it operates on bytes, which makes it easier 
to implement and explain. It works by repeating the same defined 
steps multiple times, which are called rounds. Each round consists 
of several processing steps, including one that utilizes an encryption/
decryption subkey that is generated from the shared key. Since AES 
is an iterative symmetric block cipher, it shares a single secret key 
among the two communicating parties involved in encryption and 
decryption operations. The allowable key lengths in AES are 128, 
192, and 256 bits. Every key is expanded so that a separate subkey 
(w[i, j], where i and j provide the byte range) could be utilized for 
every round. Number of rounds of AES generally depends on the key 
length. A relationship between key length, number of columns in a 
state, and number of rounds is mentioned in Table 6.1. For instance, 
if the key length (Nk) is 128 bits or 16 bytes or 4 words, the number 
of columns (Nb) would be 4 and only 10 rounds (Nr) are performed, 
where Nb = key length/32.
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AES, as well as most of the encryption algorithms, is reversible, 
which means that for the steps performed to complete an encryp-
tion, similar steps could be followed to complete a decryption, but in 
reverse order. In the following section, a detailed description of the 
operations of AES is explained with examples.

6.4  Primitive Operations of AES

Internally, all the AES operations are performed on a two-dimensional 
array of bytes called the state. A state constitutes four rows and Nb 
(Table 6.1) number of columns. Hence, for a 128-bit key, a state con-
sists of four rows and four columns, as depicted in Figure 6.1.

AES is based on five primitive operations:

	 1.	Exclusive disjunction/exclusive OR (XOR): Exclusive dis-
junction or exclusive or is a logical operation that outputs true 
whenever both inputs differ from each other (e.g., one is true 
and the other is false) (Table 6.2). It is symbolized by the pre-
fix operator J and by the infix operators XOR, EOR, EXOR, 
⊻, ⊕, ↮, and ≢.

	 2.	Substitution (SubByte): A byte is substituted by another 
byte. AES utilizes a lookup table, also known as S-box, to 
perform substitutions of encryption, and another S-box, also 
known as inverse S-box, for decryption. Both S-boxes are 

Table 6.1  Relationship between Key Lengths, Number 
of Columns in a State, and Total Number of Rounds in AES

KEY LENGTH (Nk) 
(1 WORD = 32 
BITS/4 BYTES)

NUMBER OF 
COLUMNS IN 
STATE (Nb) ROUNDS (Nr)

4 4 10
6 6 12
8 8 14

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 6.1  A state of 128-bit key AES, where Sr,c denotes a byte of the rth row and the cth column.
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given in Tables 6.3 and 6.4, respectively. Each individual byte 
can be represented by two hex digits where the first (from 
right) digit represents row and the second digit represents col-
umn of the S-box lookup table in the case of encryption, and 
of the inverse S-box in the case of decryption. For instance, 
let us assume that {42} is a hexadecimal value that represents 
a byte. Here, 4 refers to row number and 2 refers to column 
number; the value over that location would substitute this 
value, i.e., {2C}.

	 3.	Rotation (ShiftRows): A simple permutation is performed by 
rearranging of bytes through rotating a row by a fixed number 
of cells. It provides a diffusion by the cyclic left shift of the 
last three rows of the state by different offsets. Row 0 of the 

Table 6.3  S-Box Lookup Table

S -BOX VALUES

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 6.2  XOR Truth Table

INPUT OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1
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state is not shifted, row 1 is shifted 1 byte, row 2 is shifted 2 
bytes, and row 3 is shifted 3 bytes. This operation is illustrated 
in Figure 6.2.

		  In case of decryption, inverse shift rows (InvShiftRows) 
are performed, which follows a process similar to that of 
ShiftRows, only the shifting is done to the right.

	 4.	MixColumn: It operates on each column individually where 
a single byte of a column is mapped into a new value that is 
a function of all four bytes in that column. Each column of 
the state is replaced by multiplying with a 4 × Nb matrix in 

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3
Row 0

No change

S1,1 S1,2 S1,2 S1,0
Row 1

Shift 1 Byte

S2,2 S2,3 S2,0 S2,1
Row 2

Shift 2 Byte

S3,3 S3,0 S3,1 S3,2
Row 3

Shift 3 Byte

ShiftRows

Figure 6.2  Shift row operation of AES.

Table 6.4  Inverse S-Box Lookup Table

INVERSE S-BOX VALUES

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D
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the Galois field 28, also denoted as GF(28). The mathematics 
behind this is beyond the scope of this book. An example 
matrix is given for 128-bit key in Figure 6.3.

		  The first result byte is calculated by multiplying four values 
of the state column against four values of the first row of the 
matrix. The result of each multiplication is then XORed to 
produce 1 byte like below:

	 S0,0 = (S0,0*2) XOR (S1,0*3) XOR (S2,0*1) XOR (S3,0*1)

		  This procedure is repeated again with each byte of all col-
umns of the state, until there is no more state column. As a 
result of this multiplication, the four bytes in the first column 
are replaced by the following:

	 S0,0 = (S0,0*2) XOR (S1,0*3) XOR (S2,0*1) XOR (S3,0*1)

	 S1,0 = (S0,0*1) XOR (S1,0*2) XOR (S2,0*3) XOR (S3,0*1)

	 S2,0 = (S0,0*1) XOR (S1,0*1) XOR (S2,0*2) XOR (S3,0*3)

	 S3,0 = (S0,0*3) XOR (S1,0*1) XOR (S2,0*1) XOR (S3,0*2)

		  This multiplication value also could be achieved using a 
two-table lookup represented in hexadecimal numbers and 
indexed with a hexadecimal digit. They are called the L-Table 
and E-Table and are given in Tables 6.5 and 6.6, respectively.

		  The result of the multiplication could be found from the 
L lookup table, followed by the addition of the results (+, not a 
bitwise AND), followed by a lookup to the E-table. The num-
bers being multiplied are 1 byte each and are represented in 

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 01

Figure 6.3  128-bit key state and its multiplication matrix.
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Table 6.5  L-Table

L-TABLE

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 19 01 32 02 1A C6 4B C7 1B 68 33 E DF 03
1 64 04 E0 0E 34 8D 81 EF 4C 71 08 C8 F8 69 1C C1
2 7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78
3 65 2F 8A 05 21 0F E1 24 12 F0 82 45 35 93 DA 8E
4 96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38
5 66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10
6 7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA
7 2B 79 0A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57
8 AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8
9 2C D7 75 7A EB 16 0B F5 59 CB 5F B0 9C A9 51 A0
A 7F 0C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7
B CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D
C 97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1
D 53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB
E 44 11 92 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5
F 67 4A ED DE C5 31 FE 18 0D 63 8C 80 C0 F7 70 07

Table 6.6  E-Table

E-TABLE

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35
1 5F E1 38 48 D8 73 95 A4 F7 02 06 0A 1E 22 66 AA
2 E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31
3 53 F5 04 0C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD
4 4C D4 67 A9 E0 3B 4D D7 62 A6 F1 08 18 28 78 88
5 83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A
6 B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3
7 FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0
8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41
9 C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75
A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80
B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54
C FC 1F 21 63 A5 F4 07 09 1B 2D 77 99 B0 CB 46 CA
D 45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E
E 12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17
F 39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 01
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two hexadecimal digits. The first digit is used as row index 
and the last digit as column index of the L-table. Then, two 
values acquired from the L-table are added, which results 
in another byte. The resultant byte is used to look up from 
E-table, following a procedure similar to that of the L-table. 
For instance, let us assume that the two hex values being 
multiplied are 87*02. First, we have to look up the L-table 
to find out the substitution values, i.e., 74 and 19. Then, add 
the two acquired values together, which is 8D in this exam-
ple. If the added value is greater than FF, then FF needs to 
be subtracted from the added value. The final step is to look 
up the addition result on the E-table. Note that any number 
multiplied by 1  is equal to itself and does not need to go 
through the above-mentioned procedure, e.g., 87*1 = 87.

		  An example of MixColumn during encryption is given 
below:

	 Input = 87 6E 46 A6

	 S0,0 = (87*2) XOR (6E*3) XOR (46*1) XOR (A6*1)

	 = E(L(87) + L(02)) XOR E(L(6E) + L(03)) XOR 46 XOR A6

	 = E(8D) XOR E(3E) XOR 46 XOR A6

	 = 15 XOR B2 XOR 46 XOR A6

	 = 47

		  Similarly, one can calculate the other values of the state. 
In  the  case of decryption, the inverse mix column 
(InvMixColumn) technique is utilized, which follows the 
same process as MixColumn, but multiplications are per-
formed on a different multiplication matrix. InvMixColumn 
utilizes the multiplication matrix shown in Table 6.7.

Table 6.7  Inverse Multiplication Matrix

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E
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	 5.	AddRoundKey: This is a simple operation where each byte of 
the state is XORed with each byte of the round key, which is 
a portion of the expanded key. In the next section, a detailed 
description of the key expansion technique of AES is elabo-
rated. Figure 6.4 illustrates the technique of AddRoundKey 
transformation.

6.5  Structure of AES

The basic encryption and decryption structure of AES is illustrated in 
Figure 6.5. Here, a 128-bit key length is considered. Therefore, both 
encryption and decryption must go through 10 rounds before pro-
ducing the desired output. There are 12 rounds for a 192-bit key and 
14 rounds for a 256-bit key. It can be observed from the figure that every 
round generally performs four operations: (1) SubBytes/InvSubBytes, 
(2) ShiftRows/InvShiftRows, (3) MixColumns/InvMixColumns, and 
(4) AddRoundKey. One of them is permutation and the other three 
are substitutions. However, the final round comprises only three oper-
ations, excluding MixColumns/InvMixColumns. The expanded key 
is only utilized by the AddRoundKey operations. Each operation is 
easily reversible, thus making it easy to implement in both hardware 
and software. Similar to most of the block ciphers, the decryption 
algorithm utilizes the key in reverse order.

6.6  Overview of Key Expansion

As mentioned earlier, since AES supports symmetric key, a secret 
key must be shared between the two parties. AES provides flexibility 

Changed state

Expanded key

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

K0,0 K0,1 K0,2 K0,3
K1,0 K1,1 K1,2 K1,3
K2,0 K2,1 K2,2 K2,3
K3,0 K3,1 K3,2 K3,3

AddRoundKey()

XOR

Figure 6.4  Add round key function.
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regarding selecting a key length. A key could be 128, 192, or 256 bits 
long. Since every round utilizes a new subkey, prior to encryption or 
decryption, the key must be expanded according to the number of 
rounds. This process is called key expansion.

The key expansion routine takes an input key of size Nk and produces 
a linear array of size, Nb × (Nr + 1), where a number of columns in states 
is (Nb) and the number of rounds (Nr) depends on key length (Nk). 

AddRoundKey

PlainText

InvSubBytes

Round 10
Round 9

Ro
un

d 
1

InvShiftRows

PlainText

InvMixColumns

AddRoundKey w[0, 3]

w[4, 7]

w[36, 39]

w[40, 43]

Expanded key
(w[i, j])

AddRoundKey

InvSubBytes

InvShiftRows

SubBytes

ShiftRows

MixColumns

AddRoundKey

Ro
un

d 
9

SubBytes

ShiftRows

MixColumns

AddRoundKey

Ro
un

d 
10

SubBytes

ShiftRows

AddRoundKey

Round 1

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

AddRoundKey

Cipher Text

Decryption

Cipher Text

Encryption

Figure 6.5  AES encryption and decryption techniques.
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For instance, Nr is 10 when Nk is 4, which is illustrated in Table 6.1. 
Let us denote a word in the expanded key as w[i], where i is the ith 
word of that key. Algorithm 6.1 shows a key expansion algorithm.

Algorithm 6.1: KeyExpansion(key)

Begin
	 word temp;
	 for i ← 0 to (Nk − 1)
		  w[i] ←  (unsigned char) key[4*i] << 24) |
			  ((unsigned char) key[4*i+1] << 16) |
			  ((unsigned char) key[4*i+2]<<8) |
			  ((unsigned char) key[4*i+3]);
	 end for

	 for i ←(Nk − 1) to Nb × Nr
		  temp = w[i-1];
		  if (imodNk = = 0)
			�   temp = SubWord(RotWord(temp)) ⊕ 

(Rcon[i/Nk] << 24);
		  else if(Nk> 6 and(i mod Nk) = = 4)
			   temp = SubWord(temp);
		  end if
		  w[i] = w[i-Nk] ⊕ temp;
	 end for
End 

From Algorithm 6.1, we can easily identify the functions necessary 
for the expanding key:

	 1.	RotWord: This function does a circular shift on 4 bytes, 
similar to the shift row function, e.g., 0, 1, 2, 3 to 1, 2, 3, 0.

	 2.	SubWord: It does a similar transformation, which is 
described in the SubByte operation. It utilizes the S-box table 
to substitute a byte.

	 3.	XOR with round constant (Rcon): For every round in key 
expansion, the result acquired from function 1 and function 2 
is XORed with a round constant value Rcon[i]. These values 
are shown in Table 6.8.

Table 6.8  Rounds and Their Respective Constants

Round[j ] 1 2 3 4 5 6 7 8 9 10
Rcon[j ] 01 02 04 08 10 20 40 80 1B 36
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6.7  Key Expansion Example

Let us assume that the secret key shared between two parties is aes 
128 pass key, which is 128 bits long. Therefore, Nk is 4, Nb is 4, and Nr 
is 10 for this key length. A hexadecimal representation of the key is 
shown in Figure 6.6.

This key is utilized to expand the key to Nb × (Nr + 1) bytes, which 
is 44 bytes in this example. A detailed description of the steps is pre-
sented in previous sections. In this section, we demonstrate how the 
round key for the first round, i.e., w[4, 7], can be calculated while 
w[0, 3] is given. From Figure 6.6, we get

	 w[0] = 1A91F720

	 w[1] = 5E456706

	 w[2] = A25B66DE

	 w[3] = 5F145988

W[I]
W[I – 1] 
OR TEMP

AFTER 
ROTWORD

AFTER 
SUBWORD RCON[I ]

AFTER 
XOR WITH 
RCON[I ] W[I – 4]

W[I ] = 
TEMP XOR 
W[I – 4]

4 5F145988 1459885F FACBC4CF 1000000 EACBC4CF 1A91F720 E15A33EF
5 E15A33EF 5A33EFE1 BEC3DFF8 1000000 AEC3DFF8 5E456706 BF1F54E9
6 BF1F54E9 1F54E9BF C0201E08 1000000 D0201E08 A25B66DE 1D443237
7 1D443237 4432371D 1B2394A4 1000000 0B2394A4 5F145988 42506BBF

By repeating the similar procedures, the remaining words of the 
expanded key are generated.

6.8  Encryption

In AES, a plaintext has to travel through Nr number of rounds before 
producing the cipher. Again, each round comprises four different 
operations. One operation is permutation and the other three are sub-
stitutions. They are (1) SubBytes, (2) ShiftRows, (3) MixColumns, 

1A 5E A2 5F
91 45 5B 14
F7 67 66 59
20 06 DE 88

Figure 6.6  Hex value representations of the secret key.
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and (4) AddRoundKey. All these operations are detailed previously. 
Algorithm 6.2 gives a high-level description of the encryption 
algorithm.

Algorithm 6.2: Encryption (PlainText)

Begin
	 State = plainText
	 1. KeyExpansion
	 2. AddRoundKey (State, ExpandedKey[0])
	 3. for r ← 1 to (Nr - 1)
		  a. SubBytes (State, S-box)
		  b. ShiftRows (State)
		  c. MixColumns (State)
		  d. AddRoundKey (State, ExpandedKey[r])
	 end for
	 4. SubBytes (State, S-box)
	 5. ShiftRows (State)
	 6. AddRoundKey (State, ExpandedKey[Nr])
	 Out = CipherText
End

6.9  An Encryption Example

Let us assume that the plaintext we are going to encrypt is string 2 
encrypt using the key stated in Section 6.7. To encrypt, this string is cop-
ied to the state, and hexadecimal representations are given in Figure 6.7.

The steps of various rounds with their corresponding values are 
portrayed in tabular format in Table 6.9.

6.10  Decryption

The decryption routine takes the encrypted string/state as input or 
output of the encryption routine and performs a reverse operation. 

73 6e 20 72
74 67 65 79
72 20 6e 70
69 32 63 74

Figure 6.7  Hex value representations of plaintext.
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Table 6.9  Steps of the AES Encryption

ROUND 
NUMBER

START OF A 
ROUND

AFTER 
SUBBYTES

AFTER 
SHIFTROWS

AFTER 
MIXCOLUMNS

ROUND 
KEY VALUE

ROUND 
OUTPUT

INP 736E2072
74676579
72206E70
69326374

1A5EA25F
91455B14
F7676659
2006DE88

6930822D
E5223E6D
85470829
4934BDFC

1 6930822D
E5223E6D
85470829
4934BDFC

F90413D8
D993B23C
97A03095
3B187AB0

F90413D8
93B23CD9
30A597A0
B03B187A

C75BED01
24B4D1F0
C1AA32D4
C86DAEFE

E1BF1D42
5A1F4450
3354326B
EFE937BF

26E4F043
7EAB95A0
F2FE00BF
27849941

2 26E4F043
7EAB95A0
F2FE00BF
27849941

F7698C1A
F3622AE0
89BB6308
CC5FEE83

F7698C1A
622AE0F3
630889BB
83CC5FEE

B368EE6F
15E988DF
CD1C84AD
1E1A58A1

B00F1250
253A7E2E
3B6F5D36
C32A1DA2

0367FC3F
30D3F6F1
F673D99B
DD304503

3 0367FC3F
30D3F6F1
F673D99B
DD304503

7B85B075
046642A1
428F3514
C1046E7B

7B85B075
6642A104
3514428F
7BC1046E

1202C507
93FC2B99
FAB799C6
285B20C8

858A98C8
201A644A
016E3305
90BAA705

97885DCF
B3E64FD3
FBD9AAC3
B8E187CD

4 97885DCF
B3E64FD3
FBD9AAC3
B8E187CD

88C44C8A
6D8E8466
0F35AC2E
6CF817BD

88C44C8A
8E84666D
AC2E0F35
BD6CF817

9346C59A
DDC96918
99A827B4
C02556F3

5BD14981
4B51357F
6A043732
78C26560

C8978C1B
96985C67
F3AC1086
B8E73393

5 C8978C1B
96985C67
F3AC1086
B8E73393

E88864AF
90464A85
0D91CA44
6C94C3DC

E88864AF
464A8590
CA440D91
DC6C94C3

17FDC5BC
FDBCF6FF
5EFE5C58
0C551776

99480180
68390C73
BABE89BB
74B6D3B3

8EB5C43C
9585FA8C
E440D5E3
78E3C4C5

6 8EB5C43C
9585FA8C
E440D5E3
78E3C4C5

19D51CEB
2A972D64
69090311
BC111CA6

19D51CEB
972D642A
03116909
A6BC111C

356BECA6
8F007EB8
790599F7
E83B0B3D

367E7FFF
82BBB7C4
D769E05B
B90FDC6F

03159359
0DBBC97C
AE6C79AC
5134D752

7 03159359
0DBBC97C
AE6C79AC
5134D752

7B59DCCB
D7EADD10
E450B691
D1180E00

7B59DCCB
EADD10D7
B691E450
00D1180E

658E6FB1
7581D380
E6D537AE
D11EBBDD

6A146B94
BB00B773
7F16F6AD
AFA07C13

0F9A0425
CE8164F3
99C3C103
7EBEC7CE

8 0F9A0425
CE8164F3
99C3C103
7EBEC7CE

76B8F23F
8B0C430D
EE2E787B
F3AEC68B

76B8F23F
0C430D8B
787BEE2E
8BF3AEC6

0B26A810
6D406F86
0C03D1B9
E316A973

65711A8E
2E2E99EA
0214E24F
8D2D5142

6E57B29E
436EF66C
0E1733F6
6E3BF831

9 6E57B29E
436EF66C
0E1733F6
6E3BF831

9F5B370B
1A9F4250
ABF0C342
9FE241C7

9F5B370B
9F42501A
C342ABF0
C79FE241

9BADD789
23869375
CF271729
73C87D75

F988921C
AA841DF7
2E3AD897
94B9E8AA

62254595
89028E82
E11DCFBE
E77195DF

10 62254595
89028E82
E11DCFBE
E77195DF

AA3F6E2A
A7771913
F8A48AAE
94A32A9E

AA3F6E2A
771913A7
8AAEF8A4
9E94A32A

A72FBDA1
22A6BB4C
82B860F7
08B159F3

0D10D38B
55BFA8EB
08169853
9625FAD9

Ciphertext: 0D 10 D3 8B 55 BF A8 EB 08 16 98 53 96 25 FA D9.
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The state value of each step will be the opposite of the encryption state 
value. Again, a higher-level description of the decryption algorithm is 
given in Algorithm 6.3.

Algorithm 6.3: Decryption (CipherText)

Begin
	 State = CipherText
	 1. KeyExpansion
	 2. AddRoundKey (State, ExpandedKey[0])
	 3. for r ← (Nr - 1) to 1
		  a. InverseShiftRows (State)
		  b. InverseSubBytes (State, S-box)
		  c. AddRoundKey (State, ExpandedKey[r])
		  d. InverseMixColumns (State)
	 end for
	 4. InverseSubBytes (State, S-box)
	 5. InverseShiftRows (State)
	 6. AddRoundKey (State, ExpandedKey[Nr])
	 out = PlainText
End 

6.11  Limitations

In our implementation, there is no restriction on key selection; no 
weak or semiweak key has been identified for this AES implemen-
tation. The implementation here covers only electronic code block 
(ECB) encryption mode.

6.12  Pros and Cons of AES

Actually, AES has many pros rather than noticeable cons. As AES 
was developed after DES, all known attacks on DES have been tested 
on AES, and all the test results were satisfactory. AES is more secure 
to brute-force attack than DES because of its larger key size. AES is 
not prone to statistical attacks, and it has been demonstrated that it 
is not possible with common techniques to do statistical analysis of 
ciphertext in AES. As yet, there are no differential and linear attacks 
on AES. The best part of AES is that the algorithms used in it are 
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so simple that they can be easily implemented using cheap processors 
and a minimum amount of memory.

On the other hand, AES needs more processing and more rounds 
of communication than DES, and we can hardly tell this is AES’s 
disadvantage.

6.13  Implementation

#include<iostream>
#include<vector>
#include<fstream>
#include<string>
#include<sstream>
using namespace std;

#define word unsigned int
#define byte unsigned char

class AES
{
	 vector<word> ExpandedKey;
	 int Nk,//width of key block
	 Nr,//number of round
	 Nb;//block size
	 static const byte S_Box 256];
	 static const byte Si_Box 256];
	 static const byte Rcon[30];
	 static const byte ColMixMatrix[4][4];
	 static const byte InvColMixMatrix[4][4];
	 static const byte AlogTable[256];
	 static const byte LogTable[256];
	 string cipherText;
	 byte state[4][4];

	 #ifdef _KEY_TEST_
	 fstream in;

	 #endif		

	 #ifdef _TEST_STATE_
	 fstream stest_fin;
	 #endif

	 byte Mul(byte a, byte b);
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	 void MixColumns();
	 void ShiftRows();
	 void SubBytes();
	 byte SubByte(byte oneByte);
	 word SubWord(word val);
	 word RotWord(word val);

	 void InvMixColumns();
	 void InvShiftRows();
	 byte InvSubByte(byte oneByte);
	 void InvSubBytes();

	 void AddRoundKey(int roundNo);
	 void KeyExpansion(string key);
	 string ToString();

public:
	� static enum KeySize {AES128 = 128, AES192 = 192, 

AES256 = 256};

	 AES(string key, int bitSize);
	 ~AES();
	 void Encrypt(string plainText);
	 string GetCipherText();
	 void Decrypt(string cipherText);
};

#include"AES.h"

	 byte AES::Mul(byte a, byte b)
	 {
	 if(a && b)
			�   return AlogTable[((unsigned char)

LogTable[a] + (unsigned char)
LogTable[b])%255];

	 return 0;
	 }

	 void AES::InvMixColumns()
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 //�4 rows and Nb columns to store temp mix 

col value
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	 for(int r = 0; r < 4; r ++)
	 {
	 temp[r] = �Mul(InvColMixMatrix[r][0], 

(state[0][c]) )
	 ^ �Mul(InvColMixMatrix[r]

[1],(state[1][c]))
	 ^ �Mul(InvColMixMatrix[r]

[2],(state[2][c]))
	 ^ �Mul(InvColMixMatrix[r]

[3],(state[3][c]));
	 }

	 state[0][c] = temp[0];
	 state[1][c] = temp[1];
	 state[2][c] = temp[2];
	 state[3][c] = temp[3];
	 }
	 }

	 void AES::MixColumns()
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 //�4 rows and Nb columns to store temp mix
	 //col value
	 for(int r = 0; r < 4; r ++)
	 {
	 temp[r] = �Mul(ColMixMatrix[r][0], 

(state[0][c]) )
	 ^ �Mul(ColMixMatrix[r]

[1],(state[1][c]))
	 ^ �Mul(ColMixMatrix[r]

[2],(state[2][c]))
	 ^ �Mul(ColMixMatrix[r]

[3],(state[3][c]));
	 }

	 state[0][c] = temp[0];
	 state[1][c] = temp[1];
	 state[2][c] = temp[2];
	 state[3][c] = temp[3];
	 }
	 }
	 void AES::InvShiftRows()
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	 {
	 //row is always 4
	 for(int r = 0; r < 4; r ++)
	 {
	 byte temp[4];

	 temp[0] = state[r][0];
	 temp[1] = state[r][1];
	 temp[2] = state[r][2];
	 temp[3] = state[r][3];

	 for(int c = 0; c < Nb; c ++)
	 {
	 state[r][(r+c)% Nb] = temp[c];
	 }

	 }

	 }

	 void AES::ShiftRows()
	 {
	 //row is always 4
	 for(int r = 0; r < 4; r ++)
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 temp[c] = state[r][(r+c)% Nb];
	 }
	 //temp[0] = state[r][(r+0)% Nb];
	 //temp[1] = state[r][(r+1) % Nb];
	 //temp[2] = state[r][(r+2) % Nb];
	 //temp[3] = state[r][(r+3) % Nb];

	 state[r][0] = temp[0];
	 state[r][1] = temp[1];
	 state[r][2] = temp[2];
	 state[r][3] = temp[3];
	 }

	 }

	 byte AES::InvSubByte(byte oneByte)
	 {
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	 //o�ne byte represent in hex (xy) x is row
	 //index and y is column index
	 return Si_Box[oneByte];
	 }

	 void AES::InvSubBytes()
	 {
	 for(int i = 0; i < 4; i ++)
	 {
	 for(int j = 0; j < Nb; j ++)
	 {
	� state[i][j] = InvSubByte(state[i][j]);
	 }
	 }
	 }

	 void AES::SubBytes()
	 {
	 for(int i = 0; i < 4; i ++)
	 {
	 for(int j = 0; j < Nb; j ++)
	 {
	 state[i][j] = SubByte(state[i][j]);
	 }
	 }
	 }

	 byte AES::SubByte(byte oneByte)
	 {
	 //�one byte represent in hex (xy) x is row
	 //index and y is column index
	 return S_Box[oneByte];
	 }

	 word AES::SubWord(word val)
	 {
	 byte oneByte;
	 word res = 0;
	 for(int i = 0; i< 4; i ++)
	 {
	 res = res << 8;
	 oneByte = (val >> 24) & 0xFF;
	 res = res | SubByte(oneByte);
	 val = val << 8;
	 }
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	 return res;
	 }

	 word AES::RotWord(word val)
	 {
	 word res = val << 8;
	 res = res | (val >> 24);
	 return res;
	 }

	 void AES::AddRoundKey(int roundNo)
	 {

	 for(int col = 0; col < Nb; col++)
	 {

	� word roundKeyVal = ExpandedKey 
[(roundNo*Nb)+col];

	 for(int row = 3; row > = 0; row— )
	 {

	 state[row][col] ^ = (roundKeyVal &0xFF);
	 roundKeyVal = roundKeyVal >> 8;
	 }
	 }
	 }
	 AES::~AES()
	 {
	 #ifdef _KEY_TEST_
	 if(in)
	 {
	 in.close();
	 }
	 #endif
	 #ifdef _TEST_STATE_
	 if(stest_fin)
	 stest_fin.close();
	 #endif
	 }

	 AES::AES(string key, int bitSize)
	 {
	 Nr = bitSize/32 + 6;
	 Nk = bitSize/32;
	 Nb = 4;//always 4
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	 ExpandedKey.resize(Nk*(Nr+1));

	 #ifdef _TEST_STATE_
	 stest_fin.open("128_enc_test.txt",ios::in);
	 if(!stest_fin )
	 {
	 cout << "Cannot not open" << endl;
	 exit(1);
	 }
	 #endif//_Debug_
	 #ifdef _KEY_TEST_
	 in.open("128_key_test.txt",ios::in);
	 if(!in )
	 {
	 cout << "Cannot not open" << endl;
	 exit(1);
	 }
	 #endif//_Debug_
	 KeyExpansion(key);

	 }
	 void AES::KeyExpansion(string key)
	 {
	 word temp;
	 for(int i = 0; i < Nk; i ++)
	 {
	� ExpandedKey [i] = ((unsigned char) key[4*i] 

<< 24) |
	� ((unsigned char) 

key[4*i+1] << 16) |
	� ((unsigned char) 

key[4*i+2]<<8) |
	� ((unsigned char) 

key[4*i+3]);
	 cout << hex << ExpandedKey[i] << endl;
	 }
	 for(int i = Nk; i < Nb*(Nr+1); i++)
	 {
	 temp = ExpandedKey[i-1];
	 if(i% Nk = = 0)
	 {
	� temp = SubWord(RotWord(temp)) ^ 

(Rcon[i/Nk] << 24);
	 }
	 else if(Nk >6 && i%Nk = = 4)
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	 {
	 temp = SubWord(temp);
	 }
	 ExpandedKey[i] = ExpandedKey[i-Nk] ^ temp;

	 #ifdef _KEY_TEST_
	 int x;
	 string inpHexVal;
	 std::stringstream exKeyHexVal;
	 in >> x >> inpHexVal;
	� exKeyHexVal << hex << 

ExpandedKey[i];
	� if(x == i && inpHexVal == 

exKeyHexVal.str() && 0)
	 cout << i << " : ok " << endl;
	 else
	 {
	 temp = ExpandedKey[i-1];
	 if(i% Nk = = 0)
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << dec <<i << ":not 

ok:" << endl;
	� out << "temp:" <<hex << 

temp << endl;
	� out << "rot:" <<hex << 

RotWord(temp) << endl;
	� out << "sub:" <<hex << 

SubWord(RotWord(temp)) 
<< endl;

	� out << "After xor 
Rcon:" <<hex << 
(SubWord(RotWord 
(temp))^ (Rcon[i/Nk] << 
24)) << endl;

	� out << "Rcon :" <<hex 
<< (Rcon[i/Nk] <<24) << 
endl;

	� out << "W[i-nk] :" 
<<hex << 
ExpandedKey[i-Nk] << 
endl;

	� out << "final :" <<hex 
<< ExpandedKey[i] 
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<< " and " << inpHexVal 
<<", "<<exKeyHexVal.
str() << endl <<endl << 
endl;

	 out.close();
	 }
	 else if(Nk >6 && i%Nk = = 4)
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << i << ": not ok:" 

<< endl;
	� out << "temp : " <<hex 

<< temp << endl;
	� out << "sub : " <<hex 

<< SubWord(temp) << 
endl;

	� out << "final :" <<hex 
<< ExpandedKey[i] << 
endl <<endl << endl;

	 out.close();
	 }
	 else
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << dec <<i << 

" : not ok : " << endl;
	� out << "temp : " <<hex 

<< temp << endl;
	� out << "W[i-nk] : " 

<<hex << 
ExpandedKey[i-Nk] << 
endl;

	� out << "final :" <<hex 
<< ExpandedKey[i] << 
" and " << inpHexVal 
<<", "<<exKeyHexVal.
str() << endl <<endl << 
endl;

	 }
	 }
	 #endif//_DEBUG_
	 }
	 }



116 ﻿Asif Ur Rahman et al.

	 #ifdef _DEBUG_
	 void printState()
	 {
	 ofstream out("enc_step.txt",ios::app);
	 for(int i = 0; i< 4; i ++)
	 {
	 for(int j = 0; j < Nb; j++)
	 {
	� out << hex << (int)

state[i][j] <<" ";
	 }
	 out << endl;
	 }
	 out << endl << endl;
	 }
	 #endif// _DEBUG_

	 #ifdef _TEST_STATE_
	 void testState(int round)
	 {
	 cout << round << endl;
	 for(int i = 0; i< 4; i ++)
	 {
	 int x;
	 stest_fin >> x;
	 for(int j = 0; j < Nb; j++)
	 {
	 string inpHexVal;
	 std::stringstream exKeyHexVal;
	 stest_fin >> inpHexVal;
	� exKeyHexVal << hex << (int)

state[i][j];

	� if(x = = round && inpHexVal = = 
exKeyHexVal.str())

	 cout << " ok ";
	 else
	 {
	� cout << " not ok " << 

inpHexVal << " " << 
exKeyHexVal.str() << endl;

	 }
	 }
	 cout << endl;
	 }
	 cout << endl << endl;
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	 }
	 #endif//_TEST_STATE_

	 void AES::Encrypt(string plainText)
	 {
	 if((plainText.length()% (4*Nb)) ! = 0)
	� plainText.append((4*Nb) - (plainText.

length()%(4*Nb)),'\0');
	 int count = 0;
	 while (count < (plainText.length()))
	 {
	 //copy one block into state
	 for(int c = 0; c <Nb; c++)
	 {
	 for(int r = 0; r< 4; r ++)
	� state[r][c] = 

plainText[count+(c*Nb)+r];
	 }
	 AddRoundKey(0);

	 #ifdef _DEBUG_
	 cout << "After Add round Key 0" << endl;
	 printState();
	 #endif//_DEBUG_
	 int i;
	 for(i = 1; i < Nr; i ++)
	 {

	 #ifdef _TEST_STATE_
	 cout << i << endl;
	 testState(i);
	 #endif//_TEST_STATE_
	 SubBytes();
	 #ifdef _DEBUG_
	� cout << "After Subbytes "<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_

	 ShiftRows();
	 #ifdef _DEBUG_
	� cout << "After ShifRows "<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_
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	 MixColumns();
	 #ifdef _DEBUG_
	� cout << "After MixColumns "<< 

dec<< i << endl;
	 printState();
	 #endif//_DEBUG_

	 AddRoundKey(i);
	 #ifdef _DEBUG_
	� cout << "Add round Key " << i << 

endl;
	� printState();
	 #endif//_DEBUG_
	 //exit (1);
	 }

	 SubBytes();
	 #ifdef _DEBUG_
	� cout << "Round Subbytes"<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_

	 ShiftRows();
	 #ifdef _DEBUG_
	� cout << "Round ShiftRows"<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(Nr);
	 #ifdef _DEBUG_
	� cout << "Add round Key " << i << 

endl;
	 printState();
	 #endif//_DEBUG_
	 #ifdef _TEST_STATE_
	 //testState(i);
	 printState();
	 #endif//_TEST_STATE_
	 cipherText = cipherText + ToString();
	 count+ = 4*Nb;
	 }
	 }
	 string AES::GetCipherText()
	 {
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	 return cipherText;
	 }
	 string AES::ToString()
	 {
	 string str;
	 for(int c = 0;c<Nb; c ++)
	 {
	 for(int r = 0; r< Nb; r++)
	 {
	 str.push_back(state[r][c]);
	 }
	 }
	 return str;
	 }

	 void AES::Decrypt(string cipherText)
	 {
	 if((cipherText.length()% (4*Nb)) ! = 0)
	� cipherText.append((4*Nb) - (cipherText.

length()%(4*Nb)),'\0');
	 int count = 0;
	 while (count < (cipherText.length()))
	 {
	 //copy one block into state
	 for(int c = 0; c <Nb; c++)
	 {
	 for(int r = 0; r< 4; r ++)
	� state[r][c] = 

cipherText[count+(c*Nb)+r];
	 }
	 AddRoundKey(Nr);
	 #ifdef _DEBUG_D_
	 cout << "After Add round Key 0" << endl;
	 printState();
	 #endif//_DEBUG_
	 int i;
	 for(i = Nr-1; i>0; i— )
	 {
	 #ifdef _TEST_STATE_
	 cout << i << endl;
	 testState(i);
	 #endif//_TEST_STATE_
	 InvShiftRows();
	 #ifdef _DEBUG_D_
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	� cout << "After ShiftRows "<< dec<< 
i << endl;

	 printState();
	 #endif//_DEBUG_
	 InvSubBytes();
	 #ifdef _DEBUG_D_
	� cout << "After Subbytes "<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(i);
	 #ifdef _DEBUG_D_
	� cout << "Add round Key " << i << 

endl;
	 printState();
	 #endif//_DEBUG_
	 InvMixColumns();
	 #ifdef _DEBUG_D_
	� cout << "After MixColumns "<< 

dec<< i << endl;
	 printState();
	 #endif//_DEBUG_
	 }
	 InvSubBytes();
	 #ifdef _DEBUG_D_
	� cout << "Round Subbytes"<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_
	 InvShiftRows();
	 #ifdef _DEBUG_D_
	� cout << "Round ShiftRows"<< dec<< 

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(0);
	 #ifdef _DEBUG_D_
	� cout << "Add round Key " << i << 

endl;
	 printState();
	 #endif//_DEBUG_
	 #ifdef _TEST_STATE_
	 //testState(i);
	 printState();
	 #endif//_TEST_STATE_
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	 count+ = 4*Nb;
	 }
	 }

const byte AES::LogTable[256] = {
	� 0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 

238, 223, 3,
	� 100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 

200, 248, 105, 28, 193,
	� 125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 

114, 154, 201, 9, 120,
	� 101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 

53, 147, 218, 142,
	� 150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 

241, 64, 70, 131, 56,
	� 102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 

152, 34, 136, 145, 16,
	� 126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 

84, 250, 133, 61, 186,
	� 43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 

229, 243, 115, 167, 87,
	� 175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 

213, 231, 230, 173, 232,
	� 44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 

176, 156, 169, 81, 160,
	� 127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 

45, 164, 118, 123, 183,
	� 204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 

108, 170, 85, 41, 157,
	� 151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 

207, 205, 55, 63, 91, 209,
	� 83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 

86, 242, 211, 171,
	� 68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 

38, 119, 153, 227, 165,
	� 103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 

128, 192, 247, 112, 7
};

const byte AES::AlogTable[256] =
{
	� 1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 

161, 248, 19, 53,
	� 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 

30, 34, 102, 170,
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	� 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 
112, 144, 171, 230, 49,

	� 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 
211, 110, 178, 205,

	� 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 
8, 24, 40, 120, 136,

	� 131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 
179, 206, 73, 219, 118, 154,

	� 181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 
105, 187, 214, 97, 163,

	� 254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 
174, 233, 32, 96, 160,

	� 251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 
86, 250, 21, 63, 65,

	� 195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 
116, 156, 191, 218, 117,

	� 159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 
188, 223, 122, 142, 137, 128,

	� 155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 
177, 200, 67, 197, 84,

	� 252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 
176, 203, 70, 202,

	� 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 
66, 198, 81, 243, 14,

	� 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 
148, 167, 242, 13, 23,

	� 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 
180, 199, 82, 246, 1

};

const byte AES::Si_Box 256] =

{
	� 82, 9, 106, -43, 48, 54, -91, 56, -65, 64, -93, 

-98, -127, -13, -41, -5,
	� 124, -29, 57, -126, -101, 47, -1, -121, 52, -114, 

67, 68, -60, -34, -23, -53,
	� 84, 123, -108, 50, -90, -62, 35, 61, -18, 76, -107, 

11, 66, -6, -61, 78,
	� 8, 46, -95, 102, 40, -39, 36, -78, 118, 91, -94, 

73, 109, -117, -47, 37,
	� 114, -8, -10, 100, -122, 104, -104, 22, -44, -92, 

92, -52, 93, 101, -74, -110,
	� 108, 112, 72, 80, -3, -19, -71, -38, 94, 21, 70, 

87, -89, -115, -99, -124,



123Advanced Encryption Standard

	� -112, -40, -85, 0, -116, -68, -45, 10, -9, -28, 88, 
5, -72, -77, 69, 6,

	� -48, 44, 30, -113, -54, 63, 15, 2, -63, -81, -67, 
3, 1, 19, -118, 107,

	� 58, -111, 17, 65, 79, 103, -36, -22, -105, -14, 
-49, -50, -16, -76, -26, 115,

	� -106, -84, 116, 34, -25, -83, 53, -123, -30, -7, 
55, -24, 28, 117, -33, 110,

	� 71, -15, 26, 113, 29, 41, -59, -119, 111, -73, 98, 
14, -86, 24, -66, 27,

	� -4, 86, 62, 75, -58, -46, 121, 32, -102, -37, -64, 
-2, 120, -51, 90, -12,

	� 31, -35, -88, 51, -120, 7, -57, 49, -79, 18, 16, 
89, 39, -128, -20, 95,

	� 96, 81, 127, -87, 25, -75, 74, 13, 45, -27, 122, 
-97, -109, -55, -100, -17,

	� -96, -32, 59, 77, -82, 42, -11, -80, -56, -21, -69, 
60, -125, 83, -103, 97,

	� 23, 43, 4, 126, -70, 119, -42, 38, -31, 105, 20, 
99, 85, 33, 12, 125

};

const byte AES::S_Box 256] =
{
	� 99, 124, 119, 123, -14, 107, 111, -59, 48, 1, 103, 

43, -2, -41, -85, 118,
	� -54, -126, -55, 125, -6, 89, 71, -16, -83, -44, 

-94, -81, -100, -92, 114, -64,
	� -73, -3, -109, 38, 54, 63, -9, -52, 52, -91, -27, 

-15, 113, -40, 49, 21,
	� 4, -57, 35, -61, 24, -106, 5, -102, 7, 18, -128, 

-30, -21, 39, -78, 117,
	� 9, -125, 44, 26, 27, 110, 90, -96, 82, 59, -42, 

-77, 41, -29, 47, -124,
	� 83, -47, 0, -19, 32, -4, -79, 91, 106, -53, -66, 

57, 74, 76, 88, -49,
	� -48, -17, -86, -5, 67, 77, 51, -123, 69, -7, 2, 

127, 80, 60, -97, -88,
	� 81, -93, 64, -113, -110, -99, 56, -11, -68, -74, 

-38, 33, 16, -1, -13, -46,
	� -51, 12, 19, -20, 95, -105, 68, 23, -60, -89, 126, 

61, 100, 93, 25, 115,
	� 96, -127, 79, -36, 34, 42, -112, -120, 70, -18, 

-72, 20, -34, 94, 11, -37,
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	� -32, 50, 58, 10, 73, 6, 36, 92, -62, -45, -84, 98, 
-111, -107, -28, 121,

	� -25, -56, 55, 109, -115, -43, 78, -87, 108, 86, 
-12, -22, 101, 122, -82, 8,

	� -70, 120, 37, 46, 28, -90, -76, -58, -24, -35, 116, 
31, 75, -67, -117, -118,

	� 112, 62, -75, 102, 72, 3, -10, 14, 97, 53, 87, -71, 
-122, -63, 29, -98,

	� -31, -8, -104, 17, 105, -39, -114, -108, -101, 30, 
-121, -23, -50, 85, 40, -33,

	� -116, -95, -119, 13, -65, -26, 66, 104, 65, -103, 
45, 15, -80, 84, -69, 22

};

const byte AES::Rcon[30] =
{
	 0,1, 2, 4, 8, 16, 32,
	 64, -128, 27, 54, 108, -40,
	 -85, 77, -102, 47, 94, -68,
	 99, -58, -105, 53, 106, -44,
	 -77, 125, -6, -17, -59
};

const byte AES::ColMixMatrix[4][4] =
	 {
	 2, 3,1, 1,
	 1, 2, 3, 1,
	 1, 1, 2, 3,
	 3, 1, 1, 2
	 };

const byte AES::InvColMixMatrix[4][4] =
	 {
	 0x0E, 0x0B,0x0D, 0x09,
	 0x09, 0x0E, 0x0B, 0x0D,
	 0x0D, 0x09, 0x0E, 0x0B,
	 0x0b, 0x0D, 0x09, 0x0E
	 };

#include "AES.h"

int main(void)
{
	 //////////////////////
	 ///Keys test vector
	 //////////////////////
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	 //128
	 //�char a[] = {0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0

xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0
x3c,'\0'};

	� char a[] = {0x1a,0x91,0xf7,0x20,0x5e,0x45,0x67,0
x06,0xa2,0x5b,0x66,0xde,0x5f,0x14,0x59
,0x88,'\0'};

	 //192
	 //�char a[] = {0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0

x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62
,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b,'\0'};

	 //256
	 //�char a[] = {0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0

xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f
,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x
10,0xa3,0x09,0x14,0xdf,0xf4,'\0'};

	 /////////////////////
	 //Plain Text test vector
	 ////////////////////
	 //�char b[] = {0x32,0x43,0xf6,0xa8,0x88,0x5a,0x30,0

x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,0x07
,0x34,'\0'};

	 //�73, 74, 72. 69, 6e, 67, 20. 32, 20, 65, 
6e,6372797074

	� char b[] = {0x73, 0x74, 0x72,0x69, 0x6e, 0x67, 
0x20, 0x32, 0x20, 0x65, 0x6e, 0x63, 0x72, 0x79, 
0x70, 0x74};

	 string key;

	 string text;

	 for(int i = 0; i < 16;i++)

	 {

	 key.push_back(a[i]);

	 text.push_back(b[i]);

	 }
	 AES obj (key, AES::KeySize::AES128);

	 //obj.KeyExpansion(key);

	 obj.Encrypt(text);

	 obj.Decrypt(obj.GetCipherText());

	 return 0;

}
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6.14  Conclusion

AES was chosen as the new standard for several reasons. The purpose 
was to create a new algorithm that is resistant to known attacks and 
more reliable, as well as faster and simpler, than the existing ones, 
while also being implemented easily with hardware and software, 
including restricted environments. It is very clear that AES has 
satisfied all the conditions with its simple and easy implementation 
without compromising the security aspect. AES is more versatile, 
with its variable key size and block size. It was originally designed 
for nonclassified U.S. government information, but due to its suc-
cess, AES-256 is usable for top secret government information. As of 
today, no successful attack on AES has been detected. This reflects 
how successful AES is in its categories.
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In the very early era of cryptography, multiple parties involved in secret 
message exchange had to depend on a secret key that they interchanged 
among themselves through a trusted, but noncryptographic method. 
Generally, simple methods like one-to-one communication through a 
reliable carrier were exercised to exchange any secret key. They kept 
this key absolutely secret among themselves. Later, this secret key 
would be utilized to encrypt their desired messages. Since only the 
parties involved in the communication had the secret key, they could 
only decrypt any message exchanged between them. One of the major 
limitations of this technique was the methods exercised to exchange 
a secret key. Commonly, some impractical and unsafe methods, like 
face-to-face meeting or trusted courier service, were employed before 
the modern era. Although currently the key is exchanged through an 
existing encryption channel, the security depends on the confiden-
tiality of the previous key exchange. Asymmetric key, also known 
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as public-key cryptography, resolves this issue by not disclosing the 
secret key to anyone. The users can now communicate and exchange 
messages securely over a public channel without having to agree upon 
any shared key beforehand.

For the last 20 years, Whitfield Diffie, Martin Hellman, and 
Ralph Merkle have been given credit as the cryptographers who 
discovered the technique of public-key cryptography, while Ron 
Rivest, Adi Shamir, and Leonard Adleman have been honored for 
developing RSA, the most integrated implementation of public-
key cryptography. However, a recent announcement indicates that 
the history of cryptography has to be rewritten. According to the 
British government, public-key cryptography was originally invented 
at the Government Communications Headquarters (GCHQ ) in 
Cheltenham. It was in the late 1960s that a senior member of the 
military did some work in the field of nonsecret encryption, which is 
related to public-key cryptography without the inclusion of the con-
cept of digital signature. There are some evidentiary artifacts avail-
able that could support these claims.

In 1969, James Ellis, one of Britain’s foremost government cryp-
tographers, started searching for a way to resolve the key distribu-
tion problem. Later, the method explored by Ellis was unlike those 
of Diffie, Hellman, and Merkle in that it was extremely advanced. 
However, the discovery of Ellis was sworn to secrecy as he was a 
recruit of the British government. He conceptualized and developed 
the theme of separate public-key and private-key use. Meanwhile, he 
realized that he had to look for a special one-way function that could 
be reversed if the receiver end had access to some pieces of special 
information. Unfortunately, he failed to draw any conclusion to the 
work. In 1973, Clifford Cocks discovered the first workable math-
ematical formula for nonsecret encryption, and he recorded it in a 
secret British Communications-Electronics Security Group (CESG) 
report titled A Note on Non-Secret Encryption. Afterward, in 1974, a 
few months after Clifford’s discovery, Malcolm Williamson discov-
ered a key exchange method similar to the one discovered by Diffie, 
Hellman, and Merkle. However, the work of James Ellis, Clifford 
Cocks, and Malcolm Williamson was not patented for two reasons: 
(1) patenting would mean forcing GCHQ to reveal the details of 
their work, which would have been incompatible with GCHQ’s aims 
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as an organization, and (2) in the early 1970s, it was far from the 
imagination that mathematical algorithms could be patented.

In 1976, it was evident that Diffie and Hellman patented their 
work on public-key cryptography. At that time, Williamson was 
eager to go public and stop Diffie and Hellman’s application for 
patent. He was stopped from doing so by his superiors, who did not 
have much foresight regarding the digital revolution and the future 
potential scope of public-key cryptography. In the beginning of the 
1980s, Williamson’s superiors realized that their decision was wrong. 
Development in computing and Internet technology made it clear 
that RSA and Diffie–Hellman–Merkle key exchanges would both 
be successful commercial products. Therefore, in 1996, RSA Data 
Security, Inc. (the company responsible for RSA products) was sold for 
$200 million. Finally, in 1997, it became known to the public that an 
asymmetric key algorithm was secretly developed by James H. Ellis, 
Clifford Cocks, and Malcolm Williamson at the GCHQ in the UK 
in 1973. Several years later, Ellis, Cocks, and Williamson received the 
acknowledgment they deserved for their invention.

The motivation of the asymmetric key cryptosystem developed 
by Diffie and Hellman came from work on public-key distribu-
tion by  Merkle. A few years later, Rivest, Shamir, and Adleman 
from MIT independently invented an asymmetric key algorithm 
commonly known as RSA. They utilize modular arithmetic and 
two very large prime numbers for encryption and digital signature. 
Security of the RSA is related to the difficulty of factoring those 
large prime numbers, for which currently there is no known efficient 
method. In the mid-1980s, Neal Koblitz and Victor Miller introduced 
a new public-key algorithm based on a discrete algorithm problem 
known as the elliptic curve algorithm. Although it utilizes smaller 
keys for faster operations, it assures estimated security approximately 
analogous to RSA.

7.1  Basic Concept

As mentioned above, one of the major problems of a secret key (also 
known as symmetric key) algorithm is the secure key distribution 
between the two parties, which encouraged people to search for an 
alternative. The asymmetric key algorithm is a solution that utilizes 
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two separate keys, where one key is kept secret from the external 
world, which is referred to as the private key, and another one is pub-
licized, referred to as the public key. These keys are constructed in 
such a way that they conceive mathematical relationships and build 
on employing integer factorization, discrete logarithm, and elliptic 
curve algebraic structures. There are a couple of aspects that need to 
be considered while employing such a cryptographic algorithm:

	 1.	Generating a key pair must be computationally easy and 
inexpensive.

	 2.	Encryption and decryption using these keys also must be easy 
and inexpensive.

	 3.	It must be computationally infeasible to unlock a key while 
knowing the other key.

	 4.	Encryption and decryption of a message need not be possible 
employing the identical key.

7.2  Applications of Asymmetric Key Algorithms

Asymmetric key algorithms can be used for encryption/decryption, 
digital signature, or both. They are described in the following sections 
in detail.

7.2.1  Encryption/Decryption

In the case of encrypting a message, the public key of the recipient 
is utilized to encrypt a message, which is not possible to decrypt by 
anyone who does not own the corresponding private key. In other 
words, the sending party uses the public key of the desired receiver to 
encrypt a message to be sent. That message can only be decrypted by 
the desired receiver, who holds the corresponding private key. Thus, it 
preserves the confidentiality of a message. An example of the encryp-
tion technique utilizing asymmetric key algorithms is illustrated in 
Figure 7.1. Let us assume that Alice and Bob are the two parties who 
previously decided to exchange their messages securely through non-
secure communication media, like the Internet. They come to consent 
for using an asymmetric key algorithm. Therefore, both of them gen-
erate a pair of keys for each. One of them is kept secret and another 
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one is exchanged between them. After receiving the public key of the 
other party, one stores it in his or her public-key ring. If Bob wants to 
send a secret message to Alice, he must encrypt the message utilizing 
Alice’s public key. On the other hand, after receiving this message 
from Bob, Alice employs her private key to decrypt. Similar proce-
dures are also followed to exchange messages from Alice to Bob.

7.2.2  Digital Signature

In many cases, along with the confidentiality of a message, it is also 
necessary to verify the identity of the sender. This could be performed 
through a digital signature, which is an electronic signature gener-
ated through a mathematical scheme. There are three main reasons 
for applying a digital signature:

	 1.	Authentication: Digital signatures are used to validate the 
source of a message. A receiver can make sure that the mes-
sage has been sent from the valid user.

	 2.	Nonrepudiation: A sender cannot deny the transmission of a 
message if it is digitally signed.

	 3.	Integrity: It also preserves the integrity of a message by not 
allowing it to alter in transit.

Asymmetric key algorithms also can be utilized to sign a message 
digitally. A sender’s private key is utilized to sign a message, which 
can then be verified by the receiver who has access to the sender’s 
public key. If the message is decrypted successfully, it proves that the 

Encryption/Decryption
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Alice’s public key Alice’s private key
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Encryption Algorithm
e.g., RSA

Decryption Algorithm
e.g., RSA

Alice

Figure 7.1  Encryption/decryption technique using asymmetric key algorithm.
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sender had proper access to the private key, which is likely to be the 
authenticated person associated with the public key. It also verifies 
that the message has not been altered, as a change in the encrypted 
message would result in a change in the message digest. Recalling the 
previous example, if Bob wants to digitally sign the message, he must 
employ his private key to encrypt that message. After receiving that 
message, if Alice can decrypt the message using Bob’s public key, she 
can be assured that the message was transmitted by a legitimate party. 
This scenario is illustrated in Figure 7.2.

7.2.3  Encryption and Digital Signature

A message can be both encrypted and digitally signed at the same 
time by encrypting it twice with different keys and decrypting with 
their relevant keys. As mentioned in the previous sections, if two par-
ties desire to exchange encrypted messages among themselves, the 
sender must encrypt a message with the public key of the receiver. 
Again, for digitally signing a message, the sender must encrypt the 
message with his or her private key. Therefore, whenever a sender 
wants both, he or she must encrypt a message with his or her private 
key (for digital signature), and then again encrypt that message using 
the receiver’s private key (for encryption). It this case, the sequence of 
encryptions needs to be maintained precisely to achieve the plaintext. 
On the other hand, after receiving this message, it must be decrypted 
using two relevant keys following the encryption sequence. If the 
plaintext is possible to acquire after the decryption, a receiver can 
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Figure 7.2  Digital signature using asymmetric key algorithm.
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presume that the packet was received from a valid sender and the 
message is without any alteration. An example of such a technique is 
given in Figure 7.3.

A summary of the above discussions is given in Table 7.1.
In the next two chapters, renowned algorithms—RSA and elliptic 

curve cryptography—will be discussed in detail with their relative 
operational methods and implementation.

Key Exchange Using
Asymmetric Key Algorithm

Secret key

Recipient’s private key

Recipient’s public key

Encrypted secret key

Encrypted secret keySecret key

Key transmitted

Figure 7.3  Encryption/decryption and digital signature using asymmetric key algorithm.

Table 7.1  Application of Asymmetric Key Algorithms

ENCRYPTION TECHNIQUE
ENCRYPTION/
DECRYPTION

DIGITAL 
SIGNATURE BOTH

Encrypting using receiver’s public key Yes No No
Encrypting using sender’s private key No Yes No
Encrypting using sender’s private key 

and receiver’s public key
Yes Yes Yes
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In mid-1977, 1 year after the introduction of public-key cryptography 
by Diffie and Hellman, three young scientists of the Massachusetts 
Institute of Technology (MIT) took the concept of public-key cryptog-
raphy and developed an algorithm that is known as the RSA algorithm. 
It is named after the surnames of the three inventors, Ron Rivest, 
Adi Shamir, and Leonard Adleman. In RSA, a pair of keys is generated 
where one key is revealed to the external world, known as a public key, 
and the other one is kept secret to the user, known as a private key. For 
generating keys, the RSA algorithm utilizes a number theory concept 
that is commonly known as the one-way function. A one-way function 
is easy to do in one way, but it is very difficult to reverse. Consequently, 
it is infeasible to derive the private key after knowing the public key of 
a user. Thus, the secrecy of a message remains intact.
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8.1  The Concept

Unlike symmetric key cryptography, it is not mandatory to share 
any secret key among the parties involved in the secret message 
exchange. Then the question that may arise in our mind is: How does 
an asymmetric key ensure secrecy of a message? As mentioned previ-
ously, in asymmetric key cryptography, instead of generating a single 
key (which is usually the case for symmetric key cryptography), it 
generates a pair of keys. Among them, the public key is publicized 
and the private key is kept secret. These two keys are mathematically 
related. Since these keys are generated utilizing a one-way function, 
it is infeasible to generate a private key after knowing the public 
key, and vice versa. Again, a message encrypted through a key is not 
feasible to decrypt utilizing a similar key. Hence, the secrecy of a 
message is preserved.

Let us assume that Alice and Bob desire to exchange secret messages 
between themselves using asymmetric key cryptography, especially 
using the RSA algorithm. They first generate their relevant key sets 
and publicize the public key so that the other party can access it. The 
denotations of their public and private keys are PUA and PRA for Alice, 
and PUB and PRB for Bob. Each of the participants keeps his or her 
private key secret from the other. When Alice wants to send a message 
to Bob, she encrypts the message using PUB, which she can access. For 
any message, M, Alice generates a ciphertext, C, as follows:

	 C = PUB (M)

After receiving C, Bob can decrypt the message employing his 
private key, PRB. This can be formally expressed as

	 M = PRB (C)

Figure 8.1 portrays the steps that can be followed to exchange 
secret messages using the RSA algorithm. Any third party who 
intercepts C is not able to reproduce M even though it has access 
to PUB because:

•	 In asymmetric key cryptography, it is infeasible to generate 
one key when you have access to the other key.

•	 A message that is encrypted through a key is not possible to 
decrypt utilizing a similar key.
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•	 The public and private keys for any participant are a matched 
pair and are inverses of each other, i.e.,

	 M = PRB(PUB(M))

	 M = PUB(PRB(M))

Consequently, a message that is encrypted using the public key can 
only be decrypted with its relevant private key.

The RSA algorithm can also be utilized to digitally sign a mes-
sage so that the recipient has proof of who sent it. In other words, the 
authenticity of a message can also be checked employing the RSA 
algorithm. In the case of a digital signature, a message is encrypted 
using the private key and is decrypted using the relevant public key. 
Since only a valid sender can have his or her private key, a recipient 
can assume that the message is sent by the valid sender, which is illus-
trated in Figure 8.2.

8.2  Operations

The RSA algorithm comprises three steps:

	 1.	Key generation
	 2.	Encryption
	 3.	Decryption

The operations involved in these steps are detailed below.

PUB PRBM 

Encryption

M 

Alice Bob 

Decryption
C = PUB(M)

C
Eavesdropper

Figure 8.1  Secret message exchange procedure using the RSA algorithm.

PRA PUAM 

Encryption

M 

Alice Bob 

Decryption
C = PRA(M)

C
Eavesdropper

Figure 8.2  Digital signature using the RSA algorithm.
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8.2.1  Key Generation

As mentioned earlier, the RSA algorithm generates a pair of keys. 
These keys are usually generated employing two large prime numbers 
(512 bits). The key generation algorithm is stated below:

	 1.	Select two large prime numbers p and q randomly, such that 
p ≠ q.

	 2.	Compute n such that n = p × q.
	 3.	Compute φ(n) = φ(p) × φ(q) = (p − 1) × (q − 1), where φ is 

Euler’s totient function.*
	 4.	Select an integer number e such that 1 < e < φ(n) and 

gcd(e, φ(n)) = 1, where e and φ(n) are co-prime.
	 5.	Compute d as the multiplicative inverse of e(mod(φ(n)), i.e., 

de = 1  mod  φ(n).
	 6.	Publish the pair PU = (e, n) as the participant’s public key.
	 7.	Keep the pair PE = (d, n) as secret as the participant’s private key.

Relevant pseudocodes for the key generation procedure are dis-
cussed below in Algorithms 8.1, 8.2, and 8.3.

Algorithm 8.1: FindE(phi_n)

Begin
	 e ← 0
do
begin
	 Choose an integer number e (e must be co-prime of 
phi_n)
while (!CheckCoPrime(phi_n, e))
end do-while
return e
End

*	 In number theory, Euler’s totient function, φ(n), is an arithmetic function that finds 
out all the co-prime numbers to n that are less than or equal to n.
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Algorithm 8.2: FindD(phi_n, e)

Begin
local variables:a, b, x, y, u, v, m, n, q, r, gcd
a ←phi_n
	 b ←e
	 x ← 0
	 y ← 1
	 u← 1
	 v ← 0
gcd← b
 while (a ! = 0)
	 begin
	 q ←gcd/a
	 r ←gcd% a
	 m ← x - u * q
	 n ← y - v * q
	 gcd← a
	 a ← r
	 x ← u
	 y ← v
	 u ← m
	 v ← n
	 end while
if y < 1
	 begin
	 y ←phi_n + y
end if
return y
End

Algorithm 8.3: GenerateKey(&n, &e, &d)

Begin
local variables:p, q, phi_n, pt, ct
	 Enter two prime numbers and stored then in p and q 
respectively
	 n ← Multiply(p,q)
phi_n← Multiply (p-1,q-1)
	 e ←FindE(phi_n)
	 d ←FindD(phi_n, e)
/* (e,n) pair is now the public key and (d,n) pair is 
now the private key */
End
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8.2.2  Encryption

Anyone who wants to send a message can now utilize the public key, 
(e, n). Recall the previous example, when Alice desires to send a mes-
sage to Bob; she can now encrypt the message M as follows:

	 C = Me (mod n)

Alice sends the ciphertext, C, to Bob.

8.2.3  Decryption

After receiving C from Alice, Bob can now decrypt the message utilizing 
the relative private key. He can find out M using the following expression:

	 M = Cd (mod n)
Since no one else has the private key of Bob, anyone other than him 
would not be able to decrypt the message.

Example

Let us look at the following small example to realize how the 
RSA algorithm works. Suppose Alice desires to send a message to 
Bob, who generates his keys as follows:

	 1.	Bob chooses two prime numbers, p = 17 and q = 13.
	 2.	Then he calculates n such that n = p × q = 17 × 13 = 221.
	 3.	The value of φ(n) is computed as φ(n) = 16 × 12 = 192.
	 4.	He selects e = 131.
	 5.	Bob finds the number d = 107.
	 6.	Now Bob’s public key is (131, 221) and his private key is 

(107, 221).

After key generation, Bob publishes his private key and Alice 
has access to that public key. Let us assume that Alice wants to 
encrypt the following message, M = 8. Alice can utilize Bob’s 
public key to produce C, i.e.,

	 C = 8131 (mod 221) = 70

Bob receives the ciphertext 70 and utilizes his private key to 
reproduce M as follows.

	 M = 70107 (mod 221) = 8

Other than Bob, since no one has the private key, no one would be 
able to decrypt the message.
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8.3  Applications of the RSA Algorithm

Although the RSA algorithm is developed to encrypt/decrypt a 
message, it is very slow in terms of processing speed. It requires 
a  longer time than usual cryptographic algorithms due to gener-
ating large prime numbers and performing all the calculations. 
Moreover, each encryption session usually requires generation of 
different sets of prime numbers and calculations to prevent the mes-
sage from being eavesdropped. This is why it is preferred when the 
message is short. Consequently, it is widely used in Short Message 
Service (SMS). The RSA algorithm is also utilized to exchange 
secret keys and to sign a message digitally. It can also be utilized 
to encrypt a longer message if that is fragmented into small blocks 
and merged after encryption. The receiver must have the knowledge 
regarding the fragmentation procedure. He or she  could do the 
opposite and merge after the decryption to produce the original 
message.

In Chapter 9, another asymmetric key cryptography technique 
is discussed, elliptic curve cryptography (ECC), which resolves the 
problem of the RSA algorithm by utilizing a shorter key than RSA 
and offering comparable performance.

8.4  Implementation Code

#include<iostream>
#include<cmath>
#include<cstdlib>
#include<cstring>

using namespace std;

boolCheckIsPrime(long intnum)
{
if(num< 2) return false;

longinti = 2;
while(i< = num/2)
	 {
if(!(num% i)) return false;
i++;
	 }
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return true;
}
longint Multiply(long int num1,long int num2)
{
return num1 * num2;
}

boolCheckCoPrime (long int num1, long int num2) {
longint lowest;

if (num1 > num2) lowest = num2;
else lowest = num1;

longinti = 2;

boolcoprime = true;

while (i< lowest) {
if (!(num1% i) && !(num2% i)) coprime = false;
i++;
	 }

returncoprime;
}

longintFindE(long intphi_n)
{
longint e = 0;

do {
cout<< “Choose an integer number e (e must be coprime 
of phi_n): “;
cin>> e;
	 } while (!CheckCoPrime(phi_n, e));

return e;
}

longintFindD(long intphi_n, long int e)
{
int a = phi_n, b = e;
longint x = 0, y = 1, u = 1, v = 0, m, n, q, r;
longintgcd = b;
while (a ! = 0) {
	 q = gcd/a;
	 r = gcd% a;
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	 m = x - u * q;
	 n = y - v * q;
gcd = a;
	 a = r;
	 x = u;
	 y = v;
	 u = m;
	 v = n;
}

if (y < 1) {
cout<< “Choose a suitable \”e\” value” <<endl;
	 e = FindE(phi_n);
FindD(phi_n, e);
}

return y;
}

longintEncrypt_Decrypt(long int t, long int e, long 
int n)
{
longint rem;
longint x = 1;

while (e ! = 0) {
rem = e % 2;
	 e = e/2;

if (rem = = 1) x = (x * t)% n;
	 t = (t * t)% n;
}

return x;
}

voidEncDecStr (long int e, long int n)
{
char *str = new char[1000];
char *str1 = new char[1000];

cout<< “\nEnter a string: “;
cin>>str;

cout<< “Encrypting using Public Key: “ <<endl;
inti = 0;
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while (i ! = strlen(str)) {
	 str1[i] = Encrypt_Decrypt(str[i], e, n);
	 i++;
}

cout<< str1 <<endl;
}

voidEncDecNum (long int n1, long int n2)
{
longintpn;

cout<< “\nEnter an integer number: “;
cin>>pn;

cout<<Encrypt_Decrypt(pn, n1, n2) <<endl;
}

voidgenerate_key (long int&n, long int&e, long int&d)
{
longint p, q, phi_n, pt, ct;

do {
	 cout<< “Enter a prime number: “;
	 cin>> p;
	 } while (!CheckIsPrime(p));

do {
	 cout<< “Enter another prime number: “;
	 cin>> q;
	 } while (!CheckIsPrime(q));

	 n = Multiply(p,q);
cout<< “n is “ << n <<endl;

	 phi_n = Multiply (p-1,q-1);
cout<< “phi_n is “ <<phi_n<<endl;

	 e = FindE(phi_n);
cout<< “e is “ << e <<endl;
if (!e) {
	 cout<< “Choose two suitable prime number” 
<<endl;
	 exit(1);
	 }
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	 d = FindD(phi_n, e);
cout<< “d is “ << d <<endl;
}

int main() {

cout<<endl<<endl<< “##IMPLEMENTATION OF R.S.A 
ALGORITHM USING C++##” <<endl<<endl;

longint n, d = 0, e;

generate_key(n, d, e);

cout<< “Public Key : (“<<e<<”,”<<n<<”)” <<endl;
cout<< “Private Key : (“<<d<<”,”<<n<<”)” <<endl;

cout<<endl<< “Press 1: for encrypting numbers & 2: for 
encrypting string: “;
int choice;
cin>> choice;

switch (choice) {
	 case 1:
	 EncDecNum(e, n);
	 break;

	 case 2:
	 EncDecStr(e, n);
	 break;

	 default:
	 cout<< “Wrong choice. Try again.” <<endl;
	 exit(1);
}

cout<<endl<< “Press 1: for decrypting numbers & 2: for 
decrypting string: ”;
cin>> choice;

switch (choice) {
	 case 1:
	 EncDecNum(d, n);
	 break;
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	 case 2:
	 EncDecStr(d, n);
	 break;

	 default:
	 cout<< “Wrong choice. Try again.” <<endl;
	 exit(1);
	 }

return 0;
}



147

9
Elliptic Curve 
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9.1  Introduction

Although the RSA algorithm resolves the problem of a secret key, 
it experiences higher computational cost because of utilizing a lon-
ger key size, so that it becomes computationally infeasible to solve. 
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On the other hand, elliptic curve cryptography (ECC) is another 
approach of an asymmetric algorithm that utilizes a smaller key 
size, but still ensures the same level of security. ECC is based on the 
elliptic curve discrete log problem, which is much harder to solve 
over factoring integers of the RSA algorithm. Since it is harder, even 
a smaller key is computationally infeasible to solve. According to 
National Institute of Standards and Technology (NIST) guidelines 
for public key sizes for the Advanced Encryption Standard (AES), 
an ECC key size of 163 bits can ensure comparable performance of 
1024 bits of key size of the RSA algorithm, which is around six times 
higher than that of the ECC key size [1]. The ratio is even bigger for 
a higher number of bits.

The elliptic curve system was first introduced to the cryptographic 
arena by Neal Koblitz and Victor Miller, who worked at IBM [1]. 
Generally, parties involved in the secure message exchange must 
generate a private key and a public key by utilizing the points of an 
elliptic curve and by following an algorithm. A private key is kept 
secret, whereas a public key is publicized to the external world. Like 
the RSA algorithm, the confidentiality of a message is ensured by 
encrypting a message using the public key of the receiver, which 
can only be decrypted by using the relative private key. A message 
can also be digitally signed by encrypting it using the private key of 
the sender. It can be decrypted by anyone who holds the public key 
of the sender. For understanding the ECC algorithm, Section 9.2 
describes the details of an elliptic curve for a real number (R) as well 
as for a finite field (ZR), and all the operations involved in encryption 
and decryption.

9.2  Elliptic Curves over R

An elliptic curve over the real numbers is the set of points (x, y) that 
satisfy the following equation:

	 y2 = x3 + ax + b	 (9.1)

where x, y, a, and b are all real numbers. Equation (9.1) is said to be 
cubic or degree 3 since the highest exponent that exists in this equa-
tion is 3. Elliptic curves in the form of Equation (9.1) can be divided 
into two groups: singular and nonsingular [2]. In ECC, nonsingular 
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curves are preferred so that a curve can be free from cusps or self-
intersections. An elliptic curve is said to be nonsingular when it 
satisfies the following condition:

	 4a3 + 27b2 ≠ 0	 (9.2)

An elliptic curve generated using Equation (9.1) is illustrated in 
Figure 9.1.

Although an elliptic curve over the real numbers is a good approach 
to understand the properties of an elliptic curve, it requires higher 
computational time to perform various operations and is sometimes 
inaccurate due to the rounding errors. However, cryptographic 
schemes require fast and precise arithmetic. Consequently, two types 
of elliptic curves are utilized in cryptographic applications:

	 1.	Prime curves over a ZP, where p is a prime number and p > 3. 
All the variables and the coefficients are taken from a set of 
integers from 0 to p – 1, and calculations are performed over 
modulo p.

	 2.	Binary curve over Galois field (2m), also known as GF(2m), 
where all the variables and coefficients are taken on the values 
in GF(2n) and calculations are performed over GF(2n).

Since prime curves do not have any extended bit fiddling opera-
tion [3] analogous to the binary curve, they are suitable for software 
implementations. Consequently, prime curve-based ECC is explained 
in this chapter with its pseudocodes, examples, and implementations.

32

(P + Q)
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Figure 9.1  An example of an elliptic curve where a = b = 1.
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9.3  Elliptic Curves over ZP

An elliptic curve over finite field ZP includes all points (x, y) in the 
ZP × ZP matrix that satisfies the following elliptic curve equation:

	 y2 ≡ x3 + ax + b mod p	 (9.3)

where x and y are numbers in ZP, and similar to the real case, a 
and b must satisfy the following condition to form a finite abelian 
group [3]:

	 4a3 + 27b2 ≢ 0 mod p	 (9.4)

Just to clarify here, in abstract algebra, an abelian group, also called 
a commutative group, is a group in which the result of applying the 
group operation to two group elements does not depend on their order 
(the axiom of commutativity).

Now, Equation (9.3) can be written as

	 y2 mod p = (x3 + ax + b) mod p	 (9.5)

By replacing x, y, a, b, and p with the values 5, 1, 1, 0, and 23, we get

52 mod 23 = (13 + 1 × 1 + 0) mod 23

	 25 mod 23 = 2 mod 23

	 2 = 2

Hence, (1, 5) is a point on the curve over Z23. A similar procedure 
can be followed to find all the points of the curve. An algorithm for 
generating all the points of a prime curve is given below:

Algorithm 9.1: Calculate Points (PrimeNumber)

Begin
	 a ← 1
	 b ← 0
	 for x ← 0 to PrimeNumber
		  for y ← 0 to PrimeNumber
			   k ← y * y
			   m ← (x * x * x) + a * x + b
			   if (k% PrimeNumber = m% PrimeNumber)
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				    store point (x, y) in a 
container
				    end if
		  end for
	 end for
End

Using Algorithm 9.1, for a = 1, b = 0, and p = 23, the following points 
can be found:

x 0 1 1 9 9 11 11 13 13 15 15 16 16 17 17 18 18 19 19 20 20 21 21
y 0 5 18 5 18 10 13 5 18 3 20 8 15 10 13 10 13 1 22 4 19 6 17

Figure  9.2 plots all the points of the above-mentioned curve. 
As can be observed from the figure, the points do not form an elliptic 
curve; rather, they form a cloud of points in a finite field. This group 
also has another point that is known as the point at infinity, denoted 
as O, which is the identity element under an addition operation over 
points discussed in the next section. The negative of the point at infin-
ity can be defined as –O = O, and the negative of any other point 
P  =  (xP, yP) on elliptic curve E to be its reflection over the x-axis, 
i.e., –P = (xP, –yP mod p).
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Figure 9.2  The elliptic curve for a = 1, b = 0, and P = 23.
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Various arithmetic operations over points that are necessary to 
understand the ECC algorithm in detail are discussed below with 
relevant examples.

9.3.1  Adding Points in Elliptic Curves over ZP

Addition operations on an elliptic curve can be divided into three cases:

	 1.	Adding two distinct points P and Q, when P ≠ Q: If P = (xP, yP) 
and Q = (xQ, yQ), then R = P + Q can be determined utilizing the 
following rules:

	 xR ≡ (S2 − xP − xQ) mod p, and	 (9.6)

	 yR ≡ −yP + S(xP − xR) mod p	 (9.7)

	 where S ≡ (yP − yQ) (xP − xQ)−1 mod p. Let us assume that 
P  =  (1, 5) and Q = (9, 18) are the points of Figure 9.2 we 
would like to add. Then,

	

= −
−

= −
−

=

=

s (5 18)
(1 9)

mod 23

13
8

mod 23

13
8

mod 23

16

	 Now, utilizing the value of s, we can have xR and yR as follows:

	 xR  = (162 − 1 − 9)mod 23
	 = 246 mod 23
	 = 16
	 yR = (−5 + 16(1−16))mod 23
	 = −245 mod 23
	 = 8

	 Hence, R = (16, 8). The necessary algorithms to understand the 
addition of two distinct points over an elliptic curve are given 



153Elliptic Curve Cryptography

below. In this process, Algorithm 9.2 demonstrates how the 
greatest common divisor (GCD) of two numbers can be found.

Algorithm 9.2: EGCD(a, b, & u, & v))//
Extended GCD Gives g = a*u + b*v

Begin
u ← 1, v ← 0, g ← a, u1 ← 0, v1 ← 1, g1 = b
while (g1 ! = 0)
	 q ←floor(g/g1)
	 t1 ← u - q*u1;
	 t2 ← v - q*v1;
	 t3 ← g - q*g1;
	 u ← u1
	 v ← v1
	 g ← g1
	 u1 ← t1
	 v1 ← t2
	 g1 ← t3;
end while
return g
End

	 Steps for calculating the inverse modulus are given in 
Algorithm 9.3.

Algorithm 9.3: InverseModulus(a, n)//Solve Linear 
Congruence Equation x*z = = 1 (mod n) for z

Begin
Local Variable: u, v, g, x
x ← x% n
	 g ← EGCD(x, n, u, v)//describe in Algorithm 2
if (g ! = 1)
	 z ← 0
else
	 z ← u% n
	 end if
return z
End

	 Algorithm 9.4 demonstrates how to perform negative modulus 
operations.
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Algorithm 9.4: NegativeModulus(a, p)

Begin
	 b ← a * −1;
	 n ← ceiling((float)b/p)
return (n * p) - b
End

	 Algorithm 9.5 illustrates the steps to add two distinct points 
over an elliptic curve.

Algorithm 9.5: AddPoints(xp, yp, xq, yq, & xr, & yr, p)

Begin
n ← yp - yq
d ← xp - xq
if (d < 0)
	 n * = -1;
	 d * = -1;
end if
	 x ← InverseModulus(d, p)//describe in Algorithm 3
if (n * x > 0) s = (n * x)% p;
elses = NegativeModulus(n * x, p)//describe in 
Algorithm 4
end if
	 xr_ ← (s * s - xp - xq)
if (xr_ < 0) xr ← NegativeModulus(xr_, p)
else xr ← xr_% p
	 end if
	 yr_ ← (-yp + s * (xp - xr));
if (yr_ < 0)yr ← NegativeModulus(yr_, p);
else yr = yr_% p;
End

	 2.	Adding the points P and –P: The addition of the points 
P and –P poses a unique situation since the line through the 
two points is vertical, which will never intersect the elliptic 
curve at any point. So, it can be defined as P + (–P) = O, the 
point of infinity.
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	 3.	Adding a point with the point at infinity: When a point 
is added to the point of infinity, it produces the same point, 
e.g., P + O = P.

9.3.2  Scalar Multiplication

Scalar multiplication of k × P is a repetitive addition of a point 
P = (xP, yP), until it reaches k, where k > 0. For instance, when k = 3, in 
that case, 3P = P + P + P. If yP ≡ 0 mod p, then P = –P. In other cases, 
2P = P + P = R,

	 xR ≡ s2 − 2xP mod p, and	 (9.8)

	 yR ≡ −yP + s(xP − xR) mod p	 (9.9)

where ≡ + −s (3 )(2 ) mod p2 1x a yP P . Let us assume that P = (11, 10), 
then 2P can be calculated as

	

s (3 11 1)(2 10) mod 23

364
20

mod 23

91
5

mod 23

(91 14)mod 23

1274 mod 23

9

2 1=

=

=

=

=

=

+× ×

×

−

Now, utilizing the value of s, we can have xR and yR as follows:

	 xR = (92 − 2 × 11) mod 23

	 = (81 − 22) mod 23

	 = 59 mod 23

	 = 13
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	 yR = −10 + 9 (11 − 13) mod 23

	 = (−10 − 18) mod 23

	 = −28 mod 23

	 = 18

Hence, R = 2P = (13, 18). One important point to notice here is that 
2P is now a distinctive point. Consequently, R + R = 2R = 4P. To find 
3P, we have to utilize Algorithm 9.5 since 2P and P are now two dis-
tinct points. Therefore, the x- and y-coordinates of 3P can be found 
using Equations (9.6) and (9.7). Similar procedures can be repeated to 
get the scalar multiplication of any k × P, where k > 0. Algorithms 9.6 
and 9.7 illustrate the steps that can be followed to find the double of a 
point and a scalar multiplication of a point, respectively.

Algorithm 9.6: AddDouble(xp, yp, & xr, & yr, a, p)

Begin
	 n ← 3 * xp * xp + a
	 d ← 2 * yp
	 if (d < 0)
		  n ← n * -1;
		  d ← d * -1;
	 end if
		  x ← InverseModulus(d, p)//describe in 
Algorithm 3
	 if (n * x > 0) s = (n * x)% p;
	 elses = NegativeModulus(n * x, p)//describe in 
Algorithm 4
	 end if
		  xr_ ← (s * s –2 * xp)
	 if (xr_ < 0) xr ← NegativeModulus(xr_, p)
		  else xr ← xr_% p
	 end if
		  yr_ ← (-yp + s * (xp - xr));
	 if (yr_ < 0)yr ← NegativeModulus(yr_, p);
	 else yr = yr_% p;
End

Algorithm 9.7 demonstrates the scalar multiplication of a point to 
k times.
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Algorithm 9.7: Scalar Multiplication (k, xp, yp, & xr, & yr)

Begin
add_double(xp, yp, xr, yr, a, p)
for i ← 0 to i < k – 2
	 xq ← xr;
	 yq ← yr;
	 xr ← 0
yr ← 0
	 add_points(xp, yp, xq, yq, xr, yr, p)
	 end for
End

9.4  Discrete Logarithm Problem

Let us consider the scalar multiplication of k × P = R, where P is a 
point of an elliptic curve and k < p. According to the rules of an abe-
lian group [4], R is also going to be a point of that elliptic curve. It is 
relatively easy to calculate R when both k and P are known. However, 
it is relatively hard to discover k when R and P are known. This is 
known as the discrete logarithm problem for an elliptic curve. Let us 
assume that R = (16, 8) when P = (11, 10), and we would like to search 
out k utilizing the brute-force method.

	 P = (11, 10)

	 2P = (13, 18)

	 3P = (15, 20)

	 4P = (9, 18)

	 5P = (19, 22)

	 6P = (1, 5)

	 7P = (17, 10)

	 8P = (18, 13)

	 9P = (20, 19)

	 10P = (16, 8)
Since 10P = (16, 8) = R, therefore the discrete logarithm in this 
instance is k = 10. In real applications, a large value is chosen as k to 
make the brute-force attack infeasible.
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9.5  Elliptic Curve Cryptography

In the following sections, we detail the ECC techniques by separating 
them into three subsections according to their functionalities.

9.5.1  Elliptic Curve Diffie–Hellman Key Exchange

Let us assume that A and B are two parties who desire to perform 
a  secure message exchange. The first requirement to complete this 
process is to generate keys that can be done utilizing the steps men-
tioned below:

	 1.	Both parties must agree upon a large prime number p and 
two elliptic curve parameters a and b of Equation (9.3), which 
defines the elliptic group of points EP(a, b).

	 2.	Then, they have to pick a base point P on the elliptic curve 
EP(a, b) over a finite field ZP.

	 3.	It is also necessary to choose a large integer number between 
1 and the order of the abelian group EP(a, b), which would be 
considered a private key. Let us consider that A chooses m as 
its private key (PRA), and B chooses n as its private key (PRB).

	 4.	A then generates a public key PUA = m × P.
	 5.	B similarly generates a public key PUB = n × P.
	 6.	After generating their relevant keys, they must exchange their 

public keys between each other. When A has the public key 
of B, it can now generate the secret key K = m × PUB. On the 
other hand, B can also generate the secret key K = n × PUA.

If we keenly observe the two produced secret keys, we see that they 
are the same because

	 m × PUB = m × (n × P) = n × (m × P)= n × PUB

9.5.2  Key Exchange Example

Let us now assume that the base point P = (15, 3). A chooses its pri-
vate key m = 7, and B chooses its private key n = 5. Now,

	 PUA = m × P = 7 × (15, 3) = (15, 20)

	 PUB = n × P = 5 × (15, 3) = (20, 19)
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Then, secret key K can be found as

	 KA = m × PUB

	 = 7 × (20, 19)

	 = (20, 4)

	 KB = n × PUA

	 = 5 × (15, 20)

	 = (20, 4)

	 KA = KB = K

9.5.3  Elliptic Curve Encryption/Decryption

There are a lot of methods available in the literature that propose vari-
ous techniques of elliptic curve encryption and decryption. In this 
chapter, one of the simplest techniques is chosen for those operations 
for a better understanding of the ECC algorithm. Let us consider 
that A wants to send a message to B that is also a point on the ellip-
tic curve, M = (xM, yM). A must perform the following operations to 
encrypt the message:

	 C = M + m × PUB

Then, A sends the pair (m × P, C) to B, where P is the base point. After 
receiving the encrypted message, B utilizes its secret key to decrypt 
the message as follows:

	 C + (−n) × (m × P) = C −n × (m × P) 

	 = M + m × PUB −n × (m × P)

	 = M + m × (n × P) −n × (m × P)

	 = M

9.5.4  Encryption/Decryption Example

Let us assume that A wants to transmit a message to B that is encoded 
on the elliptic point M = (19, 1). Consider the previous key exchange 



160 ﻿Hafizur Rahman and Saiful Azad

example where A and B have selected their own private key and also 
have exchanged their public key between each other. Now, encryption 
of message M can be found as follows:

	 C = (19, 1) + 7 × (20, 19)

	 = (19, 1) + (20, 19)

	 = (16, 8)

	 m × P = 7 × (15, 3)

	 = (15, 20)

Then, A sends the ciphertext {(15, 20), (16, 8)}. When B receives this 
ciphertext, it decrypts the message as follows:

	 M = (16, 8) − 5 × (15, 20)

	 = (16, 8) − (20, 4)

	 = (16, 8) + (20, −4)

	 = (19, 1)

9.6  Implementation 1

#include <iostream>
#include <cmath>
#include <conio.h>

using namespace std;

void ec_points(int a, int b, int p)
{
	 cout << "Points of Elliptic Curve" << endl;
	� cout << "— — — — — — — — — — — — — — — — — — — — — — 

— — — — — — -" << endl;
	 for (int x = 0; x < p; x++) {
	 for (int y = 0; y < p; y++) {
	 int k = y * y;
	 int m = (x * x * x) + a * x + b;
	 if (k% p = = m% p) {
	 cout << "(" << x << "," << y << ")" << endl;
	 }
	 }
	 }
}
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static int EGCD(int a, int b, int& u, int &v)//
Extended GCD gives g = a*u + b*v
{
	 u = 1;
	 v = 0;
	 int g = a;
	 int u1 = 0;
	 int v1 = 1;
	 int g1 = b;
	 while (g1 ! = 0)
	 {
	 int q = g/g1;//Integer divide
	 int t1 = u - q*u1;
	 int t2 = v - q*v1;
	 int t3 = g - q*g1;
	 u = u1; v = v1; g = g1;
	 u1 = t1; v1 = t2; g1 = t3;
	 }

	 return g;
}
	 //exitit 2
static int InvMod(int x, int n)//Solve linear 
congruence equation x * z = = 1 (mod n) for z
{
	 //n = Abs(n);
	� x = x% n;//% is the remainder function, 0 < = x% 

n < |n|
	 int u,v,g,z;
	 g = EGCD(x, n, u,v);
	 if (g ! = 1)
	 {
	 /�/x and n have to be relative prime for there to 

exist an x^-1 mod n
	 z = 0;
	 }
	 else
	 {
	 z = u% n;
	 }
	 return z;
}

int NegMod (int a, int p)
{
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	 int b = a * -1;
	 int n = ceil((float)b/p);
	 return (n * p) - b;
}

void add_points (int xp, int yp, int xq, int yq, int 
&xr, int &yr, int p)
{
	 int s;
	 int n = yp - yq;
	 int d = xp - xq;
	 if (d < 0) {
	 n * = -1;
	 d * = -1;
}

	 int x = InvMod(d, p);

	 if (n * x > 0) {
	 s = (n * x)% p;
}
	 else {
	 s = NegMod(n * x, p);
}

	 int xr_ = (s * s - xp - xq);
	 if (xr_ < 0)
	 xr = NegMod (xr_, p);
	 else
	 xr = xr_% p;

	 int yr_ = (-yp + s * (xp - xr));
	 if (yr_ < 0)
	 yr = NegMod(yr_, p);
	 else
	 yr = yr_% p;
}

void add_double (int xp, int yp, int &xr, int &yr, int 
a, int p)
{
	 int s;
	 int n = 3 * xp * xp + a;
	 int d = 2 * yp;

	 if (d < 0) {
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	 n * = -1;
	 d * = -1;
}

	 int x = InvMod(d, p);

	 if (n * x > 0) {
	 s = (n * x)% p;
}
	 else {
	 s = NegMod(n * x, p);
}
	 int xr_ = (s * s - 2 * xp);
	 if (xr_ < 0)
	 xr = NegMod (xr_, p);
	 else
	 xr = xr_% p;

	 int yr_ = (-yp + s * (xp - xr));
	 if (yr_ < 0)
	 yr = NegMod(yr_, p);
	 else
	 yr = yr_% p;
}

void scalar_multiplication (int xp, int yp, int k, 
int a, int p, int &PUx, int &PUy)
{
if (k = = 2) {
	 add_double(xp, yp, PUx, PUy, a, p);
}
else if (k > 2) {
	 add_double(xp, yp, PUx, PUy, a, p);
	 for (int i = 0; i < k - 2; i++) {
	 int xq = PUx;
	 int yq = PUy;
	 PUx = PUy = 0;
	 add_points(xp, yp, xq, yq, PUx, PUy, p);
	 }
}
else {
	 cout << "Wrong key" << endl;
	 }
}
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void key_generation (int Px, int Py, int k, int a, 
int p, int &PUx, int &PUy)
{
	 scalar_multiplication(Px, Py, k, a, p, PUx, PUy);
	 return;
}

void encryption (int Mx, int My, int k, int a, int p, 
int PUx, int PUy, int &Cx, int &Cy)
{
	 int xr, yr;
	 scalar_multiplication(PUx, PUy, k, a, p, xr, yr);
	 add_points(Mx, My, xr, yr, Cx, Cy, p);
}

void decryption (int Cx, int Cy, int k, int a, int p, 
int x1, int y1, int &Mx, int &My)
{
	 int xr, yr;
	 scalar_multiplication(x1, y1, k, a, p, xr, yr);
	 add_points(Cx, Cy, xr, -yr, Mx, My, p);
}

int main()
{
	 int a, b, p;
	 cout << "put a prime number: ";
	 cin >> p;

	 bool check;
	 do {
	 check = false;
	 cout << "put a value for a: ";
	 cin >> a;
	 cout << "put a value for b: ";
	 cin >> b;
	 if (((4 * a * a * a + 27 * b * b)% p) = = 0) {
	� cout << "Your values do not satisfied the 

condition" << endl;
	 cout << "Please put values again" << endl;
	 check = true;
	 }
} while (check);
cout << "— — — — — — — — — — — — — — — — — — — — — — — 
— — — — — — " << endl;



165Elliptic Curve Cryptography

ec_points(a, b, p);

int Px, Py, PUAx, PUAy, PUBx, PUBy, Mx, My, Cx, Cy, m, n;

cout << "— — — — — — — — — — — — — -" << endl;
cout << "Key " << endl;
cout << "— — — — — — — — — — — — — -" << endl;

cout << "Select a base point (x,y) from the curve: ";
cin >> Px >> Py;
cout << "Select a private key for Alice: ";
cin >> m;
key_generation(Px, Py, m, a, p, PUAx, PUAy);
cout << "Public key of Alice is (" << PUAx << "," << 
PUAy << ")" << endl;

cout << "Select a private key for Bob: ";
cin >> n;
key_generation(Px, Py, n, a, p, PUBx, PUBy);
cout << "Public key of Bob is (" << PUBx << "," << 
PUBy << ")" << endl;

cout << "— — — — — — — — — — — — — — — — — — — — — — — 
— — — " << endl;
cout << "Encryption/Decryption" << endl;
cout << "— — — — — — — — — — — — — — — — — — — — — — — 
— — — " << endl;
cout << "Select a Message point (x,y) from the curve 
(for encryption): ";
cin >> Mx >> My;
encryption(Mx, My, m, a, p, PUBx, PUBy, Cx, Cy);
cout << "Cipher is (" << Cx << "," << Cy << ")" << endl;
int x1, y1;
scalar_multiplication(Px, Py, m, a, p, x1, y1);
cout << "Alice send message pair(("<< x1 << "," << y1 
<< "),(" << Cx << "," << Cy << "))" << endl;
cout << "||— — — — — — — — — — — — — — — — — — — — 
-||" << endl;
cout << "Bob receive the message and start decrypting" 
<< endl;
decryption(Cx, Cy, n, a, p, x1, y1, Mx, My);
cout << "Decrypted message is (" << Mx << "," << My << 
")" << endl;

getch();
return 0;
}
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9.7  Implementation 2

#include<cstdlib>
#include<iostream>
#include<vector>
#include <math.h>
//contains utility functions

#define PrimeNumber 23

using namespace std;

class utils
{
public:
	 static float frand()//renerate random float number
	 {
	 static float norm = 1.0f/(float)RAND_MAX;
	 return (float)rand()*norm;
	 }
	 static int irand(int min, int max)//renerate random 
integer number
	 {
	 return min+(int)(frand()*(float)(max-min));
	 }
	 //exhibit 1
	� static int EGCD(int a, int b, int& u, int 

&v)//Extended GCD gives g = a*u + b*v
	 {
	 u = 1;
	 v = 0;
	 int g = a;
	 int u1 = 0;
	 int v1 = 1;
	 int g1 = b;
	 while (g1 ! = 0)
	 {
	 int q = g/g1;//Integer divide
	 int t1 = u - q*u1;
	 int t2 = v - q*v1;
	 int t3 = g - q*g1;
	 u = u1; v = v1; g = g1;
	 u1 = t1; v1 = t2; g1 = t3;
	 }
	 return g;
}
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//exitit 2
static int InvMod(int x, int n)//Solve linear 
congruence equation x * z = = 1 (mod n) for z
{
	 //n = Abs(n);
	� x = x% n;//% is the remainder function, 0 < = x% 

n < |n|
	 int u,v,g,z;
	 g = EGCD(x, n, u,v);
	 if (g ! = 1)
	 {
	� //x and n have to be relative prime for there to 

exist an x^-1 mod n
	 z = 0;
	 }
	 else
	 {
	 z = u% n;
	 }
	 return z;
	 }
};

//Template parameter 'curveOrder' is the order of the 
finite field over which this curve is defined
template<int curveOrder>
class EllipticCurve;
//Template parameter 'curveOrder' is the order of the 
finite field over which this curve is defined
template<int curveOrder>
class Element
{
	 int value;
	 //set element value
	 void setValue(int i)
	 {
		  value = i;
		  if (i<0)
		  {
			�   value = (i%curveOrder) + 

2*curveOrder;//ensure that the 
value is in the correct range

		  }
		  value% = curveOrder;
	 }
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	 public:
		  //default constructor
		  Element()
		  {
			   value = 0;
		  }
		  //constructor with value
		  explicit Element(int i)
		  {
			   setValue(i);
		  }
		  //copy constructor
		  Element(const Element<curveOrder>& rhs)
		  {
			   value = rhs.value;
		  }
		  //access Element Value
		  int getValue() const {return value;}
		  //negate
		  Element<curveOrder> operator-() const
		  {
			   return Element<curveOrder>(-value);
		  }
		  //setValue from integer
		  Element<curveOrder>& operator = (int i)
		  {
			   setValue(i);
			   return *this;
		  }
		  //" = " operator overload
		�  Element<curveOrder>& operator = (const 

Element<curveOrder>& rhs)
		  {
			   value = rhs.value;
			   return *this;
		  }
		  //"* = " operator overload
		�  Element<curveOrder>& operator* = (const 

Element<curveOrder>& rhs)
		  {
			   value = (value*rhs.value)%curveOrder;
			   return *this;
		  }
		  //"* = " operator overload
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		�  friend bool operator = =(const 
Element<curveOrder>& lhs, const 
Element<curveOrder>& rhs)

		  {
			   return (lhs.value = = rhs.value);
		  }
		  //" = =" operator overload
		�  friend bool operator = =(const 

Element<curveOrder>& lhs, int rhs)
		  {
			   return (lhs.value = = rhs);
		  }
		  //"! = " operator overload
		�  friend bool operator! = (const 

Element<curveOrder>& lhs, int rhs)
		  {
			   return (lhs.value ! = rhs);
		  }
		  //"/" operator overload
		�  friend Element<curveOrder> operator/

(const Element<curveOrder>& lhs, const 
Element<curveOrder>& rhs)

		  {
			�   return Element<curveOrder>(lhs.

value * utils::InvMod(rhs.
value,curveOrder));

		  }
		  //"+" operator overload
		�  friend Element<curveOrder> 

operator+(const Element<curveOrder>& lhs, 
const Element<curveOrder>& rhs)

		  {
			�   return Element<curveOrder>(lhs.

value + rhs.value);
		  }
		  //"+" operator overload
		�  friend Element<curveOrder> operator+(int 

i, const Element<curveOrder>& rhs)
		  {
			�   return Element<curveOrder>(rhs.

value+i);
		  }
		  //"+" operator overload
		�  friend Element<curveOrder> operator+(const 

Element<curveOrder>& lhs, int i)
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		  {
			�   return Element<curveOrder>(lhs.

value+i);
		  }
		  //"-" operator overload
		�  friend Element<curveOrder> operator-(const 

Element<curveOrder>& lhs, const 
Element<curveOrder>& rhs)

		  {
			�   return Element<curveOrder>(lhs.

value - rhs.value);
		  }
		  //"-"(binary) operator overload
		�  friend Element<curveOrder> operator*(int 

n, const Element<curveOrder>& rhs)
		  {
			�   return Element<curveOrder>(n*rhs.

value);
		  }
		  //"*"(binary) operator overload
		�  friend Element<curveOrder> operator*(const 

Element<curveOrder>& lhs, const 
Element<curveOrder>& rhs)

		  {
			�   return Element<curveOrder>(lhs.

value * rhs.value);
		  }
		  //output stream handler
		  template<int T>
		�  friend ostream& operator<<(ostream& os, 

const Element<T>& opt)
		  {
			   return os << opt.value;
		  }
};

//Template parameter 'curveOrder' is the order of the 
finite field over which this curve is defined
template<int curveOrder>
class Point
{
	� //elliptic curve pointer in which this point 

will belong
	 EllipticCurve<curveOrder> *ellipticCurve;
	 /*
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		�  Given a curve 'ec' defined along some 
equation in a finite field (such as 'ec': 
y^2 = x^3 + ax + b)

		�  point multiplication is defined as the 
repeated addition of a point along that 
curve.

		�  wiki link http://en.wikipedia.org/wiki/
Elliptic_curve_point_multiplication

		  point multiply
	 */
	 Point scalarMultiply(int k, const Point& a)
	 {
		  Point acc = a;
		  Point res = Point(0,0,*ellipticCurve);
		  int i = 0, j = 0;
		  int b = k;
		  while(b)
		  {
			   if (b & 1)
			   {
				�    addDouble(i-j,acc);//bit is 

set; acc = 2^(i-j)*acc
				    res + = acc;
				    j = i; //last bit set
			   }
			   b >> = 1;
			   ++i;
			�   cout << res.getX() << "\t" << res.

getY() << endl;
		  }
		  return res;
	 }
	 //doubling step for point multiplication
	 void addDouble(int multiplier, Point& point)
	 {
		  if (multiplier > 0)
		  {
			   Point tempPoint = point;
			   for (int i = 0; i < multiplier; i++)
			   {
				�    tempPoint + = tempPoint;//

repeated addition
			   }
			   point = tempPoint;
		  }
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	 }
	 //adding two points on the curve
	� void addPoints(Element<curveOrder> x1, 

Element<curveOrder> y1, Element<curveOrder> x2, 
Element<curveOrder> y2, Element<curveOrder> & 
xR, Element<curveOrder> & yR) const

	 {
		�  //special cases involving the additive 

identity
		  if (x1 = = 0 && y1 = = 0)
		  {
			   xR = x2;
			   yR = y2;
			   return;
		  }
		  if (x2 = = 0 && y2 = = 0)
		  {
			   xR = x1;
			   yR = y1;
			   return;
		  }
		  if (y1 = = -y2)
		  {
			   xR = yR = 0;
			   return;
		  }
		  //the additions
		  Element<curveOrder> s;
		  if (x1 = = x2 && y1 = = y2)
		  {
			   //2P
			�   s = (3*(x1.getValue()*x1.

getValue()) + ellipticCurve-
>getA())/(2*y1);

			   xR = ((s*s) - 2*x1);
		  }
		  else
		  {
			   //P+Q
			   s = (y1 - y2)/(x1 - x2);
			   xR = ((s*s) - x1 - x2);
		  }
		  if (s ! = 0)
		  {
			   yR = (-y1 + s*(x1 - xR));
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		  }
		  else
		  {
			   xR = yR = 0;
		  }
	 }
public:
	 Element<curveOrder> x;//x coordinate
	 Element<curveOrder> y;//y coordinate
	 //point constructor with x and y value
	 Point(int x, int y)
	 {
		  this->x = x;
		  this->y = y;
		  this->ellipticCurve = 0;
	 }
	� //point constructor with x value, y value and 

EllipticCurve pointer
	� Point(int x, int y, EllipticCurve<curveOrder> & 

EllipticCurve)
	 {
		  this->x = x;
		  this->y = y;
		  this->ellipticCurve = &EllipticCurve;
	 }
	� //point constructor with constant x pointer, 

constant y pointer and EllipticCurve pointer
	� Point(const Element<curveOrder>& x, const 

Element<curveOrder>& y, 
EllipticCurve<curveOrder> & EllipticCurve)

	 {
		  this->x = x;
		  this->y = y;
		  this->ellipticCurve = &EllipticCurve;
	 }
	 //compy constructor
	 Point(const Point& rhs)
	 {
		  x = rhs.x;
		  y = rhs.y;
		  ellipticCurve = rhs.ellipticCurve;
	 }
	 //access x component as element
	 Element<curveOrder> getX() const {return x;}
	 //access y component as element



174 ﻿Hafizur Rahman and Saiful Azad

	 Element<curveOrder> getY() const {return y;}
	� //calculate the order of this point using brute-

force additions
	� unsigned int Order(unsigned int maxPeriod = ~0) 

const
	 {
		  Point r = *this;
		  unsigned int n = 0;
		  while(r.x ! = 0 && r.y ! = 0)
		  {
			   ++n;
			   r + = *this;
			   if (n > maxPeriod) break;
		  }
		  return n;
	 }
	 //negate
	 Point operator-()
	 {
		  return Point(x,-y);
	 }
	 //" = " operator overload
	 Point& operator = (const Point& rhs)
	 {
		  x = rhs.x;
		  y = rhs.y;
		  ellipticCurve = rhs.ellipticCurve;
		  return *this;
	 }
	 //" = =" operator overload
	� friend bool operator = =(const Point& lhs, const 

Point& rhs)
	 {
		�  return (lhs.ellipticCurve = = rhs.

ellipticCurve) && (lhs.x = = rhs.x) && 
(lhs.y = = rhs.y);

	 }
	 //"! = " operator overload
	� friend bool operator! = (const Point& lhs, const 

Point& rhs)
	 {
		�  return (lhs.ellipticCurve ! = rhs.

ellipticCurve) || (lhs.x ! = rhs.x) || 
(lhs.y ! = rhs.y);

	 }
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	 //"+" operator overload
	� friend Point operator+(const Point& lhs, const 

Point& rhs)
	 {
		  Element<curveOrder> xR, yR;
		�  lhs.addPoints(lhs.x,lhs.y,rhs.x,rhs.

y,xR,yR);
		  return Point(xR,yR,*lhs.ellipticCurve);
	 }
	 //"*" operator overload
	 friend Point operator*(int k, const Point& rhs)
	 {
		  return Point(rhs).operator* = (k);
	 }
	 //"*" operator overload
	 Point& operator+ = (const Point& rhs)
	 {
		  addPoints(x,y,rhs.x,rhs.y,x,y);
		  return *this;
	 }
	 //"* = " operator overload
	 Point& operator* = (int k)
	 {
		  return (*this = scalarMultiply(k,*this));
	 }
	 //ostream handler: print this point
	� friend ostream& operator <<(ostream& os, const 

Point& p)
	 {
		�  return (os << "(" << p.x << ", " << p.y << 

")");
	 }
};

//Template parameter 'curveOrder' is the order of the 
finite field over which this curve is defined
template<int curveOrder>
class EllipticCurve
{
	� vector<Point<curveOrder> > pointTable; //table 

of points
	� Element<curveOrder> a;		  //paramter a of 

the EC equation
	� Element<curveOrder> b;		  //parameter b of 

the EC equation
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	� bool tableFilled;		  //true if the table has 
been calculated

public:
	� //constructor with a and b as parameters (such 

as 'elliptic curve' : y^2 = x^3 + ax + b)
EllipticCurve(int a, int b)
{
		  this->a = a;
		  this->b = b;
		  this->tableFilled = false;
}
//Calculate *all* the points (group elements) for this 
'elliptic curve'
void CalculatePoints()
{
		  //calculate points
		  for (int x = 0; x < curveOrder; x++) {
	 for (int y = 0; y < curveOrder; y++) {
		  int k = y * y;
		�  int m = (x * x * x) + a.getValue() * x + 

b.getValue();
		  if (k% curveOrder = = m% curveOrder)
		�  pointTable.push_back(Point<curveOrder>(x,y,

*this));
	 }
		  }

	 tableFilled = true;//table fill successful
}
//access the point vector like an array
Point<curveOrder> operator[](int n)
{
	 if (!tableFilled)
	 {
	 CalculatePoints();
}

	 return pointTable[n];
}
//number of elements in this group
size_t Size() const {return pointTable.size();}
//the degree P of this EC
int Degree() const {return curveOrder;}
//the parameter a (as an element of Fp)
Element<curveOrder> getA() const {return a;}
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//the parameter b (as an element of Fp)
Element<curveOrder> getB() const {return b;}
//ostream handler: print this curve in human readable 
form
template<int cO>
friend ostream& operator <<(ostream& os, const 
EllipticCurve<curveOrder>& EllipticCurve)
	 {
		  //y^2 mod P = x^3 + ax + b mod P
		  os << "y^2 mod " << cO << " = (x^3 + ";
		  if (EllipticCurve.a ! = 0)
		  {
			�   os << EllipticCurve.a.getValue() << 

"x + ";
		  }
		  if (EllipticCurve.b ! = 0)
		  {
			   os << EllipticCurve.b.getValue() ;
		  }
		  os << noshowpos << ") mod " << cO;
		  return os;
	 }
//print all the elements of the curve
	 ostream& PrintTable(ostream &os, int columns = 4)
	 {
		  if (tableFilled)
		  {
			   int col = 0;
			�   vector<Point<PrimeNumber> 

>::iterator iter = pointTable.
begin();

			�   for (; iter! = pointTable.end(); 
++iter)

			   {
				�    os << "(" << 

(*iter).x.getValue() << ", " 
<< (*iter).y.getValue() 
<< ") ";

				    if (++col > columns)
				    {
					     os << "\n";
					     col = 0;
				    }
			   }
		  }
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		  else
		  {
			�   os << "EllipticCurve, F_" << 

PrimeNumber;
		  }
		  return os;
	 }
};

int main(int argc, char *argv[])
{
	 //curve object
	 int A, B;
	 bool flag;
	 do {
	 flag = false;
	� cout << "Put the value for a (an integer number 

between 0 to " << PrimeNumber - 1 << ": ";
	 cin >> A;
	 cout << "Put the value for b (an integer number 
between 0 to " << PrimeNumber - 1 << ": ";
	 cin >> B;
	 cout << endl;
	� if (((4 * A * A * A) + (27 * B * B))% 

PrimeNumber = = 0) {
	 flag = true;
	� cout << "WARNING: Enterned values failed to 

pass the singularity test" << endl;
	� cout << "Put the values again " << endl << 

endl;
}
	 } while (flag);
EllipticCurve<PrimeNumber> curveObject(A,B);
	� cout << "Elliptic Curve cryptography example\n— 

— — — — — — — — — — — — — — — — — \n\n";
	 //print some information about the curve
	� //cout << "The curve object: " << curveObject << 

"\n";
	 curveObject.CalculatePoints();//
	 cout << "\npoints on the curve object\n";
	 curveObject.PrintTable(cout,4);
	� cout << "\n = = = = = = = = = = = = = = = = = = 

= = = = = = = = = = = = = = = = = = = = = = = = 
= = = = = \n";

	 //Elliptic curve message encryption scheme



179Elliptic Curve Cryptography

	� //the base point on the curve is used to 
generate keys

	 Point<PrimeNumber> G = curveObject[0];
	� //choose G ramdomly where G > {0,0} with 

order > = 2
	� while((G.getY() = = 0 || G.getX() = = 0) || 

(G.Order()<2))
	 {
		�  int n = (int)(utils::frand()*curveObject.

Size());
		  G = curveObject[n];
	 }
	� cout << "G = " << G << ", order(G) is " << 

G.Order() << "\n\n";

	 //sender 'Alice'
	� int a = utils::irand(1,curveObject.

Degree()-1);//session integer a which is also 
used to generate Alice's public key

	� Point<PrimeNumber> Pa = a*G; //public key of 
alice

	 cout << "Alice:\n\tPrivate key = " << a << endl;
	� cout << "\tpublic key Pa = " << a << "*" << G << 

" = " << Pa << endl;
	 //receiver 'Bob'
	� int b = utils::irand(1,curveObject.

Degree()-1);//session integer b which is also 
used to generate bob's public key

	 Point<PrimeNumber> Pb = b*G; //public key of bob
	 cout << "Bob:\n\tPrivate key = " << b << endl;
	� cout << "\tpublic key Pb = " << b << "*" << G << 

" = " << Pb << endl;
	 //Jane, the eavesdropper
	� int j = utils::irand(1,curveObject.

Degree()-1);;//session integer j which is also 
used to generate jane's public key

	 Point<PrimeNumber> Pj = j*G;
	 cout << "Jane:\n\tPrivate key = " << j << endl;
	� cout << "\tpublic key Pj = " << j << "*" << G << 

" = " << Pj << endl<< endl<< endl;
	 //Alice encrypts her message to send to Bob
	 int msg1 = 50;
	 int msg2 = 64;
	� cout << "Plain text from Alice to Bob: (" << 

msg1 << ", " << msg2 << ")"<<endl<<endl;



180 ﻿Hafizur Rahman and Saiful Azad

	 //alice encrypt the message using Bob's key
	� Point<PrimeNumber> encryptionKey = a*Pb;//

encryption key alice to bob
	� Element<PrimeNumber> 

encrypt1(msg1*encryptionKey.getX());//encrypt 
first chunk of message by multiplying with 
encryption key's x value

	� Element<PrimeNumber> 
encrypt2(msg2*encryptionKey.getY());//encrypt 
second chunk of message by multiplying with 
encryption key's y value

	 //encrypted message is: Pa,c1,c2
	� cout << "Encrypted message from Alice to Bob = 

{Pa,c1,c2} = {" << Pa << ", " << encrypt1 << ", 
" << encrypt2 << "}\n\n";

	� //Bob now decrypts Alice’s message, using her 
public key and his session integer "b" which was 
also used to generate his public key

	� Point<PrimeNumber> decryptionKey = b*Pa;//bob's 
decryption key for alice

	� Element<PrimeNumber> decryptMsg1 = encrypt1/
decryptionKey.getX();//encrypt first chunk of 
message by dividing with decryption key's x 
value

	� Element<PrimeNumber> decryptMsg2 = encrypt2/
decryptionKey.getY();//encrypt second chunk of 
message by dividing with decryption key's y 
value

	� cout << "\nBob's decrypted message from Alice = 
(" << decryptMsg1 << ", " << decryptMsg2 << ")" 
<< endl;

	� //Jane intercepts the message and tries to 
decrypt it using her key

	� encryptionKey = j*Pa;//jane's decryption key for 
alice

	� decryptMsg1 = encrypt1/encryptionKey.getX();//
encrypt first chunk of message by dividing with 
decryption key's x value

	� decryptMsg2 = encrypt2/encryptionKey.getY();//
encrypt second chunk of message by dividing with 
decryption key's y value

	� cout << "\nJane's decrypted message from Alice = 
(" << decryptMsg1 << ", " << decryptMsg2 << ")" 
<< endl;
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	 cout << endl;
	 system("PAUSE");
	 return EXIT_SUCCESS;
}
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10
Message Digest 

Algorithm 5

B AY Z I D  A S H I K  H O S S A I N

Keywords

Authentication check
Hash function
Integrity check
Message digest

A message digest algorithm such as MD5 is also known as a hash 
function or a cryptographic hash function. It takes a message as input 
and generates a fixed-length output in response, which is generally less 
than the length of the input message. The output is known as a hash 
value or message digest. A message digest is also known as a com-
pact digital signature for an arbitrarily long stream of binary data [1]. 
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MD5 was first designed by Professor Ronald Rivest of MIT in 1991 
to substitute former hash function MD4. When investigative work 
showed that MD5’s predecessor MD4 was likely to be insecure, MD5 
was designed to be a secure replacement. MD5 has been consumed 
in a wide range of security applications. It is also frequently used to 
check data reliability.

10.1  General Properties and Vulnerabilities

When cryptographers tend to design a message digest algorithm, they 
try to make the algorithm fulfill the following properties:

•	 It should be one-way. It is hard to get the original message 
given the message digest.

•	 It would be hard to find another input message that produces 
identical output when both input and output are given.

•	 The algorithm should be collision resistant. It would be com-
putationally not feasible to find two messages that generate 
equivalent message digests. This property is not similar to the 
second property. It is easier to attack on this property than on 
the second property.

•	 Pseudorandomness should be satisfied by the message digest.

When all of the above properties are fulfilled, we call the algorithm 
a collision-resistant message digest algorithm. It is unknown whether 
a collision-resistant message digest algorithm can exist at all.

In 1996, a weakness was found in the procedure of MD5. While it 
was not a clearly fatal weakness, cryptographers began recommending 
other algorithms, such as SHA-1, which has since been found to be 
vulnerable as well. In 2004, it was revealed that MD5 is also not 
collision resistant, and it is not suitable for applications that rely on 
properties similar to Secure Sockets Layer (SSL) certificates or digital 
signatures [3]. Moreover, flaws were discovered in MD5 during the 
same year, making further use of the algorithm for security purposes 
questionable; specifically, a number of researchers described how to 
create a pair of files that share the same MD5 checksum. Further 
progress was made in breaking MD5 throughout the years 2005, 
2006, and 2007. During December 2008, a group of researchers used 
this technique to fake SSL certificate validity, and the CMU Software 
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Engineering Institute currently says that MD5 “should be considered 
cryptographically broken and inappropriate for further use” [7], and 
most applications owned by the U.S. government now use the SHA-2 
family of hash functions [8].

10.2  Design Principle

MD5 follows a design principle proposed by Merkle and Damgård. 
Its basic scheme is to build hash in a block-wise style. In a word, 
MD5 is composed of two phases: padding phase and compression 
phase. During the padding phase, some extra bits (1 to 512 bits) are 
appended to the input message. The result bits are compatible to 448 
mod 512. After that the length of the initial message is transformed 
to a 64-bit binary string (if the length is greater than 264, the lower 
64 bits are used) and these 64 bits are added to the tail of the mes-
sage as well. So, the padding phase ends with a bit stream that may 
consist of one or more 512-bit blocks. During the compression phase, 
a compression function is used on each 512-bit block and generates a 
128-bit output. The previous output is always involved in the calcula-
tion of the next round.

10.3  Algorithm Description

MD5 processes a variable-length message into a fixed 128-bit out-
put. The input message is fragmented into chunks of 512-bit blocks 
(sixteen 32-bit words); the message is padded so that its length could 
be divisible by 512. The padding works by adding a single bit 1 to 
the end of the message first. This is followed by appending as many 
zeros (0’s) as are required to bring the length of the message up to 
64 bits less than a multiple of 512 (448 mod 512). The remaining 
bits are filled up with 64 bits, which represents the length of the 
original message, modulo 264. The algorithm operates on a 128-bit 
state, separated into four 32-bit words, represented here as h0, h1, h2, 
and h3. These are set to positive fixed constants. After that the main 
algorithm uses each 512-bit message block in turn to alter the state. 
The processing of a message block consists of four analogous stages, 
which are termed as rounds, where each round is composed of 16 
similar operations based on a nonlinear function F, modular addition, 
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and left rotation. Hence, there are three kinds of operations in MD5: 
bit-wise Boolean operation, modular addition, and cyclic shift opera-
tion. All three operations are very fast on 32-bit machines, which 
make MD5 quite fast.

MD5 consists of 64 of these operations, stated in Figure  10.1, 
grouped in four rounds of 16 actions. F is a function that is nonlinear 
in nature; in each round one function is used. Mi denotes a 32-bit 
block of the message input, and Ki denotes a 32-bit constant.

The algorithm of MD5 can be described in five steps:

	 1.	Add padding bits behind the input message.
	 2.	Add a 64-bit binary string that is the representation of the 

message’s length.
	 3.	Initialize four 32-bit values.
	 4.	Compress every 512-bit block.
	 5.	Generate the 128-bit output.

10.3.1  Add Padding Bits behind the Input Message

This step is to elongate the initial message and make its length 
congruent to 448 mod 512. First, a single bit 1 is appended to the 
message. Then, a series of 0 bits are appended so that length (the 
padded message) ≡ 448 mod 512. For example, suppose the initial 

SRQP

SRQ

F

<<<s

P

Ki

Mi

Figure 10.1  Operational model of MD5.
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message has 1000 bits. Then, this step will add 1 bit 1 and 471 
bits 0. As another example, consider a message with just 448 bits. 
As  the algorithm does not check whether the primary length is 
congruent to 448 mod 512, 1 bit 1 and 511 bits 0 will be appended 
to the message. As a result, the padding bits’ length is at least 1 and 
at most 512.

new_len = initial_len+1;
while((new_len% 64) ! = 56){
new_len++;
	 }
msg = new uint8_t[new_len+8];

10.3.2 � Add a 64-Bit Binary String That Is the 
Representation of the Message’s Length

Consideration should be paid to the meaning of the 64-bit binary 
string. One should not regard it as the first 64 bits of the initial mes-
sage. It is the binary representation of the length of the preliminary 
message. For example, assume the message length is 1000 bits. Its 
64-bit binary representation would be 0x00000000000003E8. If the 
message is very lengthy, larger than 264, only the lower 64 bits of its 
binary representation are used.

msg[initial_len] = �0x80;//append the "1" bit; most 
significant bit is "first"

for (offset = �initial_len + 1; offset <new_len; 
offset++)

msg[offset] = 0;

10.3.3  Initialize Four 32-Bit Values

These four 32-bit variables stated below would be used to compute the 
message digest. In the Implementation 1 section, these variables are 
mentioned as h0, h1, h2, and h3 and their initial values are

h0 = 0x67452301;
h1 = 0xefcdab89;
h2 = 0x98badcfe;
h3 = 0x10325476;
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10.3.4  Compress Every 512-Bit Block

Four supplementary functions will be defined such that each func-
tion takes an input of three 32-bit words and produces a 32-bit word 
output [2].

F (X, Y, Z) = XY or not (X) Z
G (X, Y, Z) = XZ or Y not (Z)
H (X, Y, Z) = X xor Y xor Z
I (X, Y, Z) = Y xor (X or not (Z))

In each bit position, F acts as a condition such that if X, then 
Y; otherwise, Z. The function F might have been defined using 
addition instead of or since XY and not (X) Z will never have 1’s 
in the same bit position. The functions G, H, and I are similar to 
the function F, which performs in bit-wise parallel to produce its 
output from the bits of X, Y, and Z so that the corresponding bits 
of X, Y, and Z are independent and unbiased. Therefore, each bit 
of G (X, Y, Z), H (X, Y, Z), and I (X, Y, Z) will be independent and 
unbiased [2].

This step uses a 64-element table T [1, …, 64] constructed from 
the sine function. Let T[i] denote the ith element of the table, which 
is equal to the integer part of 4294967296 times abs (sin(i)), where i 
is in radians. After that, it performs four rounds of hashing for each 
16-word block [2]:

for(j = 0;j<64;j++)
k[j] = fabs(sin(j+1)*pow(2,32));

For processing each 16-word block, do the following operation:

offset = 0;
	 do{
	 //�break chunk into sixteen 32-bit words 

w[j], 0 ≤ j ≤ 15
	 for (i = 0; i< 16; i++)
	 w[i] = to_int32(msg + offset + i*4);

	 a = h0;
	 b = h1;
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	 c = h2;
	 d = h3;

	 for(i = 0; i<64; i++) {

	 if (i< 16) {
	 f = (b & c) | ((~b) & d);
	 g = i;
	 } else if (i< 32) {
	 f = (d & b) | ((~d) & c);
	 g = (5*i + 1)% 16;
	 } else if (i< 48) {
	 f = b ^ c ^ d;
	 g = (3*i + 5)% 16;
	 } else {
	 f = c ^ (b | (~d));
	 g = (7*i)% 16;
	 }

	 temp = d;
	 d = c;
	 c = b;
	 b = �b + LEFTROTATE((a + f + k[i] + 

w[g]), r[i]);
	 a = temp;

	 }

	 h0 + = a;
	 h1 + = b;
	 h2 + = c;
	 h3 + = d;
	 offset + = 64;
	 }while(offset<new_len);

10.3.5  Generate the 128-Bit Output

Finally, the message digest is produced by doing h0 append h1 append 
h2 append h3.

to_bytes(h0, digest);
to_bytes(h1, digest + 4);
to_bytes(h2, digest + 8);
to_bytes(h3, digest + 12);
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10.4  An Example

Input message: The quick brown fox jumps over the lazy dog.

Message before adding the padding bits:
01010100	 01101000	 01100101	 00100000	 01110001
01110101	 01101001	 01100011	 01101011	 00100000
01100010	 01110010	 01101111	 01110111	 01101110
00100000	 01100110	 01101111	 01111000	 00100000
01101010	 01110101	 01101101	 01110000	 01110011
00100000	 01101111	 01110110	 01100101	 01110010
00100000	 01110100	 01101000	 01100101	 00100000
01101100	 01100001	 01111010	 01111001	 00100000
01100100	 01101111	 01100111

Message after adding the padding bits:
01010100	 01101000	 01100101	 00100000	 01110001
01110101	 01101001	 01100011	 01101011	 00100000
01100010	 01110010	 01101111	 01110111	 01101110
00100000	 01100110	 01101111	 01111000	 00100000
01101010	 01110101	 01101101	 01110000	 01110011
00100000	 01101111	 01110110	 01100101	 01110010
00100000	 01110100	 01101000	 01100101	 00100000
01101100	 01100001	 01111010	 01111001	 00100000
01100100	 01101111	 01100111	 10000000	 00000000
00000000	 00000000	 00000000	 00000000	 00000000
00000000	 00000000	 00000000	 00000000	 00000000
00000000	 01011000	 00000001	 00000000	 00000000
00000000	 00000000	 00000000	 00000000

MD5 operations (which contain 64 rounds):

Round [1]:
h0: 01110110 01010100 00110010 00010000
h1: 10000100 00010001 11010100 11010111
h2: 10001001 10101011 11001101 11101111
h3: 11111110 11011100 10111010 10011000

Round [2]:
h0: 11111110 11011100 10111010 10011000
h1: 01001001 10000100 11000111 11111100
h2: 10000100 00010001 11010100 11010111
h3: 10001001 10101011 11001101 11101111
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Round [3]:
h0: 10001001 10101011 11001101 11101111
h1: 01011100 10010010 01001111 00110000
h2: 01001001 10000100 11000111 11111100
h3: 10000100 00010001 11010100 11010111
.
.
.
Round [63]:
h0: 00011111 00001101 00010100 00001000
h1: 01101101 11111011 01100010 10011100
h2: 11001100 01001111 11100111 11000101
h3: 10011101 11101101 00110111 00110110

Round [64]:
h0: 10011101 11101101 00110111 00110110
h1: 10101110 01111111 11101000 10010010
h2: 01101101 11111011 01100010 10011100
h3: 11001100 01001111 11100111 11000101

Final output: 9e107d9d372bb6826bd81d3542a419d6.

10.5  Implementation 1

#include<stdio.h>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdlib>
#include<bitset>
#include <climits>
using namespace std;
#define KEY 64
#define SIZE 1000
#define LEFTROTATE(�x, c) (((x) << (c)) | 

((x) >> (32 - (c))))

class cryptography{
	 uint32_t k[KEY];
	 int j;
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public:
	 voidto_bytes(uint32_t val, uint8_t *bytes);
	 uint32_t to_int32(const uint8_t *bytes);
	� void MD_5(const uint8_t *initial_msg, 

size_tinitial_len, uint8_t *digest);

};

template<typename T>
voidshow_binrep(const T &a)
{
const char* beg = reinterpret_cast<const char*>(&a);
const char* end = beg + sizeof(a);
while(beg ! = end)
std::cout<<std::bitset<CHAR_BIT>(*beg++) << ' ';
std::cout<< '\t';
}

void cryptography::to_bytes(�uint32_t val, 
uint8_t *bytes)

{
bytes[0] = (uint8_t) val;
bytes[1] = (uint8_t) (val>> 8);
bytes[2] = (uint8_t) (val>> 16);
bytes[3] = (uint8_t) (val>> 24);
}

uint32_t cryptography::to_int32(const uint8_t *bytes)
{
return (�uint32_t) bytes[0] | ((uint32_t) bytes[1] << 8) 

| ((uint32_t) bytes[2] << 16) | ((uint32_t) 
bytes[3] << 24);

}
void cryptography::MD_5(�const uint8_t *initial_msg, 

size_tinitial_len, 
uint8_t *digest) {

for(j = 0;j<64;j++)
k[j] = fabs(sin(j+1)*pow(2,32));

//r specifies the per-round shift amounts
con�st uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 

12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 
20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 
11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 
21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
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	 //Thesevars will contain the hash
	 uint32_t h0, h1, h2, h3;

	 //Message (to prepare)
	 uint8_t *msg = NULL;

size_tnew_len, offset;
uint32_t w[16];
uint32_t a, b, c, d, i, f, g, temp;

	 //Initialize variables - simple count in nibbles:
	 h0 = 0x67452301;
	 h1 = 0xefcdab89;
	 h2 = 0x98badcfe;
	 h3 = 0x10325476;

	 //Pre-processing:
	 //append "1" bit to message
	 //app�end "0" bits until message length in bits ≡ 

448 (mod 512)
	 //append length mod (2^64) to message

new_len = initial_len+1;
while((new_len% 64) ! = 56){
new_len++;
}

msg = new uint8_t[new_len+8];

memcpy(msg, initial_msg, initial_len);
msg�[initial_len] = 0x80;//append the "1" bit; most 

significant bit is "first"
for� (offset = initial_len + 1; offset <new_len; 

offset++)
msg[offset] = 0;//append "0" bits

	 //append the len in bits at the end of the buffer.
to_bytes(initial_len*8, msg + new_len);
	 //ini�tial_len>>29 = = initial_len*8>>32, but avoids 

overflow.
to_bytes(initial_len>>29, msg + new_len + 4);

	 //bin�ary representation of the message after 
padding



194 ﻿Bayzid Ashik Hossain

	 /*
for (inti = 0; i< new_len+8; i++) {
show_binrep(msg[i]);
	 }
	 */
cout<<endl;
	 //Process the message in successive 512-bit chunks:
	 //for each 512-bit chunk of message:
offset = 0;
do{
	 //br�eak chunk into sixteen 32-bit words w[j], 

0 ≤  j ≤ 15
for (i = 0; i< 16; i++)
w[i] = to_int32(msg + offset + i*4);

	 //Initialize hash value for this chunk:
	 a = h0;
	 b = h1;
	 c = h2;
	 d = h3;

	 //Main loop:
for(i = 0; i<64; i++) {

if (i< 16) {
	 f = (b & c) | ((~b) & d);
	 g = i;
	 } else if (i< 32) {
	 f = (d & b) | ((~d) & c);
	 g = (5*i + 1)% 16;
	 } else if (i< 48) {
	 f = b ^ c ^ d;
	 g = (3*i + 5)% 16;
	 } else {
	 f = c ^ (b | (~d));
	 g = (7*i)% 16;
	 }

temp = d;
	 d = c;
	 c = b;
	 b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
	 a = temp;
	 /*
cout<<"Round: ["<<i+1<<"]"<<endl;
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cout<<"h0: ";
show_binrep(a);
cout<<'\n'<<"h1: ";
show_binrep(b);
cout<<'\n'<<"h2: ";
show_binrep(c);
cout<<'\n'<<"h3: ";
show_binrep(d);
cout<<endl;
	 */
	 }

	 //Add this chunk's hash to result so far:
	 h0 + = a;
	 h1 + = b;
	 h2 + = c;
	 h3 + = d;
offset + = 64;

}while(offset<new_len);

	 //cleanup
	 deletemsg;

//�var char digest[16] : = h0 append h1 append h2 
append h3

//(Output is in little-endian)
	 to_bytes(h0, digest);
	 to_bytes(h1, digest + 4);
	 to_bytes(h2, digest + 8);
	 to_bytes(h3, digest + 12);
}

int main() {
cha�rmsg[SIZE] = "The quick brown fox jumps over the 

lazy dog";
inti;
	 uint8_t msg_digest[16];

cout<<msg<<endl<<endl;

cryptographycp;

	 cp.MD_5((uint8_t*)msg, strlen(msg), msg_digest);
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	 /*
for (inti = 0; i<strlen(msg); i++) {
show_binrep(msg[i]);
	 }
	 */
cout<<endl<<endl;

for (i = 0; i< 16; i++){
printf("%2.2x", msg_digest[i]);
	 }
printf("\n");

return 0;
}

10.6  Implementation 2 [5,6]

/* MD5
Converted to C++ class by Frank Thilo (thilo@unix-ag.org) for bzflag 
(http://www.bzflag.org). Based on: md5.h and md5.c reference imple-
mentation of RFC 1321.
Copyright (C) 1991–1992, RSA Data Security, Inc. Created 1991. 
All rights reserved.

License to copy and use this software is granted provided that it 
is identified as the “RSA Data Security, Inc. MD5 Message-Digest 
Algorithm” in all material mentioning or referencing this software or 
this function.

License is also granted to make and use derivative works provided 
that such works are identified as “derived from the RSA Data Security, 
Inc. MD5 Message-Digest Algorithm” in all material mentioning or 
referencing the derived work.

RSA Data Security, Inc. makes no representations concerning 
either the merchantability of this software or the suitability of this 
software for any particular purpose. It is provided “as is” without 
express or implied warranty of any kind.

These notices must be retained in any copies of any part of this 
documentation or software.
*/

#include <cstring>
#include <iostream>
#include <cstdio>
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using namespace std;

class MD5{

public:

typedef unsigned intsize_type;//must be 32bit
MD5();
MD5(const string& text);
void update(const unsigned char *buf, size_type length);
void update(const char *buf, size_type length);
MD5&finalize();
stringhexdigest() const;
friendostream& operator<<(ostream&, MD5 md5);

private:
voidinit();
typedef unsigned char uint1;// 8bit
typedef unsigned int uint4; //32bit
enu�m {blocksize = 64};//VC6 won't eat a const static 

int here

void transform(const uint1 block[blocksize]);
sta�tic void decode(uint4 output[], const uint1 

input[], size_typelen);
sta�tic void encode(uint1 output[], const uint4 

input[], size_typelen);

bool finalized;
uin�t1 buffer[blocksize];//bytes that didn't fit in 

last 64 byte chunk
uin�t4 count[2]; //64bit counter for number of bits 

(lo, hi)
uint4 state[4]; //digest so far
uint1 digest[16];//the result

//low level logic operations
static inline uint4 F(uint4 x, uint4 y, uint4 z);
static inline uint4 G(uint4 x, uint4 y, uint4 z);
static inline uint4 H(uint4 x, uint4 y, uint4 z);
static inline uint4 I(uint4 x, uint4 y, uint4 z);
static inline uint4 rotate_left(uint4 x, int n);
sta�tic inline void FF(uint4 &a, uint4 b, uint4 c, 

uint4 d, uint4 x, uint4 s, uint4 ac);
sta�tic inline void GG(uint4 &a, uint4 b, uint4 c, 

uint4 d, uint4 x, uint4 s, uint4 ac);



198 ﻿Bayzid Ashik Hossain

sta�tic inline void HH(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac);

static inline void II(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac);
};

string md5(const string str);

//F, G, H and I are basic MD5 functions.
inline MD5::uint4 MD5::F(uint4 x, uint4 y, uint4 z) {
returnx&y | ~x&z;
}

inline MD5::uint4 MD5::G(uint4 x, uint4 y, uint4 z) {
returnx&z | y&~z;
}

inline MD5::uint4 MD5::H(uint4 x, uint4 y, uint4 z) {
returnx^y^z;
}

inline MD5::uint4 MD5::I(uint4 x, uint4 y, uint4 z) {
return y ^ (x | ~z);
}

//rotate_left rotates x left n bits.
inline MD5::uint4 MD5::rotate_left(uint4 x, int n) {
return (x << n) | (x >> (32-n));
}

//FF,� GG, HH, and II transformations for rounds 1, 2, 
3, and 4.

//Rot�ation is separate from addition to prevent 
re-computation.

inl�ine void MD5::FF(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a+ F(b,c,d) + x + ac, s) + b;
}

inl�ine void MD5::GG(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a + G(b,c,d) + x + ac, s) + b;
}

inl�ine void MD5::HH(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac) {
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a = rotate_left(a + H(b,c,d) + x + ac, s) + b;
}

inli�ne void MD5::II(uint4 &a, uint4 b, uint4 c, 
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a + I(b,c,d) + x + ac, s) + b;
}

//default constructor, just initailize
MD5::MD5()
{
init();
}
//nif�ty shortcut ctor, compute MD5 for string and 

finalize it right away
MD5::MD5(const string &text)
{
init();
update(text.c_str(), text.length());
finalize();
}

void MD5::init()
{
finalized = false;

count[0] = 0;
count[1] = 0;

//load magic initialization constants.
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;
}

//dec�odes input (unsigned char) into output (uint4). 
Assumes len is a multiple of 4.

voi�d MD5::decode(uint4 output[], const uint1 input[], 
size_typelen)

{
for (unsigned inti = 0, j = 0; j <len; i++, j + = 4)
out�put[i] = ((uint4)input[j]) | (((uint4)input[j+1]) 

<< 8) |
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	 (((u�int4)input[j+2]) << 16) | (((uint4)input[j+3]) 
<< 24);

}

//enc�odes input (uint4) into output (unsigned char). 
Assumes len is

//a multiple of 4.
voi�d MD5::encode(uint1 output[], const uint4 input[], 

size_typelen)
{
for (size_typei = 0, j = 0; j <len; i++, j + = 4) {
output[j] = input[i] & 0xff;
output[j+1] = (input[i] >> 8) & 0xff;
output[j+2] = (input[i] >> 16) & 0xff;
output[j+3] = (input[i] >> 24) & 0xff;
	 }
}

//apply MD5 algorithm on a block
void MD5::transform(const uint1 block[blocksize])
{
uint�4 a = state[0], b = state[1], c = state[2], 

d = state[3], x[16];
decode (x, block, blocksize);

/* Round 1 */
FF (a, b, c, d, x[0], 7, 0xd76aa478);/* 1 */
FF (d, a, b, c, x[1], 12, 0xe8c7b756);/* 2 */
FF (c, d, a, b, x[2], 17, 0x242070db);/* 3 */
FF (b, c, d, a, x[3], 22, 0xc1bdceee);/* 4 */
FF (a, b, c, d, x[4], 7, 0xf57c0faf);/* 5 */
FF (d, a, b, c, x[5], 12, 0x4787c62a);/* 6 */
FF (c, d, a, b, x[6], 17, 0xa8304613);/* 7 */
FF (b, c, d, a, x[7], 22, 0xfd469501);/* 8 */
FF (a, b, c, d, x[8], 7, 0x698098d8);/* 9 */
FF (d, a, b, c, x[9], 12, 0x8b44f7af);/* 10 */
FF (c, d, a, b, x[10], 17, 0xffff5bb1);/* 11 */
FF (b, c, d, a, x[11], 22, 0x895cd7be);/* 12 */
FF (a, b, c, d, x[12], 7, 0x6b901122);/* 13 */
FF (d, a, b, c, x[13], 12, 0xfd987193);/* 14 */
FF (c, d, a, b, x[14], 17, 0xa679438e);/* 15 */
FF (b, c, d, a, x[15], 22, 0x49b40821);/* 16 */

/* Round 2 */
GG (a, b, c, d, x[1], 5, 0xf61e2562);/* 17 */
GG (d, a, b, c, x[6], 9, 0xc040b340);/* 18 */
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GG (c, d, a, b, x[11], 14, 0x265e5a51);/* 19 */
GG (b, c, d, a, x[0], 20, 0xe9b6c7aa);/* 20 */
GG (a, b, c, d, x[5], 5, 0xd62f105d);/* 21 */
GG (d, a, b, c, x[10], 9, 0x2441453);/* 22 */
GG (c, d, a, b, x[15], 14, 0xd8a1e681);/* 23 */
GG (b, c, d, a, x[4], 20, 0xe7d3fbc8);/* 24 */
GG (a, b, c, d, x[9], 5, 0x21e1cde6);/* 25 */
GG (d, a, b, c, x[14], 9, 0xc33707d6);/* 26 */
GG (c, d, a, b, x[3], 14, 0xf4d50d87);/* 27 */
GG (b, c, d, a, x[8], 20, 0x455a14ed);/* 28 */
GG (a, b, c, d, x[13], 5, 0xa9e3e905);/* 29 */
GG (d, a, b, c, x[2], 9, 0xfcefa3f8);/* 30 */
GG (c, d, a, b, x[7], 14, 0x676f02d9);/* 31 */
GG (b, c, d, a, x[12], 20, 0x8d2a4c8a);/* 32 */

/* Round 3 */
HH (a, b, c, d, x[5], 4, 0xfffa3942);/* 33 */
HH (d, a, b, c, x[8], 11, 0x8771f681);/* 34 */
HH (c, d, a, b, x[11], 16, 0x6d9d6122);/* 35 */
HH (b, c, d, a, x[14], 23, 0xfde5380c);/* 36 */
HH (a, b, c, d, x[1], 4, 0xa4beea44);/* 37 */
HH (d, a, b, c, x[4], 11, 0x4bdecfa9);/* 38 */
HH (c, d, a, b, x[7], 16, 0xf6bb4b60);/* 39 */
HH (b, c, d, a, x[10], 23, 0xbebfbc70);/* 40 */
HH (a, b, c, d, x[13], 4, 0x289b7ec6);/* 41 */
HH (d, a, b, c, x[0], 11, 0xeaa127fa);/* 42 */
HH (c, d, a, b, x[3], 16, 0xd4ef3085);/* 43 */
HH (b, c, d, a, x[6], 23, 0x4881d05);/* 44 */
HH (a, b, c, d, x[9], 4, 0xd9d4d039);/* 45 */
HH (d, a, b, c, x[12], 11, 0xe6db99e5);/* 46 */
HH (c, d, a, b, x[15], 16, 0x1fa27cf8);/* 47 */
HH (b, c, d, a, x[2], 23, 0xc4ac5665);/* 48 */

/* Round 4 */
II (a, b, c, d, x[0], 6, 0xf4292244);/* 49 */
II (d, a, b, c, x[7], 10, 0x432aff97);/* 50 */
II (c, d, a, b, x[14], 15, 0xab9423a7);/* 51 */
II (b, c, d, a, x[5], 21, 0xfc93a039);/* 52 */
II (a, b, c, d, x[12], 6, 0x655b59c3);/* 53 */
II (d, a, b, c, x[3], 10, 0x8f0ccc92);/* 54 */
II (c, d, a, b, x[10], 15, 0xffeff47d);/* 55 */
II (b, c, d, a, x[1], 21, 0x85845dd1);/* 56 */
II (a, b, c, d, x[8], 6, 0x6fa87e4f);/* 57 */
II (d, a, b, c, x[15], 10, 0xfe2ce6e0);/* 58 */
II (c, d, a, b, x[6], 15, 0xa3014314);/* 59 */
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II (b, c, d, a, x[13], 21, 0x4e0811a1);/* 60 */
II (a, b, c, d, x[4], 6, 0xf7537e82);/* 61 */
II (d, a, b, c, x[11], 10, 0xbd3af235);/* 62 */
II (c, d, a, b, x[2], 15, 0x2ad7d2bb);/* 63 */
II (b, c, d, a, x[9], 21, 0xeb86d391);/* 64 */

state[0] + = a;
state[1] + = b;
state[2] + = c;
state[3] + = d;

//Zeroize sensitive information.
memset(x, 0, sizeof x);
}

//MD5� block update operation. Continues an MD5 
message-digest

//operation, processing another message block
voi�d MD5::update(const unsigned char input[], 

size_type length)
{
//compute number of bytes mod 64
size_type index = count[0]/8% blocksize;

//Update number of bits
if ((count[0] + = (length << 3)) < (length << 3))
count[1]++;
count[1] + = (length >> 29);

//number of bytes we need to fill in buffer
size_typefirstpart = 64 - index;

size_typei;

//transform as many times as possible.
if (length > = firstpart)
{
//fill buffer first, transform
memcpy(&buffer[index], input, firstpart);
transform(buffer);
//transform chunks of blocksize (64 bytes)
for� (i = firstpart; i + blocksize< = length; 

i + = blocksize)
transform(&input[i]);
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index = 0;
}
else
i = 0;

//buffer remaining input
memcpy(&buffer[index], &input[i], length-i);
}

//for convenience provide a verson with signed char
void MD5::update(const char input[], size_type length)
{
update((const unsigned char*)input, length);
}

//MD5� finalization. Ends an MD5 message-digest 
operation, writing the

//the message digest and zeroizing the context.
MD5& MD5::finalize()
{
static unsigned char padding[64] = {
0x80, �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0,
0, 0, ��0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

if (!finalized) {
//Save number of bits
unsigned char bits[8];
encode(bits, count, 8);

//pad out to 56 mod 64.
size_type index = count[0]/8% 64;
siz�e_typepadLen = (index < 56) ? (56 - index) : 

(120 - index);
update(padding, padLen);

//Append length (before padding)
update(bits, 8);

//Store state in digest
encode(digest, state, 16);
//Zeroize sensitive information.
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memset(buffer, 0, sizeof buffer);
memset(count, 0, sizeof count);

finalized = true;
}

return *this;
}

//return hex representation of digest as string
string MD5::hexdigest() const
{
if (!finalized)
return "";

charbuf[33];
for (inti = 0; i<16; i++)
sprintf(buf+i*2, "%02x", digest[i]);
buf[32] = 0;

return string(buf);
}

ostream& operator<<(ostream& out, MD5 md5)
{
return out << md5.hexdigest();
}

string md5(const string str)
{
MD5 md5 = MD5(str);
return md5.hexdigest();
}

int main(intargc, char *argv[])
{
cout<< "md5 of 'grape': "<< md5("grape") <<endl;
return 0;
}

10.7  Conclusion

Message digest algorithms such as MD5 are mainly used in imple-
menting a digital signature, which requires all of the general proper-
ties mentioned above. However, the property requirement may vary 
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based on which application is using this algorithm. An application 
may depend on some or all of the properties of the MD5. For exam-
ple, some applications use the one-way property of an MD5. Because 
of its property of pseudorandomness, MD5 is also used to be part of 
the mechanism for random number generation. MD5 digests have 
been widely used in the software industry to provide some assurance 
that a transferred file has arrived unbroken. For example, file servers 
often provide a precomputed MD5 (known as md5sum) checksum 
for the files so that a user can match the checksum of the down-
loaded file and verify the integrity [4]. Most Unix-based operating 
systems’ distribution package includes MD5 sum utilities. MD5 is 
also available to Windows operating system users. They may install 
a Microsoft utility or use third-party applications. This type of 
checksum is also utilized by Android ROMs (read-only memories). 
Compared to other digest algorithms, MD5 is simple and easy to 
implement. It performs very fast on a 32-bit machine. It is inferred 
that the difficulty of coming up with two messages having the identi-
cal message digest is on the order of 264 operations, and the difficulty 
of coming up with any message having a given message digest is on 
the order of 2128 operations.
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the SHA, the National Security Agency (NSA) shortly withdrew 
the publication. Then, in 1995, the NSA issued a revised version 
of the SHA that is commonly designated SHA-1. In the SHA-1 
algorithm, a single bitwise rotation is introduced in the message 
schedule of its compression functions over SHA.

11.1  Basic Hash Function Concept

A hash function is a procedure that maps data of arbitrary length 
to data of a fixed length. The values returned by a hash function are 
often known as hash values, hash codes, hash sums, checksums, or 
simply hashes. Generally, a hash function compresses data to a fixed 
size, which could be considered a shortened reference to the original 
data. For compression, hash functions usually utilize a one-way func-
tion of number theory; hence, they are irreversible. Consequently, it is 
infeasible to reconstruct particular data when a hash value is known. 
Utilizing this basic concept, there are some hash algorithms that 
have been proposed: SHA, SHA-1, SHA-224, SHA-256, SHA-384, 
SHA-512, SHA-512/224, and SHA-512/256. Each algorithm is dif-
ferent from the others in terms of one or more parameters. Table 11.1 
illustrates various parameters of different algorithms.

There are a couple of applications where these irreversible hash val-
ues are utilized. They are discussed in detail in the next section.

11.2  Applications

One realistic application of a hash function is a hash table in data 
structure. It is tedious to search particular data in a list linearly; 

Table 11.1  Comparison of Various Secure Hash Algorithms

ALGORITHM
MESSAGE SIZE, 

MI (BITS)
BLOCK SIZE, 
BI (BITS)

WORD SIZE, 
WI (BITS)

MESSAGE DIGEST 
SIZE, DI (BITS)

SHA-1 <264 512 32 160
SHA-224 <264 512 32 224
SHA-256 <264 512 32 256
SHA-384 <2128 1024 64 384
SHA-512 <2128 1024 64 512
SHA-512/224 <2128 1024 64 224
SHA-512/256 <2128 1024 64 256
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instead, a hash value could be computed utilizing the key part of the 
data to keep an indication of the entire data. Now, a simple data com-
parison can be utilized to find out desired data, which accelerates the 
searching mechanism. Another application of the hash function is 
in cryptography, the science of encoding and protecting data. This is 
the application in which we are interested. A hash function can be 
utilized to check the integrity of a piece of data, and often a resultant 
hash value is affixed to the original data. After receiving the data at 
the destination, a receiver utilizes a similar hash function to create a 
hash value. Then, two hash values are compared to check the equal-
ity. If they are similar, the receiver can presume that the integrity is 
preserved in the data. If anyone changes the data, in that case two 
hash values cannot be similar. Hash functions are also utilized for 
authentication and verification.

11.3  Steps of SHA-1

The processing steps of the SHA-1 are discussed below.

11.3.1  Appending Original Message Lengths and Padding

Before starting to process the message, M, it is padded first so that 
its length becomes congruent to 448 modulo 512. If the message is 
already of the desired length, padding is still performed. Thus, the 
number of padding bits could range from 1 to 512 bits. The padding 
starts with 1 bit and is followed by the consecutive number of zeros. 
The last 64 bits are kept empty. These bits are utilized to store the 
length of the original message. These operations are illustrated in 
Figure 11.1.

MNM2

N × 512

Original Message 10000......0 Original Message
Length (bits)

Original Message

M1 . . .

Figure 11.1  Message format after padding and appending original message length.
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11.3.2  Initialization

SHA-1 generates a 160-bit message digest that consists of five 32-bit 
words. Let us call those h0, h1, h2, h3, and h4. Before utilizing these 
words in the processing, they are initialized with the following values:

h0 = 0x67452301

h1 = 0xefcdab89

h2 = 0x98badcfe

h3 = 0x10325476

h4 = 0xc3d2e1f0

These values are stored according to big-endian format, which 
means that the most significant byte of a word is placed in the low-
address byte position. These values change when they are passed 
through different rounds. There are 80 rounds in the SHA-1. After 
the last round, the value of h0|h1|h2|h3|h4 is considered the message 
digest of the entire message. Details of these rounds are discussed 
later in this chapter.

11.3.3  Message Processing

As mentioned previously, every message passes through 80 different 
rounds before generating the final message digest, which is shown in 
Figure 11.2. It can be observed from the figure that in every round, one 
word is passed, and from the message, Mi, only 16 words can be found. 
The rest of the words are generated using the following expression:

	 = ⊕ ⊕ ⊕− − − −
/

3 8 14 16W W W W Wi i i i i

/W i  is then rotated 1 bit to the left to generate Wi. Along with a word, 
one constant, Ki, is passed to the ith round. The value of K varies with 
rounds as follows:

  Ki = 0x5a827999	 (0 ≤ t ≤ 19)

  Ki = 0x6ed9eba1	 (20 ≤ t ≤ 39)

  Ki = 0x8f1bbcdc	 (40 ≤ t ≤ 59)

  Ki = 0xca62c1d6	 (60 ≤ t ≤ 79)
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Every round acquires a 160-bit or 5-word buffer value from the 
previous round, except the initial one, which acquires this value 
from the initialization technique discussed in the previous sub-
section. All the operations involved in a round are depicted in 
Figure 11.3. Each round utilizes a function, F, which is calculated 
as follows:

Assume,

	 A = h(i − 1, 1)

	 B = h(i − 1, 2)

	 C = h(i − 1, 3)

++++

Round 79

+

Round 1
K1

K79

<<<1+
W79

W63

W65

W71

W76

W1

K0

W0

h0 h1 h2 h3

Hi–1

Hi

h4

M
es

sa
ge

Round 0

Figure 11.2  Processing of a 512-bit block.
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where LSj is rotating j number of bits to the left and i is the round number.

11.3.4  Output

A 160-bit output is produced after completing all the rounds as follows:

  Hi = sum(H(i − 1), h79)

h(i–1,4)h(i–1,3)h(i–1,2)h(i–1,1)h(i–1,0)

<<<5

F

h(i,4)

Ki

Wi

h(i,3)h(i,2)h(i,1)h(i,0)

+

+

+

+
<<<30

Figure 11.3  Operations of a single round.
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In this process, all the blocks are processed. The final 160-bit resultant 
output is considered the message digest. An example is given below to 
understand the SHA-1 in detail.

11.4  An Example

The following example demonstrates the procedures followed by the 
SHA-1 algorithm to generate a 160-bit message digest.

	 1.	Let us assume that the message for which a user wants to find 
the message digest is: The quick fox jumps over the lazy dog.

	 2.	Following is the bit-level representation of the above message:

01010100 01101000 01100101 00100000 01110001 
01110101 01101001 01100011 0110101100100000 
01100110 01101111 01111000 00100000 01101010 
01110101 01101101 0111000001110011 00100000 
01101111 01110110 01100101 01110010 00100000 
01110100 0110100001100101 00100000 01101100 
01100001 01111010 0111100100100000 01100100 
0110111101100111 00101110

	 3.	The message contains 304 bits. Therefore, it is necessary to pad 
the message so that its length becomes congruent to 448 mod-
ulo 512. Since the entered message is 304 bits long, 144 bits 
padding is necessary. The first bit is 1 and the remaining 
143  bits are zeros. At the end, a 64-bit value appends that 
represents the original size of the message. For  this specific 
example, we could find the following message after padding 
and appending the length of the original message:

01010100 01101000 01100101 00100000 01110001 
01110101 01101001 01100011 0110101100100000 
01100110 01101111 01111000 00100000 01101010 
01110101 01101101 0111000001110011 00100000 
01101111 01110110 01100101 01110010 
0010000001110100 0110100001100101 00100000 
01101100 01100001 01111010 01111001 00100000 
01100100 0110111101100111 00101110 10000000 
00000000 00000000 00000000 00000000 00000000 
0000000000000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 
0000000000000000 00000000 0000000000000000 
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00000000 00000000 00000000 00000000 
0000000100110000

	 4.	The above message is now divided into 16 words and utilized in 
16 different rounds ranging from 0 to 15. The first 32 bits are 
stored in W0 and the last 32 bits are stored in W15. How to calcu-
late the other words that could be acquired from the message is 
already discussed above. A 160-bit buffer is used to store the result 
of the hash function. In this example, W0 = 01010100 01101000 
01100101 00100000. K0 is also known, which is 0x5a827999, 
or 01011010100000100111100110011001 (in binary). Initially, 
a 160-bit buffer is initialized as the following:

h0: 00000001 00100011 01000101 01100111
h1: 10001001 10101011 11001101 11101111
h2: 11111110 11011100 10111010 10011000
h3: 01110110 01010100 00110010 00010000
h4: 11110000 11100001 11010010 11000011

	 After round 0:
h0: 11010011 11111101 00011100 11110100
h1: 00000001 00100011 01000101 01100111
h2: 11100010 01101010 11110011 01111011
h3: 11111110 11011100 10111010 10011000
h4: 01110110 01010100 00110010 00010000

	 After round 1:
h0: 11101110 11110000 11000101 01011011
h1: 11010011 11111101 00011100 11110100
h2: 11000000 01001000 11010001 01011001
h3: 11100010 01101010 11110011 01111011
h4: 11111110 11011100 10111010 10011000

	 After round 2:
h0: 10110001 00100101 00001111 00110011
h1: 11101110 11110000 11000101 01011011
h2: 01110100 00111111 00000111 11111101
h3: 11000000 01001000 11010001 01011001
h4: 11100010 01101010 11110011 01111011
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	 After round 3:
h0: 01111010 00111101 10010000 00001001
h1: 10110001 00100101 00001111 00110011
h2: 00111011 01111100 11110001 10010110
h3: 01110100 00111111 00000111 11111101
h4: 11000000 01001000 11010001 01011001

	 After round 4:
h0: 00101111 00100011 11001101 00110001
h1: 01111010 00111101 10010000 00001001
h2: 01101100 11001001 11000011 01001100
h3: 00111011 01111100 11110001 10010110
h4: 01110100 00111111 00000111 11111101

	 .
	 .
	 .
	 After final round (i.e., 79):

h0: 10100110 11101101 10001111 00011011
h1: 11011100 01010111 10011001 10111010
h2: 01000000 01000111 11111110 00000110
h3: 01000011 11001000 00111000 00101110
h4: 00010100 00111010 00100010 11100001

Since the message is less than 512 bits, a single block processing 
is enough to find out the final message digest. In case of a larger 
block, this procedure needs to continue again until all the blocks are 
processed.

Therefore, the final message digest would be

h0: 10100111 00010000 11010101 10000010
h1: 01100101 00000011 01100111 10101010
h2: 00111110 00100100 10111001 10011111
h3: 10111001 00011100 01101011 00111110
h4: 00000100 00011100 11110101 10100100

The message digest (in hex):
82d510a7aa6703659fb9243e3e6b1cb9a4f51c04
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11.5  Implementation

All the codes (and program files) related to the SHA-1 algorithm are 
included below with relevant comments.

/** SHA1.h file **/
#ifndef SHA1_H_
#define SHA1_H_

#include <stdint.h>
#include <vector>
#include <iostream>
#include <stdio.h>
#include <bitset>
#include <climits>

using namespace std;

#define MB 64//size of the message block in bytes
#def�ine AB 8//appended bytes where the length of the 

message is stored
#define Byte 8

template<typename T>
voidshow_binrep(const T& a)
{
const char* beg = reinterpret_cast<const char*>(&a);
const char* end = beg + sizeof(a);
while(beg ! = end)
std::cout<<std::bitset<CHAR_BIT>(*beg++) << ' ';
std::cout<< '\t';
}

class SHA1 {
public:
SHA1();
~SHA1();

void Reset();
voidSetMessage();
voidMessageBlockProcessing(uint8_t* MessageBlock);
voidMessagePadding();
voi�d Rounds (uint32_t *DB, uint32_t W, uint32_t K, 

intround_num);
void Result();



217Secure Hash Algorithm

voidClearMessageBlock();
voidClearDigestBlock();
voidShowMessageDigest();
private:
uint8_tMessageBlock[64];
uint32_tDigestBlock[5];
	 uint8_t *Message;
vector<char>InputMessage;
uint64_tMessageSize;
uint64_tMessageSizeAfterPadding;
};

#endif//SHA1_H_

/**SHA1.cpp file **/
#include <cstdlib>
#include "sha.h"

#def�ine LeftCircularShift(bits,word) (((word) << 
(bits)) | ((word) >> (32-(bits))))

SHA1 :: SHA1 ()
{
Reset();
}

SHA1 :: ~SHA1 () {}

void SHA1 :: ClearMessageBlock()
{
for (inti = 0; i< MB; i++) {
MessageBlock[i] = 0;
	 }
}

void SHA1 :: ClearDigestBlock()
{
for (inti = 0; i< 5; i++) {
DigestBlock[i] = 0;
	 }
}
void SHA1 :: Reset ()
{
ClearMessageBlock();
ClearDigestBlock();
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DigestBlock[0] = 0x67452301;
DigestBlock[1] = 0xEFCDAB89;
DigestBlock[2] = 0x98BADCFE;
DigestBlock[3] = 0x10325476;
DigestBlock[4] = 0xC3D2E1F0;
}

void SHA1 :: ShowMessageDigest ()
{
cout<< "h0: "; show_binrep(DigestBlock[0]); cout<<endl;
cout<< "h1: "; show_binrep(DigestBlock[1]); cout<<endl;
cout<< "h2: "; show_binrep(DigestBlock[2]); cout<<endl;
cout<< "h3: "; show_binrep(DigestBlock[3]); cout<<endl;
cout<< "h4: "; show_binrep(DigestBlock[4]); cout<<endl;
}

void SHA1 :: SetMessage() {
cout<< "Put a message (press enter to finish): ";
char c = getchar();
while (c ! = '\n') {
InputMessage.push_back(c);
	 c = getchar();
	 }
MessagePadding();
}

void SHA1 :: MessagePadding()
{
uint64_tMessageSize = (uint64_t)InputMessage.size();
uint64_t n = ((MessageSize + AB)/MB) + 1;
MessageSizeAfterPadding = n * MB;
	 Message = new uint8_t[MessageSizeAfterPadding];

int�padding_bytes = MessageSizeAfterPadding - 
(MessageSize + AB);

cou�t<<dec<< "Number of padding bytes are: " <<padding_
bytes<<endl;

for (uint64_t i = 0; i<MessageSize; i++) {
	 Message[i] = InputMessage[i];
	 }
Message[MessageSize] = 0x80;

for� (int i = MessageSize + 1; 
i<MessageSizeAfterPadding; i++) {
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	 Message[i] = 0;
	 }

uint64_tMessageSizeInBit = MessageSize * Byte;

Mes�sage[56] = (MessageSizeInBit& 0x000000000000ff00) 
>> 56;

Mes�sage[57] = (MessageSizeInBit& 0x000000000000ff00) 
>> 48;

Mes�sage[58] = (MessageSizeInBit& 0x000000000000ff00) 
>> 40;

Mes�sage[59] = (MessageSizeInBit& 0x000000000000ff00) 
>> 32;

Mes�sage[60] = (MessageSizeInBit& 0x000000000000ff00) 
>> 24;

Mes�sage[61] = (MessageSizeInBit& 0x000000000000ff00) 
>> 16;

Mes�sage[62] = (MessageSizeInBit& 0x000000000000ff00) 
>> 8;

Message[63] = MessageSizeInBit& 0x00000000000000ff;

for (int i = 0; i<MessageSizeAfterPadding; i++) {
show_binrep(Message[i]);
	 }
}

voi�d SHA1 :: Rounds (uint32_t *DB, uint32_t W, 
uint32_t K, intround_num)

{
uint32_t temp;	 /* Temporary word value	 */

cout<<endl;
if (round_num> = 0 &&round_num< 20) {
temp = LeftCircularShift(5,DB[0]) +
		  ((DB[1] & DB[2]) | ((~DB[1]) & DB[3])) + 
DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 20 &&round_num< 40) {
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temp = LeftCircularShift(5,DB[0]) + (DB[1] ^ DB[2] ^ 
DB[3]) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 40 &&round_num< 60) {
temp = LeftCircularShift(5,DB[0]) +
		  ((DB[1] & DB[2]) | (DB[1] & DB[3]) | 
(DB[2] & DB[3])) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 60 &&round_num< 80) {
temp = LeftCircularShift(5,DB[0]) + (DB[1] ^ DB[2] ^ 
DB[3]) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else {
cout<< "Wrong round is put" <<endl;
exit(1);
	 }
}

void� SHA1 :: MessageBlockProcessing (uint8_t* 
MessageBlock)

{
uint32_t K[4] = {0x5A827999,
			   0x6ED9EBA1,
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			   0x8F1BBCDC,
			   0xCA62C1D6
	 };

uint32_t	 W[80];	/* Word sequence	 */
uint32_t	 A = DigestBlock[0],
		  B = DigestBlock[1],
		  C = DigestBlock[2],
		  D = DigestBlock[3],
	 E = DigestBlock[4]; /* Word buffers	 */

	 //Initialize the first 16 words in the array W
uint8_t t;
for(t = 0; t < 16; t++)
	 {
	 W[t] = MessageBlock[t * 4] << 24;
	 W[t] | = MessageBlock[t * 4 + 1] << 16;
	 W[t] | = MessageBlock[t * 4 + 2] << 8;
	 W[t] | = MessageBlock[t * 4 + 3];
	 }

	 //Storing other 64 words in the array W
for(t = 16; t < 80; t++)
	 {
	 W[t] = LeftCircularShift(1, W[t-3] ^ W[t-8] ^ W[t-14] 
^ W[t-16]);
	 }

	 //round function calling
for(t = 0; t < 20; t++)
	 {
Rounds(DigestBlock, W[t], K[0], t);
	 }

for(t = 20; t < 40; t++)
	 {
Rounds(DigestBlock, W[t], K[1], t);
	 }

for(t = 40; t < 60; t++)
	 {
Rounds(DigestBlock, W[t], K[2], t);
	 }
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for(t = 60; t < 80; t++)
	 {
Rounds(DigestBlock, W[t], K[3], t);
	 }

	 //final addition
DigestBlock[0] + = A;
DigestBlock[1] + = B;
DigestBlock[2] + = C;
DigestBlock[3] + = D;
DigestBlock[4] + = E;
cout<< "Message Digest: " <<endl;
ShowMessageDigest();

}

void SHA1 :: Result () {
for� (uint64_t i = 0; i<MessageSizeAfterPadding; i = i 

+ 64) {
uint8_t temp[64];
for (uint64_t j = i; j <i + MB; j++) {
temp[j - i] = Message[j];

	 }
MessageBlockProcessing (temp);

	 }

cout<< "Final Message Digest: " <<endl;
ShowMessageDigest();
cout<< "In hex: " <<endl;
for (inti = 0; i< 5; i++)
cout<< hex <<DigestBlock[i];
cout<<endl;

}

/** main.cpp **/
#include "sha.h"

int main()

{
	 SHA1 sha;
sha.ShowMessageDigest();
sha.SetMessage();
sha.Result();

return 0;

}



223Secure Hash Algorithm

11.6  Conclusion

The SHA-1 is considered one of the most secure hash algorithms. 
Therefore, it is utilized is various applications, like Secure Sockets Layer 
(SSL), Pretty Good Privacy (PGP), Extensible Markup Language 
(XML) signatures, in the Microsoft® Xbox, and in hundreds of other 
applications (including from IBM, Cisco, Nokia, etc.). After a thor-
ough cryptanalysis over the SHA-1 in 2005, it has been observed that 
in practice, it is weaker than its theoretical strength. Consequently, 
NIST made a recommendation to all federal agencies to migrate to the 
SHA-2 algorithm by 2010.
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Cryptography, when applied to network security, describes the art 
of coding information into secrets that are transmitted over a public 
channel to an intended receiver. The latter is the only entity capable of 
recovering the initial information from the secrets. That is, any entity 
can get the encrypted information, i.e., the ciphertext. However, it will 
not be able to recover the original content of the message, namely, 
the plaintext, unless it gets the key that has been used for encryp-
tion. Cryptography has been used for a long time to provide security 
properties such as data confidentiality, data integrity, and data origin 
authentication.

Data confidentiality ensures that the ciphertext does not pro-
vide any information about the plaintext. Generally, the confiden-
tiality property is provided by symmetric or asymmetric encryption. 
Integrity mechanisms serve to detect any modification of the trans-
mitted data thanks to the use of hash functions in a signature or in a 
keyed-hash message authentication code (HMAC).

Cryptography not only serves to authenticate communicating enti-
ties thanks to the use of authentication protocols such as Transport 
Layer Security (TLS), but also serves to authenticate data origin 
thanks to the use of HMAC or signatures. Moreover, cryptography 
ensures nonrepudiation; namely, none of the communicating parties 
could deny its participation to the communication.

In this chapter, we review the concepts of symmetric cryptography 
and public-key cryptography in Section 12.1. We review the famous 
Diffie–Hellman and RSA algorithms. Then, we introduce elliptic 
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curve cryptography (ECC) before describing ID-based cryptography 
(IBC) in Section 12.2.

12.1  Introduction to Cryptography

Cryptography is based on mathematical algorithms that use, in gen-
eral, abstract algebra and groups theory. These algorithms need a 
secret input that is usually named a key. The encryption schemes are 
trapdoor functions that are easy to compute with the key. However, 
they are hard or almost impossible to invert without the key. 
Kerckhoffs [1] announced that “a cryptosystem should be secure even 
if everything about the system is public knowledge, except the key.” 
The same principle was reformulated by Shannon [2], as “the enemy 
knows the system.”

During the second part of the twentieth century, the field of 
cryptography expanded drastically thanks to the appearance of new 
cryptographic systems. In fact, Diffie and Hellman revolutionized cryp-
tography in 1976 by defining the first asymmetric cryptosystem. Then, 
Shamir proposed the RSA algorithm with Rivest and Adleman, before 
publishing his outstanding works on threshold and ID-based cryptog-
raphies. Then in 1985, Koblitz and Miller presented the first elliptic 
curve-based cryptosystem. Finally, quantum cryptography appeared as 
the cryptography of the future, as it relies on optic and light theories, 
but not on groups and fields theory. In quantum cryptography, every 
bit is represented by the polarization of a photon.

In this section, we briefly describe the concepts of symmetric 
cryptography (Section 12.1.1). Then, in Section 12.1.2 we present 
public-key cryptography in depth.

12.1.1  Symmetric Cryptography

Symmetric cryptography is based on sharing a secret key between 
two communicating entities, Alice and Bob. Symmetric cryptog-
raphy, as well as asymmetric cryptography, relies on the use of two 
related algorithms for message encryption and decryption. We denote 
the encryption algorithm by E and the decryption algorithm by D. 
The encryption algorithm takes as inputs the plaintext message m 
and a key k, and outputs the ciphertext c. Meanwhile, the decryption 
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algorithm D takes as inputs c and k, and outputs m. Let K be the set 
of keys, M the set of messages, and C the set of ciphertexts; we define 
E and D as follows:

	 E:M  × K → C	 D:C × K → M
	 (m,k) → c	 (c,k) → m

We say that an encryption algorithm is well defined if it verifies 
the equation

	 D (E (m, k), k) = m

The Vernam one-time pad [3] is one of the oldest symmetric 
encryption algorithms. It was patented in 1919. Vernam assumes 
that the message m, the key k, and the c ciphertext have the same bit 
lengths. The one-time pad relies on the exclusive-or (XOR) as encryp-
tion and decryption functions. Recall that XOR is equivalent to a 
binary sum modulo 2. When Alice wants to cipher a message m to 
Bob (Figure 12.1), Alice computes c = m ⊕ k. Bob deciphers the mes-
sage using the same key m = c ⊕ k. Vernam’s encryption is called a one-
time pad, as the key k is used once for ciphering a unique message m. 
Therefore, the key has to be renewed for every message.

Shannon proved that the Vernam algorithm provided perfect secrecy 
if the key length is at least equal to the message length. Perfect secrecy 
means that an eavesdropper, Eve, does not distinguish the encryption 
of a message m0 from that of a message m1. That is, no information 
is recovered about the plaintext from the ciphertext. In other words, 
Vernam’s algorithm verifies the following equation for every key k 
uniformly chosen in K:

	 Pr (m0 ⊕ k = c) = Pr (m1 ⊕ k = c), ∀ m0, m1 ∈ M/m0 ≠ m1	 (12.1)

k = 10101
AliceBob

C

Eve
m?

m = 00111
m = c k

k = 10101

c = 10010

m = 00111
c = m k

Figure 12.1  Vernam’s one-time pad.
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In other words, Equation (12.1) implies that the ciphertexts are 
uniformly distributed in C. Vernam encryption has many drawbacks. 
We stated that the key has to be renewed for every message. As such, 
Alice and Bob have to provide a secure communication channel to 
exchange a new key for every transmitted message. This is not fea-
sible in practice because Alice and Bob will be wasting half of their 
communication time in exchanging keys (supposing that they man-
age a secure channel, for example, by using quantum cryptography). 
In order to remove the problems of the one-time pad algorithm, new 
types of symmetric encryption algorithms appeared. They are called 
the block ciphers, as they cipher small blocks of data using small keys 
of 64, 128, or 256 bits length. These algorithms rely on permutation. 
The most famous ones are the Data Encryption Standard (DES) [4] 
and the Advanced Encryption Standard (AES) [5].

12.1.2  Asymmetric Cryptography

Public-key or asymmetric cryptography gives two entities the oppor-
tunity to exchange information over an insecure channel while pro-
viding data confidentiality, nonrepudiation, and authenticity. In 
addition, it permits two entities that have never met before to mutu-
ally authenticate themselves. Contrary to symmetric cryptography 
where two communicating entities have to share the same secret key, 
public-key cryptography relies on two keys to secure the exchanged 
information. The pair of keys is formed by a public key and a private 
key, which are related by a mathematical equation. Solving this math-
ematical equation comes to breaking a hard mathematical problem 
such as the discrete logarithm problem (DLP). Each entity shares 
its public key with its communicating peers. However, its private key 
must be kept secret (Figure 12.2).

In practice, a public-key infrastructure (PKI) is deployed and a cer-
tification authority (CA) is used to certify the mapping between an 
entity and its public key. The CA is a trusted third party that signs a 
certificate that contains the public key and the identification informa-
tion of a user. In addition, the certificate provides information about 
its issuing CA and includes a unique serial number. The serial number 
serves to quickly identify the certificate during management opera-
tions. The CA should not know the private key, which corresponds 
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to the public key included in the certificate. Examples of CAs include 
Verisign, Comodo, CAcert, and Thawte.

Many certification authorities can be overlapped in a hierarchical 
fashion. That is, the certificate of the parent CA serves to verify the 
certificates of its children CAs until reaching the root CA. The root 
CA self-signs its own certificate, and it has to be trusted. In practice, 
we define two types of CAs. The private CA is defined inside a private 
company or a university. It is easy to manage, as certificate usage is 
limited to a local area. In addition, the user’s identification is easy and 
can be done, for example, in a human resources service before issu-
ing a certificate. Meanwhile, the public CA issues certificates to secure 
transactions over the Internet and to authenticate unknown parties. 
These certificates are used widely and are not limited to small domains. 
This type of CA requires more caution when authenticating the users.

The CA manages certificate revocation lists (CRLs) to indicate 
which certificates are revoked, and so the keys that become invalid. 
CRLs can be viewed as databases that are securely managed by the 
CA. In practice, the CA has two different manners of updating the 
CRLs. In the first case, the CA requests from the users to check 
periodically the CRL. As such, the users have to always be online 
to check the list of revoked certificates. In the second case, the CA 
distributes its CRL periodically to the users.

The two ways of CRL management increase the bandwidth con-
sumption due to the number of CRL requests and responses, or due to 
the size of the transmitted CRL. Moreover, in the period separating 
two CRL updates, users do not know the newly revoked certificates, 
and consequently, attackers that successfully compromised a pri-
vate key (also very recently revoked) can impersonate as a legitimate 

Alice (A)Bob (B)

E(m, PubA)

m, Sign(Hash(m), - PrivB)

Hash(m)´= Verify(Sign(Hash(m), PrivB), PubB)

m = D(E(m, PubA), PrivA)

- PrivB
- PubA

- PrivA
- PubB

Encryption:

Signature:

?

Figure 12.2  Public-key cryptography.
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network user. For more details about PKI, interested readers are 
invited to consult the following books: [6], [7], and [8].

We next present the first public-key scheme: the Diffie and 
Hellman (DH) key exchange algorithm [9] (Section 12.1.3). Then, 
we review the Rivest, Shamir, and Adleman (RSA) algorithms [10] 
(Section 12.1.4). DH and RSA cryptosystems are based on the theory 
of multiplicative groups and on integer factorization into a product of 
primes, respectively. Finally, we describe the elliptic curve cryptogra-
phy (ECC) [11] that relies on an additive group of points of an elliptic 
curve (Section 12.1.5).

12.1.3  Diffie–Hellman (DH) Algorithms

Diffie and Hellman  [9] proposed in 1976 a mechanism to share a 
secret key between two parties, Alice (A) and Bob (B). The public ele-
ments provided to each party are the prime P and a generator g of �*

P . 
Alice and Bob generate their public elements KA = g a and KB = g b and 
from their secret private keys a and b, which are randomly selected in 
� –1

*
P . The DH steps are the following:

•	 Alice → Bob: {IDA, KA}: Alice starts the key computation by 
sending to Bob her public key KA with her identity IDA. Upon 
receiving this message, Bob computes the shared key KAB such 
that KAB = (KA)b = (ga)b. Then, Bob responds to Alice with his 
own public key KB = gb.

•	 Bob → Alice: {IDB, KB}: Upon receiving this message, Alice 
computes the shared key KAB = (gb)a.

The DH weakness is the man in the middle (MIM) attack. That 
is, Eve creates a shared secret with Alice and Bob by impersonating 
as Bob from one side and as Alice from the other side. However, the 
MIM attack can be easily removed by making Alice and Bob sign 
their chosen public elements.

The DH security is based on the definition of the following math-
ematical problems:

•	 The Diffie–Hellman problem (DHP) consists of recovering the 
secret key k = ga.b mod[p] given the prime p, the generator g of 
�*

P, gamod[p] and gbmod[p].
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•	 The discrete logarithm problem (DLP) consists of finding the 
secret value s ∈ � –1

*
P  given the prime p, the generator g of �*

P, 
and the public value k such that k = ga mod[p]. It is clear that the 
DHP is not harder than the DLP because any algorithm that 
solves the DLP solves the DHP too. Indeed, if Eve recovers a 
from ga, she will be able to compute gb.a using the captured gb.

There are various methods for solving the DLP. The basic one is the 
exhaustive search, which consists of evaluating gi for i = 0, 1, ..., p – 2 until 
finding the sought value. This method requires an average of O(p) mul-
tiplications. The exhaustive search is actually inefficient for long prime p. 
For example, if p is 160 bits long, the time needed for trying all the possi-
bilities is around O(2160). However, more efficient algorithms such as the 
baby-step giant-step algorithm and Pollard’s rho algorithm require )(O p  
steps. In addition, Pohlig–Hellman proposed an algorithm that solves 

the DLP in ∑ ( )+



 = Π

=
=log( – 1) where – 1

1
1O e p p p pi i

i

r
i
r

i
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Pohlig–Hellman thought that the decomposition of p – 1 into a product 
of prime numbers would impact the DLP resolution time, as it consists 
of finding s from k = gs mod[p] with ∈ � –1p . Nowadays, the index calculus 

is the most efficient method for solving the DLP in )( log( ). log(log( ))O ec p p . 
More details about DLP resolution can be found in Chapter 3 of the 
Handbook of Applied Cryptography [12].

12.1.4  Rivest, Shamir, and Adleman (RSA) Algorithms

Rivest, Shamir, and Adleman [10] presented the famous RSA schemes 
in 1978. RSA key generation, encryption, and signature are based on 
the difficulty of integer factorization into a product of prime numbers.

To generate an RSA key, we first choose two large and distinct 
random primes p and q and compute the integer n as n = p.q. Then, 
we compute the Euler function φ(n) = (p–1).(q–1). We select a ran-
dom integer e such that 1 < e <φ (n), where e and φ(n) are coprime 
(i.e., gcd (e, φ(n)) = 1). Finally, we compute the unique integer d such 
that 1 < d < φ(n) and e. d. = 1 mod[φ(n)]. Such an integer d can be 
found using the extended Euclidean algorithm ([13], Chapter 1). The 
public key is formed by the tuple (n, e) and its corresponding private 
key is the integer d.
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We present, in the following, the RSA encryption and signature 
algorithms:

•	 RSA encryption and decryption: Let us suppose that Bob is 
going to encrypt a message to Alice. Bob transforms the mes-
sage to an integer m in �*

n. Then, Bob computes c = me mod[n] 
and sends the ciphertext c to Alice. To recover the plaintext 
from the ciphertext, Alice executes the following operation:

	 cdmod[n] = me.dmod[n] = m(1+k.φ(n)) mod[n] = m mod[n]

	 Note that the decryption is based on the theorem of Euler, 
which states:

	 xφ(n) = 1 mod[n], ∀ x ∈ �*
n

•	 RSA signature generation and verification: We suppose that 
Bob wants to sign the message m before sending it to Alice. 
Bob first computes the hash h = H(m) and transforms it to an 
integer in �*

n. Then, using its private key d, he computes s = hd 
mod[n]. Finally, Bob sends s and m to Alice. Alice verifies the 
RSA signature with Bob’s public key (e, n). First, she com-
putes h′ = H(m). Then, she recovers h = semod[n] = he,dmod[n]= 
h  mod[n]. Finally, Alice compares h to h′. If the two hash 
values are equal, the signature is valid; otherwise, it is rejected.

The RSA security depends on the difficulty of factoring the number 
n into the product of two primes p and q. If the trivial trial and division 
method is used for the factoring, we divide n by i = 2, 3, 5, 7, 11, ... until 
hitting the smallest prime between p and q. That is, the running time 
for the trial and division algorithm will be around either o(p) if p < q 
or o(q) if q < p. However, a more efficient method, called quadratic sieve 
factoring, factors the integer n into a product of two primes in approxi-
mately )( log( ). log(log( ))O e n n . More details about sieving methods can be 
found in Chapter 3 of the Handbook of Applied Cryptography [12].

12.1.5  Elliptic Curve Cryptography (ECC)

Elliptic curves (ECs) are cubic forms that are defined over finite fields, 
generally a prime or a binary field denoted Fp or 

2 pF , where p and 2 p
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represent the order of the field. By order, we mean the number of 
elements of the field. In this chapter, we only consider elliptic curves 
that are defined over finite prime fields. That is, all the calculus in the 
field is done mod[p].

An elliptic curve ( )E pF  is defined by the following Weierstrass 
equation [14]:

	
+ + = + + +

∈ ∈

F

F

( ) : . . . . . ,

where , {1, 2,3,4,6}

2
1 3

3
2

2
4 6E y a x y a y x a x a x a

a i
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The points of F( )E p  form an additive abelian group. That is, the binary 
operation of the group is the addition of two points, and the identity 
element of the group is a special point, called the point at infinity P∞.

The addition of EC points can be specified graphically as pre-
sented in Figure 12.3. Let P and Q be two distinct points belonging 
to F( )E p ; the sum S of P and Q is obtained by drawing a line through 
P and Q. This line intercepts E in a third point R.S is the reflection of 
R relative to the x-axis.

The double of the point P is obtained by drawing the tangent to 
F( )E p  in P. This tangent intercepts the curve in a point R. S, the sym-

metric of R relative to the x-axis, is equal to 2.P. When the tangent in 
P happens to be vertical, we say that 2.P = P∞, where P∞ is the identity 
element of the additive group. For simplicity, we imagine that the 
curve cuts the vertical tangent at infinity in the point P∞.

y2 = x3 – x

P

Q

X

2.X

R

S = P + Q

Figure 12.3  Elliptic curve points addition.
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To compute the inverse –P of a point P = (x, y), we just take –P = (x, –y). 
As such, the vertical line passing through P and –P cuts the curve at 
P∞. That is P + (–P) = P∞.

The elliptic curve F( )E p  is said to be well defined (or smooth) if its 
discriminant ∆ is different from 0. The condition ∆ ≠ 0 ensures that 
the EC does not contain singular points for which the addition can-
not be defined. The expression of the discriminant ∆ is described by 
the following equalities:

	

∆ = +

= +
= +

= +

= + +
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When the characteristic p of the field Fp is greater than 2, the 
Weierstrass equation is simplified to become:

	 ∈( ) : = + . + , where ,2 3E y x a x b a bp pF F

	 ∆ = –16.(4.a3 + 27.b2)

12.1.5.1  ECC Key Generation  Let us take G, a subgroup of F( )E p , 
which is generated by the point P of prime order n. G contains the n 
following points: {P∞, P, 2.P, 3.P, ..., (n–1).P}. Alice chooses a random 
integer a ∈ F( )E p  as her private key and computes her corresponding 
public key as KA = a.P. The problem of finding a given the primitive 
root P of G and the public key KA denotes the Elliptic Curve Discrete 
Logarithm Problem (ECDLP). The ECDLP can be solved using the 
baby-step giant-step algorithm or Pollard’s rho algorithm in ( )O n  
steps ([13], Chapter 5).

The DH protocol can be easily adapted to the elements of the addi-
tive group G. Alice and Bob have to just exchange their public ele-
ments KA = a.P and KB = b.P. Of course, Alice and Bob keep secret 
their respective private keys a and b. Then, they compute respectively 
their shared key as

	 KAB = a.b.P = b.a.P = KBA
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In cryptography, the security level of a symmetric encryption algo-
rithm is defined as the number of operations needed to break the 
algorithm when an lk-bit key is used. For example, the number of ele-
mentary operations needed to break a block cipher encryption scheme 
is equal to 2l k [15]. The same result can be retrieved from Vernam’s 
one-time pad where c = m ⊕ k. The attacker has theoretically to try 2l k

possibilities to find the good key k to recover m from c. Nowadays, lk has 
to be at least equal to 80 bits. As such, the key research will take O(280) 
steps. Using a 4 GHz processor, we need around 9 million years to try 
all the possibilities, assuming that each possibility is computed during 
a clock cycle.

In asymmetric cryptography, the security level of an algorithm is 
set with respect to the hardness of the factoring integer (the case of 
RSA) or solving the ECDLP (the case of ECDSA). This concept of 
security level sets the length in bits of RSA and EC keys. Table 12.1 
presents the equivalence between the lengths of RSA and EC keys, 
respectively, to the security level lk, where lk corresponds to the length 
in bits of a symmetric key k.

It is clear from Table 12.1 that it is more interesting to use EC keys 
than RSA keys when asymmetric cryptography is needed. For example, 
the current key size recommendation for legacy public schemes is 2048 
bits. A vastly smaller 224-bit ECC key offers the same level of security. 
This advantage only increases with the security level. For example, a 
3072-bit legacy key and 256-bit ECC key are equivalent, something 
that becomes important as stronger security systems become mandated 
and devices get smaller. ECC usage is expanding because elliptic curves 
require less storage, less power, less memory, and less bandwidth. They 
permit the implementation of cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, and smart cards. 
They also provide a big gain in situations where efficiency is important.

12.1.5.2  Elliptic Curve Digital Signature Algorithm  We present, in this 
section, the ECDSA, which is the elliptic curve analog of the digital 

Table 12.1  RSA and ECC Key Length Equivalences for the Same Security Levels

lk 80 112 128 192 256
RSA key length (bits) 1024 2048 3072 7680 15,360
ECC key length (bits) 160 224 256 384 512
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signature algorithm (DSA) [16]. Let us consider G, a subgroup of an 
elliptic curve F( )E p , which is generated by the point P of prime order n.

To sign a message m, Bob chooses a random k in �*
n and computes 

the point k. P = (x, y). Then, he computes e = h(m) and s = k–1(e+b.x) 
mod[n], where b is Bob’s private key. Finally, Bob sends m and its 
signature (x, s) to Alice.

At the reception (x, s) of and m, Alice computes e = h(m) and 
calculates the point X using the public key of Bob KB = b. P as follows:

	 X = e.s–1.P + x.s–1.KB = (x′, y′)
Then, Alice compares x′ to x. If the two values are equal, the sig-

nature is valid.
The signature verification holds because we have s = k–1 (e + b.x) 

mod[n] which implies that k = s–1 (e + b.x) mod[n]. Recall that the 
public key of Bob is KB = b. P, we get

	 X = (x′, y′) = e.s–1.P + x. s–1. KB = s–1(e.P + x.b.P) = k.P = (x, y)
In the next section, we introduce IBC, which is a promising kind 

of asymmetric cryptography. In IBC, the public key of an entity is 
directly derived from its identity.

12.2  ID-Based Cryptography

IBC was initially introduced by Shamir [17] to provide entities with 
public and private key pairs with no need for certificates, CA and 
PKI. Shamir assumes that each entity uses one of its identifiers as 
its public key. These identifiers have to be unique. In addition, he 
assigns the private key generation function to a special entity called 
the private key generator (PKG). That is, before accessing the net-
work, every entity has to contact the PKG to get back a smart card 
containing its private key. This private key is computed so as to be 
bound to the public key of the entity.

During the last decade, IBC has been improved by the integration 
of ECC [14]. As a consequence, new ID-based encryption and signa-
ture schemes emerged, and they differ from Shamir’s method in that the 
PKG does not rely on smart cards to store the private key and the cipher-
ing information. In 2001, Boneh and Franklin [18] presented the first 
ID-based encryption scheme, where they used bilinear pairing functions 
to map elliptic curve points to a number in a multiplicative group.



238 ﻿Aymen Boudguiga et al.

Sometimes, certificates are considered as IBC, as they bind the 
user’s public key to his or her identity. In this chapter, IBC is con-
sidered as the cryptographic schemes where the public key is com-
putationally derived from the identity. The public key is the output 
of a function (mostly a hash function) that takes as input the user’s 
identity.

There exist many types of IBC schemes. We focus, in this work, 
on the most commonly used schemes based on pairing functions [19]. 
For other schemes, we can state the work done by Cocks [20] for 
an ID-based encryption scheme using the computational difficulty of 
integer factorization and the quadratic residuosity problem.

In the following sections, we present the key generation process-
ing for IBC. Furthermore, we introduce some well-known ID-based 
encryption (IBE) and signature (IBS) schemes that proved to be 
secure within the random oracle model  [21]. The random oracle 
model serves to mathematically establish security proofs where cryp-
tographic functions, like hash functions, are considered random 
abstract functions [22].

12.2.1  ID-Based Key Construction

When a station needs a private key, it provides the PKG with the iden-
tity ID intended to be used for its private-key computation. The PKG 
then derives the node’s private key using some domain parameters. 
For generating these parameters, the PKG runs a probabilistic poly-
nomial time (PPT) algorithm that takes as input a security parameter 
k and outputs the groups , ,1 2G G  and TG , and the pairing function 
ê from ×1 2G G  in TG . and1 2G G  are additive groups of prime order 
q, and TG  is a multiplicative group of the same order q. Note that the 
order q is defined with respect to k such that q > 2k. Generally, 1G  and 

2G  are subgroups of the group of points of an elliptic curve (EC) over 
a finite field and TG  is a subgroup of a multiplicative group of a related 
finite field. The subgroup 1G  is generated by the point P while the 
subgroup 2G  is generated by the point. The point P (or the point Q) is 
used to compute another point Ppub = s.P (or Qpub = s.Q), where s is the 
domain secret. The PKG chooses randomly the secret ∈ * .s qZ

In addition to the definition of groups, some hash functions 
need to be defined in accordance to the IBE or IBS schemes that 
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are going to be used. For example, a hash function H1 that verifies 
→: {0, 1}* *1 1H G  is defined in order to transform the node’s identity 

into an EC point. Generally, the public key of a station is computed as 
a hash of one of its identities, and it is either a point of an elliptic curve 
or a positive integer. The list containing the groups and and ,1 2G G  
the bilinear mapping ê, the points P and Ppub and the hash functions 
form the domain public elements noted IBC-PEs. These IBC-PEs are 
distributed by the PKG to the network users because they are needed 
during the public-key derivation and the cryptographic operations.

The key derivation process starts when the PKG receives the ID 
of the node that is requesting a private key (Figure 12.4). First, the 
PKG computes the user’s public key as PubID = Hash(ID). Then, the 
PKG generates the corresponding private key using the local secret 
value s. Note that the private key is computed as PrivID = f (s, PubID). 
In practice, there are different ways for generating a private key from 
the public key. Here, we present the most known methods for private-
key computation:

Basic key generation scheme: In the most common cases [18, 23, 24], 
we have PrivID = s.PubID where ∈ ⋅G1PubID  PubID is equal to 
H1(ID), where →: {0, 1}* *.1 1H G

Sakai-Kasahara key generation scheme: Sakai and Kasahara  [25] 

proposed computing the private key as =
+







1
( )

.Priv
Pub sID

ID
 

P where PubID = H1(ID) and →: {0, 1}* *1H qZ . As the public 
key is not an elliptic curve point but a scalar, the public-key 
computation is faster than hashing to an elliptic curve point.

Boneh and Boyen key generation scheme: Boneh and Boyen define 
three public points that are computed as P1 = α.P, P2 = β.P, 

Station
(STA)

Private key generator (PKG)
(secret parameter “s”) Key escrow

attackIDSTA

IDSTA = {I57.159.159.157,
00:1d:12:34:56:fe,
station@campus.org,
...}

PubSTA = Hash(IDSTA)
PrivSTA = f(s, PubSTA)
IBC_PE = {G1,G2,GT, ê, g, P, Ppub, Hash}
(where Ppub = s.P)

PrivSTA, IBC_PE

Figure 12.4  ID-based key generation.
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and P3 = ϒ.P where α, β, and ϒ are secrets selected by the 
PKG in *qZ . A node’s public key is computed as PubID = 
H1(ID) where →: {0, 1}* *1H qZ . Meanwhile, the PKG com-
putes the corresponding private key using the random r in *qZ  
as follows:

	 PrivID = (Priv1, Priv2) = (PubID.r.P1 + α.P2 + r.P3, r.P)	

	 That is, the private key is formed by two EC points.

After generating a private key, the PKG has to securely transmit it 
to its owner either by the use of cryptography or directly to the physi-
cal person (using a secure transportation device).

In all the aforementioned key derivation schemes, the PKG is 
generating the private key of stations (STAs) and, as such, is able to 
impersonate any of them by illegally generating signature or decipher-
ing encrypted traffic. For mitigating that key escrow attack (KEA), a 
strong assumption is usually made necessary that the PKG is a trust-
worthy entity.

12.2.2  Pairing Functions

The pairing function ê has to be bilinear, nondegenerate, and effi-
ciently computable. That is, the pairing function has to verify the 
following properties:

Bilinearity: The pairing function has to be linear with respect to 
each of its inputs. That is, the pairing function verifies:

	
+ = ⋅

+ = ⋅

ê( . . , ) ê( , ) ê( , )

ê( , . . ) ê( , ) ê( , )

a P b P Q P Q P Q

P a Q b Q P Q P Q

x y x
a

y
b

x y x
a

y
b

Nondegeneracy: The nondegeneracy property means that for 
all points ∈ =∞, ê(P, P ) 1 .1P TG G  In addition, for all points 

∈ =∞, ê(P , ) 1 .2Q Q TG G  If we consider a generator P of 1G  and 
a generator of Q of 2G , the value ê(P, Q) = g is equal to the 
generator TG .

Efficiency: There is an efficient algorithm to compute the pair-
ing function.
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Galbraith et al. [15] defined three types of pairing functions that 
can be divided into two families:

	 1.	Symmetric pairing: It verifies = .1 2G G
	 2.	Asymmetric pairing: It verifies ≠ .1 2G G  This pairing func-

tion can be further classified based on the existence, or not, of 
an efficient homomorphism ψ →: .2 1G G

Menezes, Okamoto, and Vanstone [26] used a symmetric pairing 
function to solve the ECDLP. They considered G G G× →ê: 1 1 T  and 
the point Q = x.P. Their idea consists of transposing the ECDLP to 
a DLP in .TG  They assumed that they have an efficient algorithm to 
solve the DLP TG  in and they used:

	
= ⇔ =

⇔ = = =

. ê( , ) ê( , )

, where ê( , ) and ê( , )

Q x P P Q P P

h g h P Q g P P

x

x

As a consequence, the security level of ê will be related to the hard-
ness of solving the DLP in the groups , , and .1 2 TG G G  It is closely 
related to the groups being selected, as some of them make the DLP 
easier. To understand how to define this security level in practice, the 
investigation of the structures of , , and1 2 TG G G  is necessary.

Before specifying the structures of , , and1 2 TG G G , it is necessary 
to review some definitions related to elliptic curves. We first define 
the subgroup of q-torsion points as the subgroup of points having the 
order q. The q-torsion subgroup defined over an elliptic curve ( )E pF  

is denoted by { }= ∈ = ∞( [ ]) ( )
.E q P E

q P Pp
pF F . If p does not divide 

q, there is a theorem that states that it exists an integer k such that 
( [ ])E k qpF  is isomorphic to ×q qZ Z  ([27], Chapter 3, Theorem 3.2). 

The smallest integer k verifying the previous theorem is called the 
embedding degree of the curve ( )E pF  respectively to q.

Let ( )E pF  denote the elliptic curve defined over the finite prime 
field pF . and1 2G G  correspond mostly to the q-torsion subgroups of 
and ( ) and ( ),E Ep pkF F  where k is the embedding degree of the curve 

( )E pF  relative to q. Meanwhile, TG  is a multiplicative subgroup of kpF  
of order q [28].

For example, assume that the prime order p of pF  is 512 bits long, 
the order q is 160 bits long while the embedding degree relatively 
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to q of the curve ( )E pF  is 2. The pairing function ê is then defined 
over the subgroups , , and1 2 TG G G  of order q. The security level of ê 
is defined respectively to the hardness of solving DLP in TG . As TG  
is a subgroup of 2pF  which has an order of 1024 bits, DLP hardness in 

TG  is defined respectively to this 1024-bit order. That is, the pairing ê 
security level is equivalent to an RSA key of 1024 bits length, and so 
to a security level of 80 bits with respect to Table 12.1.

In practice, bilinear mapping is derived from the Weil or Tate pair-
ing ([29], Chapter 9). We use the definition given by El-Mrabet [28] to 
describe these two types of pairing. First, we define a rational function 
f on the points of an elliptic curve. f takes as input two variables x and y, 
which represent the coordinates of a point. Then, we specify the divisor 
of this function Div(  f ) as a formal sum that returns information about 
the zeros and poles of f. To describe the Weil and Tate pairings, we use 
the function fq,r that verifies: Div( fq,r ) = q.[R] − (q − 1).[P∞]. The two 
types of pairing will be defined as follows:

•	 Weil Pairing:	 × →

→

ê:

( , )
( )
( )

1 2

,

,
P Q

f Q
f P

T

q p

q Q

G G G

•	 Tate Pairing:	 × →

→
−

ê:

( , ) ( )

1 2

,

1

P Q f Q

T

q p

p
q

k

G G G

These two formulas will not be used in this chapter. However, inter-
ested readers can refer to the books [14], [27], and [29] for a detailed 
mathematical description of divisors and pairings.

12.2.3  Examples of ID-Based Encryption Schemes

In this section, we start by presenting some well-known ID-based 
encryption algorithms. The first scheme uses a classical key con-
struction. That is, the public key is a point derived from station’s 
identity using a hash-to-point function, while the private key is com-
puted as PrivID = s.PubID, s is PKG’s secret. The second encryption 
scheme is the Boneh and Boyen encryption algorithm, which uses 
the Boneh and Boyen key derivation method (Section 12.2.3.2). 
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The third presented scheme is Chen et al. encryption scheme which 
relies on Sakai-Kasahara key construction (Section  12.2.3.3). All 
these IBE schemes’ security is based on the bilinear Diffie–Hellman 
(BDH) problem, which consists of computing ê(P, P)abc, given the 
points P, a.P, b.P, and c.P and the symmetric pairing ê.

12.2.3.1  Boneh and Franklin Encryption Scheme  Boneh and Franklin [18] 
proposed in 2001 an IBE scheme using symmetric pairing function. 
They define two hash functions H1 and H2 such that: →: {0, 1}* *1 1H G  
and →: {0, 1}2H T

nG . So, Boneh and Franklin IBC-PEs are { ,1 TG G , 
q, ê, g, P, Ppub, H1, H2}. The PKG computes the user’s public key as 
PubID = H1(ID). Then, the PKG generates the corresponding private 
key using a local secret value ∈ * .s qZ

To encrypt an M ∈{0, 1}n message using the public key PubID, a user 
generates a secret random ∈ *k qZ  and computes the ciphertext C as

	 = = ⊕( , ) ( . , (ê(Pub , ) ))2C U V k P M H PID pub
k 	

The decrypting entity deciphers the received message as follows:

	 = ⊕ (ê( , ))2M V H Priv UID 	

12.2.3.2  Boneh and Boyen Encryption Schemes  Boneh and Boyen [30] 
proposed an IBE scheme using a symmetric pairing function. They 
define two hash functions H1 and H2 such that: →: {0, 1}* *1H qZ  and 

→: {0, 1}2H T
nG . In addition, they define three points that are com-

puted as P1 = α.P, P2 = β.P, and P3 = ϒ.P where α, β, and ϒ are secrets 
selected by the PKG in *qZ . From P1 and P2, they compute v = ê(P1, P2), 
which is part of the IBC-PEs. So, Boneh and Boyen public elements 
are { ,1 TG G , q, ê, v, P, P1, P2, P3, H1, H2}. The PKG computes the 
user’s public key as PubID = H1(ID). However, the private key is com-
puted as the couple of points PrivID = (Priv1, Priv2) = (PubID.r.P1 + 
α.P2 + r.P3, r.P) where r is a random number selected by PKG.

To encrypt a message M ∈{0, 1}n using the public key PubID, a 
user generates a secret random ∈ *k qZ  and computes the ciphertext 
as the tuple C = (c, C0, C1), where c = M ⊕ H2(v k), C0 = k.P, and 
C1 = PubID.k.P1 + k.P3. The deciphering entity starts by computing 

= ê( , )
ê( , )

.0 0

1 1
k C Priv

C Priv
 Then, it recovers M as M = c ⊕ H2(v k).
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12.2.3.3  Chen et al. Encryption Scheme  Chen et al.  [31] presented an 
IBE scheme using a symmetric pairing function. They define two hash 
functions H1 and H2 such that →: {0, 1} *1H qZ  and →: {0, 1}2H T

lG , 
where l is the size in bits of the message M that is going to be ciphered. 
A user public key is computed as PubID = H1(ID) and its correspond-
ing private key is generated by the PKG using the Sakai–Kasahara 
key generation scheme, i.e., PrivID = (1/(PubID + s)).P. In order to 
encrypt M, the ciphering station chooses a random number ∈ *k qZ  
and executes the following steps:

	 1.	U = k. (Ppub + pubID. P)
	 2.	n = H2(gk)
	 3.	V = M ⊕ n

The ciphered message is the pair (U,V) ∈ ×G {0,1}1
l . The recipient of 

(U,V) computes first = H2(ê(U, PrivID)). Then, it recovers the message 
M as: M = V ⊕ n.

12.2.4  Examples of ID-Based Signature Algorithms

In this section, we present three different signature schemes that rely 
on pairing computation.

12.2.4.1  Paterson Signature Scheme  Paterson [23] proposed, in 2002, 
an IBS scheme using ECC and a symmetric pairing function. He 
defines three hash functions H1, H2, and H3 such that: H1: {0,1}* →
G1

*, H2: {0,1}* → �*
q, and H3: → �G1

*
q. So, Paterson IBC-PEs are 

G G{ , , , ˆ, , , , , , }1 1 2 3q e g P P H H HT pub . The PKG computes the user’s 
public key as PubID = H1(ID). Then, the PKG generates the corre-
sponding private key using a local secret value s ∈ �*

q.
To compute the signature of a message M, a user generates a secret 

random k ∈ �*
q and computes its signature as the pair (R, S) ∈ ×G G1 1, 

where
	 R = k.P

	 S = k–1 (H2(M).P + H3(R).PrivID)

The signature verifier has only to compare to ˆ( , ) to ( ˆ( , ) .( )2e R S e P P H M

ˆ( , ) )( )3e P Pubpub ID
H R . The two values must be equal in order to consider 

the signature as valid.
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12.2.4.2  Hess Signature Scheme  Hess  [24] presented an ID-based sig-
nature scheme in 2003. Hess signature relies on a symmetric pairing 
function. His signature scheme keeps the Paterson public parameters 
definition, but it replaces H2 and H3 with a new hash function that we 
denote as × →: {0,1} *4

*H T qG � .
In order to sign a message M, the user chooses an arbitrary point 
∈ *1P qG  and a random number ∈ * .k qZ  Then, he or she executes the 

following steps:

	 1.	r = ê(P1, P)k

	 2.	v = H4(M, r)
	 3.	U = v.PrivID + k.P1

The signature is formed by the pair ∈ ×( , ) * .1U v qG Z  The signature 
verifier then has to compute:

	 1.	r = ê(U, P). ê(PubID, − PPub)v

	 2.	The signature is accepted if and only if v = H4(M, r)

12.2.4.3  Barreto et al. Signature Scheme  Barreto et al. [32] presented their 
ID-based signature scheme in 2005. Their signature basically uses one 
asymmetric pairing function. It relies on two hash functions H1 and H2 
such that: →: {0, 1}* *1H qZ  and G Z→ →H T q: {0, 1}* *.2  So, Barreto 
et al. IBC-PEs are where {G G GT, ,1 2 , q, ê, g, P, Q, Qpub, H1, H2} where 
Qpub = s.Q (s is PKG’s secret). A user public key is computed as PubID 
= H1(ID), and its corresponding private key is generated by the PKG 
as PrivID = (1/(PubID + s)).P. In order to sign a message M, the signer 
chooses a random number Z∈k q* and executes the following steps:

	 1.	n = gk

	 2.	h = H2(M, n)
	 3.	S = (k + h)PrivID

The signature is formed by the pair G Z∈ ×S h q( , ) *1 . Then, the sig-
nature verifier has only to check the equality between h and H2(M, 
ê(S, H1(ID)Q + Qpub)g−h).

12.2.5  Arguments in Favor of IBC

In wireless and mobile networks, such as sensor networks or ad hoc 
networks, bandwidth, memory, and power consumptions are a big 
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concern, as they directly impact the network and station perfor-
mances. Consequently, the selection of cryptographic tools for secu-
rity support must be accurate. Certificates require deploying a PKI 
and certificate management functions for the generation and delivery 
of certificates by the CA to successfully authenticated STAs. In addi-
tion, periodic downloading of CRLs by STAs from the CA is neces-
sary to verify the validity of certificates.

IBC does not need certificates, CRL, and revocation procedures. 
With IBC, the key lifetime is bound to a timer, and after its expi-
ration, keys are changed. Bandwidth for exchanging certificates 
between STAs or downloading CRL is saved. For the derivation of 
the keys of its peers, STA has only to store the IBC-PEs, extract 
the hash function from the IBC-PEs, and compute the hash over the 
identity of the peer. That is, no more memory space is used for storing 
the certificates.

Table 12.2 presents a comparison between IBC and PKI (based on 
Paterson and Price [33]). IBC relies on unique identities in order to 
get different public keys, and so different private keys. However, in 
a PKI, two different certificates can contain the same identity. That 
is, a user can have two valid certificates that are used for different 
purposes. With IBC, the public key of an STA can be used even if 
its private key has not yet been derived. This can be interesting when 
an STA ciphers some important data for other STAs and requires 
that they authenticate to the PKG in order to get the private key for 
the decryption. Compromising the PKG is very dangerous because 

Table 12.2  IBC Comparison to PKI

IBC PKI

Trusted entity PKG CA
Trust guarantee None Certificate
Client identity Unique and authentic Authentic
Public-key generator PKG and clients CA or client

Private-key generator PKG CA or client
Public- and private-key 

generation times
Can be different Same time, before 

certificate issuance
Key escrow attack Not detected Detected
Key revocation Timer CRLs
Usage range Local domains Wide domains
Advantages No certificates, no CRLs, less storage No key escrow
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the PKG secret will be revealed. Consequently, any station private 
key can be computed and old encrypted messages can be deciphered. 
However, when the CA is compromised, old encrypted messages are 
not affected.

12.2.6  Use of IBC in Network Security

As shown above, IBC is not new. Its introduction to networks is, 
however, quite recent. Seth and Keshav described a hierarchical IBC 
solution that supports mutual authentication and key revocation mech-
anisms in delay-tolerant networks (DTNs) [34]. Liu et al. presented, 
in 2009, an Extensible Authentication Protocol (EAP) authentication 
method that is adapted for wireless mesh networks [35]. They proposed 
a scheme that relies on Hess ID-based signature [24]. Boudguiga and 
Laurent [36] presented, in 2011, a key escrow-resistant authentica-
tion scheme for wireless networks that relies on secure tokens. Ben-
Othman et al. [37, 38] used IBC to secure the Hybrid Wireless Mesh 
Protocol (HWMP). They authenticate each HWMP path request 
and response message thanks to an IBS. Moreover, RFC 6267 [39] 
presented a variant of the Multimedia Internet Keying (MIKEY) 
protocol, which relies on an IBC authenticated key exchange. Tan 
et al. [40] described in their paper a lightweight IBE for body sensor 
networks (BSNs). Drira et al. [41] also proposed a hybrid authentica-
tion scheme relying on symmetric cryptography and IBC to authenti-
cate sensors and mobile nodes in a BSN.

12.3  Conclusion

In this chapter, we present a general introduction to public-key cryp-
tography. We describe ID-based cryptography, which relies on the 
use of elliptic curve groups. ECC and IBC are attractive for many 
researchers, as they reduce the size of keys, encryption, and signature 
schemes. They are well suited for the security applications that are spe-
cific to network stations with memory constraints. In addition, IBC 
removes the cumbersome task of managing PKI and certificates, and 
consequently, the network overhead is reduced. As such, IBC seems to 
be a promising solution for security provisioning in wireless networks 
where every saving in bandwidth and terminal memory is welcome.
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The wide diffusion of many-core computing systems (MCCSs), 
in particular through general purpose graphics processing units 
(GPGPUs), and more recently in high-end embedded hardware 
(mobile GPUs), has provided developers with a plentiful source of 
cheap computational power.

However, exploiting such computational power is not straight-
forward. Heterogeneous platforms require specialized application 
programming interfaces (APIs) to interface the host side with the 
accelerator device, as well as specialized language features to manage 
the peculiar characteristics of the device itself. The OpenCL stan-
dard, introduced by the large industrial consortium Khronos Group, 
is the most successful and widespread approach to programming het-
erogeneous MCCSs. It allows the programmer to interface C++ host 
code with device code written in a restricted C code (OpenCL-C) 
through the OpenCL API. However, developing efficient code with 
the OpenCL standard requires specialized knowledge that is both 
domain specific and platform specific.

In this chapter, we provide an overview of the implementation tech-
niques a developer needs to understand in order to produce efficient 
implementations of cryptographic primitives on GPGPUs and other 
heterogeneous MCCSs. We first introduce the OpenCL standard 
through a simple example, and then provide a practical implementation 
of the Advanced Encryption Standard (AES) cryptographic primi-
tive, employed in counter mode, which allows efficient parallelization.

13.1  Introduction

Modern implementations of cryptographic algorithms in C++ are 
increasingly called to provide both flexibility, in terms of code reuse 
on different platforms, and significantly good performances exploiting 
the peculiarities of the underlying hardware architecture. To this end, 
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it is fundamental to take into account the modern architecture design 
trend, which is pushing toward heterogeneous multicore architectures 
as the main structure for high-end embedded systems and high-
performance computing systems alike. In particular, modern mul-
ticore architectures are typically composed of a reduced number of 
high-performance processors, coupled with a large number of small, 
simple ones, and possibly application-specific accelerators.

This structure is often coupled with programmer-addressable 
scratchpad memories present directly on the same die as the proces-
sors. This shift toward parallel architectures provides a good fit for the 
increased need of fast symmetric encryption on large amounts of data 
at rest required by cloud storage providers, and the capability to per-
form a significant amount of concurrent Secure Sockets Layer (SSL)/
Transport Layer Security (TLS) handshakes required to provide secure 
network communications. The complex and heterogeneous structure of 
modern processors increases the possible options for architecture design, 
thus calling, from a programmer’s point of view, for a programming 
model that allows us to abstract the architectural details, while retain-
ing effective performance tuning capabilities. To this end, the OpenCL 
language and programming models were proposed by the Khronos 
consortium [1]; the OpenCL language is a subset of C99, with proper 
language extensions to allow the programmer to effectively encode pro-
grams to be run in parallel on heterogeneous multicores.

Section 13.2 provides a brief survey and taxonomy of the modern 
heterogeneous multicore platforms, while Section 13.3 describes the 
OpenCL language and programming model, providing insights on 
the memory hierarchy on which it is based. Section 13.3.3 provides a 
brief example of an OpenCL program, while Section 13.4 provides a 
full implementation of the Advanced Encryption Standard (AES) block 
cipher, employed in counter (CTR) mode, which is both secure and effi-
ciently parallelizable. The core of the implementation is realized with 
OpenCL, while the bindings are in C++11, providing an example of the 
best practices in integrating OpenCL code into a C++ environment.

13.2  Modern Heterogeneous Many-Core Architectures

The current trend in computing architectures, in both the high-end 
embedded and high-performance computing fields, is to replace single, 
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complex superscalar processors with numerous but smaller and simpler 
processing units, connected by an on-chip network. Such a change is 
imposed by silicon technology frontiers, the reaching of which is get-
ting closer as the process density levels increase—the so-called Moore’s 
wall. Clock speeds are not improving at the same rate they did in the 
last 40 years, and even though the transistor density is still improving 
according to Moore’s law, this does not translate into improved per-
formances, as increases in register bank or cache size or pipeline depth 
are hitting the point of diminishing returns. For example, cache size 
increases are only useful in case of a low cache hit rate, but when the 
hit rate becomes very high, increasing the cache size will yield minimal 
performance benefits. These trends have delineated a rapid growth in 
the number of computing cores per chip. Even general purpose proces-
sors for high-end embedded systems have evolved from single-core to 
twin quad-core designs, such as ARM big.LITTLE, in the last 3 years. 
More specialized architectures, such as graphics processing units, are 
already in the range of hundreds of cores—the class that is generally 
named as many-core architectures.

Many-core architectures offer large amounts of parallel comput-
ing power by supplying the developer with hundreds of processing 
cores, each endowed with limited resources. The benefits of many-
core architectures include a control on a finer grain for energy-
saving techniques, the accounting for local process variations, and an 
improved silicon yield due to voltage/frequency island isolation possi-
bilities. Notable many-core architectures include the following: desk-
top GPGPUs such as nVidia GT200 [2], Fermi [3], Kepler [4], AMD 
R700 [5], and R800 [6], and embedded GPGPUs such as ImgTech 
PowerVR [7] and nVidia Tegra [8]. Moreover, also non-GPU copro-
cessors such as IBM CellBE [9], Intel Xeon Phi [10], and Adapteva 
Epiphany [11] have gained popularity, together with many-core stand-
alone systems, of which an example is Intel SCC [12].

It is worth noting that, currently, GPGPUs are dominating the 
many-core scene, although non-GPU accelerators have found applica-
tion in specialized domains, and may in the future become the domi-
nant paradigm, as they are expected to be more versatile. Even more 
likely, the classification above might be overcome as GPGPUs become 
more general purpose computation oriented, and the gap between 
GPGPUs and other many-core accelerators narrows. What is likely, 



255Symmetric Key Encryption Acceleration

on the other hand, is that heterogeneity will still play a role: many-core 
architectures are not well suited for control-intensive applications, and 
the emerging paradigm is that of a pairing between a multicore host 
architecture and (one or more) many-core accelerator device(s). This is 
the case, of course, of GPGPUs, which are always used as accelerators 
to either desktop processors (based on the x86_64 architecture) or 
high-end embedded processors (most commonly ARM based).

13.3  The OpenCL Programming Model

OpenCL (Open Computing Language) [1,23] is an open standard for 
the development of parallel applications on a variety of heterogeneous 
multicore architectures. The advantage of OpenCL, as well as other 
modern programming models, is that it handles and combines differ-
ent implementation platforms (GPUs, CPUs, and DSPs) under the 
same environment.

OpenCL consists of both a subset of C99 with appropriate language 
extensions (OpenCL-C) and an OpenCL API, which allow programs 
to be split into a host part and a compute device part. The OpenCL host 
usually runs on a general purpose (multi)processor, and it is in charge 
of executing the control-intensive code portion. Moreover, the host 
uses the OpenCL API to query and select compute devices, to offload 
compute-intensive code portions, called kernels, on them.

The offloading is managed through submitting the kernels to the 
work queues of each device and managing the workload across com-
pute contexts and work queues. The execution of a kernel is orches-
trated as a perfect double-nested loop.

Each iteration of the innermost loop executes the kernel code on 
an independent execution element called work item, whereas any 
iteration of the outer loop gathers work items in independent sets 
called work groups. Since the computation domain of the kernel (e.g., 
the data placement) can be thought as an N-dimensional domain, 
where each tuple of coordinates corresponds to an execution ele-
ment, any work item is characterized by a unique identifier composed 
of N unsigned integer values, depending on the definitions set up 
by the host part of the application. Work groups are also uniquely 
identified through a set of unsigned integer values ranging from 0 to 
N – 1, according to an orthotropic geometry. In OpenCL application 
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development, the main target is to obtain significant performance 
improvements through optimally exploiting the resources of the 
underlying platform.

To this end, the OpenCL programming model is characterized by 
structures allowing the programmer to provide hints on the actual 
data placement in the memory hierarchy of the target platform.

13.3.1  OpenCL Parallel Execution Model

OpenCL supports primarily data parallelism, and to a lesser extent 
task parallelism. The support for data parallelism consists of an explic-
itly parallel function invocation (kernel) that is executed by a user-
specified number of work items, placed on an abstract N-dimensional 
space. Every OpenCL kernel is explicitly started by the host code 
through a clEnqueueNDRangeKernel call, and executed by the com-
pute device, while the host-side code continues its execution asyn-
chronously after instantiating the kernel.

Task-level parallelism is provided through allowing the program-
mer to enqueue multiple kernels for execution, which may be run in 
parallel by the underlying hardware of the compute device.

Events can be used to provide a dependency relation among the 
kernels. Indeed, each clEnqueueNDRangeKernel call takes as input 
parameter a list of events that must be completed before the exe-
cution of the kernel begins and provides, as output parameter, an 
event that can be waited upon to check the completion of the kernel 
execution. To this end, the programmer is provided with a synchro-
nizing function call to wait for the completion of the active kernel 
computations.

As anticipated in the previous section, the OpenCL program-
ming model abstracts the actual parallelism implemented by the 
hardware architecture, providing the concepts of work group and 
work item to express concurrency in algorithms. A work group cap-
tures the notion of a group of concurrent work items. Work groups 
are required to be computed independently, so that it is possible to 
run them in any order. Therefore, the OpenCL-C synchronization 
primitives semantically act only among work items belonging to the 
same work group.
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A kernel call site (clEnqueueNDRangeKernel) must specify the 
number of work groups as well as the number of work items within 
each work group when executing the kernel code.

The work groups and work items can be laid out in a multidimensional 
grid through the parameters of the clEnqueueNDRangeKernel call:

work_dim: Number N of dimensions used to describe the work 
item grid.

global_work_offset: Start offset for each dimension (so that the 
grid origin of the axes may be different from zero).

global_work_size: Total number of work items, for each 
dimension.

local_work_size: Number of work items in each work group, for 
each dimension.

Note that OpenCL does not impose limits on the number of dimen-
sions N employed to describe the work item grid at the language level. 
It relies instead on a platform introspection API, and in particular on 
the function clGetDeviceInfo, to retrieve at runtime such limits for 
each available compute device on the platform. This allows greater 
flexibility in the definition of kernels, as well as the ability to support 
compute devices from multiple vendors and multiple compute devices 
attached to the same host, through tuning the shape and size of the 
work item grid at runtime. Specifically, the following constants can 
be passed to clGetDeviceInfo to obtain the constraints for the afore-
mentioned parameters:

CL_DEVICE_MA X_WORK_ITEM_DIMENSIONS: 
Maximum number of dimensions in the work item grid.

CL_DEVICE_MAX_WORK_GROUP_SIZE: Maximum 
number of work items in a work group.

CL_DEVICE_MAX_WORK_ITEM_SIZES: Maximum 
number of work items in each dimension of the work group.

The Khronos Group has also defined a C++ wrapper interface 
for the OpenCL API, starting from the 1.1 version, which allows 
the programmer to employ the described primitives with an object-
oriented approach. From now on, we will be employing this API to 
provide pure C++ code examples.
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13.3.2  OpenCL Memory Model

OpenCL provides an explicit memory hierarchy model. The memory 
model, shown in Figure  13.1, is distributed between the host and 
the compute device, allowing us to access different address spaces. 
The global memory of the device is shared among all work items regard-
less of the work group, whereas the host is allowed to read from and 
write to the device memory space only using the OpenCL API. A local 
memory is associated with each work group, and is mapped by the 
OpenCL runtime to an on-chip memory, where possible, thus achiev-
ing better access latencies than the global memory. Communications 
among work items of the same work group may employ the local 
memory associated with that work group to perform shared memory 
data transfer. Work items belonging to different work groups must 
communicate through global memory.

The concurrent accesses to local memory by work items within 
the same work group can be synchronized through an explicit bar-
rier synchronization primitive. In addition to the local memory and 
the global memory, the OpenCL programming model allows each 
work item to share a constant memory (regardless of the work group), 
and to use a private memory for its exclusive data manipulation. 

Host

Host Memory

Global Memory

Local MemoryLocal Memory

Private
Memory

Work Item Work Item Work Item Work Item

Private
Memory

Private
Memory

Private
Memory

Constant Memory

Compute Device

Figure 13.1  Overview of the OpenCL memory hierarchy model.
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The keywords __global, __local, __constant, and __private are used as 
qualifiers to specify the address space referenced by a pointer or variable.

Table  13.1 summarizes the allocation and access capabilities of 
both host and compute device for the four OpenCL memory address 
spaces. It is worth noting that dynamic memory allocation and recur-
sion are not available on the device. A kernel is allowed to declare and 
use only automatic variables, while the host code portion is in charge 
of managing all dynamically allocated data.

13.3.3  First OpenCL Example

To provide a first introduction to OpenCL programming, we will 
use a simple program that computes the square of the first n natural 
numbers (where n is an argument of the program). This computation 
will be parallelized computing each square in different work items, 
and collecting the work items in work groups of eight. To do so, the 
host employs an OpenCL-C kernel that computes the square of each 
element of an array of integers.

The code for this simple example opens with the following inclu-
sion directives and definitions:

#define __CL_ENABLE_EXCEPTIONS 1
#include <vector>
#include <iostream>
#include <sstream>
#include <string>
#include <CL/cl.hpp>
using namespace cl;

We include several headers from the C++ standard library, which 
will be used in the host code. The definition of _ _CL_ENABLE_
EXCEPTIONS selects the use of C++ exceptions rather than C-style 
status variables for error handling. The header file CL/cl.hpp provides 

Table 13.1  OpenCL Memory Regions

GLOBAL CONSTANT LOCAL PRIVATE

Host allocation Dynamic Dynamic Dynamic None
Device allocation None Static Static Static
Host access Read/write Read/write None None
Device access Read/write Read only Read/write Read/write
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the C++ bindings to the OpenCL API,* which are collected in the 
namespace cl.

The OpenCL kernel for the example program is included in the 
host program as a constant string:

static const std::string source = "\
	 kernel void square(global int *output, \
	 global int *input){\
	 unsigned int i = get_global_id(0); \
	 output[i] = input[i] * input[i]; \
	 }";

It is an extremely simple kernel, but it showcases the use of three 
essential elements of any OpenCL-C kernel: the kernel keyword, 
the address spaces, and the work item identification built-in function 
get_global_id. The kernel (or _ _kernel) keyword introduces 
all entry points in an OpenCL-C program, i.e., the functions that can 
be invoked from the host.

It is possible to define nonkernel functions in the OpenCL-C 
code to be used as helper functions. The parameters of the kernel 
function square are two arrays allocated in the global memory. The 
get_global_id built-in function maps every work item to an 
index in the work item space. Since the workspace is multidimen-
sional, get_global_id accepts as a parameter the dimension 
index of the work item index to be fetched. In this example, the ker-
nel code expects the work item space to be monodimensional; thus, 
the only element of the index read is the first dimension (indicated 
by the 0 parameter). The host code is a standard C++ program, which 
performs the parsing of the first command line argument to obtain 
the number n of integers to be computed, which is subsequently 
stored in the variable size.

int main(int argc, char *argv[]) {
	unsigned int size;
	try {
	 std::istringstream arg(argv[1]);
	 arg >> size;
	} catch (...) {

*	 C++ bindings are available for OpenCL versions 1.1 and 1.2.
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	 std::cout << "Missing or incorrect argument";
	 std::cout << std::endl;
	 return 1;
	}

After the initialization of size, it can in turn be used to initialize 
the vectors to hold the input and output values of the computation:

std::vector<cl_int> array_in(size);
std::vector<cl_int> array_out(size);
for(int i = 0; i<size; i++) array_in[i] = i;
for(auto &n : array_in) std::cout << n << " ";
std::cout << std::endl;

Now, we need to set up the OpenCL computing platform. The fol-
lowing boilerplate code performs all the necessary operations using 
the introspection capabilities of the OpenCL runtime:

try {
	std::vector<Platform> platforms;
	std::vector<Device> devices;
	Platform::get(&platforms);
	platforms[0].getDevices(CL_DEVICE_TYPE_CPU, &devices);
	Context cxt(devices);
	CommandQueue cmdQ(cxt, devices[0], 0);

Specifically, invoking the Platform::get method yields all the 
available OpenCL platforms, i.e., the different runtimes from different 
vendors. For this simple example, we will only use the first available 
platform, and get the list of devices (i.e., the actual OpenCL-enabled 
hardware devices).

We then create a Context and a CommandQueue for it. The 
Context provides all the necessary information for building 
OpenCL-C kernels, and the CommandQueue will be used to actu-
ally interact with the devices. First, we need to allocate the memory 
buffers used for the kernel execution, as well as for communicating 
data from the host to the device, and vice versa:

const int in_flags = CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR;
const int out_flags = CL_MEM_WRITE_ONLY | 
CL_MEM_USE_HOST_PTR;
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Buffer in(cxt, in_flags, size*sizeof(cl_int), &array_
in.at(0));
Buffer out(cxt, out_flags,size*sizeof(cl_int), &array_
out.at(0));

The in buffer will be initialized with a copy of the data in 
array_in and will be read only on the device side. The out buf-
fer will be mapped in the host memory, since the data produced by 
the kernel will need to be copied back to the host. Now, we need to 
build the OpenCL-C program and select the entry point:

Program program(cxt, source, true);
Kernel kernel(program, "square");

The last parameter of the Program constructor specifies that the 
program must be compiled and linked. The Kernel constructor 
selects the entry point by name. We then need to set up the match 
between the forvs of the kernel:

kernel.setArg<Buffer>(0, out);
kernel.setArg<Buffer>(1, in);

Kernel parameters are identified positionally rather than by their 
own name on the host side. Finally, we invoke the kernel, providing 
the geometry of the desired work item space to the OpenCL runtime:

NDRange global_range(size);
NDRange local_range(8);
cmdQ.enqueueNDRangeKernel(kernel, NullRange,
	 global_range, local_range);

The two NDRange variables indicate the work item space (possibly 
with more than one dimension, although here only one is used) 
and the work group size, respectively. The second parameter of the 
enqueueNDRangeKernel call specifies that the origin of the work 
item space is set at 0 (i.e., the value of get_global_id(0) for the 
first work item is 0). The execution of OpenCL kernels is “per se” asyn-
chronous. Since here we do not need to perform other tasks on the host 
side, we can explicitly wait for completion:

	cmdQ.finish();
} catch (Error error) {
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	 std::cout << "Error" << error.what();
	 std::cout << "(" << error.err() << ")" << std::endl;
	 return 2;
}

The method finish is blocking, and returns once all commands in 
the CommandQueue object cmdQ are completed. In case there are 
any errors during the execution of the kernel, an exception typed as 
cl::Error will be raised, which can be caught and managed.

Finally, we print out the results:

	 for (auto &n : array_out) std::cout << n << " ";
	 std::cout << std::endl;
	 return 0;
}

As the example shows, for simple kernels the setup code is much 
larger than the kernel code. This is because the boilerplate code needs 
to handle the heterogeneity of the machine (i.e., bridge the host-
device divide, through the buffer setup), as well as manage just-in-
time compilation (here through the Program constructor) and the 
possible availability of multiple OpenCL runtimes and devices.

In real applications, it is possible to select the best platform for a 
given kernel, and to provide specialized kernel implementations for 
each device or platform.

13.4  Implementing AES in OpenCL

In this section, we provide an overview of a basic implementation 
of AES using OpenCL and its C++ bindings introduced in Section 
13.3.3. We first review the structure of the AES cipher and the possi-
ble modes of operation, and then introduce the necessary OpenCL-C 
kernel and the host-side library for setting up the OpenCL environ-
ment and invoking the kernels.

13.4.1  The AES Block Cipher

The AES cipher is designed for executing a number of round trans-
formations on plaintext where the output of each round is the input 
of the next one. The number of rounds is determined by the key 
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length: 128-bit uses 10 rounds, 192-bit 12 rounds, and 256-bit 
14 rounds. Each round is composed of the same steps, except for the 
first round, where an extra addition of a round key is added, and for 
the last round, where the last step (MixColumns) is skipped. Each 
step operates on 16 bytes of data (referred to as the internal state of 
the cipher) generally viewed as a 4 × 4 table of bytes or an array of 
four 32-bit words, where each word corresponds to a column of the 
state table.

The four round stages are AddRoundKey (xor addition of a sched-
uled round key for blending together the key and the state), SubBytes 
(byte substitution by an S-box, i.e., a lookup table for nonlinearity 
design reasons), ShiftRows (cyclical shifting of bytes in each row to 
realize an interword byte diffusion), and MixColumns (linear trans-
formation that mixes column state data for intraword interbyte diffu-
sion). The different steps of the round transformation can be combined 
in a single set of table lookups, allowing for very fast implementations 
on processors having word lengths of 32 bits or greater [13]. Let us 
denote with ai,j the generic element of the state table, with S[256] the 
S-box table, and with ∙ a GF(28) finite field multiplication [13]. Let 
T0, T1, T2, and T3 be four lookup tables containing results from the 
combination of the aforementioned operations as follows:

	 T0[ai,j] = [S[ai,j] ∙ 02 ; S[ai,j] ; S[ai,j] ; S[ai,j] ∙ 03]

	 T1[ai,j] = [S[ai,j] ∙ 03 ; S[ai,j] ∙ 02 ; S[ai,j] ; S[ai,j]]

	 T2[ai,j] = [S[ai,j] ; S[ai,j] ∙ 03 ; S[ai,j] ∙ 02 ; S[ai,j]]

	 T3[ai,j] = [S[ai,j] ; S[ai,j] ; S[ai,j] ∙ 03 ; S[ai,j] ∙ 02]

These tables are used to compute the round stage operations as a 
whole, as described by the following equation, where kj is the jth word 
of the expanded key and ej is the jth column of the state table (seen as 
a single 32-bit word):

	 ej = T0[a0, j] ⊕ T1[a1,j–1] ⊕ T2[a2,j–2] ⊕ T3[a3, j–3] ⊕ kj

The four tables T0, T1, T2, and T3 (called T-boxes from now on) 
have 256 32-bit word entries each and make up for 4 KB of storage 
space. A KeySchedule procedure associated to the AES algorithm is 
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responsible for the computation of each round key kj given the global 
input key k. In contrast with the round computation, the key expan-
sion operated by the KeySchedule procedure does not expose signifi-
cant parallelism. However, its result is computed once and used for all 
the blocks of a given plaintext.

13.4.2  Modes of Operation

The AES, as any other block cipher, operates on blocks of fixed 128-bit 
length. Several modes of operation have been standardized to man-
age the encryption of any plaintext, with arbitrary length [14]. When 
the length of the plaintext is not a multiple of the block size, it is 
necessary to add padding to the original message, up to a multiple of 
the block size. Of the block cipher modes employed for guaranteeing 
confidentiality, electronic code book (ECB), cipher block chaining 
(CBC), and counter (CTR) mode are the most popular.

The ECB mode is easily parallelizable, since the original plaintext is 
split into blocks that are independently enciphered with the same key. 
However, the ECB mode is not adopted in cryptographic protocols, 
since identical plaintext blocks, encrypted with the same key (as would 
happen when enciphering a file with repeated 16-byte blocks), lead to 
the same ciphertext, which is a major leak of secret information.

CBC mode is the default choice in current distributions of 
OpenSSL. In this mode, the sequence of plaintext blocks is enci-
phered using as input of each block the bitwise xor between a block 
of plaintext and the ciphertext obtained from the previous block (or a 
known initialization vector (IV) for the first block).

CTR mode produces the ciphertext as the bitwise xor between 
each plaintext block and one of a series of cryptographic pads. 
The cryptographic pads are obtained through the application of the 
block cipher to counter initialized with a strong pseudorandomly 
generated value and sequentially incremented for each subsequent 
block. The fundamental advantage of the CTR mode over the other 
modes of operation is that both its encryption and decryption actions 
can be efficiently parallelized.

From a security point of view, CTR mode is considered even safer 
than CBC [15, 16]; thus, it has been added in the 1.1 version of the 
Transport Layer Security (TLS) protocol standard [17].
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13.4.3  AES Kernels

In this section, we introduce the necessary OpenCL-C kernels and 
support functions to implement the AES cipher. For larger OpenCL 
programs, where multiple or large functions and kernels are needed, 
it is better to store the OpenCL-C code in one or more separate files. 
There are several good reasons for using separate files rather than stor-
ing the OpenCL-C code in one or more strings in the host code.

First, writing long kernels as strings is cumbersome, and syntax 
highlighting is not available. Second, separate files allow a stand-
alone compilation* of the kernels, which is useful for development and 
debugging. OpenCL-C source files are customarily named using the 
.cl extension. Header files can also be created, and included using 
the standard C99 #include directive, which is supported in the 
OpenCL specification.

In our case, we use a separate header file for storing the constants, 
among which are the large constant lookup tables (substitution boxes 
or S-boxes) needed by the AES:

#include "aes_kernel_constants.h"

Let us first introduce a few support functions. The routines 
get_uint and put_uint are used to convert between arrays of 
bytes and 32-bit unsigned integers:

uint get_uint(uchar *in) {
	return ((uint)in[0] ) |
	 ((uint)in[1] << 8) |
	 ((uint)in[2] << 16) |
	 ((uint)in[3] << 24);
}

void put_uint(uint v, uchar *out) {
	out[0] = (uchar)(v);
	out[1] = (uchar)(v >> 8);
	out[2] = (uchar)(v >> 16);
	out[3] = (uchar)(v >> 24);
}

*	 This is currently supported by the Intel OpenCL SDK, but not by the SDKs of other 
vendors.
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uint get_uint_g(global uchar *in) {
	return ((uint)in[0] ) |
	 ((uint)in[1] << 8) |
	 ((uint)in[2] << 16) |
	 ((uint)in[3] << 24);
}

The get_uint_g function performs the same operation in global 
memory. get_ulong and put_ulong perform the same function 
for 64-bit unsigned integers, leveraging the first two functions:

uint get_ulong(global uchar *in) {
	return (ulong)get_uint_g(in) |
	 (ulong)get_uint_g(in + 4) << 4;
}
void put_ulong(ulong v, uchar *out) {
	put_uint((uint)v, out);
	put_uint((uint)(v >> 4), out + 4);
}

The main function, aes_encrypt, takes as parameters the input 
and output buffers, the round key, the number of AES rounds to per-
form (a function of the AES key length), and the addresses of the five 
lookup tables:

void aes_encrypt(uchar *in, uchar *out, local uint *RK,
	 int nrounds, local uchar *FSb,
	 local uint *FT0, local uint *FT1,
	 local uint *FT2, local uint *FT3) {
	uint X0, X1, X2, X3, Y0, Y1, Y2, Y3;

X0 = get_uint(in + 0) ^ *RK++;
X1 = get_uint(in + 4) ^ *RK++;
X2 = get_uint(in + 8) ^ *RK++;
X3 = get_uint(in + 12) ^ *RK++;
for (int i = (nrounds >> 1) - 1; i > 0;— i){
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

}
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
AES_SLIM_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

put_uint(X0, out + 0);
put_uint(X1, out + 4);
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put_uint(X2, out + 8);
put_uint(X3, out + 12);

}

The function aes_encrypt reads the 16 bytes of the input 
plaintext block as four unsigned integers, and combines via xor with 
the round key. It then applies the required number of AES rounds, 
including a last reduced round (AES_SLIM_FROUND). Finally, it 
copies the resulting values into the output buffer. The macros named 
AES_FROUND and AES_SLIM_FROUND, respectively, are defined 
in aes_kernel_constants.h.

Regarding the kernel itself, it needs to be specialized with respect 
to the mode of operation employed.

The following code presents the specialization of the AES kernel to 
perform CTR mode encryption:

kernel void aes_ctr_mode(global uchar *buffer,
	 global const uchar *round_keys,
	 int nrounds) {
local uchar FSb[256];
local uint FT0[256], FT1[256], FT2[256], FT3[256], RK[60];
if �(get_local_id(0) = = 0) { //Local Memory 

Initialization
for (int i = 0; i ! = 256; ++i) {
FSb[i] = glob_FSb[i];
FT0[i] = glob_FT0[i];
FT1[i] = glob_FT1[i];
FT2[i] = glob_FT2[i];
FT3[i] = glob_FT3[i];

}
uint RKw = (nrounds + 1) << 2;
for (uint i = 0; i ! = RKw; ++i) RK[i] = key[i];

}
barrier(CLK_LOCAL_MEM_FENCE);
//Counter Initialization
ulong nonce_lo = get_ulong(buffer);
ulong nonce_hi = get_ulong(buffer + 8);
ulong id = get_global_id(0);
if ((nonce_lo + = id) < id) ++nonce_hi;

uchar counter[16];
put_ulong(nonce_lo, counter);
put_ulong(nonce_hi, counter + 8);
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//Encryption
aes_encrypt(counter, counter, RK, nrounds,
	 FSb, FT0, FT1, FT2, FT3);
//Output Write-Back
global uchar *output = buffer + (id + 1) * 16;
for (int i = 0; i ! = 16; ++i) output[i] ^ = counter[i];

}

The kernel takes three parameters: buffer is the data memory 
region where the plaintext is found, and where the ciphertext will 
be written; round_keys is the expanded key (i.e., the set of round 
keys) computed by the key schedule (which will therefore be per-
formed by the host); and finally, nrounds is the number of AES 
round to perform, which is determined by the AES key length. The 
kernel function at first performs the setup of local memory, which is 
used to hold the substitution boxes and the round key, all of which are 
shared by all work items. The first work item performs this initializa-
tion procedure. With a slightly more complex code, it is also possible 
to split the operation on 256 work items in a straightforward fashion:

uint i = get_local_id(0);
if (i < 256) {

FSb[i] = glob_FSb[i];
FT0[i] = glob_FT0[i];
FT1[i] = glob_FT1[i];
FT2[i] = glob_FT2[i];
FT3[i] = glob_FT3[i];

}
if (i < (nrounds + 1) << 2) RK[i] = key[i];

However, this version of the code forces the minimum work item 
space size to 256. Willing to remove this limitation, it is possible to 
refine the code parallelizing the initialization over less work items, 
retrieving the actual number via the get_local_size method. In all 
cases, a barrier is needed to prevent work items from starting their 
operation while the local memory is uninitialized.

Since the CTR mode employs a counter, it is possible to exploit 
the global work item identification number as part of it. The por-
tion of code between the barrier and the encryption function call 
takes care of this. The nonce is read from the input buffer, and com-
bined with the work item identification number, taking into account 
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a possible carry. The result is written to a byte array counter. Finally, 
the aes_encrypt function is called, to effectively encrypt the coun-
ters to obtain the actual enciphered pads. Once the pads have been 
obtained, they are combined via xor with the plaintext, and the results 
are written to the output buffer.

13.4.4  AES Host Library

To provide a practical and reusable interface, it is crucial to design the 
C++ bindings of our AES implementation according to the current 
best practices in modern C++ programming. The key point of our 
design is to specifically avoid virtual functions, so to obtain a compact 
and efficient output binary, while retaining minimal code redundancy 
and enhancing the code readability. Aiming at a high usability of the 
library, we would be willing to invoke an encryption call simply as

ArrayRef<const uint8_t> In(buf, 1024);
ArrayRef<uint8_t> Out(buf, 1024);
AESOpenCL<AES_128, OM_CTR> Cipher(key);
Cipher.encrypt(In, Out);

where In and Out are the memory region wrapper objects contain-
ing, respectively, the plaintext and the ciphertext memory areas. 
The AESOpenCL class object Cipher is instantiated, employing as 
template parameters the key size and mode of operation, and provides 
the encrypt method, which can be called passing the input and output 
objects. The first, and most simple issue, to be tackled is to provide 
a practical support to represent the possible modes of operation sup-
ported by the AES library. To this end, a simple enumeration will 
suffice:

enum OperationMode {OM_ECB, OM_CBC, OM_CTR, OM_AES_GCM};

To support the three legal key lengths for AES, we will employ 
traits, a meta-programming construct to represent a collection of 
methods, which is implemented in C++ as follows:

extern const uint8_t SBox[256];
extern const uint32_t Rcon[10];
const unsigned BlockSize = 16;
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enum AESKeyLength {AES_128,
	 AES_192,
	 AES_256
};

template<AESKeyLength KL>
struct AESParams;

template<> struct AESParams<AES_128> {
static const unsigned Rounds = 10;
static const unsigned RoundKeysWords = 44;

};

template<> struct AESParams<AES_192> {
static const unsigned Rounds = 12;
static const unsigned RoundKeysWords = 52;

};

template<> struct AESParams<AES_256> {
static const unsigned Rounds = 15;
static const unsigned RoundKeysWords = 60;

};

A trait in C++ is defined in terms of a template method, or col-
lection of methods, which is specialized to provide its behavior for 
the specific template instance. In our case, we specify the number 
of rounds and the size (in terms of number of 32-bit integers) of the 
whole key schedule depending on the AES key length (represented 
by the elements of the AESKeyLength enumeration). Moreover, the 
necessary symbol references to the substitution tables are provided.

In the following, we will focus on the implementation of the CTR 
mode of operation, which, as mentioned above, is currently consid-
ered among the most secure, and is also amenable to efficient parallel 
implementation. The component of the library in charge of the defini-
tion of the selected OpenCL device and its runtime environment is 
the AESOpenCLBase class.

class AESOpenCLBase {
public:
AESOpenCLBase() {
initDevice();

}
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private:
cl::Context Ctx;
cl::Program Prog;
cl::Device Dev;
cl::CommandQueue Queue;

void initDevice();

template<OperationMode M> friend class 
AESOpenCLModeTraits;

};

The AESOpenCLBase class, when instantiated, initializes the first 
available OpenCL device for the first available platform. This is per-
formed by the object constructor, through the initDevice method. 
Notice that, in the class description, we specify a template friendship 
relation for the instances of the template class AESOpenCLModeTraits 
so that, upon specializing the trait to implement the required mode 
of operation, we will be able to access freely the private members of 
AESOpenCLBase.

Let us look at the implementation of initDevice:

void AESOpenCL::initDevice() {
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
assert(!platforms.empty());

std::vector<cl::Device> devices;
platforms.front().getDevices(CL_DEVICE_TYPE_ALL, & 
devices);

assert(!devices.empty());
Ctx = cl::Context(devices);
Dev = devices.front();
Queue = cl::CommandQueue(Ctx, Dev);

std::ifstream in("aes_kernel_file.cl");
std::istreambuf_iterator<char> it(in);
std::string src(it, std::istreambuf_iterator<char>());

Prog = cl::Program(Ctx, src, true);
}
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The code employs a similar structure to that seen in the first example 
in Section 13.3.3. The main difference lies in the use of an external 
source file for the AES kernels. As mentioned above, this is the rec-
ommended style for all but the simplest kernels. It is left as a simple 
exercise for the reader to add a second

AESOpenCLBase(std::string platform,
	 std::string device, OperationMode M)

to delegate the selection of the platform and device to the caller. 
The implementation of encryption and decryption, depend-
ing on the mode of operation, is obtained by specializing the 
AESOpenCLModeTraits trait:

template<OperationMode M>
class AESOpenCLModeTraits {
public:
static void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys);
static void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys);
};

The AESOpenCLModeTraits trait has two static methods that 
are to be specialized providing the encryption and decryption imple-
mentations for the proper mode of operation. ArrayRef is a C++ wrap-
per for a generic array. In particular, the code below implements the 
specialized trait for CTR mode:

template<>
class AESOpenCLModeTraits<OM_CTR> {
public:
static void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys){

unsigned NBlocks = In.size()/BlockSize - 1;
assert(NBlocks > 0);
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cl::Context &Ctx = OpenCLCtx.Ctx;
cl::Program &Prog = OpenCLCtx.Prog;
cl::CommandQueue &Queue = OpenCLCtx.Queue;

cl::Buffer Buf(Ctx, CL_MEM_READ_WRITE | 
CL_MEM_COPY_HOST_PTR,
	 In.sizeInBytes(), In.ptr());
cl::Buffer KeyBuf(Ctx,
	 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
	 RoundKeys.sizeInBytes(), RoundKeys.ptr());
cl_uint NR = RoundKeys.size()/4 - 1;

cl::Kernel K(Prog, "aes_ctr_mode");
K.setArg<cl::Buffer>(0, Buf);
K.setArg<cl::Buffer>(1, KeyBuf);
K.setArg<cl_int>(2, NR);

cl::NDRange GR(NBlocks);
Queue.enqueueNDRangeKernel(K, cl::NullRange, GR);
Queue.enqueueReadBuffer(Buf, CL_TRUE, 0,
	 Out.sizeInBytes(), Out.ptr());
Queue.finish();

}
static void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys) {

encrypt(OpenCLCtx, In, Out, RoundKeys);
}

};

Note that the decryption function is identical to the encryption 
one, since the counter mode encrypts the plaintext by means of com-
bining it with the encryption of a counter via xor. Thus, it is possible to 
decipher the ciphertext through adding the same pad via xor. We are 
able to employ exactly the same cipher primitive, as our CTR mode 
implementation expects both the ciphertext and the plaintext to con-
tain the nonce in the first 16 bytes. The encryption primitive sets up 
and calls the kernel aes_ctr_mode. The setup and invocation steps 
are analogous to the ones seen in the example in Section 13.3.3. The 
AESOpenCLContext class serves as a container for the AES context, 
i.e., the full key schedule, to allow the definition of encryption and 
decryption methods.
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template<AESKeyLength KL, OperationMode M>
class AESOpenCLContext {
public:
AESOpenCLContext(ArrayRef<const uint8_t> Key);

void encrypt(AESOpenCLBase &OpenCLCtx,
	 Arr�ayRef<const uint8_t> In, ArrayRef<uint8_t> 

Out);
void decrypt(AESOpenCLBase &OpenCLCtx,

	 Arr�ayRef<const uint8_t> In, ArrayRef<uint8_t> 
Out);

};

The key idea of the AESOpenCLContext class is to provide a 
proper boxing to bind the key schedule action, and the instantiation of 
a properly sized expanded key array, depending on the user key length.

In particular, the corresponding specialization for CTR mode is:

template<AESKeyLength KL>
class AESOpenCLContext<KL, OM_CTR> {
public:
AESOpenCLContext(ArrayRef<const uint8_t> Key) {
computeKeySchedule(Key);

}
void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out) {
AESOpenCLModeTraits<OM_CTR>::encrypt(OpenCLCtx, In,

	 Out, RoundKeys);
}
void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out) {
AESOpenCLModeTraits<OM_CTR>::decrypt(OpenCLCtx, In,

	 Out, RoundKeys);
}

private:
void computeKeySchedule(ArrayRef<const uint8_t> Key);
uint32_t RoundKeys[AESParams<KL>::RoundKeysWords];

};

The above specialization binds effectively the mode of operation to 
be the counter one, while retaining as a template parameter the AES 
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user key length. Note that the implementation employs the encrypt and 
decrypt static methods of the specialized AESOpenCLModeTraits 
template class for the CTR mode. The computation of the expanded 
round keys is delegated to the computeKeySchedule private method 
called by the constructor of AESOpenCLContext.

The method operates on the private field of the AESOpenCLContext 
class, computing the RoundKeys.

template<AESKeyLength KL>
void AESOpenCLContext<KL, OM_CTR>::computeKeySchedule(
	 ArrayRef<const uint8_t> Key) {
unsigned Nk = Key.sizeInBytes()/4;
std::memcpy(RoundKeys, Key.ptr(), Key.sizeInBytes());

for (unsigned i = Nk; i ! = 
AESParams<KL>::RoundKeysWords; ++i) {
uint32_t temp = RoundKeys[i - 1];
if (i% Nk = = 0)
temp = subword(rotrb(temp)) ^ Rcon[i/Nk - 1];

else if (Nk > 6 && i% Nk = = 4)
temp = subword(temp);

RoundKeys[i] = RoundKeys[i - Nk] ^ temp;
}

}

The key schedule is computed on the host side, since it only accounts 
for a small fraction of the computational load of the algorithm, and it 
cannot be effectively parallelized, due to the loop-carried data depen-
dencies (i.e., the round key at round r depends on the one at round 
r – 1) in the first for loop. The client interface is encapsulated by the 
AESOpenCL template class, where the template parameters provide 
the key length and mode of operation information:

template<AESKeyLength KL, OperationMode M>
class AESOpenCL : public AESOpenCLBase {
public:
AESOpenCL(ArrayRef<const uint8_t> Key) : Context(Key) {}
void encrypt(ArrayRef<const uint8_t> In,

	 ArrayRef<uint8_t> Out) {
Context.encrypt(*this, In, Out);

}
void decrypt(ArrayRef<const uint8_t> In,
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	 ArrayRef<uint8_t> Out) {
Context.decrypt(*this, In, Out);

}
private:
AESOpenCLContext<KL, M> Context;

};

The class basically acts as a wrapper for the AESOpenCLContext 
and AESOpenCLBase instances. In particular, the encrypt and 
decrypt functions are able to employ the OpenCL context inherited 
from the AESOpenCLBase, and invoking its encrypt and decrypt 
methods, passing a reference to itself, as this class inherits from 
AESOpenCLBase.

13.4.5  Putting It All Together

We can now provide the main function of our application as follows:

int main(int argc, char *argv[]) {
uint8_t key�[16] = {0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,​

0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f, 
0x3c};

uint8_t buf�[112] = {0x00,0x00,0x00,0x00,0x00,0x00, 
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 
0x00,0x00,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x32,0x43,0xf6,0xa8,0x88,0x5a, 
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37, 
0x07,0x34};

try {
AESOpenCL<AES_128, OM_CTR> Cipher(key);

ArrayRef<const uint8_t> In(buf, 112);
ArrayRef<uint8_t> Out(buf, 112);
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std::cout << "Input: " << In << std::endl;

Cipher.encrypt(In, Out);
std::cout << "Encryption output: " << Out << std::endl;

Cipher.decrypt(In, Out);
std::cout << "Decryption output: " << Out << std::endl;

} catch (cl::Error error) {
std::cout << "Error" << error.what();
std::cout << "(" << error.err() << ")" << std::endl;

}
return 0;

}

The main function encrypts a plaintext, initially contained in buf, 
saving the ciphertext on the same memory region (thus In and Out 
are set to point to the same address, buf), and then decrypts the 
freshly encrypted ciphertext. There is no need to swap In and Out, 
as they point to the same region of memory, with the only difference 
being that In must be used as input, since it is marked as constant.

The error handling strategies are the same as those applied in 
Section 13.3.3.

13.5  Implementation

1.	 //aes_opencl.cpp
2.	 #include "aes_opencl.h"
3.	 #include <cassert>
4.	 #include <cstring>
5.	 #include <fstream>
6.	 #include <iostream>
7.	 #include <iterator>
8.	 #include <vector>
9.
10.	using namespace AES;
11.
12.	const uint8_t AES::SBox[256] = {
13.	0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
14.	0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
15.	0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
16.	0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
17.	0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
18.	0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
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19.	0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
20.	0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
21.	0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
22.	0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
23.	0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
24.	0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
25.	0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
26.	0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
27.	0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
28.	0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
29.	0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
30.	0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
31.	0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
32.	0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
33.	0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
34.	0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
35.	0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
36.	0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
37.	0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
38.	0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
39.	0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
40.	0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
41.	0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
42.	0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
43.	0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
44.	0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
45.	};
46.
47.	const uint32_t AES::Rcon[10] = {
48.	0x00000001, 0x00000002, 0x00000004, 0x00000008,
49.	0x00000010, 0x00000020, 0x00000040, 0x00000080,
50.	0x0000001B, 0x00000036
51.	};
52.	void AESOpenCLBase::initDevice() {
53.	std::vector<cl::Platform> platforms;
54.	cl::Platform::get(&platforms);
55.
56.	assert(!platforms.empty());
57.
58.	std::vector<cl::Device> devices;
59.	�platforms.back().getDevices(CL_DEVICE_TYPE_ALL, 

&devices);
60.
61.	assert(!devices.empty());
62.
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63.	Ctx = cl::Context(devices);
64.	Dev = devices.front();
65.	Queue = cl::CommandQueue(Ctx, Dev);
66.
67.	std::ifstream in("aes_kernel.cl");
68.	std::istreambuf_iterator<char> it(in);
69.	std::string src(it, std::istreambuf _ iterator<char>());
70.
71.	Prog = cl::Program(Ctx, src, true);
72.	}
73.
74.	voi�d AESOpenCLModeTraits<OM_

CTR>::encrypt(AESOpenCLBase &OpenCLCtx,
75.	 ArrayRef<const uint8_t> In,
76.	 ArrayRef<uint8_t> Out,
77.	 ArrayRef<const uint32_t> RoundKeys) {
78.	/* In CTR mode, both 'In' and 'Out' contain
79.	 the IV in the first 16 bytes.	 */
80.	unsigned NBlocks = In.size()/BlockSize - 1;
81.	assert(NBlocks > 0);
82.
83.	cl::Context &Ctx = OpenCLCtx.Ctx;
84.	cl::Program &Prog = OpenCLCtx.Prog;
85.	cl::CommandQueue &Queue = OpenCLCtx.Queue;
86.
87.	cl:�:Buffer Buf(Ctx, CL_MEM_READ_WRITE | CL_MEM_

COPY_HOST_PTR,
88.	 In.sizeInBytes(), In.ptr());
89.	cl:�:Buffer KeyBuf(Ctx, CL_MEM_READ_ONLY | CL_MEM_

COPY_HOST_PTR,
90.	 Rou�ndKeys.sizeInBytes(), RoundKeys.

ptr());
91.
92.	cl_uint NR = RoundKeys.size()/4 - 1;
93.
94.	cl::Kernel K(Prog, "aes_ctr_mode");
95.	K.setArg<cl::Buffer>(0, Buf);
96.	K.setArg<cl::Buffer>(1, KeyBuf);
97.	K.setArg<cl_int>(2, NR);
98.
99.	cl::NDRange GR(NBlocks);
100.
101.	 Que�ue.enqueueNDRangeKernel(K, cl::NullRange, 

GR);
102.	 Queue.enqueueReadBuffer(Buf, CL_TRUE, 0,
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103.	 Out.sizeInBytes(), Out.ptr());
104.	 Queue.finish();
105.	 }
106.	 int main(int argc, char *argv[]) {
107.	 uint8_t key�[16] = {0x2b,0x7e,0x15,0x16,0x28,

0xae,0xd2,0xa6,
108.	� 0xab,0xf7,0x15,0x88,0x09,0xcf, 

0x4f,0x3c};
109.
110.	 uint8_t buf�[112] = {0x00,0x00,0x00,0x00,0x00, 

0x00,0x00,0x00,
111.	� 0x00,0x00,0x00,0x00,0x00,0x00, 

0x00, 0x00,
112.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30, 0x8d,
113.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34,
114.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34,
115.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30, 0x8d,
116.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30, 0x8d,
117.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34,
118.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30, 0x8d,
119.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34,
120.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34,
121.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30, 0x8d,
122.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a, 

0x30,0x8d,
123.	� 0x31,0x31,0x98,0xa2,0xe0,0x37, 

0x07, 0x34};
124.	 try {
125.	 AESOpenCL<AES_128, OM_CTR> Cipher(key);
126.
127.	 ArrayRef<const uint8_t> In(buf, 112);
128.	 ArrayRef<uint8_t> Out(buf, 112);
129.
130.	 std::cout << "Input: " << In << "\n";
131.
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132.	 Cipher.encrypt(In, Out);
133.	 std�::cout << "Encryption output: " << Out 

<< "\n";
134.
135.	 Cipher.decrypt(In, Out);
136.	 std�::cout << "Decryption output: " << Out 

<< "\n";
137.	 } catch (cl::Error error) {
138.	 std::cout << "Error" << error.what();
139.	 std�::cout << "(" << error.err() << ")" << 

std::endl;
140.	 }
141.	 return 0;
142.	 }
143.	 //aes_opencl.h
144.
145.	 #ifndef AES_OPENCL_H
146.	 #define AES_OPENCL_H
147.
148.	 #define __CL_ENABLE_EXCEPTIONS
149.	 #include <CL/cl.hpp>
150.
151.	 #include <cstdint>
152.	 #include <iomanip>
153.	 #include <iostream>
154.	 #include <ostream>
155.
156.	 template<typename ElemTy>
157.	 class ArrayRef {
158.	 public:
159.	 typedef ElemTy *iterator;
160.
161.	 public:
162.	 Arr�ayRef(ElemTy *ptr, size_t len) : 

Ptr(ptr), Length(len) {}
163.	 template<size_t N>
164.	 Arr�ayRef(ElemTy (&arr)[N]) : Ptr(arr), 

Length(N) {}
165.	 ArrayRef &operator = (const ArrayRef &A) {
166.	 Ptr = A.Ptr;
167.	 Length = A.Length;
168.	 return *this;
169.	 }
170.
171.	 iterator begin() const {return Ptr;}
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172.	 iterator end() const {return Ptr + Length;}
173.
174.	 Ele�&operator[](size_t I) const {return 

Ptr[I];}
175.
176.	 ElemTy *data() const {return Ptr;}
177.	 size_t size() const {return Length;}
178.
179.	 siz�e_t sizeInBytes() const {return Length * 

sizeof(ElemTy);}
180.	 void *ptr() const {return (void*)Ptr;}
181.	 private:
182.	 ElemTy *Ptr;
183.	 size_t Length;
184.	 };
185.
186.	 template<typename ElemTy>
187.	 struct ValuePrintTraits {
188.	 sta�tic void print(std::ostream &OS, const 

ElemTy &V);
189.	 };
190.
191.	 template<typename ElemTy>
192.	 struct ValuePrintTraits<const ElemTy> {
193.	 sta�tic void print(std::ostream &OS, const 

ElemTy &V) {
194.	 ValuePrintTraits<ElemTy>::print(OS, V);
195.	 }
196.	 };
197.	 template<>
198.	 struct ValuePrintTraits<uint32_t> {
199.	 sta�tic void print(std::ostream &OS, 

uint32_t V) {
200.	 V = ((uint8_t)(V) << 24) |
201.	 ((uint8_t)(V >> 8) << 16) |
202.	 ((uint8_t)(V >> 16) << 8) |
203.	 ((uint8_t)(V >> 24));
204.	 OS �<< std::setw(8) << std::setfill('0') << 

std::hex << V;
205.	 }
206.	 };
207.
208.	 template<>
209.	 struct ValuePrintTraits<uint8_t> {
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210.	 sta�tic void print(std::ostream &OS, uint8 _ t V) 
{

211.	 OS << std::setw(2) << std::setfill('0');
212.	 OS << std::hex << (uint16_t)V;
213.	 }
214.	 };
215.
216.	 template<typename ElemTy>
217.	 std�::ostream &operator<<(std::ostream &OS, 

ArrayRef<ElemTy> A) {
218.	 for� (auto I = A.begin(), E = A.end(); I ! = 

E; ++I)
219.	 ValuePrintTraits<ElemTy>::print(OS, *I);
220.	 return OS;
221.	 }
222.
223.	 enum OperationMode {
224.	 OM_ECB,
225.	 OM_CBC,
226.	 OM_CTR,
227.	 OM_AES_GCM
228.	 };
229.
230.	 namespace AES {
231.
232.	 extern const uint8_t SBox[256];
233.	 extern const uint32_t Rcon[10];
234.
235.	 /* TBox and/or reverse TBox should be added here
236.	 (e.g. key schedule computation for decryption
237.	 on ECB or CBC modes). */
238.
239.	 const unsigned BlockSize = 16;
240.	 enum AESKeyLength {AES_128, AES_192, AES_256};
241.
242.	 template<AESKeyLength KL>
243.	 struct AESParams;
244.
245.	 template<> struct AESParams<AES_128> {
246.	 static const unsigned Rounds = 10;
247.	 static const unsigned RoundKeysWords = 44;
248.	 };
249.
250.	 template<> struct AESParams<AES_192> {
251.	 static const unsigned Rounds = 12;
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252.	 static const unsigned RoundKeysWords = 52;
253.	 };
254.
255.	 template<> struct AESParams<AES_256> {
256.	 static const unsigned Rounds = 15;
257.	 static const unsigned RoundKeysWords = 60;
258.	 };
259.
260.	 uint32_t rotrb(uint32_t v) {
261.	 return ((v & 0xFF) << 24) | (v >> 8);
262.	 }
263.
264.	 uint32_t rotl(uint32_t v, uint32_t k) {
265.	 uint32_t mask = (1 << k) - 1;
266.	 return ((v & mask) << (32 - k)) | (v >> k);
267.	 }
268.
269.	 uint32_t subword(uint32_t v) {
270.	 uint32_t b[4] = {
271.	 SBox[(v >> 24) & 0xFF],
272.	 SBox[(v >> 16) & 0xFF],
273.	 SBox[(v >> 8) & 0xFF],
274.	 SBox[(v ) & 0xFF]
275.	 };
276.	 ret�urn (b[0] << 24) | (b[1] << 16) | (b[2] 

<< 8) | b[3];
277.	 }
278.
279.	 class AESOpenCLBase {
280.	 public:
281.	 AESOpenCLBase() {
282.	 initDevice();
283.	 }
284.	 private:
285.	 void initDevice();
286.
287.	 cl::Context Ctx;
288.	 cl::Program Prog;
289.	 cl::Device Dev;
290.	 cl::CommandQueue Queue;
291.
292.	 tem�plate<OperationMode M> friend class 

AESOpenCLModeTraits;
293.	 };
294.	 template<OperationMode M>
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295.	 class AESOpenCLModeTraits {
296.	 public:
297.	 static void encrypt(AESOpenCLBase &OpenCLCtx,
298.	 ArrayRef<const uint8_t> In,
299.	 ArrayRef<uint8_t> Out,
300.	 Arr�ayRef<const uint32_t> 

RoundKeys);
301.	 static void decrypt(AESOpenCLBase &OpenCLCtx,
302.	 ArrayRef<const uint8_t> In,
303.	 ArrayRef<uint8_t> Out,
304.	 Arr�ayRef<const uint32_t> 

RoundKeys);
305.	 };
306.
307.	 template<>
308.	 class AESOpenCLModeTraits<OM_CTR> {
309.	 public:
310.	 static void encrypt(AESOpenCLBase &OpenCLCtx,
311.	 ArrayRef<const uint8_t> In,
312.	 ArrayRef<uint8_t> Out,
313.	 Arr�ayRef<const uint32_t> 

RoundKeys);
314.	 static void decrypt(AESOpenCLBase &OpenCLCtx,
315.	 ArrayRef<const uint8_t> In,
316.	 ArrayRef<uint8_t> Out,
317.	 Arr�ayRef<const uint32_t> 

RoundKeys) {
318.	 encrypt(OpenCLCtx, In, Out, RoundKeys);
319.	 }
320.	 };
321.
322.	 template<AESKeyLength KL, OperationMode M>
323.	 class AESOpenCLContext {
324.	 public:
325.	 AESOpenCLContext(ArrayRef<const uint8_t> Key);
326.
327.	 void encrypt(AESOpenCLBase &OpenCLCtx,
328.	 ArrayRef<const uint8_t> In,
329.	 ArrayRef<uint8_t> Out);
330.	 void decrypt(AESOpenCLBase &OpenCLCtx,
331.	 ArrayRef<const uint8_t> In,
332.	 ArrayRef<uint8_t> Out);
333.	 };
334.	 template<AESKeyLength KL>
335.	 class AESOpenCLContext<KL, OM_CTR> {
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336.	 public:
337.	 AESOpenCLContext(ArrayRef<const uint8_t> Key) {
338.	 computeKeySchedule(Key);
339.	 }
340.
341.	 void encrypt(AESOpenCLBase &OpenCLCtx,
342.	 ArrayRef<const uint8_t> In,
343.	 ArrayRef<uint8_t> Out) {
344.	 AES�OpenCLModeTraits<OM _

CTR>::encrypt(OpenCLCtx, In,
345.	 Out, RoundKeys);
346.	 }
347.	 void decrypt(AESOpenCLBase &OpenCLCtx,
348.	 ArrayRef<const uint8_t> In,
349.	 ArrayRef<uint8_t> Out) {
350.	 AES�OpenCLModeTraits<OM_

CTR>::decrypt(OpenCLCtx, In,
351.	 Out, RoundKeys);
352.	 }
353.	 private:
354.	 voi�d computeKeySchedule(ArrayRef<const uint8_t> 

Key) {
355.	 unsigned Nk = Key.sizeInBytes()/4;
356.	 std�::memcpy(RoundKeys, Key.ptr(), Key.

sizeInBytes());
357.
358.	 for� (unsigned i = Nk; i ! = 

AESParams<KL>::RoundKeysWords; ++i) {
359.	 uint32_t temp = RoundKeys[i - 1];
360.	 if (i% Nk = = 0)
361.	 temp = subword(rotrb(temp)) ^ Rcon[i/Nk - 1];
362.	 else if (Nk > 6 && i% Nk = = 4)
363.	 temp = subword(temp);
364.	 RoundKeys[i] = RoundKeys[i - Nk] ^ temp;
365.	 }
366.	 }
367.	 private:
368.	 uin�t32_t RoundKeys[AESParams<KL>::RoundKeysWords];
369.	 };
370.
371.	 template<AESKeyLength KL, OperationMode M>
372.	 class AESOpenCL : public AESOpenCLBase {
373.	 public:
374.	 AES�OpenCL(ArrayRef<const uint8_t> Key) : 

Context(Key) {}
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375.
376.	 voi�d encrypt(ArrayRef<const uint8_t> In, 

ArrayRef<uint8_t> Out) {
377.	 Context.encrypt(*this, In, Out);
378.	 }
379.	 voi�d decrypt(ArrayRef<const uint8_t> In, 

ArrayRef<uint8_t> Out) {
380.	 Context.decrypt(*this, In, Out);
381.	 }
382.	 private:
383.	 AESOpenCLContext<KL, M> Context;
384.	 };
385.
386.	 }
387.
388.	 #endif//end aes_opencl.h
389.	 //aes_kernel.cl
390.
391.	 #include "aes_kernel_constants.h"
392.	 uint get_uint_g(global uchar *in) {
393.	 return ((uint)in[0] ) |
394.	 ((uint)in[1] << 8) |
395.	 ((uint)in[2] << 16) |
396.	 ((uint)in[3] << 24);
397.	 }
398.
399.	 uint get_uint(uchar *in) {
400.	 return ((uint)in[0] ) |
401.	 ((uint)in[1] << 8) |
402.	 ((uint)in[2] << 16) |
403.	 ((uint)in[3] << 24);
404.	 }
405.	 void put_uint(uint v, uchar *out) {
406.	 out[0] = (uchar)(v);
407.	 out[1] = (uchar)(v >> 8);
408.	 out[2] = (uchar)(v >> 16);
409.	 out[3] = (uchar)(v >> 24);
410.	 }
411.
412.	 uint get_ulong(global uchar *in) {
413.	 return (ulong)get_uint_g(in) |
414.	 (ulong)get_uint_g(in + 4) << 4;
415.	 }
416.
417.	 void put_ulong(ulong v, uchar *out) {
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418.	 put_uint((uint)v, out);
419.	 put_uint((uint)(v >> 4), out + 4);
420.	 }
421.
422.	 voi�d aes_encrypt(uchar *in, uchar *out, local 

uint *RK, int nrounds,
423.	 loc�al uchar *FSb, local uint *FT0, 

local uint *FT1,
424.	 local uint *FT2, local uint *FT3) {
425.	 uint X0, X1, X2, X3, Y0, Y1, Y2, Y3;
426.
427.	 X0 = get_uint(in + 0) ^ *RK++;
428.	 X1 = get_uint(in + 4) ^ *RK++;
429.	 X2 = get_uint(in + 8) ^ *RK++;
430.	 X3 = get_uint(in + 12) ^ *RK++;
431.
432.	 for(int i = (nrounds >> 1) - 1; i > 0;— i){
433.	 AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
434.	 AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
435.	 }
436.	 AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
437.	 AES _ SLIM _ FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
438.
439.	 put_uint(X0, out + 0);
440.	 put_uint(X1, out + 4);
441.	 put_uint(X2, out + 8);
442.	 put_uint(X3, out + 12);
443.	 }
444.	 kernel void aes_ctr_mode(global uchar *buffer,
445.	 global const uchar *round_keys,
446.	 int nrounds) {
447.	 local uchar FSb[256];
448.	 local uint FT0[256], FT1[256], FT2[256], FT3[256];
449.	 local uint RK[60];
450.
451.	 if (get_local_id(0) = = 0) {
452.	 for (int i = 0; i ! = 256; ++i) {
453.	 FSb[i] = glob_FSb[i];
454.	 FT0[i] = glob_FT0[i];
455.	 FT1[i] = glob_FT1[i];
456.	 FT2[i] = glob_FT2[i];
457.	 FT3[i] = glob_FT3[i];
458.	 }
459.	 int RKw = (nrounds + 1) << 2;
460.	 for (int i = 0; i ! = RKw; ++i)
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461.	 RK[i] = round_keys[i];
462.	 }
463.
464.	 barrier(CLK_LOCAL_MEM_FENCE);
465.
466.	 ulong nounce_lo = get_ulong(buffer);
467.	 ulong nounce_hi = get_ulong(buffer + 8);
468.
469.	 ulong id = get_global_id(0);
470.
471.	 if ((nounce_lo + = id) < id)
472.	 ++nounce_hi;
473.
474.	 uchar counter[16];
475.	 put_ulong(nounce_lo, counter);
476.	 put_ulong(nounce_hi, counter + 8);
477.
478.	 aes_encrypt(counter, counter, RK, nrounds,
479.	 FSb, FT0, FT1, FT2, FT3);
480.
481.	 global uchar *output = buffer + (id + 1) * 16;
482.
483.	 for (int i = 0; i ! = 16; ++i)
484.	 output[i] ^ = counter[i];
485.	 }
486.
487.	 //aes_kernel_constants.h
488.	 #ifndef AES_KERNEL_CONSTANTS_H
489.	 #define AES_KERNEL_CONSTANTS_H
490.
491.	 constant uchar glob_FSb[256] = {
492.	 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
493.	 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
494.	 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
495.	 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
496.	 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
497.	 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
498.	 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
499.	 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
500.	 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
501.	 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
502.	 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
503.	 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
504.	 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
505.	 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
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506.	 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
507.	 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
508.	 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
509.	 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
510.	 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
511.	 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
512.	 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
513.	 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
514.	 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
515.	 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
516.	 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
517.	 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
518.	 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
519.	 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
520.	 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
521.	 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
522.	 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
523.	 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
524.	 };
525.
526.	 define FT \
527.	 V(A�5,63,63,C6), V(84,7C,7C,F8), V(99,77,77,EE), 

V(8D,7B,7B,F6), \
528.	 V(0�D,F2,F2,FF), V(BD,6B,6B,D6), V(B1,6F,6F,DE), 

V(54,C5,C5,91), \
529.	 V(5�0,30,30,60), V(03,01,01,02), V(A9,67,67,CE), 

V(7D,2B,2B,56), \
530.	 V(1�9,FE,FE,E7), V(62,D7,D7,B5), V(E6,AB,AB,4D), 

V(9A,76,76,EC), \
531.	 V(4�5,CA,CA,8F), V(9D,82,82,1F), V(40,C9,C9,89), 

V(87,7D,7D,FA), \
532.	 V(1�5,FA,FA,EF), V(EB,59,59,B2), V(C9,47,47,8E), 

V(0B,F0,F0,FB), \
533.	 V(E�C,AD,AD,41), V(67,D4,D4,B3), V(FD,A2,A2,5F), 

V(EA,AF,AF,45), \
534.	 V(B�F,9C,9C,23), V(F7,A4,A4,53), V(96,72,72,E4), 

V(5B,C0,C0,9B), \
535.	 V(C�2,B7,B7,75), V(1C,FD,FD,E1), V(AE,93,93,3D), 

V(6A,26,26,4C), \
536.	 V(5�A,36,36,6C), V(41,3F,3F,7E), V(02,F7,F7,F5), 

V(4F,CC,CC,83), \
537.	 V(5�C,34,34,68), V(F4,A5,A5,51), V(34,E5,E5,D1), 

V(08,F1,F1,F9), \
538.	 V(9�3,71,71,E2), V(73,D8,D8,AB), V(53,31,31,62), 

V(3F,15,15,2A), \
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539.	 V(0�C,04,04,08), V(52,C7,C7,95), V(65,23,23,46), 
V(5E,C3,C3,9D), \

540.	 V(2�8,18,18,30), V(A1,96,96,37), V(0F,05,05,0A), 
V(B5,9A,9A,2F), \

541.	 V(0�9,07,07,0E), V(36,12,12,24), V(9B,80,80,1B), 
V(3D,E2,E2,DF), \

542.	 V(2�6,EB,EB,CD), V(69,27,27,4E), V(CD,B2,B2,7F), 
V(9F,75,75,EA), \

543.	 V(1�B,09,09,12), V(9E,83,83,1D), V(74,2C,2C,58), 
V(2E,1A,1A,34), \

544.	 V(2�D,1B,1B,36), V(B2,6E,6E,DC), V(EE,5A,5A,B4), 
V(FB,A0,A0,5B), \

545.	 V(F�6,52,52,A4), V(4D,3B,3B,76), V(61,D6,D6,B7), 
V(CE,B3,B3,7D), \

546.	 V(7�B,29,29,52), V(3E,E3,E3,DD), V(71,2F,2F,5E), 
V(97,84,84,13), \

547.	 V(F�5,53,53,A6), V(68,D1,D1,B9), V(00,00,00,00), 
V(2C,ED,ED,C1), \

548.	 V(6�0,20,20,40), V(1F,FC,FC,E3), V(C8,B1,B1,79), 
V(ED,5B,5B,B6), \

549.	 V(B�E,6A,6A,D4), V(46,CB,CB,8D), V(D9,BE,BE,67), 
V(4B,39,39,72), \

550.	 V(D�E,4A,4A,94), V(D4,4C,4C,98), V(E8,58,58,B0), 
V(4A,CF,CF,85), \

551.	 V(6�B,D0,D0,BB), V(2A,EF,EF,C5), V(E5,AA,AA,4F), 
V(16,FB,FB,ED), \

552.	 V(C�5,43,43,86), V(D7,4D,4D,9A), V(55,33,33,66), 
V(94,85,85,11), \

553.	 V(C�F,45,45,8A), V(10,F9,F9,E9), V(06,02,02,04), 
V(81,7F,7F,FE), \

554.	 V(F�0,50,50,A0), V(44,3C,3C,78), V(BA,9F,9F,25), 
V(E3,A8,A8,4B), \

555.	 V(F�3,51,51,A2), V(FE,A3,A3,5D), V(C0,40,40,80), 
V(8A,8F,8F,05), \

556.	 V(A�D,92,92,3F), V(BC,9D,9D,21), V(48,38,38,70), 
V(04,F5,F5,F1), \

557.	 V(D�F,BC,BC,63), V(C1,B6,B6,77), V(75,DA,DA,AF), 
V(63,21,21,42), \

558.	 V(3�0,10,10,20), V(1A,FF,FF,E5), V(0E,F3,F3,FD), 
V(6D,D2,D2,BF), \

559.	 V(4�C,CD,CD,81), V(14,0C,0C,18), V(35,13,13,26), 
V(2F,EC,EC,C3), \

560.	 V(E�1,5F,5F,BE), V(A2,97,97,35), V(CC,44,44,88), 
V(39,17,17,2E), \
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561.	 V(5�7,C4,C4,93), V(F2,A7,A7,55), V(82,7E,7E,FC), 
V(47,3D,3D,7A), \

562.	 V(A�C,64,64,C8), V(E7,5D,5D,BA), V(2B,19,19,32), 
V(95,73,73,E6), \

563.	 V(A�0,60,60,C0), V(98,81,81,19), V(D1,4F,4F,9E), 
V(7F,DC,DC,A3), \

564.	 V(6�6,22,22,44), V(7E,2A,2A,54), V(AB,90,90,3B), 
V(83,88,88,0B), \

565.	 V(C�A,46,46,8C), V(29,EE,EE,C7), V(D3,B8,B8,6B), 
V(3C,14,14,28), \

566.	 V(7�9,DE,DE,A7), V(E2,5E,5E,BC), V(1D,0B,0B,16), 
V(76,DB,DB,AD), \

567.	 V(3�B,E0,E0,DB), V(56,32,32,64), V(4E,3A,3A,74), 
V(1E,0A,0A,14), \

568.	 V(D�B,49,49,92), V(0A,06,06,0C), V(6C,24,24,48), 
V(E4,5C,5C,B8), \

569.	 V(5�D,C2,C2,9F), V(6E,D3,D3,BD), V(EF,AC,AC,43), 
V(A6,62,62,C4), \

570.	 V(A�8,91,91,39), V(A4,95,95,31), V(37,E4,E4,D3), 
V(8B,79,79,F2), \

571.	 V(3�2,E7,E7,D5), V(43,C8,C8,8B), V(59,37,37,6E), 
V(B7,6D,6D,DA), \

572.	 V(8�C,8D,8D,01), V(64,D5,D5,B1), V(D2,4E,4E,9C), 
V(E0,A9,A9,49), \

573.	 V(B�4,6C,6C,D8), V(FA,56,56,AC), V(07,F4,F4,F3), 
V(25,EA,EA,CF), \

574.	 V(A�F,65,65,CA), V(8E,7A,7A,F4), V(E9,AE,AE,47), 
V(18,08,08,10), \

575.	 V(D�5,BA,BA,6F), V(88,78,78,F0), V(6F,25,25,4A), 
V(72,2E,2E,5C), \

576.	 V(2�4,1C,1C,38), V(F1,A6,A6,57), V(C7,B4,B4,73), 
V(51,C6,C6,97), \

577.	 V(2�3,E8,E8,CB), V(7C,DD,DD,A1), V(9C,74,74,E8), 
V(21,1F,1F,3E), \

578.	 V(D�D,4B,4B,96), V(DC,BD,BD,61), V(86,8B,8B,0D), 
V(85,8A,8A,0F), \

579.	 V(9�0,70,70,E0), V(42,3E,3E,7C), V(C4,B5,B5,71), 
V(AA,66,66,CC), \

580.	 V(D�8,48,48,90), V(05,03,03,06), V(01,F6,F6,F7), 
V(12,0E,0E,1C), \

581.	 V(A�3,61,61,C2), V(5F,35,35,6A), V(F9,57,57,AE), 
V(D0,B9,B9,69), \

582.	 V(9�1,86,86,17), V(58,C1,C1,99), V(27,1D,1D,3A), 
V(B9,9E,9E,27), \
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583.	 V(3�8,E1,E1,D9), V(13,F8,F8,EB), V(B3,98,98,2B), 
V(33,11,11,22), \

584.	 V(B�B,69,69,D2), V(70,D9,D9,A9), V(89,8E,8E,07), 
V(A7,94,94,33), \

585.	 V(B�6,9B,9B,2D), V(22,1E,1E,3C), V(92,87,87,15), 
V(20,E9,E9,C9), \

586.	 V(4�9,CE,CE,87), V(FF,55,55,AA), V(78,28,28,50), 
V(7A,DF,DF,A5), \

587.	 V(8�F,8C,8C,03), V(F8,A1,A1,59), V(80,89,89,09), 
V(17,0D,0D,1A), \

588.	 V(D�A,BF,BF,65), V(31,E6,E6,D7), V(C6,42,42,84), 
V(B8,68,68,D0), \

589.	 V(C�3,41,41,82), V(B0,99,99,29), V(77,2D,2D,5A), 
V(11,0F,0F,1E), \

590.	 V(C�B,B0,B0,7B), V(FC,54,54,A8), V(D6,BB,BB,6D), 
V(3A,16,16,2C)

591.
592.	 #define V(a,b,c,d) 0x##a##b##c##d
593.	 constant uint glob_FT0[256] = {FT};
594.	 #undef V
595.
596.	 #define V(a,b,c,d) 0x##b##c##d##a
597.	 constant uint glob_FT1[256] = {FT};
598.	 #undef V
599.
600.	 #define V(a,b,c,d) 0x##c##d##a##b
601.	 constant uint glob_FT2[256] = {FT};
602.	 #undef V
603.
604.	 #define V(a,b,c,d) 0x##d##a##b##c
605.	 constant uint glob_FT3[256] = {FT};
606.	 #undef V
607.	 #undef FT
608.
609.	 #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) {\
610.	 X0 = *RK++ ^ FT0[(Y0) & 0xFF] ^ \
611.	 FT1[(Y1 >> 8) & 0xFF] ^ \
612.	 FT2[(Y2 >> 16) & 0xFF] ^ \
613.	 FT3[(Y3 >> 24) & 0xFF]; \
614.	 X1 = *RK++ ^ FT0[(Y1) & 0xFF] ^ \
615.	 FT1[(Y2 >> 8) & 0xFF] ^ \
616.	 FT2[(Y3 >> 16) & 0xFF] ^ \
617.	 FT3[(Y0 >> 24) & 0xFF]; \
618.	 X2 = *RK++ ^ FT0[(Y2) & 0xFF] ^ \
619.	 FT1[(Y3 >> 8) & 0xFF] ^ \
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620.	 FT2[(Y0 >> 16) & 0xFF] ^ \
621.	 FT3[(Y1 >> 24) & 0xFF]; \
622.	 X3 = *RK++ ^ FT0[(Y3) & 0xFF] ^ \
623.	 FT1[(Y0 >> 8) & 0xFF] ^ \
624.	 FT2[(Y1 >> 16) & 0xFF] ^ \
625.	 FT3[(Y2 >> 24) & 0xFF]; \
626.	 }
627.	 #define AES_SLIM_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) { \
628.	 X0 = *RK++ ^ ((uint) FSb[(Y0) & 0xFF]) ^ \
629.		  ((uint) FSb[(Y1 >> 8) & 0xFF] << 8) ^ \
630.		  ((uint) FSb[(Y2 >> 16) & 0xFF] << 16)^ \
631.		  ((uint) FSb[(Y3 >> 24) & 0xFF] << 24); \
632.	 X1 = *RK++ ^ ((uint) FSb[(Y1) & 0xFF]) ^ \
633.		  ((uint) FSb[(Y2 >> 8) & 0xFF] << 8) ^ \
634.		  ((uint) FSb[(Y3 >> 16) & 0xFF] << 16)^ \
635.		  ((uint) FSb[(Y0 >> 24) & 0xFF] << 24); \
636.	 X2 = *RK++ ^ ((uint) FSb[(Y2) & 0xFF]) ^ \
637.		  ((uint) FSb[(Y3 >> 8) & 0xFF] << 8) ^ \
638.		  ((uint) FSb[(Y0 >> 16) & 0xFF] << 16)^ \
639.		  ((uint) FSb[(Y1 >> 24) & 0xFF] << 24); \
640.	 X3 = *RK++ ^ ((uint) FSb[(Y3) & 0xFF]) ^ \
641.		  ((uint) FSb[(Y0 >> 8) & 0xFF] << 8) ^ \
642.		  ((uint) FSb[(Y1 >> 16) & 0xFF] << 16)^ \
643.		  ((uint) FSb[(Y2 >> 24) & 0xFF] << 24); \
644.	 }
645.
646.	 #endif//end aes_kernel_constants.h

13.6  Concluding Remarks

In this chapter, we have provided an introduction to many-core het-
erogeneous architectures and to OpenCL, the industry standard for 
programming such systems. Many-core heterogeneous architectures 
provide vast amounts of computation power, which can be harnessed 
for cryptographic applications such as volume encryption and brute 
forcing. Therefore, we have provided a tutorial on implementing 
cryptographic primitives in OpenCL, taking as a case study the AES 
cipher. We provided a compact, efficient implementation in C++ of 
the required bindings and interfaces, providing an implementation 
schema that does not require the use of virtual functions, and exploits 
traits as an effective means to provide code specialization. Finally, it 
is worth noting that there is a significant corpus of scientific literature 
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on optimization of several cryptographic primitives on GPGPU 
platforms. Recent works on AES include [18] and [19], but other 
ciphers such as DES [20], KeeLoq [21], and Serpent [22] have been 
tackled as well.
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14.1  Introduction and Practical Situations

This chapter exists in the space created by three separate (although 
somewhat related) topics: hashing, Bloom filters, and data streaming. 
The last term is not fully established in the literature, having been 
created relatively recently—within the last decade or so, which is why 
it appears under various code names in literature, some of which are 
streaming algorithms, data streaming, and data streams. The title of this 
chapter clearly shows that this author prefers the term data streaming. 
The first two topics are well known and have been around in both 
practice and theory for many years.

Although somewhat unconventional to start a new chapter 
with a figure, Figure  14.1 can be helpful by clearly establishing 
the scope. At the bottom of the pyramid is the hashing technol-
ogy. There are various classes of hash functions—discussed briefly 
further on, while fast hashing is the specific kind pursued in this 
chapter. Hashing has many applications, of which its use as part 
of a Bloom filter is considered in detail. Finally, at the top of the 
pyramid, data streaming is the specific application that uses both 
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hashing generally and Bloom filters specifically as part of a practical 
data streaming application.

The two major objectives posed in this chapter are as follows:

Objective 1: Fast hashing. How to calculate hash functions of 
arbitrary length data using as few CPU cycles as possible.

Objective 2: Efficient lookup. How to find items in structures 
of arbitrary size and complexity with the highest achievable 
efficiency.

These objectives do not necessarily complement each other. In fact, 
they can be conflicting under certain circumstances. For example, 
faster hash functions may be inferior and cause more key collisions 
on average. Such collisions have to be resolved by the lookup algo-
rithm, which should be designed to allow multiple records under the 
same hash key. The alternative of not using collision resolution is a bad 
design because it directly results in loss of valuable information.

Data streaming as a topic has appeared in the research community 
relatively recently. The main underlying reason is a fundamental change 
in how large volumes of data had to be handled. The traditional way to 
handle large data (Big Data may be a better term)—which is still used 
in many places today—is to store the data in a database and analyze it 
later, where the latter is normally referred to as offline [4]. As the Big 
Data problem—the problem of having to deal with an extremely large 
volume of data—starts to appear in many areas, storing data in any 
kind of database has become difficult and in some cases impossible. 
Specifically, it is pointless to store Big Data if its arrival rate exceeds 
processing capacity, by the way of logic.

All hashing
All blooming

A uses B
Fast hashing

All related technologies

Other
uses

Data
streaming

Other uses

Other hashing methods

Bloom filter

Figure 14.1  The ladder of technologies covered in this chapter.
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Hence the data streaming problem, which is defined as a process that 
extracts all the necessary information from an input raw data stream 
without having to store it. The first obvious logical outcome from this 
statement is that such processing has to happen in real time. In view 
of this major design feature, the need for both fast hashing and efficient 
lookup should be obvious.

There is a long list of practical targets for data streaming. Some 
common targets are

•	 Calculating a median of all the values in the arrival stream
•	 Counting all the distinct items
•	 Detecting the longest increasing or decreasing sequence of values

It should be obvious that the first two targets in the above list 
would be trivial to achieve without any special algorithm had they 
come without the conditions. For example, it is easy to calculate the 
average—simply sum up all the values and divide them by the total 
number of values. The same goes for the counting of distinct items. 
This seemingly small detail makes for the majority of complexity in 
data streaming.

Including the above, the following describes the catch of data 
streaming:

•	 There is limited space for storing current state; otherwise, we 
would revert back to the traditional database-oriented design.

•	 Data have to be accessed in their natural arrival sequence, 
which is the obvious side effect of a real-time process—again, 
a major change from the database-backed processes that can 
access any record in the database.

•	 There is an upper limit on per-unit processing cost that, if 
violated, would break the continuity of a data streaming algo-
rithm (arguably, buffering can help smoothen out temporary 
spikes in arrival rate).

Note that all the above topics have deep roots in information theory. 
There is a long list of literature on the topic, of which this author can 
recommend a recently published book at [2], which discusses mod-
ern methods in hashing and blooming (blooming means “using Bloom 
filters”). There is also a recent book specifically on hashing [3] that 
provides even more detail on Bloom filters as one of the most popular 
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end uses of hash functions. To the knowledge of this author, there is 
not yet a book on data streaming given that the topic is relatively new, 
with early publications dated around 2004.

For the background on the information theory underlying all three 
main topics in this chapter, the reader is recommended to refer to the 
above books as well as a long list of literature gradually introduced 
throughout this chapter.

This chapter itself will try to stick to the minimum of mathematics 
and will instead focus on the practical methods and algorithms. Practical 
here partly refers to C/C++ implementations of some of the methods. 
This chapter has the following structure. Section 14.2 establishes basic 
terminology. The data streaming problem is introduced in detail in 
Section 14.3. Section 14.4 talks about simple 32-bit hashing methods. 
Sections 14.5 and 14.6 discuss practical data streaming and fast 
hashing, respectively, and Section 14.7 presents a specific practical 
application for data streaming—extraction of many-to-many commu-
nication patterns from packet traffic. The chapter is summarized in 
Section 14.8.

Note that the C/C++ source code discussed in this chapter is 
publically available at [43].

14.2  Terminology

As mentioned before, the terms data streams, data streaming, and 
streaming algorithms all refer to the same class of methods.

Bloom filter or Bloom structure refers to a space in memory that stores 
the current state of the filter, which normally takes the form of a bit 
string. However, the Bloom filter itself is not only the data it contains, 
but also the methods used to create and maintain the state.

Double-linked list (DLL) is also a kind of structure. However, 
DLLs are arguably exclusively used in C/C++. This is not 100% 
true—in reality, even this author has been able to use DLLs in 
other programming languages like PHP or Javascript—but C/C++ 
programs can benefit the most from DLLs because of the nature of 
pointers in C/C++ versus that in any other programming language. 
DLLs refer to a memory structure (struct in C/C++) alternatively to 
traditional lists—vectors, stacks, etc. In DLLs, each item/element is 
linked to its neighbors via raw C/C++ pointers, thus forming a chain 
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that can be traversed in either direction. DLLs are revisited later in 
this chapter and are part of the practical application discussed at the 
end of the chapter.

The terms word, byte, and digest are specific to hashing. The word is 
normally a 32-bit (4-byte) integer on 32-bit architectures. A hashing 
method digests an arbitrary length input at the grain of byte or word 
and outputs a hash key. Hashing often involves bitwise operations 
where individual bits of a word are manipulated.

This chapter promised minimum of mathematics. However, some 
basic notation is necessary. Sets of variables a, b, and c are written as 
{a, b, c} or {a}n if the set contains n values of a parameter a. In informa-
tion theory, the term universe can be expressed as a set.

Sequences of m values of variable b are denoted as <b>m. Sequences 
are important for data streaming where sequential arrival of input is one 
of the environmental conditions. In the case of sequences, m can also 
be interpreted as window size, given that arrival is normally continuous.

Operators are denoted as functions; that is, the minimum of a set is 
denoted as min{a, b}.

14.3  The Data Streaming Problem

As mentioned before, data streaming has a relatively small body of 
literature on the subject. Still, the seminal paper at [14] is a good 
source for both the background and advanced topics in relation to 
data streaming. The material at [15] is basically lecture notes pub-
lished as a 100+-page journal paper and can provide even more insight 
as well as very good detail on each point raised in this chapter.

This section provides an overview of the subject and presents the 
theory with its fundamental formulations as well as practical applica-
tions and designs. The last subsection presents a summary of current 
research directions in relation to the core problem.

14.3.1  Related Information Theory and Formulations

We start with the universe of size n. In data streaming we do not have 
access to the entire universe; instead, we are limited to the current 
window of size m. The ultimate real-time streaming is when input is 
read and processed one item at a time, i.e., m = 1.
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Using the complexity notation, the upper bound for the space 
(memory, etc.) that is required to maintain the state is

	 S O min m n,( ){ }=

If we want to build a robust and sufficiently generic method, it 
would pay to design it in such a way that it would require roughly the 
same space for a wide range of n and m, that is,

	 S O log min m n,( )( ){ }=

When talking about space efficiency, the closest concept in tradi-
tional information theory is channel capacity (see Shannon for the orig-
inal definition [1]). Let us put function f({a}n) as the cost (time, CPU 
cycles, etc.) of operation for each item in the input stream. The cost 
can be aggregated into f({a}n) to denote the entire output. It is possible 
to judge the quality of a given data streaming method by analyzing 
the latter metric. The analysis can extend into other efficiency metrics 
like memory size, etc., simply by changing the definition of a per-unit 
processing cost.

A simple example is in order. Let us discuss the unit cost defined as

	 f a f i a C i nn i: , 1, ,( ){ } { }= = ∈ …

The unit cost in this case is the cost of defining—for each item in 
the arrival stream—if it is equal to a given constant C. Although it 
sounds primitive, the same exact formulation can be used for a much 
more complicated unit function.

Here is one example of a slightly higher complexity. This time let 
us phrase the unit cost as the following condition. Upon receiving 
item ai, update a given record fj ← fj + C. This time, prior to updating 
a record, we need to find the record in the current state. Since it is 
common that i and j have no easily calculable relation between the 
two, finding the j efficiently can be a challenge.

Note that the above formulations may make it look like data 
streaming is similar to traditional hashing, where the latter also needs 
to update its state on every item in the input. This is a gross misrepre-
sentation of what data streaming is all about. Yes, it is true that some 
portion of the state is potentially updated on each item in the arrival 
stream. However, in hashing the method always knows which part 
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of the state is to be updated, given that the state itself is often just 
a single 32-bit word. In data streaming, the state is normally much 
larger, which means that it takes at least a calculation or an algo-
rithm to find a spot in the state that is to be updated. The best way 
to describe the relation between data streaming and hashing is to 
state that data streaming uses hashing as one its primitive operations. 
Another primitive operation is blooming.

The term sketch is often used in relation to data streaming to 
describe the entire state, that is, the {  f  }m set, at a given point of time. 
Note that f  here denotes the value obtained from the unit function 
f (), using the same name for convenience.

14.3.2  Practical Applications and Designs

Early proposals related to data streaming were abstract methodologies 
without any specific application. For example, [15] contains several 
practical examples referred to as puzzles without any overlaying theme. 
Regardless, all the examples in early proposals were based on realistic 
situations. In fact, all data streaming targets known today were estab-
lished in the very early works. For example, counting frequent items 
in streams [17] or algorithms working with and optimizing the size 
of sliding windows [18] are both topics introduced in early proposals.

Data streaming was also fast to catch up with the older area of 
packet traffic processing. Early years have seen proposals on data 
streaming methods in Internet traffic and content analysis [14], 
as well as detection of complex communication patterns in traf-
fic [19, 25]. The paper in [25] specifically is an earlier work by this 
author and is also this author’s particular interest as far as application 
of data streaming to packet traffic is concerned. The particular prob-
lem of detecting complex communication patterns is revisited several 
times in this chapter.

Figure  14.2 shows the scenario in which data streaming can be 
applied to detection of many-to-many communication patterns. 
The figure is split into upper and lower parts, where the upper part 
represents conventional, and the lower the new method based on data 
streaming. The traditional process collects and stores data for later 
offline processing. The data streaming process removes the need for 
storage—at least in the conventional sense, given small storage is still 
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used to maintain the state—and aggregates the patterns in real time. 
Note that this process also allows for real-time analysis because the 
data can easily be made available once they are ready. In software, this 
is normally done via timeouts, where individual records are exported 
after a given period of inactivity, which naturally indicates that a pat-
tern has ended.

Data streaming has been applied to other areas besides traffic. 
For example, [16] applies the discipline to detection of triangles in 
large graphs, with obvious practical applications in social networks, 
among many other areas where graphs can be used to describe under-
lying topology.

14.3.3  Current Research Topics

Figure 14.3 shows the generic model of a data streaming situation. 
The parameters are arrival rate, record size, record count, and the index, 
where the last term is a replacement term for data streaming. Note 
that only arrival rate is important, because departure rate, by defini-
tion, cannot be higher than the arrival rate. On the other hand, arrival 
rate is important because a data streaming method has to be able to 
support a given rate of arrival in order to be feasible in practice.

Arrival rate is also the least popular topic in related research. 
In fact, per-unit processing time is not discussed much in literature, 
which instead focuses on efficient hashing or blooming methods. 
Earlier work by this author in [36] shows that per-unit processing cost 
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Figure 14.2  A common design for data streaming on top of packet traffic.
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is important—the study specifically shows that too much processing 
can have a major impact on throughput.

The topic of arrival rate is especially important in packet traffic. 
With constantly increasing transmission rates as well as traffic vol-
ume, a higher level of efficiency is demanded of switching equipment. 
Click router is one such technology [34] that is in active development 
phase with recent achievements of billion pps processing rates [35]. 
The same objectives are pursued by OpenVSwitch—a technology 
in network virtualization. It is interesting that research in this area 
uses roughly the same terminology as is found in data streaming. 
For example, [35] is talking about space efficiency of data structures 
used to support per-packet decision making. Such research often uses 
Bloom filters to improve search and lookup efficiency. In general, this 
author predicts with high probability that high-rate packet processing 
research in the near future will discover the topic of data streaming 
and will greatly benefit from the discovery.

14.4  Simple 32-Bit Fast Hashing

Hashing is the best option for a store-and-lookup technology. While 
there are other options like burst trees, hash tables have been repeat-
edly proven to outperform their competitors [6].

The book at [3] is a good source of the background on hashing. 
Unfortunately, the book does not cover the topic of fast hashing, which 
is why it is covered in detail in this chapter. In fact, hashing perfor-
mance is normally interpreted as statistical quality of a given hash 
function rather than the time it takes to compute a key.

One of the primary uses for fast hashing in this chapter is lookup. 
For example, [12] proposes a fast hashing method for lookup of 

Departure (µ2)Arrival (µ)

Record count (n)

Index

Record size (s)

Figure 14.3  Common components shared by all data streaming applications.
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per-flow context, which in turn is necessary to make a decision 
on whether or not to capture a packet. Note that lookup is not the 
only possible application of hashing. In fact, message digests and 
encryption might greatly outweigh lookup if compared in terms of 
popularity.

The target of this section is to discuss hashing defined as 
manipulations of individual 32-bit words subject to obtaining qual-
ity hash keys. Note that there is a perfect example of such a work in 
traffic—an IPv4 address. This chapter revisits practical applications 
in traffic processing and even works with real packet traces like those 
publicly available at [46] and [47].

14.4.1  Hashing and Blooming Basics

Figure 14.4 presents the basic idea about hashing and blooming in 
one figure. Although blooming is not covered much in this figure, 
presenting the two together helps by presenting how the two tech-
nologies fit together.

Hashing—the same as applying a hash function on an arbitrary 
length message—produces an output in the form of a bit string of a 
given length. The 32-bit hash keys are common—hence the title of 
this section.

The main point about a hashing method is the quality of a hash key 
it produces. The subject of quality and its evaluation is covered further 
in this section.
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Figure 14.4  Generic model of hashing used in the context of blooming.
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Now, here is how the Bloom filter puts hashing to practical use. 
In the official definition, a Bloom filter can use multiple hash func-
tions for each insert or lookup operations—the number is obviously 
the same for both operations in the same setting.

Each hash function produces its own bit string. This string is then 
merged with the current state of the Bloom filter via the bitwise OR 
operation, the result of which is stored at the new state of the filter. 
The same is done for each of the multiple hash functions provided 
there is more than one (not necessarily the case in practice).

It should be obvious that bit lengths of the Bloom filter and each 
hash key should be the same.

This, in a nutshell, describes the essence of hashing and blooming. 
The concepts are developed further in this chapter.

14.4.2  Traditional Hashing Methods

Konheim [3] lists all the main classes of hash functions. This subsec-
tion is a short overview.

Perfect hashing refers to a method that maps each distinct input to 
a distinct slot in the output. In other words, perfect hashing is perfect 
simply because it is free of collisions.

Minimal perfect hashing is a subclass of perfect hashing with the 
unique feature that the count of distinct items on the output equals 
that on the input regardless of the range of possible value on the input. 
This confusing statement can be untangled simply by noting that 
minimal perfect hashing provides very space efficient outputs. This is 
why this method is actively researched by methods that require space-
efficient states while streaming the data.

Universal hashing is a class of randomized hashing. Note that most 
methods—including those used in packet traffic, the most famous of 
which is arguably the CHECKSUM algorithm, also known as the 
cyclic redundancy check (CRC) family—are deterministic and will 
always produce the same output for the same input. Randomized 
hashing is often based on multiplication, which is also known in 
hashing as “the most time consuming operation” [8]. For this reason 
alone, fast hashing avoids some of the methods in the universal class.

There are several other classes, like message digests and generally 
cryptography, both of which have little to do with fast hashing.
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The study in [7] is an excellent performance comparison of several 
popular hash functions and will provide better background on the 
subject.

14.4.3  Hashing by Bit Manipulation

Bit manipulation is a basic unit of action in hashing. Most existing 
methods, especially those that are supposed to be fast, are based on 
bitwise operations. Here is a practical example that shows how the 
CRC24 method creates its keys (the full implementation of the algo-
rithm can be found in crc24.c at [43]):

Let us analyze what is happening in this code. First, there is some 
variable L that contains deterministic values for each of the 256 states 
it carries. The states are accessed by using the tail of each actual byte 
from the input stream. The function also makes use of two XOR 
operations. The initial value of key is set as the first element of L, but 
then it evolves as it moves through the bytes filtered through prede-
termined values at various spots in L. All in all, the method looks 
simple in code, but it is known to provide good quality hash keys. 
The actual meaning of the word quality is covered later in this section.

As far as bitwise manipulations are concerned, they can be classi-
fied into reversible versus irreversible operations. Although keys do not 
always have to be reversible to be feasible in practice, it is important to 
know which are which.

The following operations are reversible:
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The following operations are nonreversible:

The multiplication operation is a special case not only because it is 
reversible only if the constant is odd, but also because it incurs more 
cost than, say, the bitwise shift. It is trivial to understand why bitwise 
shift to the left is the same as multiplying a number by 2. However, 
the two operations are very different on most hardware architec-
tures, specifically in the number of CPU cycles an operation incurs or 
can potentially incur in case the cost is not a fixed number of cycles. 
Hardware implementation is revisited further in this chapter.

14.4.4  Quality Evaluation of Hash Functions

Quality estimation of a hash function is common knowledge. 
The following are the main metrics:

Uniform distribution. The output of a hash function should 
be uniformly distributed. This means that each combination 
of bits in the output should be equally likely to occur. This 
metric is easy to test and analyze statistically. Simply collect 
a set of outputs and plot their distribution to see if it forms a 
roughly horizontal line.

Avalanche condition. This is a tricky metric that is both the 
objective of a hash function and the metric that evaluates its 
quality. The statement is that a change in any one bit on the 
input should affect every output bit with 50% probability. 
There is one easy way to understand this metric. If our input 
changes only in one bit (say, an increment of one), the out-
put should change to a very different bit string from the one 
before. In fact, the 50% rule says that on average, the XOR 
difference between the two keys should roughly have 50% of 
its bits set to 1. Note that this applies to any input bit, mean-
ing that large change in input should cause about the same 
change in output as a small change in input. Another way 
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to think about this metric is by realizing that this is how the 
uniform distribution is achieved in the first place.

No partial correlation. There should be no correlation between any 
parts of input versus output bit strings. Again, this metric is related 
to both the above metrics but has its own unique underlying sta-
tistical mechanisms. Correlation is easy to measure. Simply take 
time series of partial strings in input versus output and see if the 
two correlate. You will have to try various combinations—that 
is, x bits from the head, tail, in the middle, etc.

One-way function. The statement is that it should be computa-
tionally infeasible to identify two keys that produce the same 
hash value or to identify a key that produces a given hash 
value. This metric is highly relevant in cryptography, but is 
not much useful for fast hashes.

14.4.5  Example Designs for Fast Hashing

There are two fundamental ways to create a fast hashing method:

	 1.	Create a more efficient method to calculate hash keys while 
retaining the same level of quality (metrics were discussed 
above).

	 2.	Use a simple—and therefore faster—hashing method and 
resolve quality problems algorithmically.

Arguably, these two methods are the opposite extremes, while the 
reality is a spectrum between the two. Regardless, the rest of this sec-
tion will show how to go about writing each of the two algorithms.

The d-left method in [13] is a good example of a fast hashing method 
that attempts to retain the quality while speeding up calculations. The 
method uses multiple hash functions for its Bloom filter but proposes 
an algorithm that avoids using all the functions when calculating each 
key. In fact, each time the algorithm skips one of k functions, it saves 
calculation time. The study formulates the method as an optimization 
problem where the number of overflows is to be minimized. Some 
level of overflow is inevitable under the method since the space is 
minimized for faster access. The point therefore is to find a good bal-
ance in the trade-off between high number of overflows (basically 
lost/missed records) and fast hash calculations.
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While the above method is scientifically sound, practice often favors 
simple solutions. Earlier work by this author is one such example [38]. 
What it does is use simple CRC24 as the only hashing function—
thus causing lower quality of keys in terms of collisions, especially 
given that the keys feature the compression ratio of over five times 
(141 bits are compressed into 24). This quality problem is dealt with 
algorithmically using the concept of sideways DLL.

Figure 14.5 shows the basic idea behind sideways DLL. Virtual 
stem in the figure is the traditional DLL where each item is con-
nected to its neighbor using the traditional to C/C++ variables prev 
and next. These variables are assigned pointers to neighboring items, 
thus forming a list-like chain that can be traversed.

Since simple hashing will have higher number of collisions on aver-
age, they have to be resolved programmatically. The horizontal chain 
in Figure  14.5 is one obvious solution. All items in the horizontal 
chain share the same hash key and are connected into the DLL chain 
using sidenext and sideprev pointers.

The collisions are resolved as follows. Fast hashing quickly pro-
vides a key. The program finds the headmost DLL item for that key. 
However, there is no guarantee that the headmost element is the cor-
rect one—hence the collision. So, the program has to traverse the 
chain and check whether a given item is the one it is looking for. 
Granted that such a resolution will also waste CPU cycles, this per-
formance overhead is not fixed for each lookup. In fact, this author’s 
own practice shows that less than 5% of keys will have sideways 
chains, while the rest will have only one item in each slot.
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Figure 14.5  Example DLL design that can deal with hash key collisions using the ability to 
traverse DLL sideways.
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The following is the actual C/C++ code for a DLL structure with 
sideways chains:

Note that the chain itself is built by DLL element (DLLE) only. 
Yet, the DLL part is also necessary, especially for traversal. It is also 
useful to be able to traverse the chain from both the head and the tail. 
Here is the list of some of the useful properties of DLLs:

•	 It is easy for two DLLEs to swap positions, which can be done 
simply by changing assignments in next and prev pointers—
the same way any DLLE can be moved to the head or the tail 
of the DLL.

•	 Given the easy swapping, it is possible to put a recently used 
DLLE at the head of the DLL so that it is found first during 
the next traversal; this way old DLLEs will naturally sink to 
the bottom (tail) of the DLL. This can also be described as a 
natural sorting of the DLL by last used timestamp.

•	 Given the above property, garbage collection is easy—simply 
pick the oldest DLLEs at the tail of the DLL and dispose of 
them (or export them, etc.).

DLL is commonplace in packet traffic processing where C/C++ 
programming is in the overwhelming majority [20]. Earlier research 
by this author [25] makes extensive use of DLLs. A similar example 
will be considered as a practical application further in this chapter.

14.5  Practical Data Streaming

This section puts together all the fundamentals presented earlier as 
part of practical data streaming. The scope of the practice extends 
from the contents of the input stream to fairly advanced practical data 
streaming targets.
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14.5.1  Distributions in Practice

Research in [41] was the first to argue that traditional distributions, 
of which beta, exponential, Pareto, etc., are the most common, perform 
badly as models of natural processes. In fact, this phenomenon was 
noticed in packet traffic many years before. Yet, research in [41] is the 
first to present a viable alternative based on the concept of hotspots. 
The research shows that hotspots are found in many natural systems.

Many statistics collected from real processes support the notion of 
hotspots. For example, [42] shows that hotspots and flash events exist 
in data centers that are part of large-scale cloud computing.

Earlier work by this author in [37] developed a model that can syn-
thesize flash events in packet traces. The output of such a synthesis is 
a packet trace that looks just like a real trace, only with all the time-
stamps and packet sizes being artificially created by the model.

The model in [37] is based on a stick-breaking (SB) process, which 
in Figure  14.6 is compared to one of the traditional choices—the 
beta distribution. The SB process is known to create more realistic 
power-law distributions—hence its selection as the underlying struc-
ture. For realistic traces, not only synthetic sources but also their 
dynamics are important, which is why a large part of the synthesis 
is dedicated to creating flash events (left bottom plot of the figure). 
The modeling logic is simple and is evident from the plot—locations 

43

Synthetic Flash
vs. real

Synthetic Normal
vs. real

2
Log (real per-dest volume)

Lo
g 

(s
yn

th
et

ic
 p

er
-d

es
t v

ol
um

e)

10

0

0.6

1.2

1.8

2.4

3

3.6

4.2
Beta

Stick-breaking

Normal
Flash event

2.51.50.50

6

0

0 0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1

Beta/SB Count (Histogram)

4

Lo
g 

(p
op

ul
ar

ity
)

N
or

m
. B

et
a/

SB
 S

eq
. N

o.

2

0

1
Log (seq. no.)

2

Figure 14.6  The stick-breaking process (left) used to create a synthetic trace versus beta dis-
tribution as a common traditional choice, and comparison of the synthetic trace to a real one (right).



317Methods and Algorithms for Fast Hashing

(sources, destinations, content items, etc.) that are already popular can 
“go viral,” which is where the access count can grow substantially for 
a limited period of time.

The right-side plot in Figure 14.6 shows that even such an elabo-
rate synthesis fails to emulate reality. The plot shows that only the 
upper 30% of the trace (top flows by volume) closely follows the real 
distribution, where the resemblance in smaller flow size is almost 
completely gone. Note that the real packet traces used in comparison 
come from [47].

Nevertheless, even with the relatively high error margin, synthetic 
traces are preferred in trace-based simulations specifically because they 
allow us to test various conditions simply by changing the parameters 
during synthesis. In this respect, real traces can be considered as the 
average or representative case, while synthetic traces can be used to 
test the limits of performance in some methods.

Traces—both real and synthetic—are related to fast hashing via 
the notion of arrival rate introduced earlier in this chapter. If the 
method is concerned with per-unit processing cost, the contents of the 
input stream are of utmost importance. In this respect, packet traffic 
research provides a fresh new prospective on the subject of fast hash-
ing. While traditionally fast hashing is judged in terms of the quality 
of its keys, this chapter stresses the importance of the distribution in 
the input stream.

As far as real packet traces are concerned, CAIDA [48], WAND [46], 
and WIDE [47] are good public repositories and contain a wide variety 
of information at each site.

The above synthetic method is not the only available option. There 
are generators for workloads in many different disciplines, where, for 
example, RUBIS is a generator of workloads for cloud computing. 
RUBIS generates synthetic request arrival processes, service times, 
etc. [49].

14.5.2  Bloom Filters: Store, Lookup, and Efficiency

The study in [9] provides a good theoretical background on the notion 
of Bloom filters. This section is a brief overview of commonly available 
information before moving on to the more advanced features actively 
discussed in research today.
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Remember Figure  14.4 from before? Some of this section will 
discuss the traditional design presented by this figure, but then 
replace it with a more modern design. From earlier in this chapter 
we know that blooming is performed by calculating one or more 
hash keys and updating the value of the filter by OR-ing each hash 
key with its current state. This is referred to as the insert operation. 
The lookup operation is done by taking the bitwise AND between a 
given hash key and current state of the filter. The decision making 
from this point on can go in one of the following two directions:

•	 The result of AND is the same as the value of the hash key—
this is either true positive or false positive, with no way to tell 
between the two.

•	 The result of AND is not the same as the value of the hash 
key—this is a 100% reliable true negative.

One common way to describe the above lookup behavior of 
Bloom filters is to describe the filter as a person with memory who 
can only answer the question “Have you seen this item before?” 
reliably. This is not to underestimate the utility of the filter, as the 
answer to this exact question is exactly what is needed in many 
practical situations.

Let us look at the Bloom filter design from the viewpoint of hash-
ing, especially given that the state of the filter is gradually built by 
adding more hash keys onto its state.

Let us put n as number of items and m the bit length of hash keys, 
and therefore the filter. We know from before that each bit in the hash 
key can be set to 1 with 50% probability. Therefore, omitting details, 
the optimal number of hash function can be calculated as

	 k In m
n

m
n

2 0.6= 



 ≈

If each hash function is perfectly independent of all others, then the 
probability of a bit remaining 0 after n elements is

	 p
m

e
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False positive—an important performance metric of a Bloom filter is 
then

	 pFP p ek
kn

m

k

k1 1 1
2( )= − ≈ −





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≈
−

for the optimal k. Note with that increasing k, the probability of false 
positive is actually supposed to decrease, which is an unintuitive outcome 
because one would expect the filter to get filled up with keys earlier.

Let us analyze the k. For the majority of cases m << n, which means 
that the optimal number of hash functions is 1. Two functions are 
feasible only with m > 2.5n. In most realistic cases this is almost never 
the case because n is normally huge, while m is something practical, 
like 24 or 32 (bits).

14.5.3  Unconventional Bloom Filter Designs for Data Streams

Based on the above, the obvious problem in Bloom filters is how to 
improve their flexibility. As a side note, such Bloom filters are nor-
mally referred to as dynamic.

The two main changes are (1) extended design of the Bloom filter 
structure itself, which is not a bit string anymore, and (2) nontrivial 
manipulation logic dictated by the first change—simply put, one can-
not use logical ORs between hashes and Bloom filter states.

Figure 14.7 shows the generic model that applies to most of the 
proposals of dynamic Bloom filters. The simple idea is to replace a 
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Figure 14.7  A generic model representing Bloom filters with dynamic functionality.
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simple bit string with a richer data structure (the change in the Bloom 
filter in the figure). Each bit in the filter now simply is a pointer to a 
structure that supports dynamic operations.

The other change that ensues is that the OR operation is no longer 
applicable. Instead, a nontrivial manipulation has to be performed on 
each bit of the value that was supposed to be OR-ed in the traditional 
design. Naturally, this incurs a considerable overhead on performance.

The following classes of dynamic Bloom filters are found in literature.

Stop additions filter. This filter will stop accepting new keys 
beyond a given point. Obviously this is done in order to keep 
false positive beyond a given target value.

Deletion filter. This filter is tricky to build, but if accomplished, 
it can revert to a given previous state by forgetting the change 
introduced by a given key.

Counting filters. This filter can count on both individual bits 
of potential occurrences of entire values and combinations of 
bits. This particular class of filters obviously can find practi-
cal applications in data streaming. In fact, the example of the 
d-left hashing method discussed earlier in this chapter uses a 
kind of counting Bloom filter [13]. Another example can be 
found in [12], where it is used roughly for the same purpose.

There are other kinds of unconventional designs. The study in [10] 
declares that it can do with fewer hash functions while providing the 
same blooming performance. Bloom filters specific to perfect hashing 
are proposed in [11].

14.5.4  Practical Data Streaming Targets

This subsection considers several practical data streaming targets.

Example 14.1:  A Simple Sampling Problem

We need a median of the stream. The problem is to find a uniform 
sample s from a stream of unknown length and unknown content 
in advance. Again, by definition, even having seen all the input, 
we cannot use it because there is not enough storage for its entire 
volume.

Algorithm: Set originally s = x1. On seeing the tth element, the 
probability of s ← xt is 1/t.
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Analysis: The probability that s = xi at some time t ≥ i is
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To get k samples, we use O(k log n) bits of space.

Example 14.2:  The Sliding Window Problem

Maintain a uniform sample from the last w items algorithm:

•	 For each xi pick a random value vk ∈ (0, 1).
•	 In a window (xj–w + 1, …, xj) return value xi with smallest 

the xi.
•	 To do this, maintain a set of all elements in a sliding win-

dow whose v value is minimal among subsequent values.

Analysis: The probability that the jth oldest element is in S is 
1/j, so the expected number of items in S is

	 )(+
−

+ + =1 1
1

..... 1
1

log
w w

O w

Therefore, the algorithm only uses O(log w log n) bits of memory.

Example 14.3:  The Sketch Problem

Apply a linear projection “on the fly” that takes high-dimensional 
data to a smaller dimensional space. Post-process the lower-
dimensional image to estimate the quantities of interest.

Input: Stream from two sources:

	 )( [ ] [ ])( ∈ ∪, ,...,1 2x x x A n B nm
m

The objective is to estimate the difference between distribu-
tions of A values and B values, so

	 ∑ −
[ ]∈

f gi i

i n

where
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Example 14.4:  Count-Min Sketch

For example, we might detect heavy hitters fi ≥ m, or range sum 
estimate:

	 ∑ ≤ ≤ fi k j k

when i, j are not known in advance. For k-quantiles, find values 
q0, …, qk such that

	 ∑∑= = < ≤
≤≤ −

0, ,0q q n f jm
k

fk i i

i qi q q jj

Algorithm: Maintain a list of counters ci, j for i ∈ [d] and j ∈ [w]. 
Construct d random hash functions h1, h2, …, hd: [n] → [d]. 
Update counters, when the encounter value v increment is ci,hi (v) 
for i ∈ [d]. To get an estimate of fk return

	 = min , ( )f ck
i

i h kj

Analysis: For d = O(log(1/δ)) and w = O(1/ε2),

	 − ∈ ≤ ≤  ≥ − δ1*P f m f fk k k

Example 14.5:  The Counting Problem

Count distinct elements in stream.
Input: Stream (x1, x2, …, xm) ∈ [n]m. The objective is to estimate 

the number of distinct values in the stream up to a multiplicative 
factor 1 + ε with high probability.

Algorithm: Apply random function h: [n] ∈ [0, 1] to each ele-
ment. Compute a—the tth smallest value of the hash seen where 
t = 21/ε2. Return r* = t/a as the estimate of r—the number of dis-
tinct items.

Analysis: Algorithm uses O(e–2 log n) bits of space. Estimate has 
good accuracy with reasonable probability:

	 [ ]∗ − ≤ ∈ ≤| | 9/10P r r r

The proof involves the concept of Chebyshev analysis and is 
pretty complicated, but it is out there if you do a quick search in 
the literature provided above.
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14.5.5  Higher-Complexity Data Streaming Targets

Besides the relatively simple (you can call them traditional) data 
streaming targets, there are several interesting practical targets that 
need a higher level of algorithmic complexity. This subsection lists 
only the problems and leaves the search for solutions to the reader. 
In  fact, some solutions are the subject of active discussion in the 
research community today. Pointers to such research are provided.

Example 14.6:  Finding Heavy Hitters 
(beyond the Min-Count Sketch)

Find k most frequently accessed items in a list. One algorithm is 
proposed in [17]. Generally, more sound algorithms for sliding 
windows can be found in [18].

Example 14.7:  Triangle Detection

Detect triangles defined as A talks to B, B talks to C, and C talks 
to A (other variants are possible as well) in the input stream. An 
algorithm is proposed in [16].

Example 14.8:  Superspreaders

Detect items that access or are accessed by exceedingly many 
other items. Related research can be found in [19].

Example 14.9:  Many-to-Many Patterns

This is a more generic case of heavy hitters and superspreaders, 
but in this definition the patterns are not known in advance. 
Earlier work by this author [25] is one method. However, the 
subject is popular with several methods, such as M2M broadcast-
ing [26] and various M2M memory structures [27, 31], and data 
representations (like graph in [28]) are proposed—all outside of 
the concept of data streaming. The topic is of high intrinsic value 
because it has direct relevance to group communications where 
one-to-many and many-to-many are the two popular types of 
group communications [29, 30, 32, 33].

A practical example later in this chapter will be based on a 
many-to-many pattern capture.
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14.6  Practical Fast Hashing and Blooming

This section expands further into the practical issues in relation with 
fast hashing and blooming.

14.6.1  Arbitrary Bit Length Hashing

Obvious choices when discussing long hashes are the MD5 and SHA- 
family of methods.

It is interesting that bit length is about the only difference of such 
methods from simpler 32-bit hash keys. The state is still created and 
updated using bitwise operations, with the only exception that the 
state now extends over several words and updates are made by rotation.

Both groups of methods are created with hardware implementation 
in mind where it is possible to update the entire bit length or even 
digest the entire message in one CPU cycle.

The methods, however, are useless for data streaming in general, 
mostly due to the long bit length. With CRC24, it is possible to 
procure a memory space with 224 memory slots (where each slot is a 
4-byte C/C++ pointer). But there is no feasible solution for a memory 
region addressable using an MD5 key as an index.

However, given the uniform distribution condition, it is possible to 
use only several bits from any region of the hash key. However, given 
that MD5 or SHA- methods take much longer to compute than the 
standard CRC24 or even a simpler bitwise manipulation, such a use 
would defeat the purpose of fast hashing.

14.6.2  Arbitrary Length Bloom Filters

Again, using longer Bloom filters has dubious practical value. Based 
on the simple statistics presented above, increasing the bit length of 
the filter only makes sense when it helps increase the number of hash 
functions. However, the equation showed that increase in bit length 
is reduced by 40%. Even before that, m is part of the ratio m/n, which 
makes it nearly impossible to have any practical impact n when n is 
large. In practice, n is always large.

In view of this argument, it appears that the dynamic filters pre-
sented earlier in this paper present a better alternative to using longer 
bit strings in traditional Bloom filters.
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14.6.3  Hardware Implementation

Hashing is often considered in tandem with hardware implementation. 
The related term is hardware offload—where a given operation is offloaded 
to hardware. It is common to reduce multi-hundred-cycle operations to 
single CPU cycles. This subsection presents several such examples.

One common example is to offload CHECKSUM calculations to 
hardware. For example, the COMBO6 card [20] has done that and 
has shown that it has major impact on performance.

Note that the most popular hashing methods today—the MD5 
and SHA-2 methods—are created with hardware implementation in 
mind. MD5 is built for 32-bit architectures and has its implementa-
tion code in RFC1321 [22], fully publicly open. The SHA-* family of 
hashing methods are also built for hardware implementation but are 
still being improved today [24]. One shared feature between these 
methods is that they avoid multiplication, resorting to simple bitwise 
manipulations instead.

Two other main threads in hardware offloading are

•	 GPU-based hardware implementation, specifically using the 
industry default CUDA programming language [21]

•	 Memory access optimization where the method itself tries to 
make as few accesses to memory as possible [23]—although 
not particularly a hardware technology, such methods are 
often intimately coupled with specific hardware, like special 
kind of RAM, etc.

14.7  Practical Example: High-Speed Packet Traffic Processor

This section dedicates its full attention to an example data streaming 
method from the area of packet traffic processing.

14.7.1  Example Data Streaming Target

Let us assume that there is a service provided by a service provider. The 
realm of the service contains many users. A many-to-many (M2M) 
pattern is formed by a subset of these users that communicate among 
each other. Favoring specificity over generalization, M2M parties 
can be classified into M2M sources and M2M destinations. While this 
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specificity may not be extended to M2M problems in other disciplines, 
it makes perfect sense in traffic analysis because flows are directional. 
Besides, the generality can be easily restored if it is assumed that 
sources can be destinations, and vice versa. In fact, in many communi-
cation patterns today, this is actually the case, which means that two 
flows in opposite directions can be found between two parties.

Traffic capture and aggregation happens at the service provider 
(SP), which is the location of convenience because all the traffic that 
flows through the SP already can be captured without any change in 
communication procedures.

The problem is then defined as the need to develop a method and 
software design capable of online capture and aggregation of such 
M2M patterns.

Note that this formulation is one level up from the superspreaders 
in [19]. While the latter simply identifies singular IP addresses that 
are defined as superspreaders, this problem needs to capture the com-
munication pattern itself.

14.7.2  Design for Hashing and Data Structures

Figure 14.8 shows the rough design of the system. Hash keys of x bits 
long are used as addressed in the index. Collision avoidance is imple-
mented using sideways DLL, as was described earlier in this chapter 
(this particular detail is not shown in the figure). Each slot in the 
index points to an entry that in turn can contain multiple subentries. 
In this context, entry is the entire multiparty communication pattern, 
while subentry is its unit component that describes a single communi-
cation link between two members of a communication group.
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Figure 14.8  Overall design of an index for capturing many-to-many group communication.
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Since each pattern can have multiple parties, each with its own IP 
address, multiple slots in the hash table can point to the same entry. 
This is not a problem in C/C++, where the same pointer can be stored 
in multiple places in memory.

Figure 14.9 finally reveals the entire data structure. The source code 
can be found in m2meter.c at [43]. The design is shown in the manner 
traditional to such systems where the actual bit lengths of all parts 
are marked. The unit (the width of each part) is 32 bits. Note that the 
word can be split into smaller bit strings, as they can be handled by 
bitwise operations in C/C++ with relative ease.

The following parts of the figure are relatively unimportant. 
Timestamp log is not crucial for this particular operation, as well as 
from the viewpoint of data streaming. However, if necessary, time-
stamps—where each word is a bitwise merger of sublist ID and the 
timestamp of the last activity of that particular sublist—can be stored 
in sequence after the source header in entry. Also, the design of the 
conventional meter—that is used in traditional flow-based packet 
capture—is shown for reference.

Below the level of entry there are sublists where each sublist is 
a DLL containing subentries. The actual hierarchy is as follows. 
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Figure 14.9  The actual data structure compared to the traditional one-to-one flows.
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Each entry has a DLL of sublists, and each sublist has a DLL of 
subentries. Although slightly confusing, the intermediate step of the 
sublist is necessary as an efficiency mechanism where the mecha-
nism itself is explained further on.

Bloom filters are an important part of operation. First, there is 
global Bloom, which is used to find out right away if a given subentry 
has been created earlier in this entry. In a sense, this is a form of col-
lision control at the time when deciding whether or not to create a 
new subentry. Sublists also have each their own sublist Bloom, which 
is used for the same purpose, only within the bounds of each sublist. 
This is in fact the sole purpose of each sublist—to split all subentries 
into smaller groups to improve lookup performance.

Let us consider how this structure performs in practice. The entry 
itself is accessed directly via a hash key; there is zero ambiguity in this 
operation. Each access needs to either create new or update a subentry 
inside the entry. The following sequence of actions is performed:

•	 First, global Bloom is queried, resulting in either true nega-
tive, true positive, or false positive, with no way to tell the 
difference between the latter two outcomes. True negative is 
the best outcome because it tells us that we can go ahead and 
create a new subentry, as we are certain that no such subentry 
has been created in this entry before. In case of either of the 
two positives, we have to verify the outcome by traversing 
the DLL of sublists. To facilitate this traversal, the entry has 
a pointer to the last used sublist. Regardless of the outcome, 
global Bloom has to be updated using the current subentry 
hash key.

•	 We are at this step because global Bloom produced a positive 
outcome. Traversing the list of sublists, each sublist Bloom 
is queried using the same subentry hash key. Again, either 
a true negative or positive outcome can be produced. If true 
negative, we move on to the next sublist. If we run out of 
sublists, it means that a subentry is not found, which in turn 
means that we need to create a new subentry. In the case of 
a positive outcome, we need to traverse the subentry DLL of 
the respective sublist, to either find the subentry we are look-
ing for or verify that the positive outcome is a false positive.
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Note that with all the algorithmic complexity, the purpose is 
simply to improve lookup time as often as possible. This means that 
the system needs to achieve a relatively higher ratio of true negatives 
to positive outcomes on all the Bloom filters.

The data structure in Figure  14.9 can be further improved. For 
example, one obvious problem is with the global Bloom, which gets 
filled up too fast. Potentially, it can be replaced with a dynamic filter, 
as was described earlier in this chapter. However, keep in mind that 
there are potentially 224 such Bloom filters in the entire structure, 
which means that if dynamic filters are used, they have to be extremely 
efficient in terms of the space they occupy. The use of dynamic filters 
would also potentially remove the need for sublists, which would sim-
plify the design of each entry.

14.8  Summary

This chapter discussed the topic of fast hashing and efficient bloom-
ing in the context of data streaming. Higher efficiency in both the 
former operations are demanded by the operational realities of data 
streaming, which are forced to run under very strict per-unit process-
ing deadlines.

Having reviewed all the existing methods in both hashing and 
blooming, the following two extreme designs were presented in detail. 
At one extreme was a data streaming method that invests heavily into 
developing a faster hashing method without losing the quality of its 
hash keys. At the other extreme was a method that selects the lightest 
possible hash function at the cost of reduced quality, but resolves key 
collisions programmatically. The designs are presented without any 
judgment as to which method is better. However, in reality, it is likely 
that real methods will form a spectrum in between the two extremes.

Note that the same can be said about Bloom filters as well. The two 
extremes in this case are traditional versus dynamic Bloom filters, where 
dynamic ones require much heavier calculation overheads to maintain 
and use. While analyzing the practical application in the last section, 
it was stated that dynamic Bloom filters might help to improve lookup 
performance, provided the overhead would stay below the one caused 
by the programmatic method presented in the example.
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There are several topics that are immediately adjacent to the main 
topic in the chapter. For example, the closest other topic is that of 
multicore architectures. Good shared memory designs for C/C++ can 
be found in [5]. A lock-free shared memory design developed by this 
author can be found at [44]. These subjects are related because data 
streaming on multicore needs to be extremely efficient, beyond the 
level that can be offered with traditional parallel processing designs 
based on memory locking or message passing. Note that the subject 
of multicore is already a hot topic [40] in traffic. The title of such 
research can be hashing for multicore load balancing.

Alternative methods for traffic processing other than flows can also 
benefit from fast hashing and efficient blooming. For example, earlier 
work by this author converted traffic to graphics for visual analysis [38]. 
Also, as was mentioned before, smart traffic sampling can be directly 
formulated as a data streaming problem [39]. Such a formulation is yet 
to be adopted by the research community. The key term is context-based 
sampling in traffic research, but would be rephrased as packet streaming 
when viewed as a data streaming problem.

Since hashing is a large part of indexing and even broader, search, 
fast hashing can help new areas where indexing is starting to find its 
application. For example, Fullproof at [50] is a Lucene indexing engine 
rewritten from scratch to work in restrictive local storage in browsers 
(running as a web application). Earlier work by this author proposed a 
browser-based indexer for cloud storage called Stringex [45], in which 
the key feature is that read and write access has an upper restriction on 
throughput. This restriction is very similar to that of CPU operations 
in fast hashing, which is where the parallel can be drawn.

Broadly speaking, data streaming is yet to be recognized as an 
important discipline. Once it is recognized as such, however, it will 
open all the research venues related to fast hashing and dynamic 
blooming listed in this chapter.
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