
www.auerbach-publications.com

Cryptography, the science of encoding and decoding information, allows
people to do online banking, online trading, and make online purchases,
without worrying that their personal information is being compromised.
The dramatic increase of information transmitted electronically has led to
an increased reliance on cryptography. This book discusses the theories and
concepts behind modern cryptography and demonstrates how to develop and
implement cryptographic algorithms using C++ programming language.

Written for programmers and engineers, Practical Cryptography explains
how you can use cryptography to maintain the privacy of computer data. It
describes dozens of cryptography algorithms, gives practical advice on how
to implement them into cryptographic software, and shows how they can be
used to solve security problems.

Covering the latest developments in practical cryptographic techniques,
this book shows you how to build security into your computer applications,
networks, and storage. Suitable for undergraduate and postgraduate students
in cryptography, network security, and other security-related courses, this
book will also help anyone involved in computer and network security who
wants to learn the nuts and bolts of practical cryptography.

Features
•	Discusses the theories and concepts behind modern cryptography

•	Describes dozens of cryptography algorithms

•	Covers recent developments in practical cryptographic techniques

•	Explains how to implement the algorithms using C++ and supplies
the source code

Cryptography / Information Security

ISBN: 978-1-4822-2889-2

9 781482 228892

90000

K22599

PRACTICAL
CRYPTOGRAPHY
Algorithms and Implementations Using C++

Edited by
Saiful Azad

Al-Sakib Khan Pathan
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

P
R

A
CTICA

L
 CR

Y
P

TOG
R

A
P

H
Y

A
zad

P
athan

K22599 mech rev.indd 1 10/14/14 2:20 PM

PRACTICAL
CRYPTOGRAPHY
Algorithms and Implementations Using C++

OTHER INFORMATION SECURITY BOOKS FROM AUERBACH

Anonymous Communication Networks:

Protecting Privacy on the Web

Kun Peng

ISBN 978-1-4398-8157-6

Conducting Network Penetration and

Espionage in a Global Environment

Bruce Middleton

ISBN 978-1-4822-0647-0

Cyberspace and Cybersecurity

George Kostopoulos

ISBN 978-1-4665-0133-1

Developing and Securing the Cloud

Bhavani Thuraisingham

ISBN 978-1-4398-6291-9

Ethical Hacking and Penetration

Testing Guide

Rafay Baloch

ISBN 978-1-4822-3161-8

Guide to the De-Identification of

Personal Health Information

Khaled El Emam

ISBN 978-1-4665-7906-4

Industrial Espionage: Developing a

Counterespionage Program

Daniel J. Benny

ISBN 978-1-4665-6814-3

Information Security Fundamentals,

Second Edition

Thomas R. Peltier

ISBN 978-1-4398-1062-0

Information Security Policy Development for

Compliance: ISO/IEC 27001, NIST SP 800-53,

HIPAA Standard, PCI DSS V2.0, and AUP V5.0

Barry L. Williams

ISBN 978-1-4665-8058-9

Investigating Computer-Related Crime,

Second Edition

Peter Stephenson and Keith Gilbert

ISBN 978-0-8493-1973-0

Managing Risk and Security in Outsourcing

IT Services: Onshore, Offshore and the Cloud

Frank Siepmann

ISBN 978-1-4398-7909-2

PRAGMATIC Security Metrics: Applying
Metametrics to Information Security
W. Krag Brotby and Gary Hinson
ISBN 978-1-4398-8152-1

Responsive Security: Be Ready to Be Secure
Meng-Chow Kang
ISBN 978-1-4665-8430-3

Securing Cloud and Mobility:
A Practitioner’s Guide
Ian Lim, E. Coleen Coolidge, Paul Hourani
ISBN 978-1-4398-5055-8

Security and Privacy in Smart Grids
Edited by Yang Xiao
ISBN 978-1-4398-7783-8

Security for Service Oriented Architectures
Walter Williams
ISBN 978-1-4665-8402-0

Security without Obscurity:
A Guide to Confidentiality,
Authentication, and Integrity
J.J. Stapleton
ISBN 978-1-4665-9214-8

The Complete Book of Data Anonymization:
From Planning to Implementation
Balaji Raghunathan
ISBN 978-1-4398-7730-2

The Frugal CISO: Using Innovation and
Smart Approaches to Maximize
Your Security Posture
Kerry Ann Anderson
ISBN 978-1-4822-2007-0

The Practical Guide to HIPAA Privacy and
Security Compliance, Second Edition
Rebecca Herold and Kevin Beaver
ISBN 978-1-4398-5558-4

Secure Data Provenance and Inference
Control with Semantic Web
Bhavani Thuraisingham, Tyrone Cadenhead,
Murat Kantarcioglu, and Vaibhav Khadilkar
ISBN 978-1-4665-6943-0

Secure Development for Mobile Apps:
How to Design and Code Secure Mobile
Applications with PHP and JavaScript
J. D. Glaser
ISBN 978-1-4822-0903-7

AUERBACH PUBLICATIONS
www.auerbach-publications.com • To Order Call: 1-800-272-7737 • E-mail: orders@crcpress.com

PRACTICAL
CRYPTOGRAPHY
Algorithms and Implementations Using C++

Edited by
Saiful Azad

Al-Sakib Khan Pathan

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140930

International Standard Book Number-13: 978-1-4822-2890-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To the Almighty Allah, who has given us the capability to
share our knowledge with other knowledge seekers.

—The Editors

vii

Contents

Preface 	 ix

Acknowledgments 	 xi

About the Editors 	 xiii

Contributors 	 xvii

Chapter 1	B asics of Security and Cryptography 	 1

A L-SA K I B K H A N PAT H A N

Chapter 2	C lassical Cryptographic Algorithms 	 11

SH EIK H SH AUGAT A BDU LL A H A N D SA I F U L A Z A D

Chapter 3	R otor Machine 	 35

SH EIK H SH AUGAT A BDU LL A H A N D SA I F U L A Z A D

Chapter 4	B lock Cipher 	 45

TA N V EER A H M ED, MOH A M M A D A BU L K A SH E M,
A N D SA I F U L A Z A D

Chapter 5	D ata Encryption Standard 	 57

EZ A Z U L ISL A M A N D SA I F U L A Z A D

Chapter 6	A dvanced Encryption Standard 	 91

A SI F U R R A H M A N, SA EF U LL A H M I A H, A N D
SA I F U L A Z A D

viii Contents

Chapter 7	A symmetric Key Algorithms 	 127

NA SR I N SU LTA NA A N D SA I F U L A Z A D

Chapter 8	T he RSA Algorithm 	 135

SA A D A N DA L I B A N D SA I F U L A Z A D

Chapter 9	E lliptic Curve Cryptography 	 147

H A F I Z U R R A H M A N A N D SA I F U L A Z A D

Chapter 10	M essage Digest Algorithm 5 	 183

BAY Z I D A SH IK HOSSA I N

Chapter 11	S ecure Hash Algorithm 	 207

SA DDA M HOSSA I N M U K TA A N D SA I F U L A Z A D

Chapter 12	F undamentals of Identity-Based
Cryptography 	 225

AY M EN BOU D GU IGA , M A RY L I N E L AU R EN T, A N D
MOH A M ED H A M DI

Chapter 13	S ymmetric Key Encryption Acceleration
on Heterogeneous Many-Core
Architectures 	 251

GIOVA N N I AG OS TA , A LESSA N DRO BA R ENGH I,
GER A R D O PEL OSI , A N D M ICH ELE SCA N DA LE

Chapter 14	M ethods and Algorithms for Fast
Hashing in Data Streaming 	 299

M A R AT Z H A N IK EEV

ix

Preface

Many books are available on the subject of cryptography. Most of
these books focus on only the theoretical aspects of cryptography.
Some books that include cryptographic algorithms with practical
programming codes are by this time (i.e., at the preparation of this
book) outdated. Though cryptography is a classical subject in which
often “old is gold,” many new techniques and algorithms have been
developed in recent years. These are the main points that motivated
us to write and edit this book.

In fact, as students for life, we are constantly learning new needs in
our fields of interest. When we were formally enrolled university stu-
dents completing our undergraduate and postgraduate studies, we felt
the need for a book that would not only provide details of the theories
and concepts of cryptography, but also provide executable program-
ming codes that the students would be able to try using their own
computers. It took us a long time to commit to prepare such a book
with both theory and practical codes.

Though some chapters of this book have been contributed by different
authors from different countries, we, the editors, have also made our
personal contributions in many parts. The content is a balanced mixture
of the foundations of cryptography and its practical implementation
with the programming language C++.

x Preface

What This Book Is For

The main objective of this book is not only to describe state-of-the-
art cryptographic algorithms (alongside classic schemes), but also to
demonstrate how they can be implemented using a programming
language, i.e., C++. As noted before, books that discuss cryptographic
algorithms do not elaborate on implementation issues. Therefore,
a gap between the understanding and the implementation remains
unattained to a large extent. The motivation for this book is to bridge
that gap and to cater to readers in such a way that they will be capable
of developing and implementing their own designed cryptographic
algorithm.

What This Book Is Not For

The book is not an encyclopedia-like resource. It is not for those who
are completely outside the related fields, for example, readers with
backgrounds in arts, business, economics, or other such areas. It may
not contain the meanings and details of each technical term men-
tioned. While many of the technical matters have been detailed for
easy understanding, some knowledge about computers, networking,
programming, and aspects of computer security may be required.
Familiarity with these basic topics will allow the reader to understand
most of the materials.

Target Audience

This book is prepared especially for undergraduate or postgraduate
students. It can be utilized as a reference book to teach courses such
as cryptography, network security, and other security-related courses.
It can also help professionals and researchers working in the field of
computers and network security. Moreover, the book includes some
chapters written in tutorial style so that general readers will be able
to easily grasp some of the ideas in relevant areas. Additional material
is available from the CRC Press website: http://www.crcpress.com/
product/isbn/9781482228892.

We hope that this book will be significantly beneficial for the
readers. Any criticism, comments, suggestions, corrections, or updates
about any portion of the book are welcomed.

xi

Acknowledgments

We are very grateful to the Almighty Allah for allowing us the time
to complete this work. Thanks to the contributors who provided the
programming codes for different algorithms, as well as the write-ups
of various schemes. We express our sincere gratitude to our wives and
family members who have been constant sources of inspiration for our
works. Last, but not the least, we are grateful to CRC Press for accept-
ing our proposal for this project.

xiii

About the Editors

Saiful Azad earned his PhD in infor-
mation engineering from the University
of Padova, Italy, in 2013. He completed
his BSc in computer and information
technology at the Islamic University of
Technology (IUT) in Bangladesh, and
his MSc in computer and information
engineering at the International Islamic
University Malaysia (IIUM). After the
completion of his PhD, he joined the
Department of Computer Science at

the American International University–Bangladesh (AIUB) as a fac-
ulty member. His work on underwater acoustic networks began dur-
ing his PhD program and remains his main research focus. Dr. Azad’s
interests also include the design and implementation of communica-
tion protocols for different network architectures, QoS issues, network
security, and simulation software design. He is one of the developers
of the DESERT underwater simulator. He is also the author of more
than 30 scientific papers published in international peer-reviewed
journals or conferences. Dr. Azad also serves as a reviewer for some
renowned peer-reviewed journals and conferences.

xiv About the Editors

Al-Sakib Khan Pathan earned his
PhD degree (MS leading to PhD) in
computer engineering in 2009 from
Kyung Hee University in South Korea.
He earned his BS degree in computer
science and information technology
from IUT, Bangladesh, in 2003. He
is currently an assistant professor in
the Computer Science Department
of IIUM. Until June 2010 he served

as an assistant professor in the Computer Science and Engineering
Department of BRAC University, Bangladesh. Prior to holding this
position, he worked as a researcher at the networking lab of Kyung
Hee University, South Korea, until August 2009. Dr. Pathan’s
research interests include wireless sensor networks, network security,
and e-services technologies. He has been a recipient of several awards/
best paper awards and has several publications in these areas. He has
served as chair, an organizing committee member, and a technical
program committee member in numerous international conferences/
workshops, including GLOBECOM, GreenCom, HPCS, ICA3PP,
IWCMC, VTC, HPCC, and IDCS. He was awarded the IEEE
Outstanding Leadership Award and Certificate of Appreciation for
his role in the IEEE GreenCom 2013 conference. He is currently
serving as area editor of International Journal of Communication
Networks and Information Security, editor of International Journal of
Computational Science and Engineering, Inderscience, associate editor of
IASTED/ACTA Press International Journal of Computer Applications,
guest editor of many special issues of top-ranked journals, and editor/
author of 12 books. One of his books has twice been included in Intel
Corporation’s Recommended Reading List for Developers, the second
half of 2013 and the first half of 2014; three other books are included
in IEEE Communications Society’s (IEEE ComSoc) Best Readings
in Communications and Information Systems Security, 2013; and a
fifth book is in the process of being translated to simplified Chinese
language from the English version. Also, two of his journal papers and
one conference paper are included under different categories in IEEE
Communications Society’s Best Readings Topics on Communications

xvAbout the Editors

and Information Systems Security, 2013. Dr. Pathan also serves as a
referee of numerous renowned journals. He is a senior member of
the Institute of Electrical and Electronics Engineers (IEEE), United
States; IEEE ComSoc Bangladesh Chapter; and several other inter-
national professional organizations.

xvii

Contributors

Sheikh Shaugat Abdullah
Department of Computer

Science
American International

University–Bangladesh
(AIUB)

Dhaka, Bangladesh

Giovanni Agosta
Politecnico di Milano
Milano, Italy

Tanveer Ahmed
Dhaka University of

Engineering and Technology
(DUET)

Gazipur, Bangladesh

Saad Andalib
Department of Computer

Science
American International

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Saiful Azad
Department of Computer

Science
American International

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Alessandro Barenghi
Politecnico di Milano
Milano, Italy

xviii Contributors

Aymen Boudguiga
ESME Engineering School
Paris, France

Mohamed Hamdi
Sup’Com
Technopark El Ghazala
Ariana, Tunisia

Bayzid Ashik Hossain
Department of Computer

Science
American International

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Ezazul Islam
Department of Computer

Science
American International

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Mohammad Abul Kashem
Dhaka University of Engineering

and Technology (DUET)
Gazipur, Bangladesh

Maryline Laurent
Telecom SudParis
Evry, France

Saef Ullah Miah
Department of Computer

Science
American International

University–Bangladesh (AIUB)
Dhaka, Bangladesh

Saddam Hossain Mukta
Department of Computer Science
American International

University–Bangladesh
(AIUB)

Dhaka, Bangladesh

Al-Sakib Khan Pathan
Department of Computer Science
Kulliyyah (Faculty)

of Information and
Communication Technology

International Islamic University
Malaysia (IIUM)

Gombak, Malaysia

Gerardo Pelosi
Politecnico di Milano
Milano, Italy

Asif Ur Rahman
Department of Computer Science
American International

University–Bangladesh
(AIUB)

Dhaka, Bangladesh

Hafizur Rahman
Department of Computer

Science
American International

University–Bangladesh
(AIUB)

Dhaka, Bangladesh

Michele Scandale
Politecnico di Milano
Milano, Italy

xixContributors

Nasrin Sultana
Department of Computer

Science
American International

University–Bangladesh
(AIUB)

Dhaka, Bangladesh

Marat Zhanikeev
Department of Artificial

Intelligence
Computer Science and Systems

Engineering
Kyushu Institute of Technology
Fukuoka, Japan

1

1
Basics of Security
and Cryptography

A L - S A K I B K H A N PAT H A N

Keywords

Asymmetric
Cipher
Cryptography
Cryptology
Key
Plaintext
Private
Public
Security
Symmetric

To begin with, the purpose of this book is not to delve into the history
of cryptography or to analyze the debate on the first occurrence of
the technique in communications technologies. Instead, we aim to
clarify various basic terminologies to give lucid understanding of the
subject matter. Throughout the book, we will see various approaches
to utilizing cryptographic techniques along with practical codes;
however, the intent of this first chapter is to set the basics for the rest
of the content.

The formal definition of cryptography could be noted in various ways;
however, one is enough if that sums up all the associated meanings.

Contents

Keywords	 1
1.1	 The Perimeter of Cryptography in Practice	 7
1.2	 Things That Cryptographic Technologies Cannot Do	 9

2 ﻿Al-Sakib Khan Pathan

Cryptography is basically the science that employs mathematical logic
to keep the information secure (a formal definition is mentioned later
in this chapter for quick reference). It enables someone to securely
store sensitive information or transmit information securely through
insecure networks to keep it from being hacked, masqueraded, or
altered. The history of cryptography starts from the ancient era
when it was practiced by secret societies or by troops in battlefields.
The necessity of such an approach increased with time. In the current
information era, there is indeed no time at which information secu-
rity is not necessary, and hence cryptography stands with strength
among various essential technologies. From military to civilian or
from government to individual, information security is tremendously
necessary. Consequently, several algorithms are proposed, and they are
implemented with various hardware. The basic idea of a cryptographic
algorithm is to scramble information in such a way that illegitimate
entities cannot unearth the concealed information. Cryptographic
algorithms are also used to preserve the integrity of a message.

There are various terminologies/words or set of words that are often
associated with the fields of cryptography. Here, let us learn the basic
definitions of the major terminologies that may be frequently used in
the relevant fields and within this book.

Plaintext: This is the information that a sender wants to transmit
to a receiver. A synonym of this is cleartext.

Encryption: Encryption is the process of encoding messages (or
information) in such a way that eavesdroppers or hackers can-
not read it, but authorized parties can. In an encryption scheme,
the message or information (i.e., plaintext) is encrypted using an
encryption algorithm, turning it into an unreadable ciphertext.

Ciphertext: Ciphertext (sometimes spelled cyphertext) is the
result of encryption performed on plaintext using an algorithm,
called a cipher.

Cipher: A cipher (sometimes spelled cypher) is an algorithm for
performing encryption or decryption—a series of well-defined
steps that can be followed as a procedure. A relatively less com-
mon term is encipherment. A cipher is also called a cryptoalgorithm.

Decryption: This is the process of decoding the encrypted text
(i.e., ciphertext) and getting it back in the plaintext format.

3Basics of Security and Cryptography

Cryptographic key: Generally, a key or a set of keys is involved
in encrypting a message. An identical key or a set of identical
keys is used by the legitimate party to decrypt the message.
A key is a piece of information (or a parameter) that deter-
mines the functional output of a cryptographic algorithm
or cipher. Sometimes key means just some steps or rules to
follow to twist the plaintext before transmitting it via a public
medium (i.e., to generate ciphertext).

Stream cipher: A stream cipher is a method of encrypting text
(to produce ciphertext) in which a cryptographic key and
algorithm are applied to each binary digit in a data stream,
one bit at a time. This method is not much used in modern
cryptography. A typical operational flow diagram of stream
cipher is shown in Figure 1.1.

Block cipher: A block cipher is a method of encrypting text (to
produce ciphertext) in which a cryptographic key and algorithm
are applied to a block of data (for example, 64 contiguous bits)
at once as a group rather than one bit at a time. A sample
diagram for a block cipher operation is shown in Figure 1.2.
The feedback mechanism shown with a dotted line is optional
but may be used to strengthen the process. A stronger mode is
cipher feedback (CFB), which combines the plain block with
the previous cipher block before encrypting it.

Cryptology: Cryptology is the general area of mathematics,
such as number theory, and the application of formulas and
algorithms, that underpin cryptography and cryptanalysis.

Cryptography: Cryptography and cryptology are often used as
synonyms. However, a better understanding is that cryptol-
ogy is the umbrella term under which comes cryptography

Ciphertext
byte stream

k k

Key (K) Key (K)

Pseudorandom Byte
Generator (Key Stream

Generator)

Pseudorandom Byte
Generator (Key Stream

Generator)

Plaintext
byte stream

DecryptionEncryption

Plaintext
byte stream

Figure 1.1  Operational diagram for a stream cipher.

4 ﻿Al-Sakib Khan Pathan

and cryptanalysis. Cryptography is the science of information
security. Cryptography includes techniques such as micro-
dots, merging words with images, and other ways of hiding
information in storage or transit. In today’s computer-centric
world, cryptography is most of the time associated with
scrambling plaintext into ciphertext, and then back again
(i.e., decryption). Individuals who practice this field are known
as cryptographers.

Cryptanalysis: Cryptanalysis refers to the study of ciphers,
ciphertext, or cryptosystems (that is, secret code systems) with
the goal of finding weaknesses in these that would permit
retrieval of the plaintext from the ciphertext, without neces-
sarily knowing the key or the algorithm used for that. This is
also known as breaking the cipher, ciphertext, or cryptosystem.

Cryptosystem: This is the shortened version of cryptographic
system. A cryptosystem is a pair of algorithms that take a key
and convert plaintext to ciphertext and back.

Symmetric cryptography: Symmetric cryptography (or sym-
metric key encryption) is a class of algorithms for cryptography
that use the same cryptographic keys for both encryption of
plaintext and decryption of ciphertext. Figure 1.3 shows the
overview of the steps in symmetric cryptography.

		 Symmetric key ciphers are valuable because
•	 It is relatively inexpensive to produce a strong key for these

types of ciphers.
•	 The keys tend to be much smaller in size for the level of

protection they afford.
•	 The algorithms are relatively inexpensive to process.

CiphertextCipher Block

More Blocks?

Feedback

Encrypt BlockPlaintext

Figure 1.2  Sample operational diagram of a block cipher.

5Basics of Security and Cryptography

Public-key cryptography or asymmetric cryptography:
Public-key cryptography (PKC), also known as asymmetric
cryptography, refers to a cryptographic algorithm that requires
two separate keys, one of which is secret (or private) and the
other public. Although different, the two parts of this key
pair are mathematically linked. Figure 1.4 shows a pictorial
view of PKC operations.

		 Public-key cryptography enables the following:
	 1.	 Encryption and decryption, which allow two communi-

cating parties to disguise data that they send to each other.
The sender encrypts, or scrambles, the data before sending
them via a communication medium (or such). The receiver
decrypts, or unscrambles, the data after receiving them.

Shared Secret Key

??

Encryption Decryption

Ciphertext

Plaintext Plaintext

�e
message

�e
message

Figure 1.3  Operational model of symmetric cryptography.

X’s Public Key X’s Private Key

Encryption Decryption

Ciphertext

??

Plaintext
Y X

Plaintext

�e
message

�e
message

Figure 1.4  Operational model of asymmetric key cryptography or public-key cryptography.
The public key and the private key of user X are mathematically linked.

6 ﻿Al-Sakib Khan Pathan

While in transit, the encrypted data are not understood
by an intruder (or illegitimate third party).

	 2.	 Nonrepudiation (formally defined later), which prevents:
−− The sender of the data from claiming, at a later date,

that the data were never sent.
−− The data from being altered.

Digital signature: A digital signature is an electronic signature
that can be used to authenticate the identity of the sender of
a message or the signer of a document, and possibly to ensure
that the original content of the message or document that has
been sent is unchanged. Digital signatures are usually easily
transportable, cannot be imitated by someone else, and can be
automatically timestamped.

Digital certificate: There is a difference between digital sig-
nature and digital certificate. A digital certificate provides
a means of proving someone’s identity in electronic transac-
tions. The function of it could be considered pretty much like
a passport or driving license does in face-to-face interactions.
For instance, a digital certificate can be an electronic “credit
card” that establishes someone’s credentials when doing
business or other transactions via the web. It is issued by a
certification authority (CA). Typically, such a card contains
the user’s name, a serial number, expiration dates, a copy
of the certificate holder’s public key (used for encrypting
messages and digital signatures), and the digital signature of
the certificate-issuing authority so that a recipient can verify
that the certificate is real.

Certification authority (CA): As understood from the defini-
tion above, a certification authority is an authority in a net-
work that issues and manages security credentials and public
keys for message encryption.

Now, let us talk about the general aspects and issues of security.
Security, with its dimensions in fact, is a vast field of research.
Information security basically tries to provide five types of
functionalities:

	 1.	Authentication
	 2.	Authorization

7Basics of Security and Cryptography

	 3.	Confidentiality or privacy
	 4.	Integrity
	 5.	Nonrepudiation

1.1  The Perimeter of Cryptography in Practice

Most of the time, cryptography is associated with the confidentiality
(or privacy) of information only. However, except authorization, it
can offer other four functions of security (i.e., authentication, confi-
dentiality, integrity, and nonrepudiation). Let us now see what these
terms mean in this context to talk about the functionalities that
cryptography usually has or is supposed to provide.

Authentication: Authentication means the process of verifica-
tion of the identity of the entities that communicate over a
network. Without authentication, any user with network access
can use readily available tools to forge originating Internet
Protocol (IP) addresses and impersonate others. Therefore,
cryptosystems use various mechanisms to authenticate both
the originators and recipients of information. An example
could be that a user needs to key in his or her login name
and password for email accounts that are authenticated from
the server.

Authorization: Authorization is a basic function of security
that cryptography cannot provide. Authorization refers to the
process of granting or denying access to a network resource
or service. In other words, authorization means access con-
trol to any resource used for computer networks. Most of
the computer security systems that we have today are based
on a two-step mechanism. The first step is authentication,
and the second step is authorization or access control, which
allows the user to access various resources based on the user’s
identity.

		 There is a clear difference between authentication and autho-
rization. We see that if a user is authenticated, only then may
he or she have access to any system. Again, an authenticated
person may not be authorized to access everything in a sys-
tem. Authentication is a relatively stronger aspect of secu-
rity than authorization, as it comes before authorization.

8 ﻿Al-Sakib Khan Pathan

An example case could be as follows: An employee in a company
needs an authentication code to identify him- or herself to
the network server. There may be several levels of employees
who have different access permissions to the resources kept
in the server. All of the employees here need authentication
to enter the server, but not everybody is authorized to use all
the resources available in the system. If someone is authorized
and accesses the protected resources, that person has already
authenticated him- or herself correctly to the system. Someone
who is not authorized to use the system (or server’s resources)
but gets access illegally might have used tricks to deceive the
system to authenticate him- or herself (which the server has
accepted mistakenly). In any case, accessing of the protected
materials needs authorization that covers authentication.
Authentication, only by itself, may not have authorization
associated with it for a particular network or system resource.

Confidentiality or privacy: It means the assurance that only
authorized users can read or use confidential information.
Without confidentiality, anyone with network access can
use readily available tools to eavesdrop on network traffic
and intercept valuable proprietary information. If privacy or
confidentiality is not guaranteed, outsiders or intruders could
steal the information that is stored in plaintext. Hence, cryp-
tosystems use different techniques and mechanisms to ensure
information confidentiality. When cryptographic keys are
used on plaintext to create ciphertext, privacy is assigned to
the information.

Integrity: Integrity is the security aspect that confirms that
the original contents of information have not been altered or
corrupted. If integrity is not ensured, someone might alter
information or information might become corrupted, and
the alteration could be sometimes undetected. This is the
reason why many cryptosystems use techniques and mech-
anisms to verify the integrity of information. For example,
an intruder might covertly alter a file, but change the unique
digital thumbprint for the file, causing other users to detect
the tampering by comparing the changed digital thumbprint
to the digital thumbprint for the original contents.

9Basics of Security and Cryptography

Nonrepudiation: For information communication, assurance is
needed that a party cannot falsely deny that a part of the actual
communication occurred. Nonrepudiation makes sure that
each party is liable for its sent message. If nonrepudiation
is not ensured, someone can communicate and then later
either falsely deny the communication entirely or claim that it
occurred at a different time, or even deny receiving any piece
of information. Hence, this aspect ensures accountability of
each entity taking part in any communication event.

		 Now, the question is: How can we ensure nonrepudiation?
To provide nonrepudiation, systems must provide evidence
of communications and transactions that should involve
the identities or credentials of each party so that it is impos-
sible to refute the evidence. For instance, someone might deny
sending an email message, but the messaging system adds
a timestamp and digitally signs the message with the mes-
sage originator’s digital signature. As the message contains a
timestamp and a unique signature, there is strong evidence to
identify both the originator of the message and the date and
time of origin. If the message originator later denies send-
ing the message, the false claim is easily refuted. Likewise,
to provide nonrepudiation for mail recipients, mail systems
might generate mail receipts that are dated and signed by the
recipients.

1.2  Things That Cryptographic Technologies Cannot Do

Cryptographic technologies cannot provide solutions to all security
issues. We previously have learned that they cannot provide the
authorization aspect of security—that process is basically the task of the
system or network operating system. In general, cryptography-based
security systems provide sufficient security when used properly within
the capabilities and limitations of the cryptographic technology.
However, such a technology only provides part of the overall secu-
rity for any network and information. The overall strength of any
security system depends on many factors, such as the suitability of
the technology, adequate security procedures and processes, and how
well people use the procedures, processes, and technology. To put it in

10 ﻿Al-Sakib Khan Pathan

another way, security depends on the appropriate protection mechanism of
the weakest link in the entire security system.

A company may have all the best cryptographic technologies
installed in its computers and systems; however, all these protection
efforts would collapse if someone (perhaps an intruder or an employee)
can easily walk into offices and obtain valuable proprietary informa-
tion that has been printed out as plaintext hard copy. Hence, one must
not simply rely on cryptography-based security technologies to over-
come other weaknesses and flaws in the security systems.

For example, if someone transmits valuable information as cipher-
text over communications networks to protect confidentiality but
stores the information as plaintext on the sender or receiver computer,
it’s still a vulnerable situation. Those computers must be protected to
make sure the information is actually protected or kept confidential,
possibly keeping the information in encrypted format as well—maybe
with passwords to access the computer or folders or such. Also, the
entire network must have strong firewalls and maintain those in
secure facilities. The latter tasks are not of cryptography or crypto-
graphic technologies. When building a secure system, we have to take
into consideration a lot of issues of security, which are often dependent
on the requirements and settings of the system.

11

2
Classical Cryptographic

Algorithms

S H E I K H S H A U G AT A B D U L L A H
A N D S A I F U L A Z A D

Keywords

Caesar cipher
Monoalphabetic cipher
Playfair cipher
Polyalphabetic cipher

The history of cryptography starts from the ancient era when it was
practiced by the secret societies or by the troops on the battlefield.

Contents

Keywords	 11
2.1	 Caesar Cipher	 12

2.1.1	 Algorithm	 12
2.1.2	 Implementation	 13
2.1.3	 Limitations	 15

2.2	 Monoalphabetic Cipher	 15
2.2.1	 Algorithm	 15
2.2.2	 Implementation	 16
2.2.3	 Limitations	 18

2.3	 Playfair Cipher	 19
2.3.1	 Algorithm	 19
2.3.2	 Implementation	 20
2.3.3	 Limitations	 27

2.4	 Polyalphabetic Cipher	 27
2.4.1	 Algorithm	 29
2.4.2	 Implementation	 29
2.4.3	 Limitations	 33

12 ﻿Sheikh Shaugat Abdullah and Saiful Azad

The necessity of such an approach has increased with time. In the
current information era, there is indeed no time at which information
security is not necessary, and hence cryptography. From military to
civilian, or from government to individual, information security is tre-
mendously necessary. Consequently, several algorithms are proposed,
and they are implemented with various hardware. In this chapter, we
discuss a couple of renowned classical encryption techniques.

2.1  Caesar Cipher

Caesar cipher or Caesar’s shift cipher is an extensively known and the
easiest encryption technique, named after Julius Caesar, who used it
in his military campaigns. Julius Caesar replaced each letter in the
plaintext by the letter three positions further down the alphabet.
It was the first recorded use of encryption for the sake of securing
messages. Hence, it has become so important that it is still included in
more advanced encryption technique at times (e.g., Vigenère cipher).

Actually, Caesar cipher is a type of substitution cipher in which
each letter of the alphabet is substituted by a letter a certain distance
away from that letter (Table 2.1). When the last letter, Z, is reached,
it wraps back around to the beginning. For example, with a shift of
three (i.e., key = 3) to the right, A would be replaced by D, B would
become E, and so on.

2.1.1  Algorithm

Step 0: Mathematically, map the letters to numbers (i.e., A = 1,
B = 2, and so on).

Step 1: Select an integer key K in between 1 and 25 (i.e., there
are total 26 letters in the English language).

Step 2: The encryption formula is “Add k mod 26”; that is, the
original letter L becomes (L + k)%26.

Step 3: The deciphering is “Subtract k mod 26”; that is, the
encrypted letter L becomes (L – k)%26.

Table 2.1  Caesar Cipher, Plaintext–Ciphertext Conversion for Key Value 3 to the Right

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

d e f g h i j k l m n o p q r s t u v w x y z a b c

13Classical Cryptographic Algorithms

2.1.2  Implementation

#include <iostream>
#include <stdlib.h>
#include <string>
using namespace std;

cha�rcaesar(char c, int k)//’c’ holds the letter to be
encrypted or decrypted and ‘k’ holds the key

{
if(isalpha(c) && c ! = toupper(c))
	 {
	 c = �toupper(c);//use upper to keep from having

to use two separate for A..Z a..z
	 c = �(((c-65)+k)% 26) + 65; //Encryption, (add k

with c) mod 26
	 }
else
	 {
	 c = �((((c-65)-k) + 26)% 26) + 65; //Decryption,

(subtract k from c) mod 26
	 c = �tolower(c);//use lower to keep from having

to use two separate for A..Z a..z
	 }
return c;
}

int main()
{
string input, output;
int choice = 0;

while (choice ! = 2) {
cout<<endl<< “Press 1: Encryption/Decryption; Press 2:
quit: “ ;

try {
cin>> choice;
if (choice ! = 1 && choice ! = 2) throw “Incorrect
Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;
return 1;
	 }

14 ﻿Sheikh Shaugat Abdullah and Saiful Azad

if (choice = = 1) {
int key;
try {
cou�t<<endl<< “Choose key value (choose a number

between 1 to 26): “;
cin>> key;
cin.ignore();
if (key < 1 || key > 26) throw “Incorrect key”;
	 }
catch (const char* k) {
cerr<< “INCORRECT KEY VALUE CHOSEN !!!” <<endl;
return 1;
	 }

try {
cout<<endl<< “NOTE: Put LOWER CASE letters for
encryption and” <<endl;
cout<< “UPPER CASE letters for decryption” <<endl;
cout<<endl<< “Enter cipertext (only alphabets) and
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) &&
(!(input[i] > = ‘A’ && input[i] < = ‘Z’))) throw
“Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }

for(unsigned int x = 0; x <input.length(); x++) {
output + = caesar(input[x], key); //calling the Caesar
function, where the actual encryption and decryption
takes place
	 }

cout<< output <<endl;
output.clear();
	 }
	 }
}

15Classical Cryptographic Algorithms

2.1.3  Limitations

The Caesar cipher was reasonably secure in earlier days (until the ninth
century) because most of the enemies of  Julius Caesar were illiterate.
They thought the encrypted text was written in some foreign language.
However, there are several techniques to break Caesar cipher these days.

Caesar cipher is vulnerable to brute-force attack because it depends
on a single key with 25 possible values if the plaintext is written in
English. Therefore, by trying each option and checking which one
results in a meaningful word, it is possible to find out the key. Once
the key is found, the full ciphertext can be deciphered accurately.

Frequency analysis is another way to break Caesar cipher, which
is smarter and faster than brute force. We will learn more about fre-
quency analysis later in this chapter.

2.2  Monoalphabetic Cipher

Another type of substitution cipher is monoalphabetic cipher, where
the same letters of the plaintext are always replaced by the same let-
ters in the ciphertext. The word mono means “one,” and therefore, each
letter is one-to-one mapped with a single ciphertext letter. A sample
plaintext–ciphertext alphabet mapping is given in Table 2.2. Here,
A in the plaintext will be replaced by q in the ciphertext, and so on.

Unlike Caesar cipher, this technique uses a random key for every
single letter (i.e., total of 26 keys). So breaking the code for a single
letter doesn’t necessarily decipher the whole encrypted text, which
makes the monoalphabetic cipher secure against brute-force attack.

2.2.1  Algorithm

Step 0: �Generate plaintext–ciphertext pair by mapping each
plaintext letter to a different random ciphertext letter.

Step 1: �To encipher, for each letter in the original text, replace
the plaintext letter with a ciphertext letter.

Step 2: For deciphering, reverse the procedure in step 1.

Table 2.2  Sample Plaintext–Ciphertext Letters Mapping in Monoalphabetic Cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
q w E r t y u I o p a s d f g h j k L z x c v b n m

16 ﻿Sheikh Shaugat Abdullah and Saiful Azad

2.2.2  Implementation

#include <iostream>
#include <vector>
#include <string>
#include <stdlib.h>
using namespace std;

typedef vector <char>CharVec;
CharVec Plain;
CharVec Cipher;

voidPutCharInVec ()
{
cout<< “Plain: “ <<endl;
for(inti = 0; i< 26; i++) {
Plain.push_back(i+97); //Assigning the plain
characters in Vector
	 }

for(inti = 0; i< 26; i++) {
cout<< Plain[i] << “\t” ;
	 }
cout<<endl;
	 //Assigning the random characters in Vector to use
as key
cout<< “Cipher: “ <<endl;
bool exist;
intnum;
for(inti = 0; i< 26; i++) {
	 // Generating unique random numbers as keys
while (exist) {
exist = false;
num = rand()% 26 + 1;
for (vector <char> :: iterator it = Cipher.begin(); it
! = Cipher.end(); it++) {
if ((*it) = = num) {
exist = true;
break;
	 }
	 }
	 }
Cipher.push_back(((i + num)% 26) + 65);
	 }

17Classical Cryptographic Algorithms

for(inti = 0; i< 26; i++) {
cout<< Cipher[i] << “\t” ;
	 }
cout<<endl;
}

charMonoalphabetic (char c)
{
	 //Encryption
if (c ! = toupper(c)) {
for (inti = 0; i< 26; i++) {
if (Plain[i] = = c) {
return Cipher[i];
	 }
	 }
	 }
	 //Decryption
else {
for (inti = 0; i< 26; i++) {
if (Cipher[i] = = c) {
return Plain[i];
	 }
	 }
	 }
return 0;
}

int main ()
{
string input, output;

PutCharInVec();
int choice = 0;
while (choice ! = 2) {
cout<<endl<< “Press 1: Encryption/Decryption; Press 2:
quit: “ ;

try {
cin>> choice;
cin.ignore();
if (choice ! = 1 && choice ! = 2) throw “Incorrect
Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;

18 ﻿Sheikh Shaugat Abdullah and Saiful Azad

return 1;
	 }
if (choice = = 1) {
try {
cout<<endl<< “NOTE: Put LOWER CASE letters for
encryption and” <<endl;
cout<< “UPPER CASE letters for decryption” <<endl;
cout<<endl<< “Enter cipertext (only alphabets) and
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) &&
(!(input[i] > = ‘A’ && input[i] < = ‘Z’))) throw
“Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }

for(unsigned int x = 0; x <input.length(); x++) {
output + = Monoalphabetic(input[x]);
	 }
cout<< output <<endl;
output.clear();
	 }

	 }
return 0;
}

2.2.3  Limitations

Despite its advantages, the random key for each letter in monoal-
phabetic substitution has some downsides too. It is very difficult to
remember the order of the letters in the key, and therefore, it takes a
lot of time and effort to encipher or decipher the text manually.

On the other hand, monoalphabetic substitution is vulner-
able to frequency analysis because it does not change the relative

19Classical Cryptographic Algorithms

letter frequencies. As human language is not random, so frequencies
of different letters are different in the regular text (e.g., e and t are
most frequent; the, and, a, and an are very common). The frequency
distribution of each letter in the ciphertext can be calculated by
using the statistical analyzer. Then, the distribution result is com-
pared to the standard letter frequency statistics to make assumptions
at possible letter replacements. Sometimes backtracking is necessary
to confirm the assumptions.

To improve the security of monoalphabetic cipher, multiple cipher-
text letters need to be mapped with each corresponding plaintext
letter. This technique is called polyalphabetic cipher, and it will be
described later in the chapter.

2.3  Playfair Cipher

As seen in the previous section, not even a large number of keys in
a monoalphabetic cipher provides the desired security. To improve
the security, one approach is to use the digraph substitution cipher,
where multiple letters are encrypted at a time. The Playfair cipher
was the earliest practical digraph substitution cipher. The technique
was invented by Charles Wheatstone in 1854. However, it was named
after his friend Lord Playfair, who promoted the use of this cipher.
Playfair was massively used by British forces in the Second Boer War
and World War I. It was also used by the Australians for tactical pur-
poses during World War II.

Playfair actually encrypts digraphs or pairs of letters rather than
single letters like the plain substitution cipher (e.g., Caesar cipher).
It is equivalent to a monoalphabetic cipher with a set of 25 × 25 = 625
characters (i.e., for each possible pair) for the English language.
Therefore, security is significantly improved over the simple monoal-
phabetic cipher.

2.3.1  Algorithm

Step 0: �Select the character key. The maximum size of the key is
25, and it can only be letters.

Step 1: Identify double letters in the key and count them as one.

20 ﻿Sheikh Shaugat Abdullah and Saiful Azad

Step 2: �Set the 5 × 5 matrix by filling the first positions with the
key. Fill the rest of the matrix with other letters. I and
J will be placed in the same cell as shown in Table 2.3.

Step 3: �Identify double letters in the plaintext and replace the
duplicate letter with x (e.g., killer will become kilxer).

Step 4: �Plaintext is encrypted in pairs, two letters at a time. If
the plaintext has an odd number of characters, append
an x to the end to make it even.

Step 5: �For encryption: (1) If both letters fall in the same row,
substitute each with the letter to its right in a circular
pattern. (2) If both letters fall in the same column, sub-
stitute each letter with the letter below it in a circular
pattern. (3) Otherwise, each letter is substituted by the
letter in the same row, but in the column of the other
letter of the pair.

Step 6: �For deciphering, reverse the procedure in step 5, step 4,
and finally, step 3, respectively.

2.3.2  Implementation

#include <iostream>
#include <string>
#include <vector>
using namespace std;

classPlayFair
{
public:

PlayFair ();
	 ~PlayFair () {}

voidsetKey (string k) {key = k;}
stringgetKey () {return key;}

Table 2.3  Sample Playfair Matrix for Key Simple

S I/J M P L
E A B C D
F G H K N
O Q R T U
V W X Y Z

21Classical Cryptographic Algorithms

stringkeyWithoutDuplicateAlphabet (string k);
string encrypt (string str);
string decrypt (string str);

voidsetMatrix ();
voidshowMatrix ();

intfindRow (char ch);
intfindCol (char ch);

charfindLetter (intx_val, inty_val);

private:

char matrix[5][5];
string key;
};

PlayFair::PlayFair ()
{
	 // Initializing the playfair matrix
for (inti = 0; i< 5; i++) {
for (int j = 0; j < 5; j++) {
matrix[i][j] = 0;
	 }
	 }
}

stringPlayFair::keyWithoutDuplicateAlphabet (string k)
{
stringstr_wo_dup;//string without duplicate alphabets

for (string::iterator it = k.begin(); it ! = k.end();
it++) {
	 boolalphabet_exist = false;
	� for (string::iterator it1 = str_wo_dup.begin();

it1 ! = str_wo_dup.end(); it1++) {
	 if (*it1 = = *it) {
alphabet_exist = true;
	 }
	 }

if (!alphabet_exist) {
str_wo_dup.push_back(*it);
	 }
	 }

22 ﻿Sheikh Shaugat Abdullah and Saiful Azad

returnstr_wo_dup;
}

voidPlayFair::setMatrix ()
{
stringkwda = keyWithoutDuplicateAlphabet(getKey());
// Getting the key with unique characters

inti_val, j_val;

int count = 0;
	 // Populating the Playfair matrix with the key and
other letters
for (inti = 0; i< 5; i++) {
for (int j = 0; j < 5; j++) {
	 if (count = = kwda.length()) break;
	 else {
	 matrix[i][j] = toupper(kwda[(5 * i) + j]);
	 ++count;
	 }
	 }
if (count = = kwda.length()) break;
	 }

for (inti = 0; i< 26; i++) {
	 charch = 65 + i;
	 boolalphabet_exist = false;

	� for (string::iterator it = kwda.begin();
it ! = kwda.end(); it++) {

	 if (ch = = toupper(*it)) {
	 alphabet_exist = true;
	 }
	 }

	� if (ch = = ‘J’) alphabet_exist = true;//since
i and j both co-exist in the same cell, we’ll
only put i in the cell

	 bool exit = false;
	 if (!alphabet_exist) {
	 for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (!isalpha(matrix[i][j])) {
	 matrix[i][j] = toupper(ch);
	 exit = true;

23Classical Cryptographic Algorithms

	 }
		 if (exit = = true) break;
		 }
		 if (exit = = true) break;
	 }
	 }
}
}

voidPlayFair::showMatrix()
{
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	� if (matrix[i][j] ! = ‘I’) cout<< matrix[i][j] <<

“\t”;
	 elsecout<< “I/J” << “\t”;
	 }
	 cout<<endl;
	 }
cout<<endl;
}

intPlayFair::findRow (char ch)
{
	 //Finding the specific row for a character
if (ch = = ‘j’) ch = ‘i’;
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (matrix[i][j] = = toupper(ch)) {return i;}
	 }
	 }
return -1; //If not found
}

intPlayFair::findCol (char ch)
{
	 //Finding the specific row for a character
if (ch = = ‘j’) ch = ‘i’;
for (inti = 0; i< 5; i++) {
	 for (int j = 0; j < 5; j++) {
	 if (matrix[i][j] = = toupper(ch)) {return j;}
	 }
	 }
return -1; //If not found
}

24 ﻿Sheikh Shaugat Abdullah and Saiful Azad

stringPlayFair::encrypt (string str)
{
string output;

	 //replace (by x) the repeating plaintext letters
that are in the same pair for (inti = 1; i<str.
length(); i = i + 2) {
	 if (str[i-1] = = str[i]) {
	 string temp1, temp2;

	 for (int j = 0; j <i; j++) {
	 temp1.push_back(str[j]);
	 }

	 for (int j = i; j <str.length(); j++) {
		 temp2.push_back(str[j]);
	 }

	 str.clear();
	 str = temp1 + ‘x’ + temp2;
	 }
}

for (inti = 0; i<str.length(); i = i + 2) {

	� //for the letter pair falls in the same row if
(findRow(str[i]) = = findRow(str[i+1])) {

	� output.push_back(matrix[findRow(str[i])]
[(findCol(str[i]) + 1)% 5]);

	� output.push_back(matrix[findRow(str[i + 1])]
[(findCol(str[i + 1]) + 1)% 5]);

	 }
	� //for the letter pair falls in the same

column
	� else if (findCol(str[i]) = =

findCol(str[i+1])) {
	� output.push_back(matrix[(findRow(str[i])

+ 1)% 5][findCol(str[i])]);
	� output.push_back(matrix[(findRow(str[i + 1])

+ 1)% 5][findCol(str[i + 1])]);
	 }

	 //for other cases
	 else {
	� output.push_back(matrix[findRow(str[i])]

[findCol(str[i + 1])]);

25Classical Cryptographic Algorithms

	� output.push_back(matrix[findRow(str[i + 1])]
[findCol(str[i])]);

	 }
}

if ((str.length()% 2) ! = 0) {
	 output[output.length() - 1] =
toupper(str[str.length() - 1]);
	 }

return output;
}

stringPlayFair::decrypt (string str)
{
string output;

for (inti = 0; i<str.length(); i = i + 2) {
	� //for the letter pair falls in the same row if

(findRow(str[i]) = = findRow(str[i+1])) {
	 int y;
	� if ((findCol(str[i]) - 1) > = 0)

y = (findCol(str[i]) - 1);
	 else y = 4;
	� output.push_back(matrix[findRow(str[i])]

[y]);
	� if ((findCol(str[i + 1]) - 1) > = 0)

y = (findCol(str[i + 1]) - 1);
	 else y = 4;
	� output.push_back(matrix[findRow(str[i + 1])]

[y]);
	 }

	� //for the letter pair falls in the same
coloumn

	� else if (findCol(str[i]) = =
findCol(str[i+1])) {

	 int x;
	� if ((findRow(str[i]) - 1) > = 0) x =

(findRow(str[i]) - 1);
	 else x = 4;
	 output.push_back(matrix[x][findCol(str[i])]);

	� if ((findRow(str[i + 1]) - 1) > = 0) x =
(findRow(str[i + 1]) - 1);

	 else x = 4;

26 ﻿Sheikh Shaugat Abdullah and Saiful Azad

	� output.push_back(matrix[x][findCol(str[i
+ 1])]);

	 }

	 //for other cases
	 else {
	� output.push_back(matrix[findRow(str[i])]

[findCol(str[i + 1])]);
	� output.push_back(matrix[findRow(str[i + 1])]

[findCol(str[i])]);
	 }
	 }

	 //remove x from the string
for (inti = 0; i<output.length(); i++) {
	 if (output[i] = = ‘X’) {
	 output.erase(output.begin() + i);
	 }
	 }

return output;
}
int main () {
PlayFair pf;
string key, input;
	 // Input the key to generate Playfair matrix
cout<< “Put key value (put alphabets/words): “ <<endl;
getline(cin,key);
cout<< key <<endl;
	 // Generating the Playfair matrix
pf.setKey(key);
pf.setMatrix();
pf.showMatrix();
	 // Input the data to encrypt or decrypt
cout<< “Put your text “ <<endl;
getline(cin,input);

cout<< “Press 1: Encrypt | 2: Decrypt” <<endl;
int choice;
cin>> choice;

if (choice = = 1) cout<<pf.encrypt(input) <<endl;
elsecout<<pf.decrypt(input) <<endl;
return 0;
}

27Classical Cryptographic Algorithms

2.3.3  Limitations

Even though Playfair is considerably complicated to break, it is still
vulnerable to frequency analysis because it leaves some formation
of plaintext intact. However, in the case of Playfair, frequency
analysis will be applied on the 25*25 = 625 possible digraphs rather
than the 25 possible monographs (i.e., in the case of monoalpha-
betic). Frequency analysis thus needs a lot of ciphertext in order to
work. Therefore, assuming some of the words from the plaintext
using the knowledge of area, time, or context of the message can be
helpful for retrieving the key, and so far this is the simplest way to
crack this cipher.

2.4  Polyalphabetic Cipher

A polyalphabetic substitution cipher is a series of simple substitution
ciphers. It is used to change each character of the plaintext with a
variable length. The Vigenère cipher is a special example of the poly-
alphabetic cipher.

In 1467, the Alberti cipher introduced by Leon Battista Alberti
was the first polyalphabetic cipher. Typically, Alberti used a mixed
set of alphabet for encryption, but that set was not fixed. Based on
the requirement, he occasionally switched to a different alphabet set,
including uppercase letters or numbers.

To reduce the effectiveness of frequency analysis on the ciphertext,
the polyalphabetic cipher uses a collection of standard Caesar ciphers.
Usually, the polyalphabetic cipher defines a text string (i.e., a word) as
a key. In the case of encryption/decryption, this key is repeated until it
reaches the length of the plaintext/ciphertext. An example is depicted
in Table 2.4.

As can be observed from the table, the key run is repeated until
it reaches the length of the plaintext. Now, the Vigenère table is
utilized to find out the ciphertext that is illustrated in Table 2.5.

Table 2.4  Sample Polyalphabetic Encryption for Key Run

Plaintext t o b e o r n o t t o b e t h a t i s t h e
Key r u n r u n r u n r u n r u n r u n r u n r
Cipher K I O V I E E I G K I O V N U R N V J N U V

28 ﻿Sheikh Shaugat Abdullah and Saiful Azad

Every plaintext letter tells the position of the row, and every keyword
letter tells the position of the column. For instance, t is 20th in the
alphabet and r is 18th in the English alphabet table. Therefore, t is
substituted by the alphabet that is in row 20 and column 18 in the
Vigenère table, i.e., K. In this way, all the plaintext letters are sub-
stituted. As can be observed from the table, the letter t is sometimes
enciphered as a K and sometimes as a G since the relative key letter is
once r and another time n.

In case of decryption, a similar table is utilized, but in a differ-
ent way. First, the keyword letter needs to be found in the first row.
After that, we have to trace down until the ciphertext letter is found.
Once discovered, the plaintext letter is then found at the first column
of that row.

Table 2.5  Vigenère Table (Also Known as Tabula Recta)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

29Classical Cryptographic Algorithms

2.4.1  Algorithm

Step 0: �Select a multiple-letter key.
Step 1: �To encrypt, the first letter of the key encrypts the

first letter of the plaintext, the second letter of the key
encrypts the second letter of the plaintext, and so on.

Step 2: �When all letters of the key are used, start over with the
first letter of the key.

Step 3: �The decryption process is the reverse of step 1. The
number of letters in the key determines the period of the
cipher.

2.4.2  Implementation

#include <iostream>
#include <string>
#include <cmath>
using namespace std;

charvigenere_table[26][26] = {
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’,
‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’,
‘W’, ‘X’, ‘Y’, ‘Z’,
‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’,
‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’,
‘X’, ‘Y’, ‘Z’, ‘A’,
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’,
‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,
‘Y’, ‘Z’, ‘A’, ‘B’,
‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’,
‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’,
‘Z’, ‘A’, ‘B’, ‘C’,
‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’,
‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’,
‘A’, ‘B’, ‘C’, ‘D’,
‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’,
‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’,
‘B’, ‘C’, ‘D’, ‘E’,
‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’,
‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’,
‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’,
‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’,
‘D’, ‘E’, ‘F’, ‘G’,

30 ﻿Sheikh Shaugat Abdullah and Saiful Azad

‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’,
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’,
‘E’, ‘F’, ‘G’, ‘H’,
‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’,
‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’,
‘F’, ‘G’, ‘H’, ‘I’,
‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’,
‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’,
‘G’, ‘H’, ‘I’, ‘J’,
‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’,
‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’,
‘H’, ‘I’, ‘J’, ‘K’,
‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’,
‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’,
‘I’, ‘J’, ‘K’, ‘L’,
‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,
‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’,
‘J’, ‘K’, ‘L’, ‘M’,
‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’,
‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’,
‘K’, ‘L’, ‘M’, ‘N’,
‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’,
‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’,
‘L’, ‘M’, ‘N’, ‘O’,
‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’,
‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’,
‘M’, ‘N’, ‘O’, ‘P’,
‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’,
‘N’, ‘O’, ‘P’, ‘Q’,
‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’,
‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’,
‘O’, ‘P’, ‘Q’, ‘R’,
‘T’, ‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’,
‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’,
‘P’, ‘Q’, ‘R’, ‘S’,
‘U’, ‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’,
‘F’, ‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’,
‘Q’, ‘R’, ‘S’, ‘T’,
‘V’, ‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’,
‘G’, ‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’,
‘R’, ‘S’, ‘T’, ‘U’,
‘W’, ‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’,
‘H’, ‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’,
‘S’, ‘T’, ‘U’, ‘V’,

31Classical Cryptographic Algorithms

‘X’, ‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’,
‘I’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’,
‘T’, ‘U’, ‘V’, ‘W’,
‘Y’, ‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’,
‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’,
‘U’, ‘V’, ‘W’, ‘X’,
‘Z’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’,
‘K’, ‘L’, ‘M’, ‘N’, ‘O’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘U’,
‘V’, ‘W’, ‘X’, ‘Y’
};

void Encrypt (string in, string &out, string k) {
inti = 0;
for (string :: iterator it = in.begin(); it ! =
in.end(); it++) {
if (*it ! = ‘ ‘) {
int row = toupper(*it) - ‘A’;
int column = toupper(k[i% k.length()]) - ‘A’;
out + = vigenere_table[row][column];
	 }
else {
out + = ‘ ‘;
	 }

i++;
	 }

}

void Decrypt (string in, string &out, string k) {
inti = 0;
for (string :: iterator it = in.begin(); it ! =
in.end(); it++) {
if (*it ! = ‘ ‘) {
int column = toupper(k[i% k.length()]) - ‘A’;
int row;
for (row = 0; row < 26; row++) {
if (vigenere_table[row][column] = = *it) break;
	 }
out + = ‘A’ + row;
	 }
else {
out + = ‘ ‘;
	 }
i++;

32 ﻿Sheikh Shaugat Abdullah and Saiful Azad

	 }
}

int main ()
{
string input, output, key;
	 cout<< “Put key value (put alphabets/words): “;
getline(cin,key);
int choice = 0;

while (choice ! = 3) {
cout<<endl<< “Press 1: Encryption, 2: Decryption; 3:
quit: “ ;

try {
cin>> choice;
cin.ignore();
if (choice ! = 1 && choice ! = 2 && choice ! = 3)
throw “Incorrect Choice”;
	 }
catch (const char* chc) {
cerr<< “INCORRECT CHOICE !!!!” <<endl;
return 1;
	 }
if (choice = = 1 || choice = = 2) {
try {
cout<<endl<< “Enter cipertext (only alphabets) and
press enter to continue: “;
getline(cin, input);

for (inti = 0; i<input.size(); i++) {
if ((!(input[i] > = ‘a’ && input[i] < = ‘z’)) &&
(!(input[i] > = ‘A’ && input[i] < = ‘Z’)) &&
(!(input[i] = = ‘ ‘)))
throw “Incorrect string”;
	 }
	 }
catch (const char* str) {
cerr<< “YOUR STRING MAY HAVE DIGITS OR SPECIAL SYMBOLS
!!!” <<endl;
cerr<< “PLEASE PUT ONLY ALPHABETS !!! “ <<endl;
return 1;
	 }

33Classical Cryptographic Algorithms

if (choice = = 1) {
Encrypt(input, output, key);
cout<<endl<< “Cipher text: “ << output <<endl;
	 }
else if (choice = = 2) {
input = output;
output.clear();
Decrypt(input, output, key);
cout<<endl<< “Plain text: “ << output <<endl;
	 }
	 }

	 }
return 0;
}

2.4.3  Limitations

Even though polyalphabetic is more secure than simple substitution
cipher, it can still be broken by analyzing the period. In the above
example, KOIV is repeated after nine letters, and NU is repeated after
six letters. So the period being 3 is a good assumption here, as 3 is
a common divisor of 6 and 9. Frequency analysis is applicable here
again by knowing which letters were encoded with the same key.

35

3
Rotor Machine

S H E I K H S H A U G AT A B D U L L A H
A N D S A I F U L A Z A D

Keywords

Enigma
Polyalphabetic cipher
Rotor machine
Streamline cipher

The first mechanical encryption device was introduced in 1920
and named the rotor machine. The most famous example of a rotor
machine is the Enigma, invented by the Germans; it was extensively
used during World War II.

The concept of the rotor machine was developed independently by
a number of inventors at a similar time. Four inventors had been cred-
ited with inventing it: Edward Hebern, Arvid Damm, Hugo Koch,
and Arthur Scherbius. However, in later discovery, it was found that
the first inventors of the rotor machine were two Dutch naval officers,
Theo A. van Hengel and R.P.C. Spengler, in 1915 [1].

Contents

Keywords	 35
3.1	 Background	 36
3.2	 Basic Concept	 36
3.3	 Systematization	 37
3.4	 Algorithm	 37
3.5	 Implementation	 37
3.6	 Limitations	 43
Reference	 43

36 ﻿Sheikh Shaugat Abdullah and Saiful Azad

3.1  Background

In classical cryptographic algorithms, which are discussed in
Chapter 2, a simple technique of substitution is utilized where a plain-
text is replaced systematically using a secret scheme. For instance,
monoalphabetic ciphers replace one character/letter with another
character. This technique is vulnerable, since a simple frequency
analysis could find out the plaintext easily. Therefore, polyalphabetic
ciphers are proposed where a single character may be replaced by mul-
tiple alphabets. However, since ciphertext is calculated by hand, only
a handful of different alphabets can be utilized. Anything more com-
plex using polyalphabetic would be impractical. The invention of rotor
machines resolved that limitation, which provides a realistic way of
using a huge number of alphabets.

3.2  Basic Concept

A rotor machine has a keyboard and a series of rotors, where the out-
put pins of one rotor are connected to the input of another. Moreover,
a rotor is a mechanical wheel wired to perform a general substitution.
So, the number of general substitution for each letter in the plaintext
actually depends on the number of rotors. Figure 3.1 depicts a simple
rotor machine.

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

A
B

D
E
F
G
H

C

Figure 3.1  A three-rotor machine for an eight-letter alphabet before and after the first rotor has
rotated one place.

37Rotor Machine

For example, in a three-rotor machine, the first rotor might
substitute A » E, the second rotor might substitute E » K, and the
third rotor might substitute K » Y. Therefore, after encryption, A will
become Y. To protect data frequency analysis, some of the rotors shift
after each output. In rotor machine encryption, a combination of sev-
eral rotors and shifting of n number of rotors leads to a 26n. A large
number of combinations makes it harder to break the code.

3.3  Systematization

It is relatively straightforward to create a machine to perform simple
substitution in monoalphabetic algorithms. However, it is challeng-
ing to create a machine that can perform polyalphabetic substitutions.
In the case of the rotor machine, the idea is to change the wiring of
the machine with each keystroke. The wiring is placed inside a rotor.
After a keystroke, the rotor is rotated with a gear. Therefore, a key-
stroke that outputs an S might generate an A the next time. Hence, for
every keystroke a new substitution takes place.

3.4  Algorithm

Step 0: �Select how many rotors will be used and make the rotors
ready by placing 26 unique random character pairs.

Step 1: �To encrypt, for each character in the alphabet set, for each
rotor, find the match from the rotor pair sequentially.
After each encryption, rotate the rotors accordingly.

Step 2: �To decrypt, apply the same procedure of step 1, with
reverse sequential order of the rotors.

3.5  Implementation

#include <iostream>
#include <queue>
#include <vector>
#include <cstdlib>
#include <string>
using namespace std;

typedef pair<int,int>Rotor_Pair;
class Enigma {

38 ﻿Sheikh Shaugat Abdullah and Saiful Azad

public:
voidcreate_rotor(vector <Rotor_Pair>&rtq);
voidshow_rotor(vector <Rotor_Pair>&rtq);
voidmanage_rotors ();
void encrypt();
void decrypt();
chartranspos_en (char ch);
chartranspos_de (char ch);
	 voiddisplay_rotors ();
private:
vector<Rotor_Pair>first_rotor;
vector<Rotor_Pair>second_rotor;
vector<Rotor_Pair>third_rotor;
vector< vector <Rotor_Pair>>all_rotors;
int count;
};

void Enigma::create_rotor(vector <Rotor_Pair>&rtq)
{
vector<int>temp_q;

int current = rand()% 26 + 1;
intnum = rand()% 26 + 1;

rtq.push_back(make_pair(current,num));
temp_q.push_back(num);

for (inti = 0; i< 25; i++) {
current = current% 26 + 1;
bool exist = true;

	 //Selecting unique random pairs for each of the
rotors

while (exist) {
exist = false;
num = rand()% 26 + 1;
for� (vector <int> :: iterator it = temp_q.begin(); it

! = temp_q.end(); it++) {
if ((*it) = = num) {
exist = true;
break;
	 }
	 }
	 }

39Rotor Machine

temp_q.push_back(num);
Rotor_Pairrp = make_pair(current,num);
rtq.push_back(rp);
	 }
}

void Enigma :: show_rotor (vector <Rotor_Pair>&rtq)
{
vector<Rotor_Pair>temp_q;
temp_q = rtq;
cout<<endl;

for (unsigned inti = 0; i<26; i++) {
Rotor_Pairrp = rtq[i];
cout<<rp.first<< “\t” <<rp.second<<endl;
	 }
}

void Enigma :: manage_rotors ()
{
count = 0;
srand (5);
create_rotor(first_rotor); //Creating the first rotor
all_rotors.push_back(first_rotor);//Assign the first
rotor
create_rotor(second_rotor); //Creating the second rotor
all_rotors.push_back(second_rotor); //Assign the
second rotor
create_rotor(third_rotor); //Creating the third rotor
all_rotors.push_back(third_rotor); //Assign the third
rotor
}

void Enigma :: display_rotors ()
{
for (vector < vector <Rotor_Pair>> :: iterator it =
all_rotors.begin(); it ! = all_rotors.end(); it++) {
	 show_rotor(*it);
	 }
}

char Enigma :: transpos_en (char ch)
{
count++;
ch = toupper (ch);
intpos = ch - 65 + 1; //Converting ASCII to decimal

40 ﻿Sheikh Shaugat Abdullah and Saiful Azad

int index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = first_rotor.
begin(); it ! = first_rotor.end(); it++) {
if ((*it).second = = pos) break;
else index++;
	 }
	 // Rotating the first rotor
Rotor_Pairtrp = first_rotor.front();
first_rotor.erase(first_rotor.begin());
first_rotor.push_back(trp);

pos = (second_rotor[index]).first;
index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = second_
rotor.begin(); it ! = second_rotor.end(); it++) {
if ((*it).second = = pos) break;
else index++;
	 }
	 // Rotating the second rotor
if (count% 26 = = 0) {
Rotor_Pairtrp = second_rotor.front();
second_rotor.erase(second_rotor.begin());
second_rotor.push_back(trp);
	 }

pos = (third_rotor[index]).first;
index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = third_rotor.
begin(); it ! = second_rotor.end(); it++) {
if ((*it).second = = pos) break;
	 }
	 // Rotating the third rotor
if (count% 676 = = 0) {
Rotor_Pairtrp = third_rotor.front();
third_rotor.erase(third_rotor.begin());
third_rotor.push_back(trp);
	 }
ch = pos - 1 + 65; //Converting Decimal to ASCII
returntolower(ch);
}

41Rotor Machine

void Enigma :: encrypt ()
{
	 // Input the data to encrypt
cout<< “Put a text to encrypt” <<endl;
string input, output;
getline(cin, input);
	 // For each input character, call “transpos_en”
function if found in alphabet set
for (string :: iterator it = input.begin(); it ! =
input.end(); it++) {
if (isalpha(*it))
output + = transpos_en(*it);
else output + = 32;
	 }
cout<< output <<endl;
}

char Enigma :: transpos_de (char ch)
{
count++;
ch = toupper (ch);
intpos = ch - 65 + 1; //Converting ASCII to Deciaml
int index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = third_rotor.
begin(); it ! = third_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }
	 // Rotating the third rotor
if (count% 676 = = 0) {
Rotor_Pairtrp = third_rotor.front();
third_rotor.erase(third_rotor.begin());
third_rotor.push_back(trp);
	 }

pos = (second_rotor[index]).second;
index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = second_
rotor.begin(); it ! = second_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }

42 ﻿Sheikh Shaugat Abdullah and Saiful Azad

	 // Rotating the second rotor
if (count% 26 = = 0) {
Rotor_Pairtrp = second_rotor.front();
second_rotor.erase(second_rotor.begin());
second_rotor.push_back(trp);
	 }

pos = (first_rotor[index]).second;
index = 0;
	 // Finding the specific position for each of the
character
for (vector <Rotor_Pair> :: iterator it = first_rotor.
begin(); it ! = first_rotor.end(); it++) {
if ((*it).first = = pos) break;
else index++;
	 }
	 // Rotating the first rotor
Rotor_Pairtrp = first_rotor.front();
first_rotor.erase(first_rotor.begin());
first_rotor.push_back(trp);

ch = pos - 1 + 65;//Converting Decimal to ASCII
returntolower(ch);
}

void Enigma :: decrypt ()
{
	 // Input the data to decrypt
cout<< “Put a text to decrypt” <<endl;
string input, output;
getline(cin, input);
	 // initializing the rotor settings
int count = 0;
for (vector < vector <Rotor_Pair>> :: iterator p =
all_rotors.begin(); p ! = all_rotors.end(); p++) {
	 if (count = = 0) first_rotor = *p;
	 else if (count = = 1) second_rotor = *p;
	 elsethird_rotor = *p;
	 count++;
}

display_rotors(); //Showing the rotor pairs
	 //For each input character, call “transpos_de”
function if found in alphabet set
for (string :: iterator it = input.begin(); it ! =
input.end(); it++) {

43Rotor Machine

if (isalpha(*it))
output + = transpos_de(*it);
else output + = 32;
	 }

cout<< output <<endl;
}

int main()
{
	 Enigma enigma;
enigma.manage_rotors();//Creating the rotors and
populate them with character pairs
enigma.display_rotors(); //Show the rotor pairs
enigma.encrypt();//Encryption
enigma.decrypt(); //Decryption
return 0;
}

3.6  Limitations

The technique used in the rotor machine was very strong if used
correctly and securely. However, the German messages encrypted
with the rotor machine Enigma were deciphered by the Allies during
World War II. It has been claimed that as a result of this cryptanaly-
sis, World War II was shortened by 2 years. Using a reasonably small
range of probable initial permutations, Polish mathematician and
cryptologist Marian Rejewski was able to find the possible message
keys. What he assumed, and later on discovered to be true, was that
most of the time the German operators would choose very simple
message keys, like AAA or XYZ or ABC. So, he expected that if he
made lists of all the possible message keys, many simple keys would
appear. Then that list could be used to find the key. His technique
was proven to be correct when he managed to break a lot of ciphertext
within a very short time.

Reference
	 1.	 Karl de Leeuw. The Dutch invention of the rotor machine, 1915–1923.

Cryptologia, 27(1), 73–94, 2003.

45

4
Block Cipher

TA N V E E R A H M E D , M O H A M M A D
A B U L K A S H E M , A N D S A I F U L A Z A D

Keywords

Block cipher
Cipher block chaining
Cipher feedback
Counter
Electronic code block
Feistel cipher
Output feedback

A stream cipher is one that encrypts/decrypts a data stream character
by character, i.e., one character at a time. All the ciphers discussed in
Chapter 3 are stream ciphers. On the other hand, a block cipher encrypts/
decrypts a block of n characters and produces an output of similar
length. The Data Encryption Standard (DES), Advanced Encryption
Standard (AES), etc., are examples of block ciphers. Most of the sym-
metric key-based block cipher algorithms currently in use are based on a
structure known as Feistel block cipher [1]. It is worth mentioning that
although this structure was proposed several years ago, it is still utilized

Contents

Keywords	 45
4.1	 Block Cipher Principles	 46
4.2	 The Feistel Block Structure	 46
4.3	 Block Cipher Modes	 49

4.3.1	 Electronic Codebook (ECB) Mode	 49
4.3.2	 Cipher Block Chaining (CBC)	 50
4.3.3	 Cipher Feedback (CFB) Mode	 50
4.3.4	 Output Feedback (OFB) Mode	 53
4.3.5	 Counter (CTR) Mode	 53

References	 55

46 ﻿Tanveer ahmed et al.

by many significant symmetric block ciphers currently in operation.
In general, block cipher algorithms ensure higher security over stream
cipher algorithms. In this chapter, we discuss the basic principles behind
block cipher algorithms and Feistel block cipher in detail.

4.1  Block Cipher Principles

To enhance the security of symmetric key algorithms, Calude Shannon
introduced two principles: confusion and diffusion [2]. He argued
that these principles should be followed to design any secure crypto-
graphic system. They are detailed below:

•	 Confusion: Shannon said confusion makes the relation
between the key and the ciphertext as complex as possible.
Actually, every character in the key influences every other
character of the ciphertext block. This relationship needs to
be loosened in such a way that even though the attacker gets
some grip on the statistics of the ciphertext, he or she may not
be able to deduce the key. A good confusion could be achieved
if each character of the ciphertext depends on several parts of
the key. For any attacker, it must appear that this dependence
is random. This could be achieved by utilizing complex sub-
stitution techniques in the algorithm.

•	 Diffusion: This refers to the property that the statistical
structure of the plaintext is dissipated into long-range sta-
tistics of the ciphertext [3]. In contrast to confusion, diffu-
sion spreads the influence of a single plaintext character over
many ciphertext characters, or in other words, each ciphertext
character is affected by many ciphertext characters. In binary
block cipher, an algorithm must be designed with a combina-
tion of permutation and should be followed by a function.
The binary block is permuted repeatedly, followed by applying
a function to that permuted block.

4.2  The Feistel Block Structure

In Figure 4.1, the Feistel block structure is depicted. As can be
observed from the figure, a plaintext of length n bits and a key K are

47Block Cipher

passed as input to the structure. This n-bit plaintext block is then
divided into two halves, LE0 and RE0, i.e., LE0 = RE0 = n/2. These
two halves of data blocks are passed through r rounds. In each round,
a separate key Ki is utilized that is generally derived from K. All the
subkeys that are derived from K are different from each other, i.e., K ≠
Ki ≠ Kj. A round i receives two inputs, LEi–1 and REi–1, from the
previous round i – 1. Each round comprises both substitution and
permutation operations. A substitution is performed on the left half
of the block by XORing it with the output of a round function F.

Output (Plaintext)

Input (Plaintext)

RD16 = LE0

RD15 = LE1

K15

K1
K1

K2

F

F

K16

LD15 = RE1

LD1 = RE15

LD0 = RE16

RD1 = LE15

RD0 = LE16

Input (Ciphertext)

Output (Ciphertext)

FF

F

F

++

+

++

+

LD2 = RE14 RD2 = LE14

LD16 = RE0RE0

RE1

RE2

RE15
K16

LE0

LE1

LE2

LE15

LE16 RE16

Figure 4.1  Encryption and decryption of the Feistel network.

48 ﻿Tanveer ahmed et al.

Each F takes the right half block and a subkey Ki as input and
produces an output of the same size. These activities can be expressed
using the following expressions:

	 LEi = REi–1

	 REi = LEi–1 ⊗ F(REi–1, Ki)

Following the substitution, the two halves are interchanged to
achieve permutation. After the last round, the two halves are com-
bined to produce the ciphertext block. In the case of decryption, simi-
lar procedures are followed, but in opposite order, i.e.,

	 REi–1 = LEi

	 LEi–1 = REi ⊗ F(REi–1, Ki) = REi ⊗ F(LEi, Ki)

The strength of a Feistel network depends on the selection of the
following parameters:

•	 Block size: The larger the block, the greater the security.
However, a larger block size reduces the speed of the encryp-
tion/decryption technique. Therefore, a reasonable trade-off
is considered in terms of choosing the size of a block.

•	 Key size: Like the block size, larger is better. Again, a larger
key may increase the processing time, and hence reduce the
encryption/decryption speed.

•	 Number of rounds: In general, a single round is inadequate
to assure a required level of security. But, multiple rounds
offer increasing security.

•	 Subkey generation algorithm: For greater security, a subkey
generation algorithm also plays an important role. A complex
algorithm makes the cryptanalysis difficult. All the subkeys
must be generated in such a way that they have greater resis-
tance to brute-force attacks and greater confusion.

•	 Round function: Again, a greater complex round function
makes the cryptanalysis difficult, and hence increases the
security.

49Block Cipher

4.3  Block Cipher Modes

What if the size of a message is longer than the considered block
size? To resolve this issue, there are five block cipher modes that have
been defined by the National Institute of Standards and Technology
(NIST). All these modes of operation are briefly described below.

4.3.1  Electronic Codebook (ECB) Mode

This is the simplest mode of operation. In this mode, a plaintext is
divided into blocks of n bits and every block is encrypted/decrypted
separately using a similar secret key. This is depicted in Figure 4.2.
A plaintext is divided into m different blocks, i.e., P1, P2, P3, …, Pm.
After encryption, it produces m blocks of ciphertext, namely, C1, C2, C3,
…, Cm. The ECB encryption and decryption can be defined as follows:

Encryption:
	 C1 = EK (P1)

Decryption:

)())((= = −
1 1

1
1P D C E E PK K K

In this scheme, since all the blocks are independent of each other,
it does not suffer any propagation error. There are a couple of prob-
lems with this approach, which is absent in the single-block case. If a
plaintext block contains two identical n-bit blocks, the corresponding

Decrypt

(b) Decryption(a) Encryption

Pi

Ci

KEncrypt

Ci

Pi

K

Figure 4.2  Electronic codebook (ECB) mode.

50 ﻿Tanveer ahmed et al.

ciphertext blocks will be also identical. These regularities provide
sufficient hints to a cryptoanalyst to decipher the message.

4.3.2  Cipher Block Chaining (CBC)

To overcome the deficiencies of the ECB, IBM invented the CBC
mode in 1976. In this mode, every block of the plaintext is XORed
with the previous ciphertext block. Therefore, identical blocks in the
plaintext would not produce identical ciphertext blocks. Since the
decryption is dependent on the previous block, a single bit error in
a block will cause the failure. Since there is no previous ciphertext
block for the first plaintext block, a fixed initialization vector (IV) is
XORed with this block. The IV is not secret and must be known to the
receiver. To make every message unique, a different IV could be uti-
lized for every plaintext, which must be generated in such a way that
a malicious user has no influence on it. The encryption/decryption of
CBC can be expressed as follows:

Encryption:
	 C1 = EK (P1 ⊕ IV)

	 Ci = EK (Pi ⊕ Ci−1), where i ≥ 2

Decryption:

	

= ⊕

= ⊕ ≥

−

−
−

()

(), 2

1
1

1

1
1

P E C IV

P E C C where i

K

i K i i

Figure 4.3 illustrates the CBC scheme. The CBC also suffers from
a couple of problems. For instance, if someone predictably changes
bits in IV intentionally, the corresponding bits of the received value of
P1 can be changed.

4.3.3  Cipher Feedback (CFB) Mode

All the modes discussed previously require a fixed data block. If there
are not enough bits to fill up a block, the padding bits are affixed
to make it of a desirable size. Unlike the ECB and CBC, the CFB

51Block Cipher

mode is a stream cipher. One desirable property of a stream cipher
is that it produces the ciphertext of the same length as the plaintext.
Like the CBC, the CFB requires an IV for the initial input block
that is n bits long. It also requires an integer value, denoted by s, that
is assumed to be the unit of transmission. Figure 4.4 illustrates the
CFB scheme. As can be observed from the figure, the first input block
is the IV, and the forward cipher operation is performed over it to
produce the first output block. Keeping the s most significant bits,
the remaining n – s bits are discarded. Then, s bits are XORed with
the first plaintext segment of s bits to produce a first ciphertext seg-
ment of s bits. To produce the second input block, the IV is circularly
shifted s bits to the left and the recently produced ciphertext segment
is placed in the least significant s bits. This process continues until
all the plaintext segments produce the relative ciphertext segment.

PNP2P1

CNC2C1

C2C1

P2P1

CN

PN

EncryptEncrypt

(a) Encryption

(b) Decryption

Encrypt

DecryptDecryptDecrypt

+++IV

+++

KKK

K

IV

K K

CN–1

CN–1

Figure 4.3  Cipher block chaining (CBC) mode.

52 ﻿Tanveer ahmed et al.

The decryption utilizes a scheme similar to that for encryption, except
that the received ciphertext segment is XORed with the output block
of the encryption function. Note that there is no decryption function
utilized to decrypt a ciphertext, but an encryption function is used.
All the operations can be expressed as below:

Encryption:

	 C1 = EK (IV) ⊕ P1

	 Ci = EK (Ci−1) ⊕ P1, where i ≥ 2

Decryption:

	 P1 = EK (IV) ⊕ C1

	 Pi = EK (Ci−1) ⊕ C1, where i ≥ 2

n–s bits

CN–1

PN

CN

n–s bits
(Discarded)

EncryptK

s

s

+

n–s bits

CN–1

CN

PN

n–s bits
(Discarded)

EncryptK

(a) Encryption

(b) Decryption

s

s

+

IV

P1

n–s bits
(Discarded)

EncryptK

s

+

IV

C1

n–s bits
(Discarded)

EncryptK

s

+

n–s bits

P2

C2

n–s bits
(Discarded)

EncryptK

s

s

+P1

n–s bits

C1

P2

n–s bits
(Discarded)

EncryptK

s

s

+C1

Figure 4.4  Cipher feedback (CFB) mode.

53Block Cipher

The CFB suffers from error propagation since all the ciphertext
segments are related to each other.

4.3.4  Output Feedback (OFB) Mode

The OFB mode is similar in terms of structure to that of the CFB.
Like the CFB, the first input block requires the IV, which is then
encrypted with a secret key to produce an output block of n bits.
Unlike the CFB, the ciphertext segment is not fed back to the next
input block. Instead, the output of the encryption function is fed back
to the next input block. In the first input block, the IV and a secret key
are required by an encryption function that produces an output block.
All the bits except the most significant s bits are discarded. These bits
are fed back to the next input block. These s bits are also XORed with
the plaintext to produce a ciphertext segment of s bits. To produce the
second input block, the IV is circularly left shifted to s number of bits,
and the least significant s bits are replaced by the s bits received from
the previous output block. The OFB mode is illustrated in Figure 4.5.
In case of decryption, no ciphertext segment is required, unlike CFB.
The encryption/decryption operations can be expressed as follows:

Encryption:

	 s1 = EK (IV)  and  C1 = (s1 ⊕ P1)

	 si = EK (si−1)  and  Ci = (si ⊕ Pi), where i ≥ 2

Decryption:

	 s1 = EK (IV)  and  C1 = (s1 ⊕ C1)

	 si = EK (si−1)  and  Ci = (si ⊕ Ci), where i ≥ 2

Since all the ciphertext segments are independent of each other,
this mode is more vulnerable to a message stream modification attack
than CFB.

4.3.5  Counter (CTR) Mode

In this mode, a counter equal to the plaintext block is used to produce
an output block. If there is a sequence of plaintext blocks, in that case,

54 ﻿Tanveer ahmed et al.

a sequence of counters is utilized. Each counter is distinct from the
other. In general, the counter is initialized to some value that is then
incremented by 1 for every subsequent block. Every block receives a
counter and a key, and produces an output block. The resultant output
block is XORed with the corresponding plaintext block to produce the
ciphertext block. The encryption/decryption scheme can be expressed
as below:

Encryption:
	 Ci = EK (CTRi) ⊕ Pi

Decryption:

	 Pi = EK (CTRi) ⊕ Ci

One notable advantage of this technique is that unlike the CFB
and OFB modes, both the CTR encryption and the CTR decryption

n–s bits

CN–1

PN

CN

n–s bits
(Discarded)

EncryptK

s

s

+

n–s bits

CN–1

PN

n–s bits
(Discarded)

EncryptK

(a) Encryption

(b) Decryption

s

s

+

IV

P1

n–s bits
(Discarded)

EncryptK

s

+

IV

C1

n–s bits
(Discarded)

EncryptK

s

+

n–s bits

P2

C2

n–s bits
(Discarded)

EncryptK

s

s

+P1

n–s bits

P2

n–s bits
(Discarded)

EncryptK

s

s

+C2 CNC1

Figure 4.5  Output feedback (OFB) mode.

55Block Cipher

can be parallelized since the second encryption can begin before the
first one has finished. Moreover, if necessary, any particular cipher-
text block/plaintext block can be recovered independently if the
corresponding counter block can be determined. Figure 4.6 illustrates
the CTR mode.

References
	 1.	 H. Feistel. Cryptography and computer privacy. Scientific American, May

1973.
	 2.	 C. Shannon. Communication theory of secrecy systems. Bell Systems

Technical Journal, No. 4, 1949.
	 3.	 W. Stallings. Cryptography and network security, 4th ed. Pearson, India,

2006.

Decrypt

(b) Decryption(a) Encryption

+

Counteri

Ci

Pi

KEncrypt

+

Counteri

Pi

Ci

K

Figure 4.6  Counter (CTR) mode.

57

5
Data Encryption

Standard

E Z A Z U L I S L A M A N D S A I F U L A Z A D

Contents

Keywords	 58
5.1	 Primitive Operations	 58

5.1.1	 Operations for Encryption/Decryption	 59
5.1.2	 Operations for Subkey Generation	 64

5.2	 Basic Structure	 67
5.3	 DES Encryption Algorithm	 68
5.4	 DES Decryption Algorithm	 69
5.5	 Implementation	 69

5.5.1	 C++ Library Headers	 69
5.5.2	 The DES Class	 70
5.5.3	 Introducing the Member Variables of DES Class	 71
5.5.4	 Introducing the Member Functions of DES Class	 72
5.5.5	 The Keygen() Function	 72
5.5.6	 The PermChoice1() Function	 73
5.5.7	 The Split_Key() Function	 74
5.5.8	 The PermChoice2() Function	 75
5.5.9	 The Encrypt(char *) Function	 77
5.5.10	 The IP() Function	 81
5.5.11	 The Expansion() Function	 82
5.5.12	 The xor_oneE(int round) Function	 83
5.5.13	 The Substitution() Function	 83
5.5.14	 The Permutation() Function	 86
5.5.15	 The xor_two() Function	 87
5.5.16	 The Decrypt(char *) Function	 88
5.5.17	 The Main() Function	 90

58 ﻿Ezazul Islam and Saiful Azad

Keywords

Block cipher
Data Encryption Algorithm
Data Encryption Standard

The Data Encryption Standard (DES) was developed in the early
1970s at IBM, and later, in 1977, the algorithm was submit-
ted to the National Bureau of Standards (NBS) to be approved as
Federal Information Processing Standard 46 (FIPS 46). With the
consultation of the National Security Agency (NSA), the NBS
accepted a slightly changed version of DES as FIPS 46 in the same
year to provide security for the unclassified electronic data of the
U.S. government. The data are encrypted using DES in 64-bit
blocks, which are encrypted using a 56-bit symmetric key to provide
confidentiality and privacy.

Some experts refer to DES as an encryption standard and Data
Encryption Algorithm (DEA) as the basic algorithm. In recent times,
DEA and DES are used interchangeably. On the other hand, there
is another extension of DEA that is named Triple DEA (TDEA).
The Triple DEA and DEA are typically referred to as Triple DES
and DES, respectively. For our readers’ convenience, we use DES and
3DES in this chapter to refer to these algorithms.

Like most of the symmetric block algorithms, DES is also based
on a structure referred to as a Feistel cipher, which was already
introduced to the reader in Chapter 4. The DES is comprised of
16 rounds, where a separate key is utilized in each round. All
16 keys are generated from a 56-bit key. Before introducing DES
to the reader in detail, it is necessary to know the primitive opera-
tions that DES utilizes. Consequently, in the following section, we
discuss various primitive operations related to DES with relevant
examples.

5.1  Primitive Operations

All the primitive operations utilized in DES can be separated into
two groups: (1) operations for encryption/decryption and (2) opera-
tions for key generation. All these operations are discussed below.

59Data Encryption Standard

5.1.1  Operations for Encryption/Decryption

DES encryption/decryption is based on the following primitive
operations:

	 1.	Exclusive disjunction/exclusive or (XOR). Exclusive dis-
junction or exclusive or is a logical operation that outputs
true whenever both inputs differ from each other (e.g., one
is true and the other is false) (Table 5.1). It is symbolized by
the prefix operator J and by the infix operators XOR, EOR,
EXOR, ⊻, ⊕, ↮, and ≢.

	 2.	Initial permutation (IP). In initial permutation, the 64 bits
of the data are rearranged to another 64 bits of data accord-
ing to a given table (Table 5.2 in this example). Each entry in
the table shows the new arrangement of a bit from its initial
position. For instance, the 58th bit of data becomes the first
bit of the output data after the permutation, and the 1st bit
of data becomes the 40th bit of the output data after per-
mutation. An example is given below to demonstrate the
rearrangements of the bits after permutation.

Table 5.1  XOR Truth Table

INPUT OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

Table 5.2  Table Utilized for Initial Permutation (IP)

INITIAL PERMUTATION (IP)

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

60 ﻿Ezazul Islam and Saiful Azad

Example

Actual bit sequence:

11001000001111111010100100100110101011101101101110100
11111100100

After initial permutation:

10100001001000101101101001100110111101011101111000110
11101111010

	 3.	Inverse permutation (IP–1). Like initial permutation, a block
of code again needs to be rearranged (according to Table 5.3).
This is known as inverse permutation (IP–1). Using IP–1, the
original ordering of the bits is rearranged.

Example

Actual bit sequence:

10100001001000101101101001100110111101011101111000110
11101111010

After inverse permutation:

11001000001111111010100100100110101011101101101110100
11111100100

		 From this example, we can observe that if no other
operation is performed, we can get the actual bit sequence
returns if we do inverse permutation immediately after
initial permutation.

Table 5.3  Table Utilized for Inverse Permutation (IP–1)

INVERSE PERMUTATION (IP–1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

61Data Encryption Standard

	 4.	Expansion permutation. In every round of DES, a 64-bit
block is divided into two halves of 32 bits each, namely, left
and right blocks. Again, since each round utilizes a key of
48 bits, it is necessary to enlarge a block to be equivalent to
the round key size. Generally, a right-side block has expanded
to a 48-bit block, which is then XORed with the selected
round key. A 32-bit block is expanded utilizing Table 5.4.

Example

Bits sequence in right block:

11001000001111111010100100100110

After expansion permutation:

011001010000000111111111110101010010100100001101

	 5.	Substitution. The expanded 48-bit block is required to shrink
into a 32-bit block again. For this purpose, a 48-bit block is
broken into a 6-bit chunk that is then fed into a substitu-
tion box (also known as S-box), which produces a 4-bit output
for each 6-bit output. There are eight S-boxes utilized in the
substitution procedure, which are given in Table 5.5. Since
there are 64 possible input values (6 bits) and only 16 pos-
sible output values (4 bits), the S-box could map several input
values to a single output value. The leftmost 6-bit chunk is
substituted by S1-box, the next 6-bit chunk is substituted by
S2-box, and so on. Consequently, the rightmost chunk is sub-
stituted by S8-box. Again, among the 6 bits, the first and last
bit form a 2-bit binary number that indicates the row number,

Table 5.4  Table Utilized in Expansion Permutation

EXPANSION PERMUTATION

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

62 ﻿Ezazul Islam and Saiful Azad

Ta
bl

e
5.

5 
Al

l t
he

 S
-B

ox
es

 A
re

 D
efi

ne
d

S 1
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

14
4

13
1

2
15

11
8

3
10

6
12

5
9

0
7

01
0

15
7

4
14

2
13

1
10

6
12

11
9

5
3

8
10

4
1

14
8

13
6

2
11

15
12

9
7

3
10

5
0

11
15

12
8

2
4

9
1

7
5

11
3

14
10

0
6

13

S 2
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

15
1

8
14

6
11

3
4

9
7

2
13

12
0

5
10

01
3

13
4

7
15

2
8

14
12

0
1

10
6

9
11

5
10

0
14

7
11

10
4

13
1

5
8

12
6

9
3

2
15

11
13

8
10

1
3

15
4

2
11

6
7

12
0

5
14

9

S 3
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

10
0

9
14

6
3

15
5

1
13

12
7

11
4

2
8

01
13

7
0

9
3

4
6

10
2

8
5

14
12

11
15

1
10

13
6

4
9

8
15

3
0

11
1

2
12

5
10

14
7

11
1

10
13

0
6

9
8

7
4

15
14

3
11

5
2

12

S 4
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

7
13

14
3

0
6

9
10

1
2

8
5

11
12

4
15

01
13

8
11

5
6

15
0

3
4

7
2

12
1

10
14

9
10

10
6

9
0

12
11

7
13

15
1

3
14

5
2

8
4

11
3

15
0

6
10

1
13

8
9

4
5

11
12

7
2

14

63Data Encryption Standard

S 5
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

2
12

4
1

7
10

11
6

8
5

3
15

13
0

14
9

01
14

11
2

12
4

7
13

1
5

0
15

10
3

9
8

6
10

4
2

1
11

10
13

7
8

15
9

12
5

6
3

0
14

11
11

8
12

7
1

14
2

13
6

15
0

9
10

4
5

3

S 6
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11
00

12
1

10
15

9
2

6
8

0
13

3
4

14
7

5
11

01
10

15
4

2
7

12
9

5
6

1
13

14
0

11
3

8
10

9
14

15
5

2
8

12
3

7
0

4
10

1
13

11
6

11
4

3
2

12
9

5
15

10
11

14
1

7
6

0
8

13

S 7
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11

00
4

11
2

14
15

0
8

13
3

12
9

7
5

10
6

1
01

13
0

11
7

4
9

1
10

14
3

5
12

2
15

8
6

10
1

4
11

13
12

3
7

14
10

15
6

8
0

5
9

2
11

6
11

13
8

1
4

10
7

9
5

0
15

14
2

3
12

S 8
00

00
00

01
00

10
00

11
01

00
01

01
01

10
01

11
10

00
10

01
10

10
10

11
11

00
11

01
11

10
11

11

00
13

2
8

4
6

15
11

1
10

9
3

14
5

0
12

7
01

1
15

13
8

10
3

7
4

12
5

6
11

0
14

9
2

10
7

11
4

1
9

12
14

2
0

6
10

13
15

3
5

8
11

2
1

14
7

4
10

8
13

15
12

9
0

3
5

6
11

64 ﻿Ezazul Islam and Saiful Azad

and the middle four bits select one among the 16 columns.
For instance, in S5, a 6-bit chunk 011101 is substituted with
a 4-bit chunk 1000. Here, the first bit and last bit form 01,
which means row number 1 is selected. Then, the middle four
bits 1110 indicate the column number, i.e., 14. If we look at
row 2 and column 14, the value is 8, whose binary equivalent
is 1000.

	 6.	Permutation. The 32-bit block generated after substitution
is rearranged using a permutation operation where a 32-bit
output comes from a 32-bit input by permuting the bits of
the input block. The table that is utilized in this operation is
shown in Table 5.6.

Example

Before permutation:

11001000001111111010100100100110

After permutation:

10010101110010101011010011100100

5.1.2  Operations for Subkey Generation

DES subkey generation is based on the following primitive operations:

	 1.	Permuted choice 1 (PC-1). DES takes a 64-bit symmetric
key from the user, which is then permuted according to
Table 5.7. It could be observed from the table that the first
entry is 57; this means that the 57th bit of the original key
K becomes the first bit of the permuted key KP. Again, the
49th bit of the original key becomes the second bit of the
permuted key.

Table 5.6  Permutation Table

PERMUTATION

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

65Data Encryption Standard

Example

Before permutation:

K = �11001000001111111010100100100110101011101101101110
10011111100100

After permutated choice 1:

KP = �1111010110100001110111100010011110101101101000110
1110010

	 2.	Left shifting. A permuted key is then separated into two
blocks, left and right, where each of them is 28 bits long. After
that, each block is shifted to the left to a fixed number of bits,
which again depends on the round. For a different round,
the bits to be left shifted are different, which are shown in
Table 5.8. For instance, in the eighth round, 2-bit left shifting
takes place, whereas, in the ninth round, it is only 1 bit. When
a block is shifted to the left, each bit moves one place to the left,
except for the first bit, which is cycled to the end of the block.

Example

Let us assume that the shifting operation is for generating a key
of round 8. First, we can find out how many bits are to be shifted
from Table 5.8, which is 2 bits in this example.
Before left shifting:

1111010110100001110111100010

After left shifting:

1101011010000111011110001011

Table 5.7  Table for Permuted Choice 1

PERMUTED CHOICE 1

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

66 ﻿Ezazul Islam and Saiful Azad

	 3.	Permuted choice 2 (PC-2). After the left shifting operation,
both separated blocks are combined together, which form
a block of 56 bits. Then, they are rearranged and shrunk to
produce a round key of 48 bits. This permuted choice 2 is
performed utilizing Table 5.9.

Example

Before permuted choice 2:

11001000001111111010100100100110101011101101101110100111

After permutated choice 2:

111111001010011000101011101111101111111100010000

Table 5.8  Schedule of Left Shifting

ROUND NUMBER BITS ROTATED

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

Table 5.9  Table for Permuted Choice 2

PERMUTED CHOICE 2

14 17 11 24 1 5 3 28
15 6 21 10 23 19 12 4
26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40
51 45 33 48 44 49 39 56
34 53 46 42 50 36 29 32

67Data Encryption Standard

5.2  Basic Structure

A basic structure of DES is portrayed in Figure 5.1. DES supports
a 64-bit block that is subjected to go through an initial permutation.
This permuted block is then passed through 16 rounds, where every
round is comprised of various operations, depicted in Figure 5.2. The
operations of 48-bit key generations for every round from a 64-bit key
are also portrayed in both figures. After visiting the last round, a 32-bit
swapping is performed on the 64-bit block. Finally, the ciphertext is
generated after the inverse permutation operation.

64-bit Plaintext 64-bit Key

Initial Permutation

Round 1

48-bit K1

Permuted Choice 2

Permuted Choice 2

Permuted Choice 2 Left Circular Shift

Left Circular Shift

Left Circular Shift

Permuted Choice 1

48-bit K2

48-bit K16

Round 2

Round 16

32-bit Swap

Inverse Initial
Permutation

64-bit Ciphertext

Figure 5.1  A basic DES structure is depicted.

68 ﻿Ezazul Islam and Saiful Azad

5.3  DES Encryption Algorithm

Following is the pseudocode for DES encryption in which the
function named Encrypt takes the plaintext message as a parameter
and performs the essential operations to produce the ciphertext.

Algorithm 5.1: Encrypt (M)

Begin
	 C ← IP(M)
	 for round ← 1 to 16
		 KEYi ← SubKey (K, round)
		 L(i-1) ← LEFT (C)
		 R(i-1) ← RIGHT (C)
		 Li ← R(i-1)

28-bit

DK[i-1]CK[i-1]Right[i-1]Left[i-1]

Ki(48-bit)

CK[i]Right[i]Left[i] DK[i]

48-bit

32-bit 32-bit 28-bit

48-bit

32-bit

XOR

XOR

Left
Shift(s)

Permuted Choice 2

Permutation
(P)

Left
Shift(s)

Expansion
(E Table)

Substitution
(S-Box)

Figure 5.2  Single-round operations in DES.

69Data Encryption Standard

		 Ri ← L(i-1) xor (Permutation (Substitution
(KEYi xor Expansion(R(i-1)))))
	 end for
	 C ← swap(C)
	 C ← IP-1(C)
	 return C
End

5.4  DES Decryption Algorithm

For decryption, the steps are the same as for encryption, but the
difference is in the order of using the keys for each of the rounds.

Algorithm 5.2: Decrypt (C)

Begin
	 M ← IP(C)
	 for round ← 16 to 1
		 KEYi ← SubKey (K, round)
		 Li ← LEFT (M)
		 Ri ← RIGHT (M)
		 R(i-1) ← Li
		 L(i-1) ← Ri xor (Permutation (Substitution
(KEYi xor Expansion(R(i-1)))))
	 end for
	 M← swap(M)
	 M← IP-1(M)
	 return M
End

5.5  Implementation

DES implementation using C++ is described below.

5.5.1  C++ Library Headers

The following built-in headers are utilized in the program:

cstring: Used for the purpose of string manipulation, string
length measurement, and moving the contents of the mes-
sage to work with and the ciphertext. When working with

70 ﻿Ezazul Islam and Saiful Azad

message encryption and decryption, there is a need for string
handling. During the process of encryption and decryption,
the functionalities are like string length calculation, string
copy from one place to another, and the input-output of a
string message or ciphertext.

iostream: The basic header file of the C++ library. It is the header
that consists of the core library of C++. The core library is
mostly focused on the input-output stream-related functions.
I and O refer to input and output, respectively. On the other
hand, stream refers to the flow of bits in the input and output
buffers of the computer system.

cstdlib: Defines multiple general purpose functions, such as the
functions related to random number generation, communica-
tion with the system, and arithmetic operations.

5.5.2  The DES Class

class DES{
public:
	 int keyi[16][48],
	 total[64],
	 left[32],
	 right[32],
	 ck[28],
	 dk[28],
	 expansion[48],
	 z[48],
	 xor1[48],
	 sub[32],
	 p[32],
	 xor2[32],
	 temp[64],
	 pc1[56],
	 ip[64],
	 inv[8][8];

	 char final[1000];
	 void keygen();
	 void PermChoice1();
	 void split_key();
//left circular shifts take place
	 void PermChoice2();

71Data Encryption Standard

//16 keys of 56 bits keys are created
	 void IP();
//L0 and R0 are created using IP : 64 bit total
//32 bit R(n-1) is expanded into 48 bit
	 void Expansion();
	 //Expansion applied on the right half, R(n-1)
	 //32 bit R(n-1) becomes 48 bit R(n-1) now
	 void xor_oneE(int);
	 //xor the 48 bit key(n) with 48 bit R(n-1)
	 void substitution();
	 //�48 bit resultant becomes 32 bit now using 16 S

boxes
	 void permutation();
	 //�permutation operation takes place on 32 bit

message bit
	 void xor_two();
	 //�now the resultant of 32 bit is xored with

L(n-1)
	 //xored resultant becomes R(n)
	 void inverse();
	 //inver permutation of R(n)L(n)
	 void xor_oneD(int);
	 //�xor of 48 bit key and expanded message for

decryption
	 char *Encrypt(char *);
	 char *Decrypt(char *);
};

All the member variables and functions of the DES class are
publicly accessible. For this reason, the members are declared in the
public scope. No private or public differentiation is needed due to our
basic target of this presentation being to provide a technical knowl-
edge of how DES works, but not to provide the concept of object
orientation.

5.5.3  Introducing the Member Variables of DES Class

Here, in the above class declaration, int keyi[16][48] is a two-
dimensional array that holds all 16 keys that are made after applying
permutation choice 2. Permutation choice 2 is applied with the help of
the C++ function void PermChoice2(), defined in class DES.

72 ﻿Ezazul Islam and Saiful Azad

5.5.4  Introducing the Member Functions of DES Class

The member function IP() is responsible for the initial permutation
operation on the message text that is to be encrypted.

5.5.5  The Keygen() Function

1.	 void DES::keygen(){
2.		 PermChoice1();
3.		 split_key();
4.		 int noshift = 0,round;
5.		 for(round = 1; round< = 16; round++){
6.			� if(round = =1||round = =2||round =

=9||round = =16)
7.				 noshift = 1;
8.			 else
9.				 noshift = 2;
10.
11.			 while(noshift>0){
12.				 int t;
13.				 t = ck[0];
14.				 for(int i = 0; i<28; i++)
15.					 ck[i] = ck[i+1];
16.				 ck[27] = t;
17.				 t = dk[0];
18.				 for(int i = 0; i<28; i++)
19.					 dk[i] = dk[i+1];
20.				 dk[27] = t;
21.				 noshift— ;
22.			 }
23.			� cout << endl << "round " << round

<< endl;
24.			 PermChoice2();
25.			� for(int i = 0; i<48; i++)	//stores

each of the subkeys
26.			 keyi[round-1][i] = z[i];
27.		 }
28.	 }

A key is utilized to create the 16 different subkeys. To make those
subkeys, various operations have to be conducted so that the subkeys
show proper variations that will help make those keys as strong as
possible. Basic functionalities of the function keygen() are selecting
a secret key, operating permutation choice 1 on that key, splitting

73Data Encryption Standard

that single key into two parts, conducting a left circular shift to
produce 16 subkeys, and finally, generating 16 secret keys by applying
permutation choice 2 on them.

PermChoice1() converts the actual 64-bit secret key into a 56-bit
secret key. The details of the PermChoice1() function are described in
the next section of this chapter. Another function, named split_key(),
splits the 56-bit permuted key into two parts so that each of the parts
becomes 28 bits in length. In the fourth line of the above code, the
variables to track the number of shift and round are declared. There
are 16 rounds of processing steps, as the subkeys are 16 in number.

The sixth line shows the number of left circular shifts, which varies
according to the round. All the rounds do not have the same number of
left circular shifts. From lines 11 to 22 left circular shift operations take
place. The shifting operations are applied on the arrays named ck and
dk, as the split subkeys are stored in these arrays. Line 23 outputs the
current round number. The scope of the for loop is from lines 5 to 27;
the code inside this scope is repeated for each of the 16 rounds. Shifted
bits are stored into ck and dk arrays in lines 15 and 19 respectively.
Then in the 24th line, permutation choice 2 comes into action, actually
permuting each of the 56-bit subkeys to convert all of them into 48-bit
subkeys. After the execution of the PermChoice2() function, the array
named z[] holds the permuted bits of the 48-bit subkey, and in line 26
the 48-bit subkey is stored in the keyi[][] array. Thus, each of the 16
subkeys of 48 bits is created and stored into the keyi[][] array.

5.5.6  The PermChoice1() Function

1.	void DES::PermChoice1(){//Permutation Choice-1
2.	 cout << "key: " << endl;
3.	 for (int i = 0; i < 64; i++) {
4.			 cout << key[i] << "\t";
5.		 if (((i + 1)% 8) = = 0) cout << endl;
6.	 }
7.	 int k = 57,i;
8.	 for(i = 0; i<28; i++){
9.	 pc1[i] = key[k-1];
10.	 if(k-8>0) k = k-8;
11.	 else k = k+57;
12.	 }
13.	 k = 63;

74 ﻿Ezazul Islam and Saiful Azad

14.	 for(i = 28; i<52; i++){
15.		 pc1[i] = key[k-1];
16.		 if(k-8>0) k = k-8;
17.		 else	 k = k+55;
18.	 }
19.	 k = 28;
20.	 for(i = 52; i<56; i++){
21.		 pc1[i] = key[k-1];
22.		 k = k-8;
23.	 }
24.	� cout << endl << "After permutation choice 1:"

<< endl;
25.	 for (i = 0; i < 56; i++){
26.		 cout << pc1[i] << "\t";
27.		 if (((i + 1)% 7) = = 0) cout << endl;
28.	 }
29.	 }

In the above function definition, at first the PermChoice1()
function was called to make the first permutation operation on the
single secret key. After conducting the first permutation operations
on the 64-bit secret key, the resultant key holds 56 bits. The rest of
the bits are removed from the actual key. The final product of the
above function is the 56-bit secret key. All of the cout keywords in
the source code are to provide a proper output so that the user can
get a proper idea of how the program is running and whether all the
statements are giving the correct output or not.

For each of the blocks in a 64-bit key, the last bit of every octet is
removed. There are eight blocks in a 64-bit key. If each of them loses
1 bit, the total number of bits becomes 56 bits. Thus, 56-bit key is
produced and is stored in the array named pc1[].

5.5.7  The Split_Key() Function

1.	 void DES::split_key(){
2.			 int i,k = 0;
3.			� for(i = 0; i<28; i++){ //creates 56

bits key with Permutation by PC-1
4.				 ck[i] = pc1[i];
5.			 }
6.			 for(i = 28; i<56; i++){
7.				 dk[k] = pc1[i];

75Data Encryption Standard

8.				 k++;
9.			 }
10.			 cout << endl << "Print C0 " << endl;
11.			� for(i = 0; i<28; i++){ //left 28

bits of permuted 56 bit key
12.				 cout << ck[i] << "\t";
13.				� if (((i + 1)% 7) = = 0) cout

<< endl;
14.			 }
15.			 cout << endl << "Print D0 " << endl;
16.			� for(i = 28; i<56; i++){ //right 28

bits of permuted 56 bit key
17.				 cout << dk[i] << "\t";
18.				� if (((i + 1)% 7) = = 0) cout

<< endl;
19.			 }
20.	 }

After executing the function split_key(), the 56-bit key stored in
pc1[64] is divided into two parts. One is stored in ck[28] and
another in dk[28]. Both of the arrays can hold 28 bits of values, so
that lines 3 to 9 are executed to split the 56-bit key into two parts and
store them in the ck[28] and dk[28] arrays. The rest of the lines,
10 to 19, are outputting the split key for test purposes, whether the
split has taken place perfectly or not.

5.5.8  The PermChoice2() Function

1.	 void DES::PermChoice2(){
2.			 int per[56],i,k;
3.			� for(i = 0; i<28; i++) per[i] =

ck[i];
4.			� for(k = 0,i = 28; i<56; i++) per[i]

= dk[k++];
5.			 z[0] = per[13];
6.			 z[1] = per[16];
7.			 z[2] = per[10];
8.			 z[3] = per[23];
9.			 z[4] = per[0];
10.			 z[5] = per[4];
11.			 z[6] = per[2];
12.			 z[7] = per[27];
13.			 z[8] = per[14];

76 ﻿Ezazul Islam and Saiful Azad

14.			 z[9] = per[5];
15.			 z[10] = per[20];
16.			 z[11] = per[9];
17.			 z[12] = per[22];
18.			 z[13] = per[18];
19.			 z[14] = per[11];
20.			 z[15] = per[3];
21.			 z[16] = per[25];
22.			 z[17] = per[7];
23.			 z[18] = per[15];
24.			 z[19] = per[6];
25.			 z[20] = per[26];
26.			 z[21] = per[19];
27.			 z[22] = per[12];
28.			 z[23] = per[1];
29.			 z[24] = per[40];
30.			 z[25] = per[51];
31.			 z[26] = per[30];
32.			 z[27] = per[36];
33.			 z[28] = per[46];
34.			 z[29] = per[54];
35.			 z[30] = per[29];
36.			 z[31] = per[39];
37.			 z[32] = per[50];
38.			 z[33] = per[46];
39.			 z[34] = per[32];
40.			 z[35] = per[47];
41.			 z[36] = per[43];
42.			 z[37] = per[48];
43.			 z[38] = per[38];
44.			 z[39] = per[55];
45.			 z[40] = per[33];
46.			 z[41] = per[52];
47.			 z[42] = per[45];
48.			 z[43] = per[41];
49.			 z[44] = per[49];
50.			 z[45] = per[35];
51.			 z[46] = per[28];
52.			 z[47] = per[31];
53.			� cout << endl << "After permutation

choice 2 " << endl;
54.			� for(int i = 0; i<48; i++){

//creates the 48 bits permutation
table(PC-2)

55.				 cout << z[i] << "\t";

77Data Encryption Standard

56.				� if (((i + 1)% 6) = = 0) cout
<< endl;

57.			 }//for ends here
58.		 } //PermChoice2 function ends here

The above function, PermChoice2(), is called separately for each of the
16 rounds. Hence, the function is called 16 times. The basic target of
the function is to reduce the 56-bit key of the current round to a 48-bit
key. After permuting the secret key into 48 bits, the result is stored in
the array named z[48], which holds the 48-bit key. When the per-
muting operation is finished, the next step starts automatically to store
the 48-bit permuted key into another array, declared keyi[16][48].
That holds all 16 keys, which are 48 bits in size individually.

5.5.9  The Encrypt(char *) Function

Here comes the part to do something with the plaintext that is the
actual message to be encrypted. For this situation, the plaintext
also has 64 bits; the whole message/plaintext is divided into blocks
of 64 bits.

1.	 char* DES::Encrypt(char *Text1){
2.				� int i,a1,j,nB,m,iB,k,K,B[8],n,

t,d,round, mc = 0;
3.				 char *Text = new char[1000];
4.				 strcpy(Text,Text1);
5.				 i = strlen(Text);
6.				 a1 = i%8;
7.
8.				 if(a1 ! = 0)
9.					� for(j = 0; j<8-a1;

j++,i++) Text[i] = ' ';
					� //add padding bits with

space
10.				 Text[i] = '\0';
11.				� for(iB = 0,nB = 0,m = 0;

m<(strlen(Text)/8); m++){
12.				� //Repeat for TextLength/8

times.
13.				� for(iB = 0,i = 0; i<8;

i++,nB++){
14.					 n = (int)Text[nB];

78 ﻿Ezazul Islam and Saiful Azad

15.					� cout << " n is " << n
<< endl;

16.					� for(K = 7; n> = 1; K—)
{

17.						 B[K] = n%2;
						� //Converting

8-Bytes to
64-bit Binary
Format

18.						� cout << "B[" <<
K << "] is " <<
B[K] << endl;

19.						 n/= 2;
20.					 }
21.					� for(; K> = 0; K—) B[K]

= 0;
22.					� for(K = 0; K<8;

K++,iB++) total[iB] =
B[K];

23.					� //Now 'total' contains
the 64-Bit binary
format of Bytes

24.				 }
25.				 IP();
26.				� for(i = 0; i<64; i++)

total[i] = ip[i];
				� //Store values of ip[64] into

total[64]
27.				� for(i = 0; i<32; i++) left[i]

= total[i];
28.				� for(; i<64; i++) right[i-32]

= total[i];
29.				� for(round = 1; round< = 16;

round++){
30.					� Expansion();	//E bit

selection
31.					� //Performing expansion

on 'right[32]' to get
'expansion[48]'

32.					 xor_oneE(round);
33.					� //Performing XOR

operation on
expansion[48],z[48] to
get xor1[48]

34.					 substitution();

79Data Encryption Standard

35.					� //Perform substitution
on xor1[48] to get
sub[32]

36.					 permutation();
37.					� //Performing

Permutation on sub[32]
to get p[32]

38.					� xor_two();	 //xor with
32 bit L0 and f value

39.					� //Performing XOR
operation on
left[32],p[32] to get
xor2[32]

40.					� for(i = 0; i<32; i++)
left[i] = right[i];

41.					� //Dumping right[32]
into left[32]

42.					� for(i = 0; i<32; i++)
right[i] = xor2[i];

43.					� //Dumping xor2[32] into
right[32]

44.				 }
45.				� for(i = 0; i<32; i++) temp[i]

= right[i];//Dumping—
>[swap32bit]

46.				� for(; i<64; i++) temp[i] =
left[i-32];//
left[32],right[32] into
temp[64]

47.				 inverse();
48.				� //Inversing the bits of

temp[64] to get inv[8][8]
49.				� /* Obtaining the Cypher-Text

into final[1000]*/
50.				 k = 128;
51.				 d = 0;
52.				 for(i = 0; i<8; i++){
53.					 for(j = 0; j<8; j++){
54.						� d = d+inv[i]

[j]*k;
55.						 k = k/2;
56.					 }
57.					 final[mc++] = (char)d;
58.					 k = 128;
59.					 d = 0;

80 ﻿Ezazul Islam and Saiful Azad

60.				 }
61.			 }//for loop ends here
62.			 final[mc] = '\0';
63.			 return(final);
64.	 }

Before executing the encryption process, the plaintext is padded
with some space characters to make the plaintext string length divis-
ible by 8; thus, the number of bits in the plaintext is always a multiple
of 64. A character size is 1 byte, and 1 byte represents 8 bits. After
padding the plaintext with an empty space character, the for loop in
the 11th line rotates for each of the eight characters in the plaintext,
because eight characters consist of 64 bits. In lines 13 to 23, each of
the 8 bytes is converted into 64 bits and stored in the total[64]
array. Thus, the for loop continues for each of the 64 bits in the
plaintext bit stream.

The function Encrypt(char *) takes a parameter that will receive the
plaintext message and continue its next steps. In lines 8 and 9, extra
bits are added to make the size of the plaintext string a multiple of 8.
In this way, it is ensured that each of the blocks has 8 bits. After the
execution of lines 10 to 24, the array total[64] contains the 64-bit
format of the plaintext message.

In line 25, the initial permutation operation is done over the 64-bit
block of plaintext message. It actually reorganizes the bit stream into
some predefined sequences. The operations of the function IP() will
be discussed in the latter sections of this chapter. In lines 26, 27, and
28, three operations are done. In line 26, initial permuted bits are
copied into total[64]. In line 27, half of the 64 bits of the total
bit stream are copied into the left[32] array, and the second half
of the same array is copied into right[32] array. Thus, the 64-bit
plaintext message is divided into two parts and stored into two arrays,
left[32] and right[32].

From lines 29 to 44, several rounds of the same operations have
been conducted to continue the whole encryption process—16
rounds in the process. Now, before starting the for loop, assuming
that the left[32] array holds the 32 bits of the plaintext message
and the right[32] array contains the right bits of the plaintext
message, the operations are briefly mentioned below.

81Data Encryption Standard

Calling the function Expansion() actually expands the content of
right[32] into 48 bits and stores the bit stream into the array named
expansion[48]. So, next time, for the current round, it is possible
to XOR with the content of expansion[48] with the content of
keyi[round-1][i], where round denotes the current round and
i is the index of the bit that ranges from the 1st to the 48th bit.
Another function, defined as substitution(), converts the 48-bit con-
tent of the expansion[48] into 32 bits and stores the resulting
bit stream in the sub[32] array. On the other hand, the function
permutation() in line 36 makes the permutation of the 32-bit content
in sub[32] and copies the result into the array that is declared p[32].
The xor_two() function works on left[32] content and p[32]; the
result is copied into the xor2[32] array. Using the code of lines
40 and 42, the content of the right[32] array is dumped into the
left[32] array, and the content of the xor2[32] array is dumped
into the right[32] array.

In lines 45 and 46, two arrays, left[32] and right[32], swap
their positions; the content of the left[32] array takes the rightmost
side of the temp[64] array, and the content of right[32] takes the
leftmost position of the temp[64] array. After that, in line 47, an
inverse permutation operation is conducted over the bit stream of the
temp[64] array.

5.5.10  The IP() Function

1.	 void DES::IP(){//Initial Permutation
2.			 int k = 58,i;
3.			 for(i = 0; i<32; i++){
4.				 ip[i] = total[k-1];
5.				 if(k-8>0) k = k-8;
6.				 else k = k+58;
7.			 }
8.			 k = 57;
9.			 for(i = 32; i<64; i++){
10.				 ip[i] = total[k-1];
11.				 if(k-8>0) k = k-8;
12.				 else k = k+58;
13.			 }
14.			� cout << "Actual bit sequence:"

<<endl;

82 ﻿Ezazul Islam and Saiful Azad

15.			 for (int i = 0; i < 64; i++){
16.				 cout << total[i] << "\t";
17.				� if (((i + 1)% 8) = = 0) cout

<<endl;
18.			 }
19.			 cout << endl;
20.			� cout << "After initial permutation:

" <<endl;
21.			 for (int i = 0; i < 64; i++){
22.				 cout << ip[i] << "\t";
23.				� if (((i + 1)% 8) = = 0) cout

<<endl;
24.			 }
25.	 }

The initial permutation operation is conducted over the 64 bits
contained in the total[64] array. Thus, the plaintext message is
reorganized according to the initial permutation table, and finally, the
result is stored in the ip[64] array. That holds the initial permuted
bit stream.

5.5.11  The Expansion() Function

1.	�� void DES::Expansion(){//Expansion Function
applied on 'right' half

2.			 int exp[8][6],i,j,k;
3.			 for(i = 0; i<8; i++){
4.				 for(j = 0; j<6; j++){
5.					 if((j! = 0)||(j! = 5)){
6.						 k = 4*i+j;
7.						 exp[i][j] = 		
						 right[k-1];
8.					 }
9.					 if(i ! = 0 && j = =0){
10.						 k = 4*i;
11.						 exp[i][j] = 		
						 right[k-1];
12.					 }
13.					 if(i ! = 7 && j = =5){
14.						 k = 4*i+j;
15.						 exp[i][j] = 		
						 right[k-1];
16.					 }
17.				 }

83Data Encryption Standard

18.			 }
19.			 exp[0][0] = right[31];
20.			 exp[7][5] = right[0];
21.			 k = 0;
22.			 for(i = 0; i<8; i++){
23.				� for(j = 0; j<6; j++)

expansion[k++] = exp[i][j];
24.			 }
25.	 }

The function Expansion() is responsible for converting each of the
4 bits into 6 bits, so after the execution of the function, content of
right[32] is converted into 48 bits. In line 23, the array named
expansion[48] contains all 48 bits; thus, the bits of right[32] are
expanded into a block of 48 bits. Now, it has become more convenient,
so that the XOR operation between the expanded content and the 48-bit
key is possible, because all of the bits are the same in length, which is 48.

5.5.12  The xor_oneE(int round) Function

1.	 void DES::xor_oneE(int round){
2.		 //for Encrypt
3.		 int i;
4.		 for(i = 0; i<48; i++)
5.			� xor1[i] = expansion[i]^keyi[round-1]

[i];
6.	 }

For each of the rounds out of 16, the function xor_oneE(int) is called.
There is one array expansion, and another one is keyi[round][48].
The first array holds the previously expanded 48-bit content of the
plaintext, and the second one holds the 48-bit secret key that is sepa-
rate according to the round. There are 16 separate keys for each of the
16 rounds. Now, after executing the xor_oneE(int), the XORed result is
stored in the xor1[48] array.

5.5.13	 The Substitution() Function

1.	 void DES::substitution(){
2.	 int s1[4][16] = {
	 14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,

84 ﻿Ezazul Islam and Saiful Azad

	 0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
	 4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
	 15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13
3.	 };
4.	 int s2[4][16] = {
	 15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
	 3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
	 0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
	 13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9
5.	 };
6.	 int s3[4][16] = {
	 10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
	 13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
	 13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
	 1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12
7.	 };
8.	 int s4[4][16] = {
	 7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
	 13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
	 10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
	 3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14
9.	 };
10.	 int s5[4][16] = {
	 2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
	 14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
	 4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
	 11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3
11.	 };
12.	 int s6[4][16] = {
	 12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
	 10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
	 9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
	 4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13
13.	 };
14.	 int s7[4][16] = {
	 4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
	 13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
	 1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
	 6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12
15.	 };
16.	 int s8[4][16] = {
	 13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
	 1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
	 7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
	 2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11

85Data Encryption Standard

17.	 };
18.	 int a[8][6],k = 0,i,j,p,q,count = 0,g = 0,v;
19.	 for(i = 0; i<8; i++){
20.	 for(j = 0; j<6; j++){
21.	 a[i][j] = xor1[k++];
22.	 }
23.	 }
24.	 for(i = 0; i<8; i++){
25.	 p = 1;
26.	 q = 0;
27.	 k = (a[i][0]*2)+(a[i][5]*1);
28.	 j = 4;

29.	 while(j>0){
30.	 q = q+(a[i][j]*p);
31.	 p = p*2;
32.	 j— ;
33.	 }

34.	 count = i+1;
35.	 switch(count){
36.	 case 1:
37.	 v = s1[k][q];
38.	 break;
39.	 case 2:
40.	 v = s2[k][q];
41.	 break;
42.	 case 3:
43.	 v = s3[k][q];
44.	 break;
45.	 case 4:
46.	 v = s4[k][q];
47.	 break;
48.	 case 5:
49.	 v = s5[k][q];
50.	 break;
51.	 case 6:
52.	 v = s6[k][q];
53.	 break;
54.	 case 7:
55.	 v = s7[k][q];
56.	 break;
57.	 case 8:
58.	 v = s8[k][q];
59.	 break;
60.	 }

86 ﻿Ezazul Islam and Saiful Azad

61.	 int d,i = 3,a[4];
62.	 while(v>0){
63.	 d = v%2;
64.	 a[i—] = d;
65.	 v = v/2;
66.	 }
67.	 while(i> = 0){
68.	 a[i—] = 0;
69.	 }
70.	 for(i = 0; i<4; i++)
71.	 sub[g++] = a[i];
72.	 }
73.	 }

The function substitution has eight S-boxes that are used for
substituting the extra bits from the 48-bit XORed result. Now, the
basic target of this function is to reduce the bit size of the 48-bit con-
tent that was XORed with the 48-bit key; the new size of that XORed
content will be 32 after the execution of the function. For the 48-bit
content there are eight blocks of bits in which each of the blocks has
six bits. The first and the last bit together indicate the row number of
the S-box, and the other four bits indicate the column number in the
S-box array. Out of eight blocks, each of them indicates the respective
S-boxes; for example, the first block of 6 bits refers to s1[4][16], the
second block refers to s2[4][16], and so on up to s8[4][16]. After
finishing the function call, the 48-bit content is converted into 32-bit
content and stored in the sub[32] array. With this bit value the next
function, permutation(), continues.

5.5.14  The Permutation() Function

void DES::permutation(){
	 p[0] = sub[15];
	 p[1] = sub[6];
	 p[2] = sub[19];
	 p[3] = sub[20];
	 p[4] = sub[28];
	 p[5] = sub[11];
	 p[6] = sub[27];
	 p[7] = sub[16];
	 p[8] = sub[0];
	 p[9] = sub[14];

87Data Encryption Standard

	 p[10] = sub[22];
	 p[11] = sub[25];
	 p[12] = sub[4];
	 p[13] = sub[17];
	 p[14] = sub[30];
	 p[15] = sub[9];
	 p[16] = sub[1];
	 p[17] = sub[7];
	 p[18] = sub[23];
	 p[19] = sub[13];
	 p[20] = sub[31];
	 p[21] = sub[26];
	 p[22] = sub[2];
	 p[23] = sub[8];
	 p[24] = sub[18];
	 p[25] = sub[12];
	 p[26] = sub[29];
	 p[27] = sub[5];
	 p[28] = sub[21];
	 p[29] = sub[10];
	 p[30] = sub[3];
	 p[31] = sub[24];
}

The above function is utilized to permute the content of the
sub[32] and stores all 32 bits in another array named p[32]. Finishing
the function execution, the p[32] array holds the 32 permuted bits.

5.5.15  The xor_two() Function

1.	 void DES::xor_two(){
2.	 int i;
3.	 for(i = 0; i<32; i++){
4.		 xor2[i] = left[i]^p[i];
5.	 }
6.	 }

The above function actually makes an XOR operation between
the content of the left[32] array and the immediately permuted
32 bits of p[32]. The result of 32 bits is saved in xor2[32]. After
the function execution, the next operations continue from line 40
in the function named Encrypt(char *). Readers are requested to jump
into that specific line of code to have a look at the next steps.

88 ﻿Ezazul Islam and Saiful Azad

5.5.16  The Decrypt(char *) Function

1.	 char * DES::Decrypt(char *Text1){

2.		 int i,a1,j,nB,m,iB,k,K,B[8],n,t,d,round;

3.		 char *Text = new char[1000];

4.		 unsigned char ch;

5.		 strcpy(Text,Text1);

6.		 i = strlen(Text);

7.		 //keygen();

8.		 int mc = 0;

9.		� for(iB = 0,nB = 0,m = 0;
m<(strlen(Text)/8); m++){

10.			 /*Repeat for TextLength/8 times*/

11.			 for(iB = 0,i = 0; i<8; i++,nB++){

12.				 ch = Text[nB];

13.				 n = (int)ch;//(int)Text[nB];

14.				 for(K = 7; n> = 1; K—){

15.					� B[K] = n%2; //
Converting 8-Bytes to
64-bit Binary Format

16.					 n/= 2;

17.				 }

18.				 for(; K> = 0; K—) B[K] = 0;

19.				� for(K = 0; K<8; K++,iB++)
total[iB] = B[K];

20.				� /*Now 'total' contains the
64-Bit binary format of
8-Bytes*/

21.			 }

22.			 IP();

23.			� for(i = 0; i<64; i++) total[i] =
ip[i];

24.			� for(i = 0; i<32; i++) left[i] =
total[i];

25.			� for(; i<64; i++) right[i-32] =
total[i];

26.			 for(round = 1; round< = 16; 		
				 round++){

27.				 Expansion();

28.				 xor_oneD(round);

29.				 substitution();

30.				 permutation();

89Data Encryption Standard

31.				 xor_two();

32.				� for(i = 0; i<32; i++) left[i]
= right[i];

33.				� for(i = 0; i<32; i++)
right[i] = xor2[i];

34.			 }//16 rounds end here
35.			� for(i = 0; i<32; i++) temp[i] =

right[i];
36.			� for(; i<64; i++) temp[i] =

left[i-32];
37.			 inverse();
38.			� /* Obtaining the Cypher-Text into

final[1000]*/
39.			 k = 128;
40.			 d = 0;
41.			 for(i = 0; i<8; i++){
42.				 for(j = 0; j<8; j++){
43.					 d = d+inv[i][j]*k;
44.					 k = k/2;
45.				 }
46.				 final[mc++] = (char)d;
47.				 k = 128;
48.				 d = 0;
49.			 }
50.		 }	 //for loop ends here
51.		 final[mc] = '\0';
52.		 char *final1 = new char[1000];
53.		� for(i = 0,j = strlen(Text);

i<strlen(Text); i++,j++)
54.		 final1[i] = final[j];
55.		 final1[i] = '\0';
56.		 return(final);
57.	 }

The function prototype of the function Decrypt(char *) indicates
that it takes a character pointer as a parameter and returns another
memory address so that the type is also a pointer. This is a function
responsible for decrypting or deciphering the encrypted message.
For the decryption process, all the steps are the same, but the way
of choosing the keys is different. During decryption, the order of
the key is reversed. That means when decrypting the ciphertext, the
last key will be used first, then the second last, and so on. Both of
the functions Encrypt(char *) and Decrypt(char *) are the same, but in

90 ﻿Ezazul Islam and Saiful Azad

the Decrypt(char *) function xor_oneD(round) is called instead of xor_
oneE(round). Among the previously selected 16 keys, xor_oneD(round)
chooses the key in reverse order. That is the main difference between
the encryption and decryption.

5.5.17  The Main() Function

1.	 int main(){
2.		 DES d1;
3.		 d1.keygen();
4.		 char *str = new char[1000];
5.		 cout<<"\nEnter a string : ";
6.		 cin >> str;
7.		 char *str1 = new char[1000];
8.		 str1 = d1.Encrypt(str);
9.		 cout<<"\nEncrypted Text: "<<str1<<endl;
10.		� cout<<"\no/p Text: "<<d1.

Decrypt(str1)<<endl;
11.	 }

The main() function is the supreme controller in most of the pro-
gramming languages. In this chapter, C++ language is used to dem-
onstrate the DES encryption-decryption, and there is also a main()
function in this program, as usual. The function main() at first creates
an object of the DES class; in this program DES is a user-defined
class for demonstration purposes. The details of the DES class have
been discussed in the prior sections of this chapter.

Now for creating an object of DES class, the function keygen() is
called in the third line using the object created so far. Then, a string
variable is declared to store the input string, which can store 1000 char-
acters. After declaring the string variable, the string gets the input
in the sixth line. In the eighth line, the function Encrypt(char *) is
called to encrypt the plaintext and return the decrypted message into
the string variable str1. A statement in line 9 shows the encrypted
text that is already stored in str1. After all, the 10th line of the
code calls the Decrypt(char *) function, and that function returns
the decrypted plaintext so that users can see the decrypted text on the
screen. Finally, a plaintext string is inputted through the keyboard,
which is then encrypted and also decrypted to demonstrate that the
program is working fine.

91

6
Advanced Encryption

Standard

A S I F U R R A H M A N , S A E F U L L A H
M I A H , A N D S A I F U L A Z A D

Keywords

Advanced Encryption Standard
Block cipher

6.1  Overview

The Advanced Encryption Standard (AES) is a renowned sym-
metric key algorithm that utilizes a same secret key to encrypt
and decrypt a message. It overcomes the limitation of the smaller
key size of the Data Encryption Standard (DES) by utilizing

Contents

Keywords	 91
6.1	 Overview	 91
6.2	 History	 92
6.3	 Design Consideration	 93
6.4	 Primitive Operations of AES	 94
6.5	 Structure of AES	 100
6.6	 Overview of Key Expansion	 100
6.7	 Key Expansion Example	 103
6.8	 Encryption	 103
6.9	 An Encryption Example	 104
6.10	 Decryption	 104
6.11	 Limitations	 106
6.12	 Pros and Cons of AES	 106
6.13	 Implementation	 107
6.14	 Conclusion	 126

92 ﻿Asif Ur Rahman et al.

a bigger and variable-length key that may take 149 trillion years
to crack (assuming a machine could try 255 keys per second—
National Institute of Standards and Technology [NIST]). Moreover,
it also resolves the slow processing speed of Triple DES (3DES) and
utilizes lower resources than that. Therefore, it is preferred as the
encryption and decryption standard by the U.S. government. This
standard is described in Federal Information Processing Standard
(FIPS). AES is now being used worldwide for encrypting digital
information, including financial, telecommunications, and govern-
ment data.

AES supports secret keys of length 128, 192, or 256 bits to
encrypt and decrypt a data block of 128 bits. Like other block cipher
techniques, it is based on permutations and substitutions. Its design
supports implementation in both hardware and software. Moreover, it
is royalty-free to use, unlike some commercial encryption algorithms.

6.2  History

Because of the limitations of the previous encryption standard
(i.e., DES), the NIST was searching for a new symmetric block cipher
technique that could be considered a more robust replacement. In the
new proposed technique, it was looking for a cipher that could support
multiple key sizes (i.e., key lengths), capable of running efficiently in
both hardware and software, and also have a good defense mechanism
against various attacking techniques. Thus, a process was initiated on
January 2, 1997, where it published a Request for Comments (RFC)
for the “Development of a Federal Information Processing Standard
for Advanced Encryption Standard.” The entire selection process was
fully made open to public scrutiny and comments, because full vis-
ibility of any process would ensure the best possible analysis of the
designs.

In this flow of the process, NIST publicly called for nominees for
the new algorithm on September 12, 1997. The first AES conference
was held from August 20–23, 1998. At that conference NIST
selected 15 candidates for the AES, which were then subjected to
preliminary analysis by the world cryptographic community, includ-
ing the National Security Agency (NSA). All the selected algorithms
were presented, analyzed, and tested at the second AES conference,

93Advanced Encryption Standard

which was held on March 22–23, 1999. On August 9, 1999, NIST
selected five algorithms for extensive analysis:

	 1.	MARS, submitted by a team from IBM
	 2.	RC6, submitted by RSA Security
	 3.	Rijndael, submitted by two Belgian cryptographers, Joan

Daemen and Vincent Rijmen
	 4.	Serpent, submitted by Ross Anderson, Eli Biham, and Lars

Knudsen
	 5.	Twofish, submitted by a team of researchers, including Bruce

Schneier

Finally, on October 2, 2000, Rijndael, by Joan Daemen and
Vincent Rijmen, was chosen as the Advanced Encryption Standard.
On February 28, 2001, the algorithm was included in the publica-
tion of a draft by FIPS. Then it was open for public review for 90
days. After that, it was finally included in the Federal Register on
December 6, 2001.

6.3  Design Consideration

One of the principal design goals of AES was to keep it simpler to
implement in both hardware and software. Therefore, unlike DES,
instead of operating on bits, it operates on bytes, which makes it easier
to implement and explain. It works by repeating the same defined
steps multiple times, which are called rounds. Each round consists
of several processing steps, including one that utilizes an encryption/
decryption subkey that is generated from the shared key. Since AES
is an iterative symmetric block cipher, it shares a single secret key
among the two communicating parties involved in encryption and
decryption operations. The allowable key lengths in AES are 128,
192, and 256 bits. Every key is expanded so that a separate subkey
(w[i, j], where i and j provide the byte range) could be utilized for
every round. Number of rounds of AES generally depends on the key
length. A relationship between key length, number of columns in a
state, and number of rounds is mentioned in Table 6.1. For instance,
if the key length (Nk) is 128 bits or 16 bytes or 4 words, the number
of columns (Nb) would be 4 and only 10 rounds (Nr) are performed,
where Nb = key length/32.

94 ﻿Asif Ur Rahman et al.

AES, as well as most of the encryption algorithms, is reversible,
which means that for the steps performed to complete an encryp-
tion, similar steps could be followed to complete a decryption, but in
reverse order. In the following section, a detailed description of the
operations of AES is explained with examples.

6.4  Primitive Operations of AES

Internally, all the AES operations are performed on a two-dimensional
array of bytes called the state. A state constitutes four rows and Nb
(Table 6.1) number of columns. Hence, for a 128-bit key, a state con-
sists of four rows and four columns, as depicted in Figure 6.1.

AES is based on five primitive operations:

	 1.	Exclusive disjunction/exclusive OR (XOR): Exclusive dis-
junction or exclusive or is a logical operation that outputs true
whenever both inputs differ from each other (e.g., one is true
and the other is false) (Table 6.2). It is symbolized by the pre-
fix operator J and by the infix operators XOR, EOR, EXOR,
⊻, ⊕, ↮, and ≢.

	 2.	Substitution (SubByte): A byte is substituted by another
byte. AES utilizes a lookup table, also known as S-box, to
perform substitutions of encryption, and another S-box, also
known as inverse S-box, for decryption. Both S-boxes are

Table 6.1  Relationship between Key Lengths, Number
of Columns in a State, and Total Number of Rounds in AES

KEY LENGTH (Nk)
(1 WORD = 32
BITS/4 BYTES)

NUMBER OF
COLUMNS IN
STATE (Nb) ROUNDS (Nr)

4 4 10
6 6 12
8 8 14

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 6.1  A state of 128-bit key AES, where Sr,c denotes a byte of the rth row and the cth column.

95Advanced Encryption Standard

given in Tables 6.3 and 6.4, respectively. Each individual byte
can be represented by two hex digits where the first (from
right) digit represents row and the second digit represents col-
umn of the S-box lookup table in the case of encryption, and
of the inverse S-box in the case of decryption. For instance,
let us assume that {42} is a hexadecimal value that represents
a byte. Here, 4 refers to row number and 2 refers to column
number; the value over that location would substitute this
value, i.e., {2C}.

	 3.	Rotation (ShiftRows): A simple permutation is performed by
rearranging of bytes through rotating a row by a fixed number
of cells. It provides a diffusion by the cyclic left shift of the
last three rows of the state by different offsets. Row 0 of the

Table 6.3  S-Box Lookup Table

S -BOX VALUES

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Table 6.2  XOR Truth Table

INPUT OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

96 ﻿Asif Ur Rahman et al.

state is not shifted, row 1 is shifted 1 byte, row 2 is shifted 2
bytes, and row 3 is shifted 3 bytes. This operation is illustrated
in Figure 6.2.

		 In case of decryption, inverse shift rows (InvShiftRows)
are performed, which follows a process similar to that of
ShiftRows, only the shifting is done to the right.

	 4.	MixColumn: It operates on each column individually where
a single byte of a column is mapped into a new value that is
a function of all four bytes in that column. Each column of
the state is replaced by multiplying with a 4 × Nb matrix in

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3
Row 0

No change

S1,1 S1,2 S1,2 S1,0
Row 1

Shift 1 Byte

S2,2 S2,3 S2,0 S2,1
Row 2

Shift 2 Byte

S3,3 S3,0 S3,1 S3,2
Row 3

Shift 3 Byte

ShiftRows

Figure 6.2  Shift row operation of AES.

Table 6.4  Inverse S-Box Lookup Table

INVERSE S-BOX VALUES

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

97Advanced Encryption Standard

the Galois field 28, also denoted as GF(28). The mathematics
behind this is beyond the scope of this book. An example
matrix is given for 128-bit key in Figure 6.3.

		 The first result byte is calculated by multiplying four values
of the state column against four values of the first row of the
matrix. The result of each multiplication is then XORed to
produce 1 byte like below:

	 S0,0 = (S0,0*2) XOR (S1,0*3) XOR (S2,0*1) XOR (S3,0*1)

		 This procedure is repeated again with each byte of all col-
umns of the state, until there is no more state column. As a
result of this multiplication, the four bytes in the first column
are replaced by the following:

	 S0,0 = (S0,0*2) XOR (S1,0*3) XOR (S2,0*1) XOR (S3,0*1)

	 S1,0 = (S0,0*1) XOR (S1,0*2) XOR (S2,0*3) XOR (S3,0*1)

	 S2,0 = (S0,0*1) XOR (S1,0*1) XOR (S2,0*2) XOR (S3,0*3)

	 S3,0 = (S0,0*3) XOR (S1,0*1) XOR (S2,0*1) XOR (S3,0*2)

		 This multiplication value also could be achieved using a
two-table lookup represented in hexadecimal numbers and
indexed with a hexadecimal digit. They are called the L-Table
and E-Table and are given in Tables 6.5 and 6.6, respectively.

		 The result of the multiplication could be found from the
L lookup table, followed by the addition of the results (+, not a
bitwise AND), followed by a lookup to the E-table. The num-
bers being multiplied are 1 byte each and are represented in

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 01

Figure 6.3  128-bit key state and its multiplication matrix.

98 ﻿Asif Ur Rahman et al.

Table 6.5  L-Table

L-TABLE

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 19 01 32 02 1A C6 4B C7 1B 68 33 E DF 03
1 64 04 E0 0E 34 8D 81 EF 4C 71 08 C8 F8 69 1C C1
2 7D C2 1D B5 F9 B9 27 6A 4D E4 A6 72 9A C9 09 78
3 65 2F 8A 05 21 0F E1 24 12 F0 82 45 35 93 DA 8E
4 96 8F DB BD 36 D0 CE 94 13 5C D2 F1 40 46 83 38
5 66 DD FD 30 BF 06 8B 62 B3 25 E2 98 22 88 91 10
6 7E 6E 48 C3 A3 B6 1E 42 3A 6B 28 54 FA 85 3D BA
7 2B 79 0A 15 9B 9F 5E CA 4E D4 AC E5 F3 73 A7 57
8 AF 58 A8 50 F4 EA D6 74 4F AE E9 D5 E7 E6 AD E8
9 2C D7 75 7A EB 16 0B F5 59 CB 5F B0 9C A9 51 A0
A 7F 0C F6 6F 17 C4 49 EC D8 43 1F 2D A4 76 7B B7
B CC BB 3E 5A FB 60 B1 86 3B 52 A1 6C AA 55 29 9D
C 97 B2 87 90 61 BE DC FC BC 95 CF CD 37 3F 5B D1
D 53 39 84 3C 41 A2 6D 47 14 2A 9E 5D 56 F2 D3 AB
E 44 11 92 D9 23 20 2E 89 B4 7C B8 26 77 99 E3 A5
F 67 4A ED DE C5 31 FE 18 0D 63 8C 80 C0 F7 70 07

Table 6.6  E-Table

E-TABLE

SN 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 13 35
1 5F E1 38 48 D8 73 95 A4 F7 02 06 0A 1E 22 66 AA
2 E5 34 5C E4 37 59 EB 26 6A BE D9 70 90 AB E6 31
3 53 F5 04 0C 14 3C 44 CC 4F D1 68 B8 D3 6E B2 CD
4 4C D4 67 A9 E0 3B 4D D7 62 A6 F1 08 18 28 78 88
5 83 9E B9 D0 6B BD DC 7F 81 98 B3 CE 49 DB 76 9A
6 B5 C4 57 F9 10 30 50 F0 0B 1D 27 69 BB D6 61 A3
7 FE 19 2B 7D 87 92 AD EC 2F 71 93 AE E9 20 60 A0
8 FB 16 3A 4E D2 6D B7 C2 5D E7 32 56 FA 15 3F 41
9 C3 5E E2 3D 47 C9 40 C0 5B ED 2C 74 9C BF DA 75
A 9F BA D5 64 AC EF 2A 7E 82 9D BC DF 7A 8E 89 80
B 9B B6 C1 58 E8 23 65 AF EA 25 6F B1 C8 43 C5 54
C FC 1F 21 63 A5 F4 07 09 1B 2D 77 99 B0 CB 46 CA
D 45 CF 4A DE 79 8B 86 91 A8 E3 3E 42 C6 51 F3 0E
E 12 36 5A EE 29 7B 8D 8C 8F 8A 85 94 A7 F2 0D 17
F 39 4B DD 7C 84 97 A2 FD 1C 24 6C B4 C7 52 F6 01

99Advanced Encryption Standard

two hexadecimal digits. The first digit is used as row index
and the last digit as column index of the L-table. Then, two
values acquired from the L-table are added, which results
in another byte. The resultant byte is used to look up from
E-table, following a procedure similar to that of the L-table.
For instance, let us assume that the two hex values being
multiplied are 87*02. First, we have to look up the L-table
to find out the substitution values, i.e., 74 and 19. Then, add
the two acquired values together, which is 8D in this exam-
ple. If the added value is greater than FF, then FF needs to
be subtracted from the added value. The final step is to look
up the addition result on the E-table. Note that any number
multiplied by 1 is equal to itself and does not need to go
through the above-mentioned procedure, e.g., 87*1 = 87.

		 An example of MixColumn during encryption is given
below:

	 Input = 87 6E 46 A6

	 S0,0 = (87*2) XOR (6E*3) XOR (46*1) XOR (A6*1)

	 = E(L(87) + L(02)) XOR E(L(6E) + L(03)) XOR 46 XOR A6

	 = E(8D) XOR E(3E) XOR 46 XOR A6

	 = 15 XOR B2 XOR 46 XOR A6

	 = 47

		 Similarly, one can calculate the other values of the state.
In the case of decryption, the inverse mix column
(InvMixColumn) technique is utilized, which follows the
same process as MixColumn, but multiplications are per-
formed on a different multiplication matrix. InvMixColumn
utilizes the multiplication matrix shown in Table 6.7.

Table 6.7  Inverse Multiplication Matrix

0E 0B 0D 09
09 0E 0B 0D
0D 09 0E 0B
0B 0D 09 0E

100 ﻿Asif Ur Rahman et al.

	 5.	AddRoundKey: This is a simple operation where each byte of
the state is XORed with each byte of the round key, which is
a portion of the expanded key. In the next section, a detailed
description of the key expansion technique of AES is elabo-
rated. Figure 6.4 illustrates the technique of AddRoundKey
transformation.

6.5  Structure of AES

The basic encryption and decryption structure of AES is illustrated in
Figure 6.5. Here, a 128-bit key length is considered. Therefore, both
encryption and decryption must go through 10 rounds before pro-
ducing the desired output. There are 12 rounds for a 192-bit key and
14 rounds for a 256-bit key. It can be observed from the figure that every
round generally performs four operations: (1) SubBytes/InvSubBytes,
(2) ShiftRows/InvShiftRows, (3) MixColumns/InvMixColumns, and
(4) AddRoundKey. One of them is permutation and the other three
are substitutions. However, the final round comprises only three oper-
ations, excluding MixColumns/InvMixColumns. The expanded key
is only utilized by the AddRoundKey operations. Each operation is
easily reversible, thus making it easy to implement in both hardware
and software. Similar to most of the block ciphers, the decryption
algorithm utilizes the key in reverse order.

6.6  Overview of Key Expansion

As mentioned earlier, since AES supports symmetric key, a secret
key must be shared between the two parties. AES provides flexibility

Changed state

Expanded key

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

K0,0 K0,1 K0,2 K0,3
K1,0 K1,1 K1,2 K1,3
K2,0 K2,1 K2,2 K2,3
K3,0 K3,1 K3,2 K3,3

AddRoundKey()

XOR

Figure 6.4  Add round key function.

101Advanced Encryption Standard

regarding selecting a key length. A key could be 128, 192, or 256 bits
long. Since every round utilizes a new subkey, prior to encryption or
decryption, the key must be expanded according to the number of
rounds. This process is called key expansion.

The key expansion routine takes an input key of size Nk and produces
a linear array of size, Nb × (Nr + 1), where a number of columns in states
is (Nb) and the number of rounds (Nr) depends on key length (Nk).

AddRoundKey

PlainText

InvSubBytes

Round 10
Round 9

Ro
un

d
1

InvShiftRows

PlainText

InvMixColumns

AddRoundKey w[0, 3]

w[4, 7]

w[36, 39]

w[40, 43]

Expanded key
(w[i, j])

AddRoundKey

InvSubBytes

InvShiftRows

SubBytes

ShiftRows

MixColumns

AddRoundKey

Ro
un

d
9

SubBytes

ShiftRows

MixColumns

AddRoundKey

Ro
un

d
10

SubBytes

ShiftRows

AddRoundKey

Round 1

InvMixColumns

AddRoundKey

InvSubBytes

InvShiftRows

AddRoundKey

Cipher Text

Decryption

Cipher Text

Encryption

Figure 6.5  AES encryption and decryption techniques.

102 ﻿Asif Ur Rahman et al.

For instance, Nr is 10 when Nk is 4, which is illustrated in Table 6.1.
Let us denote a word in the expanded key as w[i], where i is the ith
word of that key. Algorithm 6.1 shows a key expansion algorithm.

Algorithm 6.1: KeyExpansion(key)

Begin
	 word temp;
	 for i ← 0 to (Nk − 1)
		 w[i] ←  (unsigned char) key[4*i] << 24) |
			 ((unsigned char) key[4*i+1] << 16) |
			 ((unsigned char) key[4*i+2]<<8) |
			 ((unsigned char) key[4*i+3]);
	 end for

	 for i ←(Nk − 1) to Nb × Nr
		 temp = w[i-1];
		 if (imodNk = = 0)
			� temp = SubWord(RotWord(temp)) ⊕

(Rcon[i/Nk] << 24);
		 else if(Nk> 6 and(i mod Nk) = = 4)
			 temp = SubWord(temp);
		 end if
		 w[i] = w[i-Nk] ⊕ temp;
	 end for
End

From Algorithm 6.1, we can easily identify the functions necessary
for the expanding key:

	 1.	RotWord: This function does a circular shift on 4 bytes,
similar to the shift row function, e.g., 0, 1, 2, 3 to 1, 2, 3, 0.

	 2.	SubWord: It does a similar transformation, which is
described in the SubByte operation. It utilizes the S-box table
to substitute a byte.

	 3.	XOR with round constant (Rcon): For every round in key
expansion, the result acquired from function 1 and function 2
is XORed with a round constant value Rcon[i]. These values
are shown in Table 6.8.

Table 6.8  Rounds and Their Respective Constants

Round[j ] 1 2 3 4 5 6 7 8 9 10
Rcon[j ] 01 02 04 08 10 20 40 80 1B 36

103Advanced Encryption Standard

6.7  Key Expansion Example

Let us assume that the secret key shared between two parties is aes
128 pass key, which is 128 bits long. Therefore, Nk is 4, Nb is 4, and Nr
is 10 for this key length. A hexadecimal representation of the key is
shown in Figure 6.6.

This key is utilized to expand the key to Nb × (Nr + 1) bytes, which
is 44 bytes in this example. A detailed description of the steps is pre-
sented in previous sections. In this section, we demonstrate how the
round key for the first round, i.e., w[4, 7], can be calculated while
w[0, 3] is given. From Figure 6.6, we get

	 w[0] = 1A91F720

	 w[1] = 5E456706

	 w[2] = A25B66DE

	 w[3] = 5F145988

W[I]
W[I – 1]
OR TEMP

AFTER
ROTWORD

AFTER
SUBWORD RCON[I ]

AFTER
XOR WITH
RCON[I ] W[I – 4]

W[I ] =
TEMP XOR
W[I – 4]

4 5F145988 1459885F FACBC4CF 1000000 EACBC4CF 1A91F720 E15A33EF
5 E15A33EF 5A33EFE1 BEC3DFF8 1000000 AEC3DFF8 5E456706 BF1F54E9
6 BF1F54E9 1F54E9BF C0201E08 1000000 D0201E08 A25B66DE 1D443237
7 1D443237 4432371D 1B2394A4 1000000 0B2394A4 5F145988 42506BBF

By repeating the similar procedures, the remaining words of the
expanded key are generated.

6.8  Encryption

In AES, a plaintext has to travel through Nr number of rounds before
producing the cipher. Again, each round comprises four different
operations. One operation is permutation and the other three are sub-
stitutions. They are (1) SubBytes, (2) ShiftRows, (3) MixColumns,

1A 5E A2 5F
91 45 5B 14
F7 67 66 59
20 06 DE 88

Figure 6.6  Hex value representations of the secret key.

104 ﻿Asif Ur Rahman et al.

and (4) AddRoundKey. All these operations are detailed previously.
Algorithm 6.2 gives a high-level description of the encryption
algorithm.

Algorithm 6.2: Encryption (PlainText)

Begin
	 State = plainText
	 1. KeyExpansion
	 2. AddRoundKey (State, ExpandedKey[0])
	 3. for r ← 1 to (Nr - 1)
		 a. SubBytes (State, S-box)
		 b. ShiftRows (State)
		 c. MixColumns (State)
		 d. AddRoundKey (State, ExpandedKey[r])
	 end for
	 4. SubBytes (State, S-box)
	 5. ShiftRows (State)
	 6. AddRoundKey (State, ExpandedKey[Nr])
	 Out = CipherText
End

6.9  An Encryption Example

Let us assume that the plaintext we are going to encrypt is string 2
encrypt using the key stated in Section 6.7. To encrypt, this string is cop-
ied to the state, and hexadecimal representations are given in Figure 6.7.

The steps of various rounds with their corresponding values are
portrayed in tabular format in Table 6.9.

6.10  Decryption

The decryption routine takes the encrypted string/state as input or
output of the encryption routine and performs a reverse operation.

73 6e 20 72
74 67 65 79
72 20 6e 70
69 32 63 74

Figure 6.7  Hex value representations of plaintext.

105Advanced Encryption Standard

Table 6.9  Steps of the AES Encryption

ROUND
NUMBER

START OF A
ROUND

AFTER
SUBBYTES

AFTER
SHIFTROWS

AFTER
MIXCOLUMNS

ROUND
KEY VALUE

ROUND
OUTPUT

INP 736E2072
74676579
72206E70
69326374

1A5EA25F
91455B14
F7676659
2006DE88

6930822D
E5223E6D
85470829
4934BDFC

1 6930822D
E5223E6D
85470829
4934BDFC

F90413D8
D993B23C
97A03095
3B187AB0

F90413D8
93B23CD9
30A597A0
B03B187A

C75BED01
24B4D1F0
C1AA32D4
C86DAEFE

E1BF1D42
5A1F4450
3354326B
EFE937BF

26E4F043
7EAB95A0
F2FE00BF
27849941

2 26E4F043
7EAB95A0
F2FE00BF
27849941

F7698C1A
F3622AE0
89BB6308
CC5FEE83

F7698C1A
622AE0F3
630889BB
83CC5FEE

B368EE6F
15E988DF
CD1C84AD
1E1A58A1

B00F1250
253A7E2E
3B6F5D36
C32A1DA2

0367FC3F
30D3F6F1
F673D99B
DD304503

3 0367FC3F
30D3F6F1
F673D99B
DD304503

7B85B075
046642A1
428F3514
C1046E7B

7B85B075
6642A104
3514428F
7BC1046E

1202C507
93FC2B99
FAB799C6
285B20C8

858A98C8
201A644A
016E3305
90BAA705

97885DCF
B3E64FD3
FBD9AAC3
B8E187CD

4 97885DCF
B3E64FD3
FBD9AAC3
B8E187CD

88C44C8A
6D8E8466
0F35AC2E
6CF817BD

88C44C8A
8E84666D
AC2E0F35
BD6CF817

9346C59A
DDC96918
99A827B4
C02556F3

5BD14981
4B51357F
6A043732
78C26560

C8978C1B
96985C67
F3AC1086
B8E73393

5 C8978C1B
96985C67
F3AC1086
B8E73393

E88864AF
90464A85
0D91CA44
6C94C3DC

E88864AF
464A8590
CA440D91
DC6C94C3

17FDC5BC
FDBCF6FF
5EFE5C58
0C551776

99480180
68390C73
BABE89BB
74B6D3B3

8EB5C43C
9585FA8C
E440D5E3
78E3C4C5

6 8EB5C43C
9585FA8C
E440D5E3
78E3C4C5

19D51CEB
2A972D64
69090311
BC111CA6

19D51CEB
972D642A
03116909
A6BC111C

356BECA6
8F007EB8
790599F7
E83B0B3D

367E7FFF
82BBB7C4
D769E05B
B90FDC6F

03159359
0DBBC97C
AE6C79AC
5134D752

7 03159359
0DBBC97C
AE6C79AC
5134D752

7B59DCCB
D7EADD10
E450B691
D1180E00

7B59DCCB
EADD10D7
B691E450
00D1180E

658E6FB1
7581D380
E6D537AE
D11EBBDD

6A146B94
BB00B773
7F16F6AD
AFA07C13

0F9A0425
CE8164F3
99C3C103
7EBEC7CE

8 0F9A0425
CE8164F3
99C3C103
7EBEC7CE

76B8F23F
8B0C430D
EE2E787B
F3AEC68B

76B8F23F
0C430D8B
787BEE2E
8BF3AEC6

0B26A810
6D406F86
0C03D1B9
E316A973

65711A8E
2E2E99EA
0214E24F
8D2D5142

6E57B29E
436EF66C
0E1733F6
6E3BF831

9 6E57B29E
436EF66C
0E1733F6
6E3BF831

9F5B370B
1A9F4250
ABF0C342
9FE241C7

9F5B370B
9F42501A
C342ABF0
C79FE241

9BADD789
23869375
CF271729
73C87D75

F988921C
AA841DF7
2E3AD897
94B9E8AA

62254595
89028E82
E11DCFBE
E77195DF

10 62254595
89028E82
E11DCFBE
E77195DF

AA3F6E2A
A7771913
F8A48AAE
94A32A9E

AA3F6E2A
771913A7
8AAEF8A4
9E94A32A

A72FBDA1
22A6BB4C
82B860F7
08B159F3

0D10D38B
55BFA8EB
08169853
9625FAD9

Ciphertext: 0D 10 D3 8B 55 BF A8 EB 08 16 98 53 96 25 FA D9.

106 ﻿Asif Ur Rahman et al.

The state value of each step will be the opposite of the encryption state
value. Again, a higher-level description of the decryption algorithm is
given in Algorithm 6.3.

Algorithm 6.3: Decryption (CipherText)

Begin
	 State = CipherText
	 1. KeyExpansion
	 2. AddRoundKey (State, ExpandedKey[0])
	 3. for r ← (Nr - 1) to 1
		 a. InverseShiftRows (State)
		 b. InverseSubBytes (State, S-box)
		 c. AddRoundKey (State, ExpandedKey[r])
		 d. InverseMixColumns (State)
	 end for
	 4. InverseSubBytes (State, S-box)
	 5. InverseShiftRows (State)
	 6. AddRoundKey (State, ExpandedKey[Nr])
	 out = PlainText
End

6.11  Limitations

In our implementation, there is no restriction on key selection; no
weak or semiweak key has been identified for this AES implemen-
tation. The implementation here covers only electronic code block
(ECB) encryption mode.

6.12  Pros and Cons of AES

Actually, AES has many pros rather than noticeable cons. As AES
was developed after DES, all known attacks on DES have been tested
on AES, and all the test results were satisfactory. AES is more secure
to brute-force attack than DES because of its larger key size. AES is
not prone to statistical attacks, and it has been demonstrated that it
is not possible with common techniques to do statistical analysis of
ciphertext in AES. As yet, there are no differential and linear attacks
on AES. The best part of AES is that the algorithms used in it are

107Advanced Encryption Standard

so simple that they can be easily implemented using cheap processors
and a minimum amount of memory.

On the other hand, AES needs more processing and more rounds
of communication than DES, and we can hardly tell this is AES’s
disadvantage.

6.13  Implementation

#include<iostream>
#include<vector>
#include<fstream>
#include<string>
#include<sstream>
using namespace std;

#define word unsigned int
#define byte unsigned char

class AES
{
	 vector<word> ExpandedKey;
	 int Nk,//width of key block
	 Nr,//number of round
	 Nb;//block size
	 static const byte S_Box 256];
	 static const byte Si_Box 256];
	 static const byte Rcon[30];
	 static const byte ColMixMatrix[4][4];
	 static const byte InvColMixMatrix[4][4];
	 static const byte AlogTable[256];
	 static const byte LogTable[256];
	 string cipherText;
	 byte state[4][4];

	 #ifdef _KEY_TEST_
	 fstream in;

	 #endif		

	 #ifdef _TEST_STATE_
	 fstream stest_fin;
	 #endif

	 byte Mul(byte a, byte b);

108 ﻿Asif Ur Rahman et al.

	 void MixColumns();
	 void ShiftRows();
	 void SubBytes();
	 byte SubByte(byte oneByte);
	 word SubWord(word val);
	 word RotWord(word val);

	 void InvMixColumns();
	 void InvShiftRows();
	 byte InvSubByte(byte oneByte);
	 void InvSubBytes();

	 void AddRoundKey(int roundNo);
	 void KeyExpansion(string key);
	 string ToString();

public:
	� static enum KeySize {AES128 = 128, AES192 = 192,

AES256 = 256};

	 AES(string key, int bitSize);
	 ~AES();
	 void Encrypt(string plainText);
	 string GetCipherText();
	 void Decrypt(string cipherText);
};

#include"AES.h"

	 byte AES::Mul(byte a, byte b)
	 {
	 if(a && b)
			� return AlogTable[((unsigned char)

LogTable[a] + (unsigned char)
LogTable[b])%255];

	 return 0;
	 }

	 void AES::InvMixColumns()
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 //�4 rows and Nb columns to store temp mix

col value

109Advanced Encryption Standard

	 for(int r = 0; r < 4; r ++)
	 {
	 temp[r] = �Mul(InvColMixMatrix[r][0],

(state[0][c]))
	 ^ �Mul(InvColMixMatrix[r]

[1],(state[1][c]))
	 ^ �Mul(InvColMixMatrix[r]

[2],(state[2][c]))
	 ^ �Mul(InvColMixMatrix[r]

[3],(state[3][c]));
	 }

	 state[0][c] = temp[0];
	 state[1][c] = temp[1];
	 state[2][c] = temp[2];
	 state[3][c] = temp[3];
	 }
	 }

	 void AES::MixColumns()
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 //�4 rows and Nb columns to store temp mix
	 //col value
	 for(int r = 0; r < 4; r ++)
	 {
	 temp[r] = �Mul(ColMixMatrix[r][0],

(state[0][c]))
	 ^ �Mul(ColMixMatrix[r]

[1],(state[1][c]))
	 ^ �Mul(ColMixMatrix[r]

[2],(state[2][c]))
	 ^ �Mul(ColMixMatrix[r]

[3],(state[3][c]));
	 }

	 state[0][c] = temp[0];
	 state[1][c] = temp[1];
	 state[2][c] = temp[2];
	 state[3][c] = temp[3];
	 }
	 }
	 void AES::InvShiftRows()

110 ﻿Asif Ur Rahman et al.

	 {
	 //row is always 4
	 for(int r = 0; r < 4; r ++)
	 {
	 byte temp[4];

	 temp[0] = state[r][0];
	 temp[1] = state[r][1];
	 temp[2] = state[r][2];
	 temp[3] = state[r][3];

	 for(int c = 0; c < Nb; c ++)
	 {
	 state[r][(r+c)% Nb] = temp[c];
	 }

	 }

	 }

	 void AES::ShiftRows()
	 {
	 //row is always 4
	 for(int r = 0; r < 4; r ++)
	 {
	 byte temp[4];
	 for(int c = 0; c < Nb; c ++)
	 {
	 temp[c] = state[r][(r+c)% Nb];
	 }
	 //temp[0] = state[r][(r+0)% Nb];
	 //temp[1] = state[r][(r+1) % Nb];
	 //temp[2] = state[r][(r+2) % Nb];
	 //temp[3] = state[r][(r+3) % Nb];

	 state[r][0] = temp[0];
	 state[r][1] = temp[1];
	 state[r][2] = temp[2];
	 state[r][3] = temp[3];
	 }

	 }

	 byte AES::InvSubByte(byte oneByte)
	 {

111Advanced Encryption Standard

	 //o�ne byte represent in hex (xy) x is row
	 //index and y is column index
	 return Si_Box[oneByte];
	 }

	 void AES::InvSubBytes()
	 {
	 for(int i = 0; i < 4; i ++)
	 {
	 for(int j = 0; j < Nb; j ++)
	 {
	� state[i][j] = InvSubByte(state[i][j]);
	 }
	 }
	 }

	 void AES::SubBytes()
	 {
	 for(int i = 0; i < 4; i ++)
	 {
	 for(int j = 0; j < Nb; j ++)
	 {
	 state[i][j] = SubByte(state[i][j]);
	 }
	 }
	 }

	 byte AES::SubByte(byte oneByte)
	 {
	 //�one byte represent in hex (xy) x is row
	 //index and y is column index
	 return S_Box[oneByte];
	 }

	 word AES::SubWord(word val)
	 {
	 byte oneByte;
	 word res = 0;
	 for(int i = 0; i< 4; i ++)
	 {
	 res = res << 8;
	 oneByte = (val >> 24) & 0xFF;
	 res = res | SubByte(oneByte);
	 val = val << 8;
	 }

112 ﻿Asif Ur Rahman et al.

	 return res;
	 }

	 word AES::RotWord(word val)
	 {
	 word res = val << 8;
	 res = res | (val >> 24);
	 return res;
	 }

	 void AES::AddRoundKey(int roundNo)
	 {

	 for(int col = 0; col < Nb; col++)
	 {

	� word roundKeyVal = ExpandedKey
[(roundNo*Nb)+col];

	 for(int row = 3; row > = 0; row—)
	 {

	 state[row][col] ^ = (roundKeyVal &0xFF);
	 roundKeyVal = roundKeyVal >> 8;
	 }
	 }
	 }
	 AES::~AES()
	 {
	 #ifdef _KEY_TEST_
	 if(in)
	 {
	 in.close();
	 }
	 #endif
	 #ifdef _TEST_STATE_
	 if(stest_fin)
	 stest_fin.close();
	 #endif
	 }

	 AES::AES(string key, int bitSize)
	 {
	 Nr = bitSize/32 + 6;
	 Nk = bitSize/32;
	 Nb = 4;//always 4

113Advanced Encryption Standard

	 ExpandedKey.resize(Nk*(Nr+1));

	 #ifdef _TEST_STATE_
	 stest_fin.open("128_enc_test.txt",ios::in);
	 if(!stest_fin)
	 {
	 cout << "Cannot not open" << endl;
	 exit(1);
	 }
	 #endif//_Debug_
	 #ifdef _KEY_TEST_
	 in.open("128_key_test.txt",ios::in);
	 if(!in)
	 {
	 cout << "Cannot not open" << endl;
	 exit(1);
	 }
	 #endif//_Debug_
	 KeyExpansion(key);

	 }
	 void AES::KeyExpansion(string key)
	 {
	 word temp;
	 for(int i = 0; i < Nk; i ++)
	 {
	� ExpandedKey [i] = ((unsigned char) key[4*i]

<< 24) |
	� ((unsigned char)

key[4*i+1] << 16) |
	� ((unsigned char)

key[4*i+2]<<8) |
	� ((unsigned char)

key[4*i+3]);
	 cout << hex << ExpandedKey[i] << endl;
	 }
	 for(int i = Nk; i < Nb*(Nr+1); i++)
	 {
	 temp = ExpandedKey[i-1];
	 if(i% Nk = = 0)
	 {
	� temp = SubWord(RotWord(temp)) ^

(Rcon[i/Nk] << 24);
	 }
	 else if(Nk >6 && i%Nk = = 4)

114 ﻿Asif Ur Rahman et al.

	 {
	 temp = SubWord(temp);
	 }
	 ExpandedKey[i] = ExpandedKey[i-Nk] ^ temp;

	 #ifdef _KEY_TEST_
	 int x;
	 string inpHexVal;
	 std::stringstream exKeyHexVal;
	 in >> x >> inpHexVal;
	� exKeyHexVal << hex <<

ExpandedKey[i];
	� if(x == i && inpHexVal ==

exKeyHexVal.str() && 0)
	 cout << i << " : ok " << endl;
	 else
	 {
	 temp = ExpandedKey[i-1];
	 if(i% Nk = = 0)
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << dec <<i << ":not

ok:" << endl;
	� out << "temp:" <<hex <<

temp << endl;
	� out << "rot:" <<hex <<

RotWord(temp) << endl;
	� out << "sub:" <<hex <<

SubWord(RotWord(temp))
<< endl;

	� out << "After xor
Rcon:" <<hex <<
(SubWord(RotWord
(temp))^ (Rcon[i/Nk] <<
24)) << endl;

	� out << "Rcon :" <<hex
<< (Rcon[i/Nk] <<24) <<
endl;

	� out << "W[i-nk] :"
<<hex <<
ExpandedKey[i-Nk] <<
endl;

	� out << "final :" <<hex
<< ExpandedKey[i]

115Advanced Encryption Standard

<< " and " << inpHexVal
<<", "<<exKeyHexVal.
str() << endl <<endl <<
endl;

	 out.close();
	 }
	 else if(Nk >6 && i%Nk = = 4)
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << i << ": not ok:"

<< endl;
	� out << "temp : " <<hex

<< temp << endl;
	� out << "sub : " <<hex

<< SubWord(temp) <<
endl;

	� out << "final :" <<hex
<< ExpandedKey[i] <<
endl <<endl << endl;

	 out.close();
	 }
	 else
	 {
	� ofstream out ("keyval.

txt", ios::app);
	� out << dec <<i <<

" : not ok : " << endl;
	� out << "temp : " <<hex

<< temp << endl;
	� out << "W[i-nk] : "

<<hex <<
ExpandedKey[i-Nk] <<
endl;

	� out << "final :" <<hex
<< ExpandedKey[i] <<
" and " << inpHexVal
<<", "<<exKeyHexVal.
str() << endl <<endl <<
endl;

	 }
	 }
	 #endif//_DEBUG_
	 }
	 }

116 ﻿Asif Ur Rahman et al.

	 #ifdef _DEBUG_
	 void printState()
	 {
	 ofstream out("enc_step.txt",ios::app);
	 for(int i = 0; i< 4; i ++)
	 {
	 for(int j = 0; j < Nb; j++)
	 {
	� out << hex << (int)

state[i][j] <<" ";
	 }
	 out << endl;
	 }
	 out << endl << endl;
	 }
	 #endif// _DEBUG_

	 #ifdef _TEST_STATE_
	 void testState(int round)
	 {
	 cout << round << endl;
	 for(int i = 0; i< 4; i ++)
	 {
	 int x;
	 stest_fin >> x;
	 for(int j = 0; j < Nb; j++)
	 {
	 string inpHexVal;
	 std::stringstream exKeyHexVal;
	 stest_fin >> inpHexVal;
	� exKeyHexVal << hex << (int)

state[i][j];

	� if(x = = round && inpHexVal = =
exKeyHexVal.str())

	 cout << " ok ";
	 else
	 {
	� cout << " not ok " <<

inpHexVal << " " <<
exKeyHexVal.str() << endl;

	 }
	 }
	 cout << endl;
	 }
	 cout << endl << endl;

117Advanced Encryption Standard

	 }
	 #endif//_TEST_STATE_

	 void AES::Encrypt(string plainText)
	 {
	 if((plainText.length()% (4*Nb)) ! = 0)
	� plainText.append((4*Nb) - (plainText.

length()%(4*Nb)),'\0');
	 int count = 0;
	 while (count < (plainText.length()))
	 {
	 //copy one block into state
	 for(int c = 0; c <Nb; c++)
	 {
	 for(int r = 0; r< 4; r ++)
	� state[r][c] =

plainText[count+(c*Nb)+r];
	 }
	 AddRoundKey(0);

	 #ifdef _DEBUG_
	 cout << "After Add round Key 0" << endl;
	 printState();
	 #endif//_DEBUG_
	 int i;
	 for(i = 1; i < Nr; i ++)
	 {

	 #ifdef _TEST_STATE_
	 cout << i << endl;
	 testState(i);
	 #endif//_TEST_STATE_
	 SubBytes();
	 #ifdef _DEBUG_
	� cout << "After Subbytes "<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_

	 ShiftRows();
	 #ifdef _DEBUG_
	� cout << "After ShifRows "<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_

118 ﻿Asif Ur Rahman et al.

	 MixColumns();
	 #ifdef _DEBUG_
	� cout << "After MixColumns "<<

dec<< i << endl;
	 printState();
	 #endif//_DEBUG_

	 AddRoundKey(i);
	 #ifdef _DEBUG_
	� cout << "Add round Key " << i <<

endl;
	� printState();
	 #endif//_DEBUG_
	 //exit (1);
	 }

	 SubBytes();
	 #ifdef _DEBUG_
	� cout << "Round Subbytes"<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_

	 ShiftRows();
	 #ifdef _DEBUG_
	� cout << "Round ShiftRows"<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(Nr);
	 #ifdef _DEBUG_
	� cout << "Add round Key " << i <<

endl;
	 printState();
	 #endif//_DEBUG_
	 #ifdef _TEST_STATE_
	 //testState(i);
	 printState();
	 #endif//_TEST_STATE_
	 cipherText = cipherText + ToString();
	 count+ = 4*Nb;
	 }
	 }
	 string AES::GetCipherText()
	 {

119Advanced Encryption Standard

	 return cipherText;
	 }
	 string AES::ToString()
	 {
	 string str;
	 for(int c = 0;c<Nb; c ++)
	 {
	 for(int r = 0; r< Nb; r++)
	 {
	 str.push_back(state[r][c]);
	 }
	 }
	 return str;
	 }

	 void AES::Decrypt(string cipherText)
	 {
	 if((cipherText.length()% (4*Nb)) ! = 0)
	� cipherText.append((4*Nb) - (cipherText.

length()%(4*Nb)),'\0');
	 int count = 0;
	 while (count < (cipherText.length()))
	 {
	 //copy one block into state
	 for(int c = 0; c <Nb; c++)
	 {
	 for(int r = 0; r< 4; r ++)
	� state[r][c] =

cipherText[count+(c*Nb)+r];
	 }
	 AddRoundKey(Nr);
	 #ifdef _DEBUG_D_
	 cout << "After Add round Key 0" << endl;
	 printState();
	 #endif//_DEBUG_
	 int i;
	 for(i = Nr-1; i>0; i—)
	 {
	 #ifdef _TEST_STATE_
	 cout << i << endl;
	 testState(i);
	 #endif//_TEST_STATE_
	 InvShiftRows();
	 #ifdef _DEBUG_D_

120 ﻿Asif Ur Rahman et al.

	� cout << "After ShiftRows "<< dec<<
i << endl;

	 printState();
	 #endif//_DEBUG_
	 InvSubBytes();
	 #ifdef _DEBUG_D_
	� cout << "After Subbytes "<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(i);
	 #ifdef _DEBUG_D_
	� cout << "Add round Key " << i <<

endl;
	 printState();
	 #endif//_DEBUG_
	 InvMixColumns();
	 #ifdef _DEBUG_D_
	� cout << "After MixColumns "<<

dec<< i << endl;
	 printState();
	 #endif//_DEBUG_
	 }
	 InvSubBytes();
	 #ifdef _DEBUG_D_
	� cout << "Round Subbytes"<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_
	 InvShiftRows();
	 #ifdef _DEBUG_D_
	� cout << "Round ShiftRows"<< dec<<

i << endl;
	 printState();
	 #endif//_DEBUG_
	 AddRoundKey(0);
	 #ifdef _DEBUG_D_
	� cout << "Add round Key " << i <<

endl;
	 printState();
	 #endif//_DEBUG_
	 #ifdef _TEST_STATE_
	 //testState(i);
	 printState();
	 #endif//_TEST_STATE_

121Advanced Encryption Standard

	 count+ = 4*Nb;
	 }
	 }

const byte AES::LogTable[256] = {
	� 0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51,

238, 223, 3,
	� 100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8,

200, 248, 105, 28, 193,
	� 125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166,

114, 154, 201, 9, 120,
	� 101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69,

53, 147, 218, 142,
	� 150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210,

241, 64, 70, 131, 56,
	� 102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226,

152, 34, 136, 145, 16,
	� 126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40,

84, 250, 133, 61, 186,
	� 43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172,

229, 243, 115, 167, 87,
	� 175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233,

213, 231, 230, 173, 232,
	� 44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95,

176, 156, 169, 81, 160,
	� 127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31,

45, 164, 118, 123, 183,
	� 204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161,

108, 170, 85, 41, 157,
	� 151, 178, 135, 144, 97, 190, 220, 252, 188, 149,

207, 205, 55, 63, 91, 209,
	� 83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93,

86, 242, 211, 171,
	� 68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184,

38, 119, 153, 227, 165,
	� 103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140,

128, 192, 247, 112, 7
};

const byte AES::AlogTable[256] =
{
	� 1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150,

161, 248, 19, 53,
	� 95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10,

30, 34, 102, 170,

122 ﻿Asif Ur Rahman et al.

	� 229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217,
112, 144, 171, 230, 49,

	� 83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184,
211, 110, 178, 205,

	� 76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241,
8, 24, 40, 120, 136,

	� 131, 158, 185, 208, 107, 189, 220, 127, 129, 152,
179, 206, 73, 219, 118, 154,

	� 181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39,
105, 187, 214, 97, 163,

	� 254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147,
174, 233, 32, 96, 160,

	� 251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50,
86, 250, 21, 63, 65,

	� 195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44,
116, 156, 191, 218, 117,

	� 159, 186, 213, 100, 172, 239, 42, 126, 130, 157,
188, 223, 122, 142, 137, 128,

	� 155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111,
177, 200, 67, 197, 84,

	� 252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153,
176, 203, 70, 202,

	� 69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62,
66, 198, 81, 243, 14,

	� 18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133,
148, 167, 242, 13, 23,

	� 57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108,
180, 199, 82, 246, 1

};

const byte AES::Si_Box 256] =

{
	� 82, 9, 106, -43, 48, 54, -91, 56, -65, 64, -93,

-98, -127, -13, -41, -5,
	� 124, -29, 57, -126, -101, 47, -1, -121, 52, -114,

67, 68, -60, -34, -23, -53,
	� 84, 123, -108, 50, -90, -62, 35, 61, -18, 76, -107,

11, 66, -6, -61, 78,
	� 8, 46, -95, 102, 40, -39, 36, -78, 118, 91, -94,

73, 109, -117, -47, 37,
	� 114, -8, -10, 100, -122, 104, -104, 22, -44, -92,

92, -52, 93, 101, -74, -110,
	� 108, 112, 72, 80, -3, -19, -71, -38, 94, 21, 70,

87, -89, -115, -99, -124,

123Advanced Encryption Standard

	� -112, -40, -85, 0, -116, -68, -45, 10, -9, -28, 88,
5, -72, -77, 69, 6,

	� -48, 44, 30, -113, -54, 63, 15, 2, -63, -81, -67,
3, 1, 19, -118, 107,

	� 58, -111, 17, 65, 79, 103, -36, -22, -105, -14,
-49, -50, -16, -76, -26, 115,

	� -106, -84, 116, 34, -25, -83, 53, -123, -30, -7,
55, -24, 28, 117, -33, 110,

	� 71, -15, 26, 113, 29, 41, -59, -119, 111, -73, 98,
14, -86, 24, -66, 27,

	� -4, 86, 62, 75, -58, -46, 121, 32, -102, -37, -64,
-2, 120, -51, 90, -12,

	� 31, -35, -88, 51, -120, 7, -57, 49, -79, 18, 16,
89, 39, -128, -20, 95,

	� 96, 81, 127, -87, 25, -75, 74, 13, 45, -27, 122,
-97, -109, -55, -100, -17,

	� -96, -32, 59, 77, -82, 42, -11, -80, -56, -21, -69,
60, -125, 83, -103, 97,

	� 23, 43, 4, 126, -70, 119, -42, 38, -31, 105, 20,
99, 85, 33, 12, 125

};

const byte AES::S_Box 256] =
{
	� 99, 124, 119, 123, -14, 107, 111, -59, 48, 1, 103,

43, -2, -41, -85, 118,
	� -54, -126, -55, 125, -6, 89, 71, -16, -83, -44,

-94, -81, -100, -92, 114, -64,
	� -73, -3, -109, 38, 54, 63, -9, -52, 52, -91, -27,

-15, 113, -40, 49, 21,
	� 4, -57, 35, -61, 24, -106, 5, -102, 7, 18, -128,

-30, -21, 39, -78, 117,
	� 9, -125, 44, 26, 27, 110, 90, -96, 82, 59, -42,

-77, 41, -29, 47, -124,
	� 83, -47, 0, -19, 32, -4, -79, 91, 106, -53, -66,

57, 74, 76, 88, -49,
	� -48, -17, -86, -5, 67, 77, 51, -123, 69, -7, 2,

127, 80, 60, -97, -88,
	� 81, -93, 64, -113, -110, -99, 56, -11, -68, -74,

-38, 33, 16, -1, -13, -46,
	� -51, 12, 19, -20, 95, -105, 68, 23, -60, -89, 126,

61, 100, 93, 25, 115,
	� 96, -127, 79, -36, 34, 42, -112, -120, 70, -18,

-72, 20, -34, 94, 11, -37,

124 ﻿Asif Ur Rahman et al.

	� -32, 50, 58, 10, 73, 6, 36, 92, -62, -45, -84, 98,
-111, -107, -28, 121,

	� -25, -56, 55, 109, -115, -43, 78, -87, 108, 86,
-12, -22, 101, 122, -82, 8,

	� -70, 120, 37, 46, 28, -90, -76, -58, -24, -35, 116,
31, 75, -67, -117, -118,

	� 112, 62, -75, 102, 72, 3, -10, 14, 97, 53, 87, -71,
-122, -63, 29, -98,

	� -31, -8, -104, 17, 105, -39, -114, -108, -101, 30,
-121, -23, -50, 85, 40, -33,

	� -116, -95, -119, 13, -65, -26, 66, 104, 65, -103,
45, 15, -80, 84, -69, 22

};

const byte AES::Rcon[30] =
{
	 0,1, 2, 4, 8, 16, 32,
	 64, -128, 27, 54, 108, -40,
	 -85, 77, -102, 47, 94, -68,
	 99, -58, -105, 53, 106, -44,
	 -77, 125, -6, -17, -59
};

const byte AES::ColMixMatrix[4][4] =
	 {
	 2, 3,1, 1,
	 1, 2, 3, 1,
	 1, 1, 2, 3,
	 3, 1, 1, 2
	 };

const byte AES::InvColMixMatrix[4][4] =
	 {
	 0x0E, 0x0B,0x0D, 0x09,
	 0x09, 0x0E, 0x0B, 0x0D,
	 0x0D, 0x09, 0x0E, 0x0B,
	 0x0b, 0x0D, 0x09, 0x0E
	 };

#include "AES.h"

int main(void)
{
	 //////////////////////
	 ///Keys test vector
	 //////////////////////

125Advanced Encryption Standard

	 //128
	 //�char a[] = {0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0

xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0
x3c,'\0'};

	� char a[] = {0x1a,0x91,0xf7,0x20,0x5e,0x45,0x67,0
x06,0xa2,0x5b,0x66,0xde,0x5f,0x14,0x59
,0x88,'\0'};

	 //192
	 //�char a[] = {0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0

x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62
,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b,'\0'};

	 //256
	 //�char a[] = {0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0

xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f
,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x
10,0xa3,0x09,0x14,0xdf,0xf4,'\0'};

	 /////////////////////
	 //Plain Text test vector
	 ////////////////////
	 //�char b[] = {0x32,0x43,0xf6,0xa8,0x88,0x5a,0x30,0

x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,0x07
,0x34,'\0'};

	 //�73, 74, 72. 69, 6e, 67, 20. 32, 20, 65,
6e,6372797074

	� char b[] = {0x73, 0x74, 0x72,0x69, 0x6e, 0x67,
0x20, 0x32, 0x20, 0x65, 0x6e, 0x63, 0x72, 0x79,
0x70, 0x74};

	 string key;

	 string text;

	 for(int i = 0; i < 16;i++)

	 {

	 key.push_back(a[i]);

	 text.push_back(b[i]);

	 }
	 AES obj (key, AES::KeySize::AES128);

	 //obj.KeyExpansion(key);

	 obj.Encrypt(text);

	 obj.Decrypt(obj.GetCipherText());

	 return 0;

}

126 ﻿Asif Ur Rahman et al.

6.14  Conclusion

AES was chosen as the new standard for several reasons. The purpose
was to create a new algorithm that is resistant to known attacks and
more reliable, as well as faster and simpler, than the existing ones,
while also being implemented easily with hardware and software,
including restricted environments. It is very clear that AES has
satisfied all the conditions with its simple and easy implementation
without compromising the security aspect. AES is more versatile,
with its variable key size and block size. It was originally designed
for nonclassified U.S. government information, but due to its suc-
cess, AES-256 is usable for top secret government information. As of
today, no successful attack on AES has been detected. This reflects
how successful AES is in its categories.

127

7
Asymmetric Key

Algorithms

N A S R I N S U LTA N A A N D S A I F U L A Z A D

Keywords

Asymmetric key algorithm
Digital signature
Private key
Public key

In the very early era of cryptography, multiple parties involved in secret
message exchange had to depend on a secret key that they interchanged
among themselves through a trusted, but noncryptographic method.
Generally, simple methods like one-to-one communication through a
reliable carrier were exercised to exchange any secret key. They kept
this key absolutely secret among themselves. Later, this secret key
would be utilized to encrypt their desired messages. Since only the
parties involved in the communication had the secret key, they could
only decrypt any message exchanged between them. One of the major
limitations of this technique was the methods exercised to exchange
a secret key. Commonly, some impractical and unsafe methods, like
face-to-face meeting or trusted courier service, were employed before
the modern era. Although currently the key is exchanged through an
existing encryption channel, the security depends on the confiden-
tiality of the previous key exchange. Asymmetric key, also known

Contents

Keywords	 127
7.1	 Basic Concept	 129
7.2	 Applications of Asymmetric Key Algorithms	 130

7.2.1	 Encryption/Decryption	 130
7.2.2	 Digital Signature	 131
7.2.3	 Encryption and Digital Signature	 132

128 ﻿Nasrin Sultana and Saiful Azad

as public-key cryptography, resolves this issue by not disclosing the
secret key to anyone. The users can now communicate and exchange
messages securely over a public channel without having to agree upon
any shared key beforehand.

For the last 20 years, Whitfield Diffie, Martin Hellman, and
Ralph Merkle have been given credit as the cryptographers who
discovered the technique of public-key cryptography, while Ron
Rivest, Adi Shamir, and Leonard Adleman have been honored for
developing RSA, the most integrated implementation of public-
key cryptography. However, a recent announcement indicates that
the history of cryptography has to be rewritten. According to the
British government, public-key cryptography was originally invented
at the Government Communications Headquarters (GCHQ) in
Cheltenham. It was in the late 1960s that a senior member of the
military did some work in the field of nonsecret encryption, which is
related to public-key cryptography without the inclusion of the con-
cept of digital signature. There are some evidentiary artifacts avail-
able that could support these claims.

In 1969, James Ellis, one of Britain’s foremost government cryp-
tographers, started searching for a way to resolve the key distribu-
tion problem. Later, the method explored by Ellis was unlike those
of Diffie, Hellman, and Merkle in that it was extremely advanced.
However, the discovery of Ellis was sworn to secrecy as he was a
recruit of the British government. He conceptualized and developed
the theme of separate public-key and private-key use. Meanwhile, he
realized that he had to look for a special one-way function that could
be reversed if the receiver end had access to some pieces of special
information. Unfortunately, he failed to draw any conclusion to the
work. In 1973, Clifford Cocks discovered the first workable math-
ematical formula for nonsecret encryption, and he recorded it in a
secret British Communications-Electronics Security Group (CESG)
report titled A Note on Non-Secret Encryption. Afterward, in 1974, a
few months after Clifford’s discovery, Malcolm Williamson discov-
ered a key exchange method similar to the one discovered by Diffie,
Hellman, and Merkle. However, the work of James Ellis, Clifford
Cocks, and Malcolm Williamson was not patented for two reasons:
(1) patenting would mean forcing GCHQ to reveal the details of
their work, which would have been incompatible with GCHQ’s aims

129Asymmetric Key Algorithms

as an organization, and (2) in the early 1970s, it was far from the
imagination that mathematical algorithms could be patented.

In 1976, it was evident that Diffie and Hellman patented their
work on public-key cryptography. At that time, Williamson was
eager to go public and stop Diffie and Hellman’s application for
patent. He was stopped from doing so by his superiors, who did not
have much foresight regarding the digital revolution and the future
potential scope of public-key cryptography. In the beginning of the
1980s, Williamson’s superiors realized that their decision was wrong.
Development in computing and Internet technology made it clear
that RSA and Diffie–Hellman–Merkle key exchanges would both
be successful commercial products. Therefore, in 1996, RSA Data
Security, Inc. (the company responsible for RSA products) was sold for
$200 million. Finally, in 1997, it became known to the public that an
asymmetric key algorithm was secretly developed by James H. Ellis,
Clifford Cocks, and Malcolm Williamson at the GCHQ in the UK
in 1973. Several years later, Ellis, Cocks, and Williamson received the
acknowledgment they deserved for their invention.

The motivation of the asymmetric key cryptosystem developed
by Diffie and Hellman came from work on public-key distribu-
tion by Merkle. A few years later, Rivest, Shamir, and Adleman
from MIT independently invented an asymmetric key algorithm
commonly known as RSA. They utilize modular arithmetic and
two very large prime numbers for encryption and digital signature.
Security of the RSA is related to the difficulty of factoring those
large prime numbers, for which currently there is no known efficient
method. In the mid-1980s, Neal Koblitz and Victor Miller introduced
a new public-key algorithm based on a discrete algorithm problem
known as the elliptic curve algorithm. Although it utilizes smaller
keys for faster operations, it assures estimated security approximately
analogous to RSA.

7.1  Basic Concept

As mentioned above, one of the major problems of a secret key (also
known as symmetric key) algorithm is the secure key distribution
between the two parties, which encouraged people to search for an
alternative. The asymmetric key algorithm is a solution that utilizes

130 ﻿Nasrin Sultana and Saiful Azad

two separate keys, where one key is kept secret from the external
world, which is referred to as the private key, and another one is pub-
licized, referred to as the public key. These keys are constructed in
such a way that they conceive mathematical relationships and build
on employing integer factorization, discrete logarithm, and elliptic
curve algebraic structures. There are a couple of aspects that need to
be considered while employing such a cryptographic algorithm:

	 1.	Generating a key pair must be computationally easy and
inexpensive.

	 2.	Encryption and decryption using these keys also must be easy
and inexpensive.

	 3.	It must be computationally infeasible to unlock a key while
knowing the other key.

	 4.	Encryption and decryption of a message need not be possible
employing the identical key.

7.2  Applications of Asymmetric Key Algorithms

Asymmetric key algorithms can be used for encryption/decryption,
digital signature, or both. They are described in the following sections
in detail.

7.2.1  Encryption/Decryption

In the case of encrypting a message, the public key of the recipient
is utilized to encrypt a message, which is not possible to decrypt by
anyone who does not own the corresponding private key. In other
words, the sending party uses the public key of the desired receiver to
encrypt a message to be sent. That message can only be decrypted by
the desired receiver, who holds the corresponding private key. Thus, it
preserves the confidentiality of a message. An example of the encryp-
tion technique utilizing asymmetric key algorithms is illustrated in
Figure 7.1. Let us assume that Alice and Bob are the two parties who
previously decided to exchange their messages securely through non-
secure communication media, like the Internet. They come to consent
for using an asymmetric key algorithm. Therefore, both of them gen-
erate a pair of keys for each. One of them is kept secret and another

131Asymmetric Key Algorithms

one is exchanged between them. After receiving the public key of the
other party, one stores it in his or her public-key ring. If Bob wants to
send a secret message to Alice, he must encrypt the message utilizing
Alice’s public key. On the other hand, after receiving this message
from Bob, Alice employs her private key to decrypt. Similar proce-
dures are also followed to exchange messages from Alice to Bob.

7.2.2  Digital Signature

In many cases, along with the confidentiality of a message, it is also
necessary to verify the identity of the sender. This could be performed
through a digital signature, which is an electronic signature gener-
ated through a mathematical scheme. There are three main reasons
for applying a digital signature:

	 1.	Authentication: Digital signatures are used to validate the
source of a message. A receiver can make sure that the mes-
sage has been sent from the valid user.

	 2.	Nonrepudiation: A sender cannot deny the transmission of a
message if it is digitally signed.

	 3.	Integrity: It also preserves the integrity of a message by not
allowing it to alter in transit.

Asymmetric key algorithms also can be utilized to sign a message
digitally. A sender’s private key is utilized to sign a message, which
can then be verified by the receiver who has access to the sender’s
public key. If the message is decrypted successfully, it proves that the

Encryption/Decryption

Transmitted ciphertext

Dan

Bob’s public
key ring

Mike

Alice’s public key Alice’s private key

Input
plaintext

Output
plaintext

Encryption Algorithm
e.g., RSA

Decryption Algorithm
e.g., RSA

Alice

Figure 7.1  Encryption/decryption technique using asymmetric key algorithm.

132 ﻿Nasrin Sultana and Saiful Azad

sender had proper access to the private key, which is likely to be the
authenticated person associated with the public key. It also verifies
that the message has not been altered, as a change in the encrypted
message would result in a change in the message digest. Recalling the
previous example, if Bob wants to digitally sign the message, he must
employ his private key to encrypt that message. After receiving that
message, if Alice can decrypt the message using Bob’s public key, she
can be assured that the message was transmitted by a legitimate party.
This scenario is illustrated in Figure 7.2.

7.2.3  Encryption and Digital Signature

A message can be both encrypted and digitally signed at the same
time by encrypting it twice with different keys and decrypting with
their relevant keys. As mentioned in the previous sections, if two par-
ties desire to exchange encrypted messages among themselves, the
sender must encrypt a message with the public key of the receiver.
Again, for digitally signing a message, the sender must encrypt the
message with his or her private key. Therefore, whenever a sender
wants both, he or she must encrypt a message with his or her private
key (for digital signature), and then again encrypt that message using
the receiver’s private key (for encryption). It this case, the sequence of
encryptions needs to be maintained precisely to achieve the plaintext.
On the other hand, after receiving this message, it must be decrypted
using two relevant keys following the encryption sequence. If the
plaintext is possible to acquire after the decryption, a receiver can

Digital Signature

Transmitted ciphertext

Dan

Alice’s public
key ring

Mike

Bob’s private key Bob’s public key

Input
plaintext

Output
plaintext

Encryption Algorithm
e.g., RSA

Decryption Algorithm
e.g., RSA

Paolo

Figure 7.2  Digital signature using asymmetric key algorithm.

133Asymmetric Key Algorithms

presume that the packet was received from a valid sender and the
message is without any alteration. An example of such a technique is
given in Figure 7.3.

A summary of the above discussions is given in Table 7.1.
In the next two chapters, renowned algorithms—RSA and elliptic

curve cryptography—will be discussed in detail with their relative
operational methods and implementation.

Key Exchange Using
Asymmetric Key Algorithm

Secret key

Recipient’s private key

Recipient’s public key

Encrypted secret key

Encrypted secret keySecret key

Key transmitted

Figure 7.3  Encryption/decryption and digital signature using asymmetric key algorithm.

Table 7.1  Application of Asymmetric Key Algorithms

ENCRYPTION TECHNIQUE
ENCRYPTION/
DECRYPTION

DIGITAL
SIGNATURE BOTH

Encrypting using receiver’s public key Yes No No
Encrypting using sender’s private key No Yes No
Encrypting using sender’s private key

and receiver’s public key
Yes Yes Yes

135

8
The RSA Algorithm

S A A D A N DA L I B A N D S A I F U L A Z A D

Keywords

Asymmetric key algorithm
Private key
Public key
Public-key decryption
Public-key encryption
RSA

In mid-1977, 1 year after the introduction of public-key cryptography
by Diffie and Hellman, three young scientists of the Massachusetts
Institute of Technology (MIT) took the concept of public-key cryptog-
raphy and developed an algorithm that is known as the RSA algorithm.
It is named after the surnames of the three inventors, Ron Rivest,
Adi Shamir, and Leonard Adleman. In RSA, a pair of keys is generated
where one key is revealed to the external world, known as a public key,
and the other one is kept secret to the user, known as a private key. For
generating keys, the RSA algorithm utilizes a number theory concept
that is commonly known as the one-way function. A one-way function
is easy to do in one way, but it is very difficult to reverse. Consequently,
it is infeasible to derive the private key after knowing the public key of
a user. Thus, the secrecy of a message remains intact.

Contents

Keywords	 135
8.1	 The Concept	 136
8.2	 Operations	 137

8.2.1	 Key Generation	 138
8.2.2	 Encryption	 140
8.2.3	 Decryption	 140

8.3	 Applications of the RSA Algorithm	 141
8.4	 Implementation Code	 141

136 ﻿Saad Andalib and Saiful Azad

8.1  The Concept

Unlike symmetric key cryptography, it is not mandatory to share
any secret key among the parties involved in the secret message
exchange. Then the question that may arise in our mind is: How does
an asymmetric key ensure secrecy of a message? As mentioned previ-
ously, in asymmetric key cryptography, instead of generating a single
key (which is usually the case for symmetric key cryptography), it
generates a pair of keys. Among them, the public key is publicized
and the private key is kept secret. These two keys are mathematically
related. Since these keys are generated utilizing a one-way function,
it is infeasible to generate a private key after knowing the public
key, and vice versa. Again, a message encrypted through a key is not
feasible to decrypt utilizing a similar key. Hence, the secrecy of a
message is preserved.

Let us assume that Alice and Bob desire to exchange secret messages
between themselves using asymmetric key cryptography, especially
using the RSA algorithm. They first generate their relevant key sets
and publicize the public key so that the other party can access it. The
denotations of their public and private keys are PUA and PRA for Alice,
and PUB and PRB for Bob. Each of the participants keeps his or her
private key secret from the other. When Alice wants to send a message
to Bob, she encrypts the message using PUB, which she can access. For
any message, M, Alice generates a ciphertext, C, as follows:

	 C = PUB (M)

After receiving C, Bob can decrypt the message employing his
private key, PRB. This can be formally expressed as

	 M = PRB (C)

Figure 8.1 portrays the steps that can be followed to exchange
secret messages using the RSA algorithm. Any third party who
intercepts C is not able to reproduce M even though it has access
to PUB because:

•	 In asymmetric key cryptography, it is infeasible to generate
one key when you have access to the other key.

•	 A message that is encrypted through a key is not possible to
decrypt utilizing a similar key.

137The RSA Algorithm

•	 The public and private keys for any participant are a matched
pair and are inverses of each other, i.e.,

	 M = PRB(PUB(M))

	 M = PUB(PRB(M))

Consequently, a message that is encrypted using the public key can
only be decrypted with its relevant private key.

The RSA algorithm can also be utilized to digitally sign a mes-
sage so that the recipient has proof of who sent it. In other words, the
authenticity of a message can also be checked employing the RSA
algorithm. In the case of a digital signature, a message is encrypted
using the private key and is decrypted using the relevant public key.
Since only a valid sender can have his or her private key, a recipient
can assume that the message is sent by the valid sender, which is illus-
trated in Figure 8.2.

8.2  Operations

The RSA algorithm comprises three steps:

	 1.	Key generation
	 2.	Encryption
	 3.	Decryption

The operations involved in these steps are detailed below.

PUB PRBM

Encryption

M

Alice Bob

Decryption
C = PUB(M)

C
Eavesdropper

Figure 8.1  Secret message exchange procedure using the RSA algorithm.

PRA PUAM

Encryption

M

Alice Bob

Decryption
C = PRA(M)

C
Eavesdropper

Figure 8.2  Digital signature using the RSA algorithm.

138 ﻿Saad Andalib and Saiful Azad

8.2.1  Key Generation

As mentioned earlier, the RSA algorithm generates a pair of keys.
These keys are usually generated employing two large prime numbers
(512 bits). The key generation algorithm is stated below:

	 1.	Select two large prime numbers p and q randomly, such that
p ≠ q.

	 2.	Compute n such that n = p × q.
	 3.	Compute φ(n) = φ(p) × φ(q) = (p − 1) × (q − 1), where φ is

Euler’s totient function.*
	 4.	Select an integer number e such that 1 < e < φ(n) and

gcd(e, φ(n)) = 1, where e and φ(n) are co-prime.
	 5.	Compute d as the multiplicative inverse of e(mod(φ(n)), i.e.,

de = 1  mod  φ(n).
	 6.	Publish the pair PU = (e, n) as the participant’s public key.
	 7.	Keep the pair PE = (d, n) as secret as the participant’s private key.

Relevant pseudocodes for the key generation procedure are dis-
cussed below in Algorithms 8.1, 8.2, and 8.3.

Algorithm 8.1: FindE(phi_n)

Begin
	 e ← 0
do
begin
	 Choose an integer number e (e must be co-prime of
phi_n)
while (!CheckCoPrime(phi_n, e))
end do-while
return e
End

*	 In number theory, Euler’s totient function, φ(n), is an arithmetic function that finds
out all the co-prime numbers to n that are less than or equal to n.

139The RSA Algorithm

Algorithm 8.2: FindD(phi_n, e)

Begin
local variables:a, b, x, y, u, v, m, n, q, r, gcd
a ←phi_n
	 b ←e
	 x ← 0
	 y ← 1
	 u← 1
	 v ← 0
gcd← b
 while (a ! = 0)
	 begin
	 q ←gcd/a
	 r ←gcd% a
	 m ← x - u * q
	 n ← y - v * q
	 gcd← a
	 a ← r
	 x ← u
	 y ← v
	 u ← m
	 v ← n
	 end while
if y < 1
	 begin
	 y ←phi_n + y
end if
return y
End

Algorithm 8.3: GenerateKey(&n, &e, &d)

Begin
local variables:p, q, phi_n, pt, ct
	 Enter two prime numbers and stored then in p and q
respectively
	 n ← Multiply(p,q)
phi_n← Multiply (p-1,q-1)
	 e ←FindE(phi_n)
	 d ←FindD(phi_n, e)
/* (e,n) pair is now the public key and (d,n) pair is
now the private key */
End

140 ﻿Saad Andalib and Saiful Azad

8.2.2  Encryption

Anyone who wants to send a message can now utilize the public key,
(e, n). Recall the previous example, when Alice desires to send a mes-
sage to Bob; she can now encrypt the message M as follows:

	 C = Me (mod n)

Alice sends the ciphertext, C, to Bob.

8.2.3  Decryption

After receiving C from Alice, Bob can now decrypt the message utilizing
the relative private key. He can find out M using the following expression:

	 M = Cd (mod n)
Since no one else has the private key of Bob, anyone other than him
would not be able to decrypt the message.

Example

Let us look at the following small example to realize how the
RSA algorithm works. Suppose Alice desires to send a message to
Bob, who generates his keys as follows:

	 1.	Bob chooses two prime numbers, p = 17 and q = 13.
	 2.	Then he calculates n such that n = p × q = 17 × 13 = 221.
	 3.	The value of φ(n) is computed as φ(n) = 16 × 12 = 192.
	 4.	He selects e = 131.
	 5.	Bob finds the number d = 107.
	 6.	Now Bob’s public key is (131, 221) and his private key is

(107, 221).

After key generation, Bob publishes his private key and Alice
has access to that public key. Let us assume that Alice wants to
encrypt the following message, M = 8. Alice can utilize Bob’s
public key to produce C, i.e.,

	 C = 8131 (mod 221) = 70

Bob receives the ciphertext 70 and utilizes his private key to
reproduce M as follows.

	 M = 70107 (mod 221) = 8

Other than Bob, since no one has the private key, no one would be
able to decrypt the message.

141The RSA Algorithm

8.3  Applications of the RSA Algorithm

Although the RSA algorithm is developed to encrypt/decrypt a
message, it is very slow in terms of processing speed. It requires
a longer time than usual cryptographic algorithms due to gener-
ating large prime numbers and performing all the calculations.
Moreover, each encryption session usually requires generation of
different sets of prime numbers and calculations to prevent the mes-
sage from being eavesdropped. This is why it is preferred when the
message is short. Consequently, it is widely used in Short Message
Service (SMS). The RSA algorithm is also utilized to exchange
secret keys and to sign a message digitally. It can also be utilized
to encrypt a longer message if that is fragmented into small blocks
and merged after encryption. The receiver must have the knowledge
regarding the fragmentation procedure. He or she could do the
opposite and merge after the decryption to produce the original
message.

In Chapter 9, another asymmetric key cryptography technique
is discussed, elliptic curve cryptography (ECC), which resolves the
problem of the RSA algorithm by utilizing a shorter key than RSA
and offering comparable performance.

8.4  Implementation Code

#include<iostream>
#include<cmath>
#include<cstdlib>
#include<cstring>

using namespace std;

boolCheckIsPrime(long intnum)
{
if(num< 2) return false;

longinti = 2;
while(i< = num/2)
	 {
if(!(num% i)) return false;
i++;
	 }

142 ﻿Saad Andalib and Saiful Azad

return true;
}
longint Multiply(long int num1,long int num2)
{
return num1 * num2;
}

boolCheckCoPrime (long int num1, long int num2) {
longint lowest;

if (num1 > num2) lowest = num2;
else lowest = num1;

longinti = 2;

boolcoprime = true;

while (i< lowest) {
if (!(num1% i) && !(num2% i)) coprime = false;
i++;
	 }

returncoprime;
}

longintFindE(long intphi_n)
{
longint e = 0;

do {
cout<< “Choose an integer number e (e must be coprime
of phi_n): “;
cin>> e;
	 } while (!CheckCoPrime(phi_n, e));

return e;
}

longintFindD(long intphi_n, long int e)
{
int a = phi_n, b = e;
longint x = 0, y = 1, u = 1, v = 0, m, n, q, r;
longintgcd = b;
while (a ! = 0) {
	 q = gcd/a;
	 r = gcd% a;

143The RSA Algorithm

	 m = x - u * q;
	 n = y - v * q;
gcd = a;
	 a = r;
	 x = u;
	 y = v;
	 u = m;
	 v = n;
}

if (y < 1) {
cout<< “Choose a suitable \”e\” value” <<endl;
	 e = FindE(phi_n);
FindD(phi_n, e);
}

return y;
}

longintEncrypt_Decrypt(long int t, long int e, long
int n)
{
longint rem;
longint x = 1;

while (e ! = 0) {
rem = e % 2;
	 e = e/2;

if (rem = = 1) x = (x * t)% n;
	 t = (t * t)% n;
}

return x;
}

voidEncDecStr (long int e, long int n)
{
char *str = new char[1000];
char *str1 = new char[1000];

cout<< “\nEnter a string: “;
cin>>str;

cout<< “Encrypting using Public Key: “ <<endl;
inti = 0;

144 ﻿Saad Andalib and Saiful Azad

while (i ! = strlen(str)) {
	 str1[i] = Encrypt_Decrypt(str[i], e, n);
	 i++;
}

cout<< str1 <<endl;
}

voidEncDecNum (long int n1, long int n2)
{
longintpn;

cout<< “\nEnter an integer number: “;
cin>>pn;

cout<<Encrypt_Decrypt(pn, n1, n2) <<endl;
}

voidgenerate_key (long int&n, long int&e, long int&d)
{
longint p, q, phi_n, pt, ct;

do {
	 cout<< “Enter a prime number: “;
	 cin>> p;
	 } while (!CheckIsPrime(p));

do {
	 cout<< “Enter another prime number: “;
	 cin>> q;
	 } while (!CheckIsPrime(q));

	 n = Multiply(p,q);
cout<< “n is “ << n <<endl;

	 phi_n = Multiply (p-1,q-1);
cout<< “phi_n is “ <<phi_n<<endl;

	 e = FindE(phi_n);
cout<< “e is “ << e <<endl;
if (!e) {
	 cout<< “Choose two suitable prime number”
<<endl;
	 exit(1);
	 }

145The RSA Algorithm

	 d = FindD(phi_n, e);
cout<< “d is “ << d <<endl;
}

int main() {

cout<<endl<<endl<< “##IMPLEMENTATION OF R.S.A
ALGORITHM USING C++##” <<endl<<endl;

longint n, d = 0, e;

generate_key(n, d, e);

cout<< “Public Key : (“<<e<<”,”<<n<<”)” <<endl;
cout<< “Private Key : (“<<d<<”,”<<n<<”)” <<endl;

cout<<endl<< “Press 1: for encrypting numbers & 2: for
encrypting string: “;
int choice;
cin>> choice;

switch (choice) {
	 case 1:
	 EncDecNum(e, n);
	 break;

	 case 2:
	 EncDecStr(e, n);
	 break;

	 default:
	 cout<< “Wrong choice. Try again.” <<endl;
	 exit(1);
}

cout<<endl<< “Press 1: for decrypting numbers & 2: for
decrypting string: ”;
cin>> choice;

switch (choice) {
	 case 1:
	 EncDecNum(d, n);
	 break;

146 ﻿Saad Andalib and Saiful Azad

	 case 2:
	 EncDecStr(d, n);
	 break;

	 default:
	 cout<< “Wrong choice. Try again.” <<endl;
	 exit(1);
	 }

return 0;
}

147

9
Elliptic Curve
Cryptography

H A F I Z U R R A H M A N A N D S A I F U L A Z A D

Keywords

Asymmetric key algorithm
Diffie–Hellman key exchange
Elliptic curve cryptography
Private key
Public key

9.1  Introduction

Although the RSA algorithm resolves the problem of a secret key,
it experiences higher computational cost because of utilizing a lon-
ger key size, so that it becomes computationally infeasible to solve.

Contents

Keywords	 147
9.1	 Introduction	 147
9.2	 Elliptic Curves over R	 148
9.3	 Elliptic Curves over ZP	 150

9.3.1	 Adding Points in Elliptic Curves over ZP	 152
9.3.2	 Scalar Multiplication	 155

9.4	 Discrete Logarithm Problem	 157
9.5	 Elliptic Curve Cryptography	 158

9.5.1	 Elliptic Curve Diffie–Hellman Key Exchange	 158
9.5.2	 Key Exchange Example	 158
9.5.3	 Elliptic Curve Encryption/Decryption	 159
9.5.4	 Encryption/Decryption Example	 159

9.6	 Implementation 1	 160
9.7	 Implementation 2	 166
References	 181

148 ﻿Hafizur Rahman and Saiful Azad

On the other hand, elliptic curve cryptography (ECC) is another
approach of an asymmetric algorithm that utilizes a smaller key
size, but still ensures the same level of security. ECC is based on the
elliptic curve discrete log problem, which is much harder to solve
over factoring integers of the RSA algorithm. Since it is harder, even
a smaller key is computationally infeasible to solve. According to
National Institute of Standards and Technology (NIST) guidelines
for public key sizes for the Advanced Encryption Standard (AES),
an ECC key size of 163 bits can ensure comparable performance of
1024 bits of key size of the RSA algorithm, which is around six times
higher than that of the ECC key size [1]. The ratio is even bigger for
a higher number of bits.

The elliptic curve system was first introduced to the cryptographic
arena by Neal Koblitz and Victor Miller, who worked at IBM [1].
Generally, parties involved in the secure message exchange must
generate a private key and a public key by utilizing the points of an
elliptic curve and by following an algorithm. A private key is kept
secret, whereas a public key is publicized to the external world. Like
the RSA algorithm, the confidentiality of a message is ensured by
encrypting a message using the public key of the receiver, which
can only be decrypted by using the relative private key. A message
can also be digitally signed by encrypting it using the private key of
the sender. It can be decrypted by anyone who holds the public key
of the sender. For understanding the ECC algorithm, Section 9.2
describes the details of an elliptic curve for a real number (R) as well
as for a finite field (ZR), and all the operations involved in encryption
and decryption.

9.2  Elliptic Curves over R

An elliptic curve over the real numbers is the set of points (x, y) that
satisfy the following equation:

	 y2 = x3 + ax + b	 (9.1)

where x, y, a, and b are all real numbers. Equation (9.1) is said to be
cubic or degree 3 since the highest exponent that exists in this equa-
tion is 3. Elliptic curves in the form of Equation (9.1) can be divided
into two groups: singular and nonsingular [2]. In ECC, nonsingular

149Elliptic Curve Cryptography

curves are preferred so that a curve can be free from cusps or self-
intersections. An elliptic curve is said to be nonsingular when it
satisfies the following condition:

	 4a3 + 27b2 ≠ 0	 (9.2)

An elliptic curve generated using Equation (9.1) is illustrated in
Figure 9.1.

Although an elliptic curve over the real numbers is a good approach
to understand the properties of an elliptic curve, it requires higher
computational time to perform various operations and is sometimes
inaccurate due to the rounding errors. However, cryptographic
schemes require fast and precise arithmetic. Consequently, two types
of elliptic curves are utilized in cryptographic applications:

	 1.	Prime curves over a ZP, where p is a prime number and p > 3.
All the variables and the coefficients are taken from a set of
integers from 0 to p – 1, and calculations are performed over
modulo p.

	 2.	Binary curve over Galois field (2m), also known as GF(2m),
where all the variables and coefficients are taken on the values
in GF(2n) and calculations are performed over GF(2n).

Since prime curves do not have any extended bit fiddling opera-
tion [3] analogous to the binary curve, they are suitable for software
implementations. Consequently, prime curve-based ECC is explained
in this chapter with its pseudocodes, examples, and implementations.

32

(P + Q)

– (P + Q)

Q

P

10–1–2–3
–6

–4

–2

0

2

4

6

Figure 9.1  An example of an elliptic curve where a = b = 1.

150 ﻿Hafizur Rahman and Saiful Azad

9.3  Elliptic Curves over ZP

An elliptic curve over finite field ZP includes all points (x, y) in the
ZP × ZP matrix that satisfies the following elliptic curve equation:

	 y2 ≡ x3 + ax + b mod p	 (9.3)

where x and y are numbers in ZP, and similar to the real case, a
and b must satisfy the following condition to form a finite abelian
group [3]:

	 4a3 + 27b2 ≢ 0 mod p	 (9.4)

Just to clarify here, in abstract algebra, an abelian group, also called
a commutative group, is a group in which the result of applying the
group operation to two group elements does not depend on their order
(the axiom of commutativity).

Now, Equation (9.3) can be written as

	 y2 mod p = (x3 + ax + b) mod p	 (9.5)

By replacing x, y, a, b, and p with the values 5, 1, 1, 0, and 23, we get

52 mod 23 = (13 + 1 × 1 + 0) mod 23

	 25 mod 23 = 2 mod 23

	 2 = 2

Hence, (1, 5) is a point on the curve over Z23. A similar procedure
can be followed to find all the points of the curve. An algorithm for
generating all the points of a prime curve is given below:

Algorithm 9.1: Calculate Points (PrimeNumber)

Begin
	 a ← 1
	 b ← 0
	 for x ← 0 to PrimeNumber
		 for y ← 0 to PrimeNumber
			 k ← y * y
			 m ← (x * x * x) + a * x + b
			 if (k% PrimeNumber = m% PrimeNumber)

151Elliptic Curve Cryptography

				 store point (x, y) in a
container
				 end if
		 end for
	 end for
End

Using Algorithm 9.1, for a = 1, b = 0, and p = 23, the following points
can be found:

x 0 1 1 9 9 11 11 13 13 15 15 16 16 17 17 18 18 19 19 20 20 21 21
y 0 5 18 5 18 10 13 5 18 3 20 8 15 10 13 10 13 1 22 4 19 6 17

Figure 9.2 plots all the points of the above-mentioned curve.
As can be observed from the figure, the points do not form an elliptic
curve; rather, they form a cloud of points in a finite field. This group
also has another point that is known as the point at infinity, denoted
as O, which is the identity element under an addition operation over
points discussed in the next section. The negative of the point at infin-
ity can be defined as –O = O, and the negative of any other point
P = (xP, yP) on elliptic curve E to be its reflection over the x-axis,
i.e., –P = (xP, –yP mod p).

22
21
20
19
18
17
16
15
14
13
12
11y
10

9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9 10 11
x

12 13 14 15 16 17 18 19 20 21 22

Figure 9.2  The elliptic curve for a = 1, b = 0, and P = 23.

152 ﻿Hafizur Rahman and Saiful Azad

Various arithmetic operations over points that are necessary to
understand the ECC algorithm in detail are discussed below with
relevant examples.

9.3.1  Adding Points in Elliptic Curves over ZP

Addition operations on an elliptic curve can be divided into three cases:

	 1.	Adding two distinct points P and Q, when P ≠ Q: If P = (xP, yP)
and Q = (xQ, yQ), then R = P + Q can be determined utilizing the
following rules:

	 xR ≡ (S2 − xP − xQ) mod p, and	 (9.6)

	 yR ≡ −yP + S(xP − xR) mod p	 (9.7)

	 where S ≡ (yP − yQ) (xP − xQ)−1 mod p. Let us assume that
P = (1, 5) and Q = (9, 18) are the points of Figure 9.2 we
would like to add. Then,

	

= −
−

= −
−

=

=

s (5 18)
(1 9)

mod 23

13
8

mod 23

13
8

mod 23

16

	 Now, utilizing the value of s, we can have xR and yR as follows:

	 xR  = (162 − 1 − 9)mod 23
	 = 246 mod 23
	 = 16
	 yR = (−5 + 16(1−16))mod 23
	 = −245 mod 23
	 = 8

	 Hence, R = (16, 8). The necessary algorithms to understand the
addition of two distinct points over an elliptic curve are given

153Elliptic Curve Cryptography

below. In this process, Algorithm 9.2 demonstrates how the
greatest common divisor (GCD) of two numbers can be found.

Algorithm 9.2: EGCD(a, b, & u, & v))//
Extended GCD Gives g = a*u + b*v

Begin
u ← 1, v ← 0, g ← a, u1 ← 0, v1 ← 1, g1 = b
while (g1 ! = 0)
	 q ←floor(g/g1)
	 t1 ← u - q*u1;
	 t2 ← v - q*v1;
	 t3 ← g - q*g1;
	 u ← u1
	 v ← v1
	 g ← g1
	 u1 ← t1
	 v1 ← t2
	 g1 ← t3;
end while
return g
End

	 Steps for calculating the inverse modulus are given in
Algorithm 9.3.

Algorithm 9.3: InverseModulus(a, n)//Solve Linear
Congruence Equation x*z = = 1 (mod n) for z

Begin
Local Variable: u, v, g, x
x ← x% n
	 g ← EGCD(x, n, u, v)//describe in Algorithm 2
if (g ! = 1)
	 z ← 0
else
	 z ← u% n
	 end if
return z
End

	 Algorithm 9.4 demonstrates how to perform negative modulus
operations.

154 ﻿Hafizur Rahman and Saiful Azad

Algorithm 9.4: NegativeModulus(a, p)

Begin
	 b ← a * −1;
	 n ← ceiling((float)b/p)
return (n * p) - b
End

	 Algorithm 9.5 illustrates the steps to add two distinct points
over an elliptic curve.

Algorithm 9.5: AddPoints(xp, yp, xq, yq, & xr, & yr, p)

Begin
n ← yp - yq
d ← xp - xq
if (d < 0)
	 n * = -1;
	 d * = -1;
end if
	 x ← InverseModulus(d, p)//describe in Algorithm 3
if (n * x > 0) s = (n * x)% p;
elses = NegativeModulus(n * x, p)//describe in
Algorithm 4
end if
	 xr_ ← (s * s - xp - xq)
if (xr_ < 0) xr ← NegativeModulus(xr_, p)
else xr ← xr_% p
	 end if
	 yr_ ← (-yp + s * (xp - xr));
if (yr_ < 0)yr ← NegativeModulus(yr_, p);
else yr = yr_% p;
End

	 2.	Adding the points P and –P: The addition of the points
P and –P poses a unique situation since the line through the
two points is vertical, which will never intersect the elliptic
curve at any point. So, it can be defined as P + (–P) = O, the
point of infinity.

155Elliptic Curve Cryptography

	 3.	Adding a point with the point at infinity: When a point
is added to the point of infinity, it produces the same point,
e.g., P + O = P.

9.3.2  Scalar Multiplication

Scalar multiplication of k × P is a repetitive addition of a point
P = (xP, yP), until it reaches k, where k > 0. For instance, when k = 3, in
that case, 3P = P + P + P. If yP ≡ 0 mod p, then P = –P. In other cases,
2P = P + P = R,

	 xR ≡ s2 − 2xP mod p, and	 (9.8)

	 yR ≡ −yP + s(xP − xR) mod p	 (9.9)

where ≡ + −s (3)(2) mod p2 1x a yP P . Let us assume that P = (11, 10),
then 2P can be calculated as

	

s (3 11 1)(2 10) mod 23

364
20

mod 23

91
5

mod 23

(91 14)mod 23

1274 mod 23

9

2 1=

=

=

=

=

=

+× ×

×

−

Now, utilizing the value of s, we can have xR and yR as follows:

	 xR = (92 − 2 × 11) mod 23

	 = (81 − 22) mod 23

	 = 59 mod 23

	 = 13

156 ﻿Hafizur Rahman and Saiful Azad

	 yR = −10 + 9 (11 − 13) mod 23

	 = (−10 − 18) mod 23

	 = −28 mod 23

	 = 18

Hence, R = 2P = (13, 18). One important point to notice here is that
2P is now a distinctive point. Consequently, R + R = 2R = 4P. To find
3P, we have to utilize Algorithm 9.5 since 2P and P are now two dis-
tinct points. Therefore, the x- and y-coordinates of 3P can be found
using Equations (9.6) and (9.7). Similar procedures can be repeated to
get the scalar multiplication of any k × P, where k > 0. Algorithms 9.6
and 9.7 illustrate the steps that can be followed to find the double of a
point and a scalar multiplication of a point, respectively.

Algorithm 9.6: AddDouble(xp, yp, & xr, & yr, a, p)

Begin
	 n ← 3 * xp * xp + a
	 d ← 2 * yp
	 if (d < 0)
		 n ← n * -1;
		 d ← d * -1;
	 end if
		 x ← InverseModulus(d, p)//describe in
Algorithm 3
	 if (n * x > 0) s = (n * x)% p;
	 elses = NegativeModulus(n * x, p)//describe in
Algorithm 4
	 end if
		 xr_ ← (s * s –2 * xp)
	 if (xr_ < 0) xr ← NegativeModulus(xr_, p)
		 else xr ← xr_% p
	 end if
		 yr_ ← (-yp + s * (xp - xr));
	 if (yr_ < 0)yr ← NegativeModulus(yr_, p);
	 else yr = yr_% p;
End

Algorithm 9.7 demonstrates the scalar multiplication of a point to
k times.

157Elliptic Curve Cryptography

Algorithm 9.7: Scalar Multiplication (k, xp, yp, & xr, & yr)

Begin
add_double(xp, yp, xr, yr, a, p)
for i ← 0 to i < k – 2
	 xq ← xr;
	 yq ← yr;
	 xr ← 0
yr ← 0
	 add_points(xp, yp, xq, yq, xr, yr, p)
	 end for
End

9.4  Discrete Logarithm Problem

Let us consider the scalar multiplication of k × P = R, where P is a
point of an elliptic curve and k < p. According to the rules of an abe-
lian group [4], R is also going to be a point of that elliptic curve. It is
relatively easy to calculate R when both k and P are known. However,
it is relatively hard to discover k when R and P are known. This is
known as the discrete logarithm problem for an elliptic curve. Let us
assume that R = (16, 8) when P = (11, 10), and we would like to search
out k utilizing the brute-force method.

	 P = (11, 10)

	 2P = (13, 18)

	 3P = (15, 20)

	 4P = (9, 18)

	 5P = (19, 22)

	 6P = (1, 5)

	 7P = (17, 10)

	 8P = (18, 13)

	 9P = (20, 19)

	 10P = (16, 8)
Since 10P = (16, 8) = R, therefore the discrete logarithm in this
instance is k = 10. In real applications, a large value is chosen as k to
make the brute-force attack infeasible.

158 ﻿Hafizur Rahman and Saiful Azad

9.5  Elliptic Curve Cryptography

In the following sections, we detail the ECC techniques by separating
them into three subsections according to their functionalities.

9.5.1  Elliptic Curve Diffie–Hellman Key Exchange

Let us assume that A and B are two parties who desire to perform
a secure message exchange. The first requirement to complete this
process is to generate keys that can be done utilizing the steps men-
tioned below:

	 1.	Both parties must agree upon a large prime number p and
two elliptic curve parameters a and b of Equation (9.3), which
defines the elliptic group of points EP(a, b).

	 2.	Then, they have to pick a base point P on the elliptic curve
EP(a, b) over a finite field ZP.

	 3.	It is also necessary to choose a large integer number between
1 and the order of the abelian group EP(a, b), which would be
considered a private key. Let us consider that A chooses m as
its private key (PRA), and B chooses n as its private key (PRB).

	 4.	A then generates a public key PUA = m × P.
	 5.	B similarly generates a public key PUB = n × P.
	 6.	After generating their relevant keys, they must exchange their

public keys between each other. When A has the public key
of B, it can now generate the secret key K = m × PUB. On the
other hand, B can also generate the secret key K = n × PUA.

If we keenly observe the two produced secret keys, we see that they
are the same because

	 m × PUB = m × (n × P) = n × (m × P)= n × PUB

9.5.2  Key Exchange Example

Let us now assume that the base point P = (15, 3). A chooses its pri-
vate key m = 7, and B chooses its private key n = 5. Now,

	 PUA = m × P = 7 × (15, 3) = (15, 20)

	 PUB = n × P = 5 × (15, 3) = (20, 19)

159Elliptic Curve Cryptography

Then, secret key K can be found as

	 KA = m × PUB

	 = 7 × (20, 19)

	 = (20, 4)

	 KB = n × PUA

	 = 5 × (15, 20)

	 = (20, 4)

	 KA = KB = K

9.5.3  Elliptic Curve Encryption/Decryption

There are a lot of methods available in the literature that propose vari-
ous techniques of elliptic curve encryption and decryption. In this
chapter, one of the simplest techniques is chosen for those operations
for a better understanding of the ECC algorithm. Let us consider
that A wants to send a message to B that is also a point on the ellip-
tic curve, M = (xM, yM). A must perform the following operations to
encrypt the message:

	 C = M + m × PUB

Then, A sends the pair (m × P, C) to B, where P is the base point. After
receiving the encrypted message, B utilizes its secret key to decrypt
the message as follows:

	 C + (−n) × (m × P) = C −n × (m × P)

	 = M + m × PUB −n × (m × P)

	 = M + m × (n × P) −n × (m × P)

	 = M

9.5.4  Encryption/Decryption Example

Let us assume that A wants to transmit a message to B that is encoded
on the elliptic point M = (19, 1). Consider the previous key exchange

160 ﻿Hafizur Rahman and Saiful Azad

example where A and B have selected their own private key and also
have exchanged their public key between each other. Now, encryption
of message M can be found as follows:

	 C = (19, 1) + 7 × (20, 19)

	 = (19, 1) + (20, 19)

	 = (16, 8)

	 m × P = 7 × (15, 3)

	 = (15, 20)

Then, A sends the ciphertext {(15, 20), (16, 8)}. When B receives this
ciphertext, it decrypts the message as follows:

	 M = (16, 8) − 5 × (15, 20)

	 = (16, 8) − (20, 4)

	 = (16, 8) + (20, −4)

	 = (19, 1)

9.6  Implementation 1

#include <iostream>
#include <cmath>
#include <conio.h>

using namespace std;

void ec_points(int a, int b, int p)
{
	 cout << "Points of Elliptic Curve" << endl;
	� cout << "—

— — — — — — -" << endl;
	 for (int x = 0; x < p; x++) {
	 for (int y = 0; y < p; y++) {
	 int k = y * y;
	 int m = (x * x * x) + a * x + b;
	 if (k% p = = m% p) {
	 cout << "(" << x << "," << y << ")" << endl;
	 }
	 }
	 }
}

161Elliptic Curve Cryptography

static int EGCD(int a, int b, int& u, int &v)//
Extended GCD gives g = a*u + b*v
{
	 u = 1;
	 v = 0;
	 int g = a;
	 int u1 = 0;
	 int v1 = 1;
	 int g1 = b;
	 while (g1 ! = 0)
	 {
	 int q = g/g1;//Integer divide
	 int t1 = u - q*u1;
	 int t2 = v - q*v1;
	 int t3 = g - q*g1;
	 u = u1; v = v1; g = g1;
	 u1 = t1; v1 = t2; g1 = t3;
	 }

	 return g;
}
	 //exitit 2
static int InvMod(int x, int n)//Solve linear
congruence equation x * z = = 1 (mod n) for z
{
	 //n = Abs(n);
	� x = x% n;//% is the remainder function, 0 < = x%

n < |n|
	 int u,v,g,z;
	 g = EGCD(x, n, u,v);
	 if (g ! = 1)
	 {
	 /�/x and n have to be relative prime for there to

exist an x^-1 mod n
	 z = 0;
	 }
	 else
	 {
	 z = u% n;
	 }
	 return z;
}

int NegMod (int a, int p)
{

162 ﻿Hafizur Rahman and Saiful Azad

	 int b = a * -1;
	 int n = ceil((float)b/p);
	 return (n * p) - b;
}

void add_points (int xp, int yp, int xq, int yq, int
&xr, int &yr, int p)
{
	 int s;
	 int n = yp - yq;
	 int d = xp - xq;
	 if (d < 0) {
	 n * = -1;
	 d * = -1;
}

	 int x = InvMod(d, p);

	 if (n * x > 0) {
	 s = (n * x)% p;
}
	 else {
	 s = NegMod(n * x, p);
}

	 int xr_ = (s * s - xp - xq);
	 if (xr_ < 0)
	 xr = NegMod (xr_, p);
	 else
	 xr = xr_% p;

	 int yr_ = (-yp + s * (xp - xr));
	 if (yr_ < 0)
	 yr = NegMod(yr_, p);
	 else
	 yr = yr_% p;
}

void add_double (int xp, int yp, int &xr, int &yr, int
a, int p)
{
	 int s;
	 int n = 3 * xp * xp + a;
	 int d = 2 * yp;

	 if (d < 0) {

163Elliptic Curve Cryptography

	 n * = -1;
	 d * = -1;
}

	 int x = InvMod(d, p);

	 if (n * x > 0) {
	 s = (n * x)% p;
}
	 else {
	 s = NegMod(n * x, p);
}
	 int xr_ = (s * s - 2 * xp);
	 if (xr_ < 0)
	 xr = NegMod (xr_, p);
	 else
	 xr = xr_% p;

	 int yr_ = (-yp + s * (xp - xr));
	 if (yr_ < 0)
	 yr = NegMod(yr_, p);
	 else
	 yr = yr_% p;
}

void scalar_multiplication (int xp, int yp, int k,
int a, int p, int &PUx, int &PUy)
{
if (k = = 2) {
	 add_double(xp, yp, PUx, PUy, a, p);
}
else if (k > 2) {
	 add_double(xp, yp, PUx, PUy, a, p);
	 for (int i = 0; i < k - 2; i++) {
	 int xq = PUx;
	 int yq = PUy;
	 PUx = PUy = 0;
	 add_points(xp, yp, xq, yq, PUx, PUy, p);
	 }
}
else {
	 cout << "Wrong key" << endl;
	 }
}

164 ﻿Hafizur Rahman and Saiful Azad

void key_generation (int Px, int Py, int k, int a,
int p, int &PUx, int &PUy)
{
	 scalar_multiplication(Px, Py, k, a, p, PUx, PUy);
	 return;
}

void encryption (int Mx, int My, int k, int a, int p,
int PUx, int PUy, int &Cx, int &Cy)
{
	 int xr, yr;
	 scalar_multiplication(PUx, PUy, k, a, p, xr, yr);
	 add_points(Mx, My, xr, yr, Cx, Cy, p);
}

void decryption (int Cx, int Cy, int k, int a, int p,
int x1, int y1, int &Mx, int &My)
{
	 int xr, yr;
	 scalar_multiplication(x1, y1, k, a, p, xr, yr);
	 add_points(Cx, Cy, xr, -yr, Mx, My, p);
}

int main()
{
	 int a, b, p;
	 cout << "put a prime number: ";
	 cin >> p;

	 bool check;
	 do {
	 check = false;
	 cout << "put a value for a: ";
	 cin >> a;
	 cout << "put a value for b: ";
	 cin >> b;
	 if (((4 * a * a * a + 27 * b * b)% p) = = 0) {
	� cout << "Your values do not satisfied the

condition" << endl;
	 cout << "Please put values again" << endl;
	 check = true;
	 }
} while (check);
cout << "—
— — — — — — " << endl;

165Elliptic Curve Cryptography

ec_points(a, b, p);

int Px, Py, PUAx, PUAy, PUBx, PUBy, Mx, My, Cx, Cy, m, n;

cout << "— — — — — — — — — — — — — -" << endl;
cout << "Key " << endl;
cout << "— — — — — — — — — — — — — -" << endl;

cout << "Select a base point (x,y) from the curve: ";
cin >> Px >> Py;
cout << "Select a private key for Alice: ";
cin >> m;
key_generation(Px, Py, m, a, p, PUAx, PUAy);
cout << "Public key of Alice is (" << PUAx << "," <<
PUAy << ")" << endl;

cout << "Select a private key for Bob: ";
cin >> n;
key_generation(Px, Py, n, a, p, PUBx, PUBy);
cout << "Public key of Bob is (" << PUBx << "," <<
PUBy << ")" << endl;

cout << "—
— — — " << endl;
cout << "Encryption/Decryption" << endl;
cout << "—
— — — " << endl;
cout << "Select a Message point (x,y) from the curve
(for encryption): ";
cin >> Mx >> My;
encryption(Mx, My, m, a, p, PUBx, PUBy, Cx, Cy);
cout << "Cipher is (" << Cx << "," << Cy << ")" << endl;
int x1, y1;
scalar_multiplication(Px, Py, m, a, p, x1, y1);
cout << "Alice send message pair(("<< x1 << "," << y1
<< "),(" << Cx << "," << Cy << "))" << endl;
cout << "||—
-||" << endl;
cout << "Bob receive the message and start decrypting"
<< endl;
decryption(Cx, Cy, n, a, p, x1, y1, Mx, My);
cout << "Decrypted message is (" << Mx << "," << My <<
")" << endl;

getch();
return 0;
}

166 ﻿Hafizur Rahman and Saiful Azad

9.7  Implementation 2

#include<cstdlib>
#include<iostream>
#include<vector>
#include <math.h>
//contains utility functions

#define PrimeNumber 23

using namespace std;

class utils
{
public:
	 static float frand()//renerate random float number
	 {
	 static float norm = 1.0f/(float)RAND_MAX;
	 return (float)rand()*norm;
	 }
	 static int irand(int min, int max)//renerate random
integer number
	 {
	 return min+(int)(frand()*(float)(max-min));
	 }
	 //exhibit 1
	� static int EGCD(int a, int b, int& u, int

&v)//Extended GCD gives g = a*u + b*v
	 {
	 u = 1;
	 v = 0;
	 int g = a;
	 int u1 = 0;
	 int v1 = 1;
	 int g1 = b;
	 while (g1 ! = 0)
	 {
	 int q = g/g1;//Integer divide
	 int t1 = u - q*u1;
	 int t2 = v - q*v1;
	 int t3 = g - q*g1;
	 u = u1; v = v1; g = g1;
	 u1 = t1; v1 = t2; g1 = t3;
	 }
	 return g;
}

167Elliptic Curve Cryptography

//exitit 2
static int InvMod(int x, int n)//Solve linear
congruence equation x * z = = 1 (mod n) for z
{
	 //n = Abs(n);
	� x = x% n;//% is the remainder function, 0 < = x%

n < |n|
	 int u,v,g,z;
	 g = EGCD(x, n, u,v);
	 if (g ! = 1)
	 {
	� //x and n have to be relative prime for there to

exist an x^-1 mod n
	 z = 0;
	 }
	 else
	 {
	 z = u% n;
	 }
	 return z;
	 }
};

//Template parameter 'curveOrder' is the order of the
finite field over which this curve is defined
template<int curveOrder>
class EllipticCurve;
//Template parameter 'curveOrder' is the order of the
finite field over which this curve is defined
template<int curveOrder>
class Element
{
	 int value;
	 //set element value
	 void setValue(int i)
	 {
		 value = i;
		 if (i<0)
		 {
			� value = (i%curveOrder) +

2*curveOrder;//ensure that the
value is in the correct range

		 }
		 value% = curveOrder;
	 }

168 ﻿Hafizur Rahman and Saiful Azad

	 public:
		 //default constructor
		 Element()
		 {
			 value = 0;
		 }
		 //constructor with value
		 explicit Element(int i)
		 {
			 setValue(i);
		 }
		 //copy constructor
		 Element(const Element<curveOrder>& rhs)
		 {
			 value = rhs.value;
		 }
		 //access Element Value
		 int getValue() const {return value;}
		 //negate
		 Element<curveOrder> operator-() const
		 {
			 return Element<curveOrder>(-value);
		 }
		 //setValue from integer
		 Element<curveOrder>& operator = (int i)
		 {
			 setValue(i);
			 return *this;
		 }
		 //" = " operator overload
		� Element<curveOrder>& operator = (const

Element<curveOrder>& rhs)
		 {
			 value = rhs.value;
			 return *this;
		 }
		 //"* = " operator overload
		� Element<curveOrder>& operator* = (const

Element<curveOrder>& rhs)
		 {
			 value = (value*rhs.value)%curveOrder;
			 return *this;
		 }
		 //"* = " operator overload

169Elliptic Curve Cryptography

		� friend bool operator = =(const
Element<curveOrder>& lhs, const
Element<curveOrder>& rhs)

		 {
			 return (lhs.value = = rhs.value);
		 }
		 //" = =" operator overload
		� friend bool operator = =(const

Element<curveOrder>& lhs, int rhs)
		 {
			 return (lhs.value = = rhs);
		 }
		 //"! = " operator overload
		� friend bool operator! = (const

Element<curveOrder>& lhs, int rhs)
		 {
			 return (lhs.value ! = rhs);
		 }
		 //"/" operator overload
		� friend Element<curveOrder> operator/

(const Element<curveOrder>& lhs, const
Element<curveOrder>& rhs)

		 {
			� return Element<curveOrder>(lhs.

value * utils::InvMod(rhs.
value,curveOrder));

		 }
		 //"+" operator overload
		� friend Element<curveOrder>

operator+(const Element<curveOrder>& lhs,
const Element<curveOrder>& rhs)

		 {
			� return Element<curveOrder>(lhs.

value + rhs.value);
		 }
		 //"+" operator overload
		� friend Element<curveOrder> operator+(int

i, const Element<curveOrder>& rhs)
		 {
			� return Element<curveOrder>(rhs.

value+i);
		 }
		 //"+" operator overload
		� friend Element<curveOrder> operator+(const

Element<curveOrder>& lhs, int i)

170 ﻿Hafizur Rahman and Saiful Azad

		 {
			� return Element<curveOrder>(lhs.

value+i);
		 }
		 //"-" operator overload
		� friend Element<curveOrder> operator-(const

Element<curveOrder>& lhs, const
Element<curveOrder>& rhs)

		 {
			� return Element<curveOrder>(lhs.

value - rhs.value);
		 }
		 //"-"(binary) operator overload
		� friend Element<curveOrder> operator*(int

n, const Element<curveOrder>& rhs)
		 {
			� return Element<curveOrder>(n*rhs.

value);
		 }
		 //"*"(binary) operator overload
		� friend Element<curveOrder> operator*(const

Element<curveOrder>& lhs, const
Element<curveOrder>& rhs)

		 {
			� return Element<curveOrder>(lhs.

value * rhs.value);
		 }
		 //output stream handler
		 template<int T>
		� friend ostream& operator<<(ostream& os,

const Element<T>& opt)
		 {
			 return os << opt.value;
		 }
};

//Template parameter 'curveOrder' is the order of the
finite field over which this curve is defined
template<int curveOrder>
class Point
{
	� //elliptic curve pointer in which this point

will belong
	 EllipticCurve<curveOrder> *ellipticCurve;
	 /*

171Elliptic Curve Cryptography

		� Given a curve 'ec' defined along some
equation in a finite field (such as 'ec':
y^2 = x^3 + ax + b)

		� point multiplication is defined as the
repeated addition of a point along that
curve.

		� wiki link http://en.wikipedia.org/wiki/
Elliptic_curve_point_multiplication

		 point multiply
	 */
	 Point scalarMultiply(int k, const Point& a)
	 {
		 Point acc = a;
		 Point res = Point(0,0,*ellipticCurve);
		 int i = 0, j = 0;
		 int b = k;
		 while(b)
		 {
			 if (b & 1)
			 {
				� addDouble(i-j,acc);//bit is

set; acc = 2^(i-j)*acc
				 res + = acc;
				 j = i; //last bit set
			 }
			 b >> = 1;
			 ++i;
			� cout << res.getX() << "\t" << res.

getY() << endl;
		 }
		 return res;
	 }
	 //doubling step for point multiplication
	 void addDouble(int multiplier, Point& point)
	 {
		 if (multiplier > 0)
		 {
			 Point tempPoint = point;
			 for (int i = 0; i < multiplier; i++)
			 {
				� tempPoint + = tempPoint;//

repeated addition
			 }
			 point = tempPoint;
		 }

172 ﻿Hafizur Rahman and Saiful Azad

	 }
	 //adding two points on the curve
	� void addPoints(Element<curveOrder> x1,

Element<curveOrder> y1, Element<curveOrder> x2,
Element<curveOrder> y2, Element<curveOrder> &
xR, Element<curveOrder> & yR) const

	 {
		� //special cases involving the additive

identity
		 if (x1 = = 0 && y1 = = 0)
		 {
			 xR = x2;
			 yR = y2;
			 return;
		 }
		 if (x2 = = 0 && y2 = = 0)
		 {
			 xR = x1;
			 yR = y1;
			 return;
		 }
		 if (y1 = = -y2)
		 {
			 xR = yR = 0;
			 return;
		 }
		 //the additions
		 Element<curveOrder> s;
		 if (x1 = = x2 && y1 = = y2)
		 {
			 //2P
			� s = (3*(x1.getValue()*x1.

getValue()) + ellipticCurve-
>getA())/(2*y1);

			 xR = ((s*s) - 2*x1);
		 }
		 else
		 {
			 //P+Q
			 s = (y1 - y2)/(x1 - x2);
			 xR = ((s*s) - x1 - x2);
		 }
		 if (s ! = 0)
		 {
			 yR = (-y1 + s*(x1 - xR));

173Elliptic Curve Cryptography

		 }
		 else
		 {
			 xR = yR = 0;
		 }
	 }
public:
	 Element<curveOrder> x;//x coordinate
	 Element<curveOrder> y;//y coordinate
	 //point constructor with x and y value
	 Point(int x, int y)
	 {
		 this->x = x;
		 this->y = y;
		 this->ellipticCurve = 0;
	 }
	� //point constructor with x value, y value and

EllipticCurve pointer
	� Point(int x, int y, EllipticCurve<curveOrder> &

EllipticCurve)
	 {
		 this->x = x;
		 this->y = y;
		 this->ellipticCurve = &EllipticCurve;
	 }
	� //point constructor with constant x pointer,

constant y pointer and EllipticCurve pointer
	� Point(const Element<curveOrder>& x, const

Element<curveOrder>& y,
EllipticCurve<curveOrder> & EllipticCurve)

	 {
		 this->x = x;
		 this->y = y;
		 this->ellipticCurve = &EllipticCurve;
	 }
	 //compy constructor
	 Point(const Point& rhs)
	 {
		 x = rhs.x;
		 y = rhs.y;
		 ellipticCurve = rhs.ellipticCurve;
	 }
	 //access x component as element
	 Element<curveOrder> getX() const {return x;}
	 //access y component as element

174 ﻿Hafizur Rahman and Saiful Azad

	 Element<curveOrder> getY() const {return y;}
	� //calculate the order of this point using brute-

force additions
	� unsigned int Order(unsigned int maxPeriod = ~0)

const
	 {
		 Point r = *this;
		 unsigned int n = 0;
		 while(r.x ! = 0 && r.y ! = 0)
		 {
			 ++n;
			 r + = *this;
			 if (n > maxPeriod) break;
		 }
		 return n;
	 }
	 //negate
	 Point operator-()
	 {
		 return Point(x,-y);
	 }
	 //" = " operator overload
	 Point& operator = (const Point& rhs)
	 {
		 x = rhs.x;
		 y = rhs.y;
		 ellipticCurve = rhs.ellipticCurve;
		 return *this;
	 }
	 //" = =" operator overload
	� friend bool operator = =(const Point& lhs, const

Point& rhs)
	 {
		� return (lhs.ellipticCurve = = rhs.

ellipticCurve) && (lhs.x = = rhs.x) &&
(lhs.y = = rhs.y);

	 }
	 //"! = " operator overload
	� friend bool operator! = (const Point& lhs, const

Point& rhs)
	 {
		� return (lhs.ellipticCurve ! = rhs.

ellipticCurve) || (lhs.x ! = rhs.x) ||
(lhs.y ! = rhs.y);

	 }

175Elliptic Curve Cryptography

	 //"+" operator overload
	� friend Point operator+(const Point& lhs, const

Point& rhs)
	 {
		 Element<curveOrder> xR, yR;
		� lhs.addPoints(lhs.x,lhs.y,rhs.x,rhs.

y,xR,yR);
		 return Point(xR,yR,*lhs.ellipticCurve);
	 }
	 //"*" operator overload
	 friend Point operator*(int k, const Point& rhs)
	 {
		 return Point(rhs).operator* = (k);
	 }
	 //"*" operator overload
	 Point& operator+ = (const Point& rhs)
	 {
		 addPoints(x,y,rhs.x,rhs.y,x,y);
		 return *this;
	 }
	 //"* = " operator overload
	 Point& operator* = (int k)
	 {
		 return (*this = scalarMultiply(k,*this));
	 }
	 //ostream handler: print this point
	� friend ostream& operator <<(ostream& os, const

Point& p)
	 {
		� return (os << "(" << p.x << ", " << p.y <<

")");
	 }
};

//Template parameter 'curveOrder' is the order of the
finite field over which this curve is defined
template<int curveOrder>
class EllipticCurve
{
	� vector<Point<curveOrder> > pointTable; //table

of points
	� Element<curveOrder> a;		 //paramter a of

the EC equation
	� Element<curveOrder> b;		 //parameter b of

the EC equation

176 ﻿Hafizur Rahman and Saiful Azad

	� bool tableFilled;		 //true if the table has
been calculated

public:
	� //constructor with a and b as parameters (such

as 'elliptic curve' : y^2 = x^3 + ax + b)
EllipticCurve(int a, int b)
{
		 this->a = a;
		 this->b = b;
		 this->tableFilled = false;
}
//Calculate *all* the points (group elements) for this
'elliptic curve'
void CalculatePoints()
{
		 //calculate points
		 for (int x = 0; x < curveOrder; x++) {
	 for (int y = 0; y < curveOrder; y++) {
		 int k = y * y;
		� int m = (x * x * x) + a.getValue() * x +

b.getValue();
		 if (k% curveOrder = = m% curveOrder)
		� pointTable.push_back(Point<curveOrder>(x,y,

*this));
	 }
		 }

	 tableFilled = true;//table fill successful
}
//access the point vector like an array
Point<curveOrder> operator[](int n)
{
	 if (!tableFilled)
	 {
	 CalculatePoints();
}

	 return pointTable[n];
}
//number of elements in this group
size_t Size() const {return pointTable.size();}
//the degree P of this EC
int Degree() const {return curveOrder;}
//the parameter a (as an element of Fp)
Element<curveOrder> getA() const {return a;}

177Elliptic Curve Cryptography

//the parameter b (as an element of Fp)
Element<curveOrder> getB() const {return b;}
//ostream handler: print this curve in human readable
form
template<int cO>
friend ostream& operator <<(ostream& os, const
EllipticCurve<curveOrder>& EllipticCurve)
	 {
		 //y^2 mod P = x^3 + ax + b mod P
		 os << "y^2 mod " << cO << " = (x^3 + ";
		 if (EllipticCurve.a ! = 0)
		 {
			� os << EllipticCurve.a.getValue() <<

"x + ";
		 }
		 if (EllipticCurve.b ! = 0)
		 {
			 os << EllipticCurve.b.getValue() ;
		 }
		 os << noshowpos << ") mod " << cO;
		 return os;
	 }
//print all the elements of the curve
	 ostream& PrintTable(ostream &os, int columns = 4)
	 {
		 if (tableFilled)
		 {
			 int col = 0;
			� vector<Point<PrimeNumber>

>::iterator iter = pointTable.
begin();

			� for (; iter! = pointTable.end();
++iter)

			 {
				� os << "(" <<

(*iter).x.getValue() << ", "
<< (*iter).y.getValue()
<< ") ";

				 if (++col > columns)
				 {
					 os << "\n";
					 col = 0;
				 }
			 }
		 }

178 ﻿Hafizur Rahman and Saiful Azad

		 else
		 {
			� os << "EllipticCurve, F_" <<

PrimeNumber;
		 }
		 return os;
	 }
};

int main(int argc, char *argv[])
{
	 //curve object
	 int A, B;
	 bool flag;
	 do {
	 flag = false;
	� cout << "Put the value for a (an integer number

between 0 to " << PrimeNumber - 1 << ": ";
	 cin >> A;
	 cout << "Put the value for b (an integer number
between 0 to " << PrimeNumber - 1 << ": ";
	 cin >> B;
	 cout << endl;
	� if (((4 * A * A * A) + (27 * B * B))%

PrimeNumber = = 0) {
	 flag = true;
	� cout << "WARNING: Enterned values failed to

pass the singularity test" << endl;
	� cout << "Put the values again " << endl <<

endl;
}
	 } while (flag);
EllipticCurve<PrimeNumber> curveObject(A,B);
	� cout << "Elliptic Curve cryptography example\n—

— — — — — — — — — — — — — — — — — \n\n";
	 //print some information about the curve
	� //cout << "The curve object: " << curveObject <<

"\n";
	 curveObject.CalculatePoints();//
	 cout << "\npoints on the curve object\n";
	 curveObject.PrintTable(cout,4);
	� cout << "\n = = = = = = = = = = = = = = = = = =

=
= = = = = \n";

	 //Elliptic curve message encryption scheme

179Elliptic Curve Cryptography

	� //the base point on the curve is used to
generate keys

	 Point<PrimeNumber> G = curveObject[0];
	� //choose G ramdomly where G > {0,0} with

order > = 2
	� while((G.getY() = = 0 || G.getX() = = 0) ||

(G.Order()<2))
	 {
		� int n = (int)(utils::frand()*curveObject.

Size());
		 G = curveObject[n];
	 }
	� cout << "G = " << G << ", order(G) is " <<

G.Order() << "\n\n";

	 //sender 'Alice'
	� int a = utils::irand(1,curveObject.

Degree()-1);//session integer a which is also
used to generate Alice's public key

	� Point<PrimeNumber> Pa = a*G; //public key of
alice

	 cout << "Alice:\n\tPrivate key = " << a << endl;
	� cout << "\tpublic key Pa = " << a << "*" << G <<

" = " << Pa << endl;
	 //receiver 'Bob'
	� int b = utils::irand(1,curveObject.

Degree()-1);//session integer b which is also
used to generate bob's public key

	 Point<PrimeNumber> Pb = b*G; //public key of bob
	 cout << "Bob:\n\tPrivate key = " << b << endl;
	� cout << "\tpublic key Pb = " << b << "*" << G <<

" = " << Pb << endl;
	 //Jane, the eavesdropper
	� int j = utils::irand(1,curveObject.

Degree()-1);;//session integer j which is also
used to generate jane's public key

	 Point<PrimeNumber> Pj = j*G;
	 cout << "Jane:\n\tPrivate key = " << j << endl;
	� cout << "\tpublic key Pj = " << j << "*" << G <<

" = " << Pj << endl<< endl<< endl;
	 //Alice encrypts her message to send to Bob
	 int msg1 = 50;
	 int msg2 = 64;
	� cout << "Plain text from Alice to Bob: (" <<

msg1 << ", " << msg2 << ")"<<endl<<endl;

180 ﻿Hafizur Rahman and Saiful Azad

	 //alice encrypt the message using Bob's key
	� Point<PrimeNumber> encryptionKey = a*Pb;//

encryption key alice to bob
	� Element<PrimeNumber>

encrypt1(msg1*encryptionKey.getX());//encrypt
first chunk of message by multiplying with
encryption key's x value

	� Element<PrimeNumber>
encrypt2(msg2*encryptionKey.getY());//encrypt
second chunk of message by multiplying with
encryption key's y value

	 //encrypted message is: Pa,c1,c2
	� cout << "Encrypted message from Alice to Bob =

{Pa,c1,c2} = {" << Pa << ", " << encrypt1 << ",
" << encrypt2 << "}\n\n";

	� //Bob now decrypts Alice’s message, using her
public key and his session integer "b" which was
also used to generate his public key

	� Point<PrimeNumber> decryptionKey = b*Pa;//bob's
decryption key for alice

	� Element<PrimeNumber> decryptMsg1 = encrypt1/
decryptionKey.getX();//encrypt first chunk of
message by dividing with decryption key's x
value

	� Element<PrimeNumber> decryptMsg2 = encrypt2/
decryptionKey.getY();//encrypt second chunk of
message by dividing with decryption key's y
value

	� cout << "\nBob's decrypted message from Alice =
(" << decryptMsg1 << ", " << decryptMsg2 << ")"
<< endl;

	� //Jane intercepts the message and tries to
decrypt it using her key

	� encryptionKey = j*Pa;//jane's decryption key for
alice

	� decryptMsg1 = encrypt1/encryptionKey.getX();//
encrypt first chunk of message by dividing with
decryption key's x value

	� decryptMsg2 = encrypt2/encryptionKey.getY();//
encrypt second chunk of message by dividing with
decryption key's y value

	� cout << "\nJane's decrypted message from Alice =
(" << decryptMsg1 << ", " << decryptMsg2 << ")"
<< endl;

181Elliptic Curve Cryptography

	 cout << endl;
	 system("PAUSE");
	 return EXIT_SUCCESS;
}

References
	 1.	 Certicom. The Basics of ECC. Available at https://www.certicom.com/

index.php/the-basics-of-ecc
	 2.	 A. O’Maley. Elliptic curves and elliptic curve cryptography. Mathematics

Exchange, 3(1), 2005.
	 3.	 L. Jensen. Bit fiddling operations. Available at http://cs-linux.ubishops.

ca/~jensen/asm/notes/note7.htm
	 4.	 W. Stallings. Cryptography and network security, 4th ed. Pearson Prentice

Hall of India, New Delhi, 2006.

183

10
Message Digest

Algorithm 5

B AY Z I D A S H I K H O S S A I N

Keywords

Authentication check
Hash function
Integrity check
Message digest

A message digest algorithm such as MD5 is also known as a hash
function or a cryptographic hash function. It takes a message as input
and generates a fixed-length output in response, which is generally less
than the length of the input message. The output is known as a hash
value or message digest. A message digest is also known as a com-
pact digital signature for an arbitrarily long stream of binary data [1].

Contents

Keywords	 183
10.1	 General Properties and Vulnerabilities	 184
10.2	 Design Principle	 185
10.3	 Algorithm Description	 185

10.3.1	 Add Padding Bits behind the Input Message	 186
10.3.2	 Add a 64-Bit Binary String That Is the

Representation of the Message’s Length	 187
10.3.3	 Initialize Four 32-Bit Values	 187
10.3.4	 Compress Every 512-Bit Block	 188
10.3.5	 Generate the 128-Bit Output	 189

10.4	 An Example	 190
10.5	 Implementation 1	 191
10.6	 Implementation 2	 196
10.7	 Conclusion	 204
References	 205

184 ﻿Bayzid Ashik Hossain

MD5 was first designed by Professor Ronald Rivest of MIT in 1991
to substitute former hash function MD4. When investigative work
showed that MD5’s predecessor MD4 was likely to be insecure, MD5
was designed to be a secure replacement. MD5 has been consumed
in a wide range of security applications. It is also frequently used to
check data reliability.

10.1  General Properties and Vulnerabilities

When cryptographers tend to design a message digest algorithm, they
try to make the algorithm fulfill the following properties:

•	 It should be one-way. It is hard to get the original message
given the message digest.

•	 It would be hard to find another input message that produces
identical output when both input and output are given.

•	 The algorithm should be collision resistant. It would be com-
putationally not feasible to find two messages that generate
equivalent message digests. This property is not similar to the
second property. It is easier to attack on this property than on
the second property.

•	 Pseudorandomness should be satisfied by the message digest.

When all of the above properties are fulfilled, we call the algorithm
a collision-resistant message digest algorithm. It is unknown whether
a collision-resistant message digest algorithm can exist at all.

In 1996, a weakness was found in the procedure of MD5. While it
was not a clearly fatal weakness, cryptographers began recommending
other algorithms, such as SHA-1, which has since been found to be
vulnerable as well. In 2004, it was revealed that MD5 is also not
collision resistant, and it is not suitable for applications that rely on
properties similar to Secure Sockets Layer (SSL) certificates or digital
signatures [3]. Moreover, flaws were discovered in MD5 during the
same year, making further use of the algorithm for security purposes
questionable; specifically, a number of researchers described how to
create a pair of files that share the same MD5 checksum. Further
progress was made in breaking MD5 throughout the years 2005,
2006, and 2007. During December 2008, a group of researchers used
this technique to fake SSL certificate validity, and the CMU Software

185Message Digest Algorithm 5

Engineering Institute currently says that MD5 “should be considered
cryptographically broken and inappropriate for further use” [7], and
most applications owned by the U.S. government now use the SHA-2
family of hash functions [8].

10.2  Design Principle

MD5 follows a design principle proposed by Merkle and Damgård.
Its basic scheme is to build hash in a block-wise style. In a word,
MD5 is composed of two phases: padding phase and compression
phase. During the padding phase, some extra bits (1 to 512 bits) are
appended to the input message. The result bits are compatible to 448
mod 512. After that the length of the initial message is transformed
to a 64-bit binary string (if the length is greater than 264, the lower
64 bits are used) and these 64 bits are added to the tail of the mes-
sage as well. So, the padding phase ends with a bit stream that may
consist of one or more 512-bit blocks. During the compression phase,
a compression function is used on each 512-bit block and generates a
128-bit output. The previous output is always involved in the calcula-
tion of the next round.

10.3  Algorithm Description

MD5 processes a variable-length message into a fixed 128-bit out-
put. The input message is fragmented into chunks of 512-bit blocks
(sixteen 32-bit words); the message is padded so that its length could
be divisible by 512. The padding works by adding a single bit 1 to
the end of the message first. This is followed by appending as many
zeros (0’s) as are required to bring the length of the message up to
64 bits less than a multiple of 512 (448 mod 512). The remaining
bits are filled up with 64 bits, which represents the length of the
original message, modulo 264. The algorithm operates on a 128-bit
state, separated into four 32-bit words, represented here as h0, h1, h2,
and h3. These are set to positive fixed constants. After that the main
algorithm uses each 512-bit message block in turn to alter the state.
The processing of a message block consists of four analogous stages,
which are termed as rounds, where each round is composed of 16
similar operations based on a nonlinear function F, modular addition,

186 ﻿Bayzid Ashik Hossain

and left rotation. Hence, there are three kinds of operations in MD5:
bit-wise Boolean operation, modular addition, and cyclic shift opera-
tion. All three operations are very fast on 32-bit machines, which
make MD5 quite fast.

MD5 consists of 64 of these operations, stated in Figure 10.1,
grouped in four rounds of 16 actions. F is a function that is nonlinear
in nature; in each round one function is used. Mi denotes a 32-bit
block of the message input, and Ki denotes a 32-bit constant.

The algorithm of MD5 can be described in five steps:

	 1.	Add padding bits behind the input message.
	 2.	Add a 64-bit binary string that is the representation of the

message’s length.
	 3.	Initialize four 32-bit values.
	 4.	Compress every 512-bit block.
	 5.	Generate the 128-bit output.

10.3.1  Add Padding Bits behind the Input Message

This step is to elongate the initial message and make its length
congruent to 448 mod 512. First, a single bit 1 is appended to the
message. Then, a series of 0 bits are appended so that length (the
padded message) ≡ 448 mod 512. For example, suppose the initial

SRQP

SRQ

F

<<<s

P

Ki

Mi

Figure 10.1  Operational model of MD5.

187Message Digest Algorithm 5

message has 1000 bits. Then, this step will add 1 bit 1 and 471
bits 0. As another example, consider a message with just 448 bits.
As the algorithm does not check whether the primary length is
congruent to 448 mod 512, 1 bit 1 and 511 bits 0 will be appended
to the message. As a result, the padding bits’ length is at least 1 and
at most 512.

new_len = initial_len+1;
while((new_len% 64) ! = 56){
new_len++;
	 }
msg = new uint8_t[new_len+8];

10.3.2 � Add a 64-Bit Binary String That Is the
Representation of the Message’s Length

Consideration should be paid to the meaning of the 64-bit binary
string. One should not regard it as the first 64 bits of the initial mes-
sage. It is the binary representation of the length of the preliminary
message. For example, assume the message length is 1000 bits. Its
64-bit binary representation would be 0x00000000000003E8. If the
message is very lengthy, larger than 264, only the lower 64 bits of its
binary representation are used.

msg[initial_len] = �0x80;//append the "1" bit; most
significant bit is "first"

for (offset = �initial_len + 1; offset <new_len;
offset++)

msg[offset] = 0;

10.3.3  Initialize Four 32-Bit Values

These four 32-bit variables stated below would be used to compute the
message digest. In the Implementation 1 section, these variables are
mentioned as h0, h1, h2, and h3 and their initial values are

h0 = 0x67452301;
h1 = 0xefcdab89;
h2 = 0x98badcfe;
h3 = 0x10325476;

188 ﻿Bayzid Ashik Hossain

10.3.4  Compress Every 512-Bit Block

Four supplementary functions will be defined such that each func-
tion takes an input of three 32-bit words and produces a 32-bit word
output [2].

F (X, Y, Z) = XY or not (X) Z
G (X, Y, Z) = XZ or Y not (Z)
H (X, Y, Z) = X xor Y xor Z
I (X, Y, Z) = Y xor (X or not (Z))

In each bit position, F acts as a condition such that if X, then
Y; otherwise, Z. The function F might have been defined using
addition instead of or since XY and not (X) Z will never have 1’s
in the same bit position. The functions G, H, and I are similar to
the function F, which performs in bit-wise parallel to produce its
output from the bits of X, Y, and Z so that the corresponding bits
of X, Y, and Z are independent and unbiased. Therefore, each bit
of G (X, Y, Z), H (X, Y, Z), and I (X, Y, Z) will be independent and
unbiased [2].

This step uses a 64-element table T [1, …, 64] constructed from
the sine function. Let T[i] denote the ith element of the table, which
is equal to the integer part of 4294967296 times abs (sin(i)), where i
is in radians. After that, it performs four rounds of hashing for each
16-word block [2]:

for(j = 0;j<64;j++)
k[j] = fabs(sin(j+1)*pow(2,32));

For processing each 16-word block, do the following operation:

offset = 0;
	 do{
	 //�break chunk into sixteen 32-bit words

w[j], 0 ≤ j ≤ 15
	 for (i = 0; i< 16; i++)
	 w[i] = to_int32(msg + offset + i*4);

	 a = h0;
	 b = h1;

189Message Digest Algorithm 5

	 c = h2;
	 d = h3;

	 for(i = 0; i<64; i++) {

	 if (i< 16) {
	 f = (b & c) | ((~b) & d);
	 g = i;
	 } else if (i< 32) {
	 f = (d & b) | ((~d) & c);
	 g = (5*i + 1)% 16;
	 } else if (i< 48) {
	 f = b ^ c ^ d;
	 g = (3*i + 5)% 16;
	 } else {
	 f = c ^ (b | (~d));
	 g = (7*i)% 16;
	 }

	 temp = d;
	 d = c;
	 c = b;
	 b = �b + LEFTROTATE((a + f + k[i] +

w[g]), r[i]);
	 a = temp;

	 }

	 h0 + = a;
	 h1 + = b;
	 h2 + = c;
	 h3 + = d;
	 offset + = 64;
	 }while(offset<new_len);

10.3.5  Generate the 128-Bit Output

Finally, the message digest is produced by doing h0 append h1 append
h2 append h3.

to_bytes(h0, digest);
to_bytes(h1, digest + 4);
to_bytes(h2, digest + 8);
to_bytes(h3, digest + 12);

190 ﻿Bayzid Ashik Hossain

10.4  An Example

Input message: The quick brown fox jumps over the lazy dog.

Message before adding the padding bits:
01010100	 01101000	 01100101	 00100000	 01110001
01110101	 01101001	 01100011	 01101011	 00100000
01100010	 01110010	 01101111	 01110111	 01101110
00100000	 01100110	 01101111	 01111000	 00100000
01101010	 01110101	 01101101	 01110000	 01110011
00100000	 01101111	 01110110	 01100101	 01110010
00100000	 01110100	 01101000	 01100101	 00100000
01101100	 01100001	 01111010	 01111001	 00100000
01100100	 01101111	 01100111

Message after adding the padding bits:
01010100	 01101000	 01100101	 00100000	 01110001
01110101	 01101001	 01100011	 01101011	 00100000
01100010	 01110010	 01101111	 01110111	 01101110
00100000	 01100110	 01101111	 01111000	 00100000
01101010	 01110101	 01101101	 01110000	 01110011
00100000	 01101111	 01110110	 01100101	 01110010
00100000	 01110100	 01101000	 01100101	 00100000
01101100	 01100001	 01111010	 01111001	 00100000
01100100	 01101111	 01100111	 10000000	 00000000
00000000	 00000000	 00000000	 00000000	 00000000
00000000	 00000000	 00000000	 00000000	 00000000
00000000	 01011000	 00000001	 00000000	 00000000
00000000	 00000000	 00000000	 00000000

MD5 operations (which contain 64 rounds):

Round [1]:
h0: 01110110 01010100 00110010 00010000
h1: 10000100 00010001 11010100 11010111
h2: 10001001 10101011 11001101 11101111
h3: 11111110 11011100 10111010 10011000

Round [2]:
h0: 11111110 11011100 10111010 10011000
h1: 01001001 10000100 11000111 11111100
h2: 10000100 00010001 11010100 11010111
h3: 10001001 10101011 11001101 11101111

191Message Digest Algorithm 5

Round [3]:
h0: 10001001 10101011 11001101 11101111
h1: 01011100 10010010 01001111 00110000
h2: 01001001 10000100 11000111 11111100
h3: 10000100 00010001 11010100 11010111
.
.
.
Round [63]:
h0: 00011111 00001101 00010100 00001000
h1: 01101101 11111011 01100010 10011100
h2: 11001100 01001111 11100111 11000101
h3: 10011101 11101101 00110111 00110110

Round [64]:
h0: 10011101 11101101 00110111 00110110
h1: 10101110 01111111 11101000 10010010
h2: 01101101 11111011 01100010 10011100
h3: 11001100 01001111 11100111 11000101

Final output: 9e107d9d372bb6826bd81d3542a419d6.

10.5  Implementation 1

#include<stdio.h>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cstdlib>
#include<bitset>
#include <climits>
using namespace std;
#define KEY 64
#define SIZE 1000
#define LEFTROTATE(�x, c) (((x) << (c)) |

((x) >> (32 - (c))))

class cryptography{
	 uint32_t k[KEY];
	 int j;

192 ﻿Bayzid Ashik Hossain

public:
	 voidto_bytes(uint32_t val, uint8_t *bytes);
	 uint32_t to_int32(const uint8_t *bytes);
	� void MD_5(const uint8_t *initial_msg,

size_tinitial_len, uint8_t *digest);

};

template<typename T>
voidshow_binrep(const T &a)
{
const char* beg = reinterpret_cast<const char*>(&a);
const char* end = beg + sizeof(a);
while(beg ! = end)
std::cout<<std::bitset<CHAR_BIT>(*beg++) << ' ';
std::cout<< '\t';
}

void cryptography::to_bytes(�uint32_t val,
uint8_t *bytes)

{
bytes[0] = (uint8_t) val;
bytes[1] = (uint8_t) (val>> 8);
bytes[2] = (uint8_t) (val>> 16);
bytes[3] = (uint8_t) (val>> 24);
}

uint32_t cryptography::to_int32(const uint8_t *bytes)
{
return (�uint32_t) bytes[0] | ((uint32_t) bytes[1] << 8)

| ((uint32_t) bytes[2] << 16) | ((uint32_t)
bytes[3] << 24);

}
void cryptography::MD_5(�const uint8_t *initial_msg,

size_tinitial_len,
uint8_t *digest) {

for(j = 0;j<64;j++)
k[j] = fabs(sin(j+1)*pow(2,32));

//r specifies the per-round shift amounts
con�st uint32_t r[] = {7, 12, 17, 22, 7, 12, 17, 22, 7,

12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14,
20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4,
11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15,
21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};

193Message Digest Algorithm 5

	 //Thesevars will contain the hash
	 uint32_t h0, h1, h2, h3;

	 //Message (to prepare)
	 uint8_t *msg = NULL;

size_tnew_len, offset;
uint32_t w[16];
uint32_t a, b, c, d, i, f, g, temp;

	 //Initialize variables - simple count in nibbles:
	 h0 = 0x67452301;
	 h1 = 0xefcdab89;
	 h2 = 0x98badcfe;
	 h3 = 0x10325476;

	 //Pre-processing:
	 //append "1" bit to message
	 //app�end "0" bits until message length in bits ≡

448 (mod 512)
	 //append length mod (2^64) to message

new_len = initial_len+1;
while((new_len% 64) ! = 56){
new_len++;
}

msg = new uint8_t[new_len+8];

memcpy(msg, initial_msg, initial_len);
msg�[initial_len] = 0x80;//append the "1" bit; most

significant bit is "first"
for� (offset = initial_len + 1; offset <new_len;

offset++)
msg[offset] = 0;//append "0" bits

	 //append the len in bits at the end of the buffer.
to_bytes(initial_len*8, msg + new_len);
	 //ini�tial_len>>29 = = initial_len*8>>32, but avoids

overflow.
to_bytes(initial_len>>29, msg + new_len + 4);

	 //bin�ary representation of the message after
padding

194 ﻿Bayzid Ashik Hossain

	 /*
for (inti = 0; i< new_len+8; i++) {
show_binrep(msg[i]);
	 }
	 */
cout<<endl;
	 //Process the message in successive 512-bit chunks:
	 //for each 512-bit chunk of message:
offset = 0;
do{
	 //br�eak chunk into sixteen 32-bit words w[j],

0 ≤ j ≤ 15
for (i = 0; i< 16; i++)
w[i] = to_int32(msg + offset + i*4);

	 //Initialize hash value for this chunk:
	 a = h0;
	 b = h1;
	 c = h2;
	 d = h3;

	 //Main loop:
for(i = 0; i<64; i++) {

if (i< 16) {
	 f = (b & c) | ((~b) & d);
	 g = i;
	 } else if (i< 32) {
	 f = (d & b) | ((~d) & c);
	 g = (5*i + 1)% 16;
	 } else if (i< 48) {
	 f = b ^ c ^ d;
	 g = (3*i + 5)% 16;
	 } else {
	 f = c ^ (b | (~d));
	 g = (7*i)% 16;
	 }

temp = d;
	 d = c;
	 c = b;
	 b = b + LEFTROTATE((a + f + k[i] + w[g]), r[i]);
	 a = temp;
	 /*
cout<<"Round: ["<<i+1<<"]"<<endl;

195Message Digest Algorithm 5

cout<<"h0: ";
show_binrep(a);
cout<<'\n'<<"h1: ";
show_binrep(b);
cout<<'\n'<<"h2: ";
show_binrep(c);
cout<<'\n'<<"h3: ";
show_binrep(d);
cout<<endl;
	 */
	 }

	 //Add this chunk's hash to result so far:
	 h0 + = a;
	 h1 + = b;
	 h2 + = c;
	 h3 + = d;
offset + = 64;

}while(offset<new_len);

	 //cleanup
	 deletemsg;

//�var char digest[16] : = h0 append h1 append h2
append h3

//(Output is in little-endian)
	 to_bytes(h0, digest);
	 to_bytes(h1, digest + 4);
	 to_bytes(h2, digest + 8);
	 to_bytes(h3, digest + 12);
}

int main() {
cha�rmsg[SIZE] = "The quick brown fox jumps over the

lazy dog";
inti;
	 uint8_t msg_digest[16];

cout<<msg<<endl<<endl;

cryptographycp;

	 cp.MD_5((uint8_t*)msg, strlen(msg), msg_digest);

196 ﻿Bayzid Ashik Hossain

	 /*
for (inti = 0; i<strlen(msg); i++) {
show_binrep(msg[i]);
	 }
	 */
cout<<endl<<endl;

for (i = 0; i< 16; i++){
printf("%2.2x", msg_digest[i]);
	 }
printf("\n");

return 0;
}

10.6  Implementation 2 [5,6]

/* MD5
Converted to C++ class by Frank Thilo (thilo@unix-ag.org) for bzflag
(http://www.bzflag.org). Based on: md5.h and md5.c reference imple-
mentation of RFC 1321.
Copyright (C) 1991–1992, RSA Data Security, Inc. Created 1991.
All rights reserved.

License to copy and use this software is granted provided that it
is identified as the “RSA Data Security, Inc. MD5 Message-Digest
Algorithm” in all material mentioning or referencing this software or
this function.

License is also granted to make and use derivative works provided
that such works are identified as “derived from the RSA Data Security,
Inc. MD5 Message-Digest Algorithm” in all material mentioning or
referencing the derived work.

RSA Data Security, Inc. makes no representations concerning
either the merchantability of this software or the suitability of this
software for any particular purpose. It is provided “as is” without
express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation or software.
*/

#include <cstring>
#include <iostream>
#include <cstdio>

197Message Digest Algorithm 5

using namespace std;

class MD5{

public:

typedef unsigned intsize_type;//must be 32bit
MD5();
MD5(const string& text);
void update(const unsigned char *buf, size_type length);
void update(const char *buf, size_type length);
MD5&finalize();
stringhexdigest() const;
friendostream& operator<<(ostream&, MD5 md5);

private:
voidinit();
typedef unsigned char uint1;// 8bit
typedef unsigned int uint4; //32bit
enu�m {blocksize = 64};//VC6 won't eat a const static

int here

void transform(const uint1 block[blocksize]);
sta�tic void decode(uint4 output[], const uint1

input[], size_typelen);
sta�tic void encode(uint1 output[], const uint4

input[], size_typelen);

bool finalized;
uin�t1 buffer[blocksize];//bytes that didn't fit in

last 64 byte chunk
uin�t4 count[2]; //64bit counter for number of bits

(lo, hi)
uint4 state[4]; //digest so far
uint1 digest[16];//the result

//low level logic operations
static inline uint4 F(uint4 x, uint4 y, uint4 z);
static inline uint4 G(uint4 x, uint4 y, uint4 z);
static inline uint4 H(uint4 x, uint4 y, uint4 z);
static inline uint4 I(uint4 x, uint4 y, uint4 z);
static inline uint4 rotate_left(uint4 x, int n);
sta�tic inline void FF(uint4 &a, uint4 b, uint4 c,

uint4 d, uint4 x, uint4 s, uint4 ac);
sta�tic inline void GG(uint4 &a, uint4 b, uint4 c,

uint4 d, uint4 x, uint4 s, uint4 ac);

198 ﻿Bayzid Ashik Hossain

sta�tic inline void HH(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac);

static inline void II(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac);
};

string md5(const string str);

//F, G, H and I are basic MD5 functions.
inline MD5::uint4 MD5::F(uint4 x, uint4 y, uint4 z) {
returnx&y | ~x&z;
}

inline MD5::uint4 MD5::G(uint4 x, uint4 y, uint4 z) {
returnx&z | y&~z;
}

inline MD5::uint4 MD5::H(uint4 x, uint4 y, uint4 z) {
returnx^y^z;
}

inline MD5::uint4 MD5::I(uint4 x, uint4 y, uint4 z) {
return y ^ (x | ~z);
}

//rotate_left rotates x left n bits.
inline MD5::uint4 MD5::rotate_left(uint4 x, int n) {
return (x << n) | (x >> (32-n));
}

//FF,� GG, HH, and II transformations for rounds 1, 2,
3, and 4.

//Rot�ation is separate from addition to prevent
re-computation.

inl�ine void MD5::FF(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a+ F(b,c,d) + x + ac, s) + b;
}

inl�ine void MD5::GG(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a + G(b,c,d) + x + ac, s) + b;
}

inl�ine void MD5::HH(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac) {

199Message Digest Algorithm 5

a = rotate_left(a + H(b,c,d) + x + ac, s) + b;
}

inli�ne void MD5::II(uint4 &a, uint4 b, uint4 c,
uint4 d, uint4 x, uint4 s, uint4 ac) {

a = rotate_left(a + I(b,c,d) + x + ac, s) + b;
}

//default constructor, just initailize
MD5::MD5()
{
init();
}
//nif�ty shortcut ctor, compute MD5 for string and

finalize it right away
MD5::MD5(const string &text)
{
init();
update(text.c_str(), text.length());
finalize();
}

void MD5::init()
{
finalized = false;

count[0] = 0;
count[1] = 0;

//load magic initialization constants.
state[0] = 0x67452301;
state[1] = 0xefcdab89;
state[2] = 0x98badcfe;
state[3] = 0x10325476;
}

//dec�odes input (unsigned char) into output (uint4).
Assumes len is a multiple of 4.

voi�d MD5::decode(uint4 output[], const uint1 input[],
size_typelen)

{
for (unsigned inti = 0, j = 0; j <len; i++, j + = 4)
out�put[i] = ((uint4)input[j]) | (((uint4)input[j+1])

<< 8) |

200 ﻿Bayzid Ashik Hossain

	 (((u�int4)input[j+2]) << 16) | (((uint4)input[j+3])
<< 24);

}

//enc�odes input (uint4) into output (unsigned char).
Assumes len is

//a multiple of 4.
voi�d MD5::encode(uint1 output[], const uint4 input[],

size_typelen)
{
for (size_typei = 0, j = 0; j <len; i++, j + = 4) {
output[j] = input[i] & 0xff;
output[j+1] = (input[i] >> 8) & 0xff;
output[j+2] = (input[i] >> 16) & 0xff;
output[j+3] = (input[i] >> 24) & 0xff;
	 }
}

//apply MD5 algorithm on a block
void MD5::transform(const uint1 block[blocksize])
{
uint�4 a = state[0], b = state[1], c = state[2],

d = state[3], x[16];
decode (x, block, blocksize);

/* Round 1 */
FF (a, b, c, d, x[0], 7, 0xd76aa478);/* 1 */
FF (d, a, b, c, x[1], 12, 0xe8c7b756);/* 2 */
FF (c, d, a, b, x[2], 17, 0x242070db);/* 3 */
FF (b, c, d, a, x[3], 22, 0xc1bdceee);/* 4 */
FF (a, b, c, d, x[4], 7, 0xf57c0faf);/* 5 */
FF (d, a, b, c, x[5], 12, 0x4787c62a);/* 6 */
FF (c, d, a, b, x[6], 17, 0xa8304613);/* 7 */
FF (b, c, d, a, x[7], 22, 0xfd469501);/* 8 */
FF (a, b, c, d, x[8], 7, 0x698098d8);/* 9 */
FF (d, a, b, c, x[9], 12, 0x8b44f7af);/* 10 */
FF (c, d, a, b, x[10], 17, 0xffff5bb1);/* 11 */
FF (b, c, d, a, x[11], 22, 0x895cd7be);/* 12 */
FF (a, b, c, d, x[12], 7, 0x6b901122);/* 13 */
FF (d, a, b, c, x[13], 12, 0xfd987193);/* 14 */
FF (c, d, a, b, x[14], 17, 0xa679438e);/* 15 */
FF (b, c, d, a, x[15], 22, 0x49b40821);/* 16 */

/* Round 2 */
GG (a, b, c, d, x[1], 5, 0xf61e2562);/* 17 */
GG (d, a, b, c, x[6], 9, 0xc040b340);/* 18 */

201Message Digest Algorithm 5

GG (c, d, a, b, x[11], 14, 0x265e5a51);/* 19 */
GG (b, c, d, a, x[0], 20, 0xe9b6c7aa);/* 20 */
GG (a, b, c, d, x[5], 5, 0xd62f105d);/* 21 */
GG (d, a, b, c, x[10], 9, 0x2441453);/* 22 */
GG (c, d, a, b, x[15], 14, 0xd8a1e681);/* 23 */
GG (b, c, d, a, x[4], 20, 0xe7d3fbc8);/* 24 */
GG (a, b, c, d, x[9], 5, 0x21e1cde6);/* 25 */
GG (d, a, b, c, x[14], 9, 0xc33707d6);/* 26 */
GG (c, d, a, b, x[3], 14, 0xf4d50d87);/* 27 */
GG (b, c, d, a, x[8], 20, 0x455a14ed);/* 28 */
GG (a, b, c, d, x[13], 5, 0xa9e3e905);/* 29 */
GG (d, a, b, c, x[2], 9, 0xfcefa3f8);/* 30 */
GG (c, d, a, b, x[7], 14, 0x676f02d9);/* 31 */
GG (b, c, d, a, x[12], 20, 0x8d2a4c8a);/* 32 */

/* Round 3 */
HH (a, b, c, d, x[5], 4, 0xfffa3942);/* 33 */
HH (d, a, b, c, x[8], 11, 0x8771f681);/* 34 */
HH (c, d, a, b, x[11], 16, 0x6d9d6122);/* 35 */
HH (b, c, d, a, x[14], 23, 0xfde5380c);/* 36 */
HH (a, b, c, d, x[1], 4, 0xa4beea44);/* 37 */
HH (d, a, b, c, x[4], 11, 0x4bdecfa9);/* 38 */
HH (c, d, a, b, x[7], 16, 0xf6bb4b60);/* 39 */
HH (b, c, d, a, x[10], 23, 0xbebfbc70);/* 40 */
HH (a, b, c, d, x[13], 4, 0x289b7ec6);/* 41 */
HH (d, a, b, c, x[0], 11, 0xeaa127fa);/* 42 */
HH (c, d, a, b, x[3], 16, 0xd4ef3085);/* 43 */
HH (b, c, d, a, x[6], 23, 0x4881d05);/* 44 */
HH (a, b, c, d, x[9], 4, 0xd9d4d039);/* 45 */
HH (d, a, b, c, x[12], 11, 0xe6db99e5);/* 46 */
HH (c, d, a, b, x[15], 16, 0x1fa27cf8);/* 47 */
HH (b, c, d, a, x[2], 23, 0xc4ac5665);/* 48 */

/* Round 4 */
II (a, b, c, d, x[0], 6, 0xf4292244);/* 49 */
II (d, a, b, c, x[7], 10, 0x432aff97);/* 50 */
II (c, d, a, b, x[14], 15, 0xab9423a7);/* 51 */
II (b, c, d, a, x[5], 21, 0xfc93a039);/* 52 */
II (a, b, c, d, x[12], 6, 0x655b59c3);/* 53 */
II (d, a, b, c, x[3], 10, 0x8f0ccc92);/* 54 */
II (c, d, a, b, x[10], 15, 0xffeff47d);/* 55 */
II (b, c, d, a, x[1], 21, 0x85845dd1);/* 56 */
II (a, b, c, d, x[8], 6, 0x6fa87e4f);/* 57 */
II (d, a, b, c, x[15], 10, 0xfe2ce6e0);/* 58 */
II (c, d, a, b, x[6], 15, 0xa3014314);/* 59 */

202 ﻿Bayzid Ashik Hossain

II (b, c, d, a, x[13], 21, 0x4e0811a1);/* 60 */
II (a, b, c, d, x[4], 6, 0xf7537e82);/* 61 */
II (d, a, b, c, x[11], 10, 0xbd3af235);/* 62 */
II (c, d, a, b, x[2], 15, 0x2ad7d2bb);/* 63 */
II (b, c, d, a, x[9], 21, 0xeb86d391);/* 64 */

state[0] + = a;
state[1] + = b;
state[2] + = c;
state[3] + = d;

//Zeroize sensitive information.
memset(x, 0, sizeof x);
}

//MD5� block update operation. Continues an MD5
message-digest

//operation, processing another message block
voi�d MD5::update(const unsigned char input[],

size_type length)
{
//compute number of bytes mod 64
size_type index = count[0]/8% blocksize;

//Update number of bits
if ((count[0] + = (length << 3)) < (length << 3))
count[1]++;
count[1] + = (length >> 29);

//number of bytes we need to fill in buffer
size_typefirstpart = 64 - index;

size_typei;

//transform as many times as possible.
if (length > = firstpart)
{
//fill buffer first, transform
memcpy(&buffer[index], input, firstpart);
transform(buffer);
//transform chunks of blocksize (64 bytes)
for� (i = firstpart; i + blocksize< = length;

i + = blocksize)
transform(&input[i]);

203Message Digest Algorithm 5

index = 0;
}
else
i = 0;

//buffer remaining input
memcpy(&buffer[index], &input[i], length-i);
}

//for convenience provide a verson with signed char
void MD5::update(const char input[], size_type length)
{
update((const unsigned char*)input, length);
}

//MD5� finalization. Ends an MD5 message-digest
operation, writing the

//the message digest and zeroizing the context.
MD5& MD5::finalize()
{
static unsigned char padding[64] = {
0x80, �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, ��0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

if (!finalized) {
//Save number of bits
unsigned char bits[8];
encode(bits, count, 8);

//pad out to 56 mod 64.
size_type index = count[0]/8% 64;
siz�e_typepadLen = (index < 56) ? (56 - index) :

(120 - index);
update(padding, padLen);

//Append length (before padding)
update(bits, 8);

//Store state in digest
encode(digest, state, 16);
//Zeroize sensitive information.

204 ﻿Bayzid Ashik Hossain

memset(buffer, 0, sizeof buffer);
memset(count, 0, sizeof count);

finalized = true;
}

return *this;
}

//return hex representation of digest as string
string MD5::hexdigest() const
{
if (!finalized)
return "";

charbuf[33];
for (inti = 0; i<16; i++)
sprintf(buf+i*2, "%02x", digest[i]);
buf[32] = 0;

return string(buf);
}

ostream& operator<<(ostream& out, MD5 md5)
{
return out << md5.hexdigest();
}

string md5(const string str)
{
MD5 md5 = MD5(str);
return md5.hexdigest();
}

int main(intargc, char *argv[])
{
cout<< "md5 of 'grape': "<< md5("grape") <<endl;
return 0;
}

10.7  Conclusion

Message digest algorithms such as MD5 are mainly used in imple-
menting a digital signature, which requires all of the general proper-
ties mentioned above. However, the property requirement may vary

205Message Digest Algorithm 5

based on which application is using this algorithm. An application
may depend on some or all of the properties of the MD5. For exam-
ple, some applications use the one-way property of an MD5. Because
of its property of pseudorandomness, MD5 is also used to be part of
the mechanism for random number generation. MD5 digests have
been widely used in the software industry to provide some assurance
that a transferred file has arrived unbroken. For example, file servers
often provide a precomputed MD5 (known as md5sum) checksum
for the files so that a user can match the checksum of the down-
loaded file and verify the integrity [4]. Most Unix-based operating
systems’ distribution package includes MD5 sum utilities. MD5 is
also available to Windows operating system users. They may install
a Microsoft utility or use third-party applications. This type of
checksum is also utilized by Android ROMs (read-only memories).
Compared to other digest algorithms, MD5 is simple and easy to
implement. It performs very fast on a 32-bit machine. It is inferred
that the difficulty of coming up with two messages having the identi-
cal message digest is on the order of 264 operations, and the difficulty
of coming up with any message having a given message digest is on
the order of 2128 operations.

References
	 1.	 MD5, Command Line Message Digest Utility, http://www.fourmilab.

ch/md5/.
	 2.	 Li, J. MD5 Message Digest Algorithm. Computer Science Department,

San Jose State University.
	 3.	 MD5, Wikipedia, http://en.wikipedia.org/wiki/MD5.
	 4.	 MD5 Sum, Wikipedia, http://en.wikipedia.org/wiki/Md5sum.
	 5.	 A Portable, Fast, and Free Implementation of the MDS Message-Digest

Algorithm (RFC 1321), http://openwall.info/wiki/people/solar/software/
public-domain-source-code/md5.

	 6.	 C++ MD5 Function, Zedwood, http://www.zedwood.com/article/cpp-
md5-function.

	 7.	 CERT Vulnerability Note VU#836068. Retrieved February 8, 2014,
from Kb.cert.org.

	 8.	 NIST.gov—Computer Security Division—Computer Security Resource
Center. Retrieved from csrc.nist.gov.

207

11
Secure Hash Algorithm

S A D DA M H O S S A I N M U K TA
A N D S A I F U L A Z A D

Keywords

Authentication check
Hash function
Integrity check
Secure Hash Algorithm
SHA-1

In 1990, Ron Rivest invented an algorithm utilizing the concept
of hash function, called Message Digest 4 (MD4). He extended
that algorithm in 1992, and named it Message Digest 5 (MD5).
Later in 1993, the National Institute of Standards and Technology
(NIST) developed and published an algorithm as a Federal
Information Processing Standard (FIPS 180) that is analogous to
the MD5 algorithm, called Secure Hash Algorithm (SHA). It is
now often named SHA-0. After discovering some weaknesses in

Contents

Keywords	 207
11.1	 Basic Hash Function Concept	 208
11.2	 Applications	 208
11.3	 Steps of SHA-1	 209

11.3.1	Appending Original Message Lengths
and Padding	 209

11.3.2	 Initialization	 210
11.3.3	 Message Processing	 210
11.3.4	 Output	 212

11.4	 An Example	 213
11.5	 Implementation	 216
11.6	 Conclusion	 223

208 ﻿Saddam Hossain Mukta and Saiful Azad

the SHA, the National Security Agency (NSA) shortly withdrew
the publication. Then, in 1995, the NSA issued a revised version
of the SHA that is commonly designated SHA-1. In the SHA-1
algorithm, a single bitwise rotation is introduced in the message
schedule of its compression functions over SHA.

11.1  Basic Hash Function Concept

A hash function is a procedure that maps data of arbitrary length
to data of a fixed length. The values returned by a hash function are
often known as hash values, hash codes, hash sums, checksums, or
simply hashes. Generally, a hash function compresses data to a fixed
size, which could be considered a shortened reference to the original
data. For compression, hash functions usually utilize a one-way func-
tion of number theory; hence, they are irreversible. Consequently, it is
infeasible to reconstruct particular data when a hash value is known.
Utilizing this basic concept, there are some hash algorithms that
have been proposed: SHA, SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. Each algorithm is dif-
ferent from the others in terms of one or more parameters. Table 11.1
illustrates various parameters of different algorithms.

There are a couple of applications where these irreversible hash val-
ues are utilized. They are discussed in detail in the next section.

11.2  Applications

One realistic application of a hash function is a hash table in data
structure. It is tedious to search particular data in a list linearly;

Table 11.1  Comparison of Various Secure Hash Algorithms

ALGORITHM
MESSAGE SIZE,

MI (BITS)
BLOCK SIZE,
BI (BITS)

WORD SIZE,
WI (BITS)

MESSAGE DIGEST
SIZE, DI (BITS)

SHA-1 <264 512 32 160
SHA-224 <264 512 32 224
SHA-256 <264 512 32 256
SHA-384 <2128 1024 64 384
SHA-512 <2128 1024 64 512
SHA-512/224 <2128 1024 64 224
SHA-512/256 <2128 1024 64 256

209Secure Hash Algorithm

instead, a hash value could be computed utilizing the key part of the
data to keep an indication of the entire data. Now, a simple data com-
parison can be utilized to find out desired data, which accelerates the
searching mechanism. Another application of the hash function is
in cryptography, the science of encoding and protecting data. This is
the application in which we are interested. A hash function can be
utilized to check the integrity of a piece of data, and often a resultant
hash value is affixed to the original data. After receiving the data at
the destination, a receiver utilizes a similar hash function to create a
hash value. Then, two hash values are compared to check the equal-
ity. If they are similar, the receiver can presume that the integrity is
preserved in the data. If anyone changes the data, in that case two
hash values cannot be similar. Hash functions are also utilized for
authentication and verification.

11.3  Steps of SHA-1

The processing steps of the SHA-1 are discussed below.

11.3.1  Appending Original Message Lengths and Padding

Before starting to process the message, M, it is padded first so that
its length becomes congruent to 448 modulo 512. If the message is
already of the desired length, padding is still performed. Thus, the
number of padding bits could range from 1 to 512 bits. The padding
starts with 1 bit and is followed by the consecutive number of zeros.
The last 64 bits are kept empty. These bits are utilized to store the
length of the original message. These operations are illustrated in
Figure 11.1.

MNM2

N × 512

Original Message 10000......0 Original Message
Length (bits)

Original Message

M1 . . .

Figure 11.1  Message format after padding and appending original message length.

210 ﻿Saddam Hossain Mukta and Saiful Azad

11.3.2  Initialization

SHA-1 generates a 160-bit message digest that consists of five 32-bit
words. Let us call those h0, h1, h2, h3, and h4. Before utilizing these
words in the processing, they are initialized with the following values:

h0 = 0x67452301

h1 = 0xefcdab89

h2 = 0x98badcfe

h3 = 0x10325476

h4 = 0xc3d2e1f0

These values are stored according to big-endian format, which
means that the most significant byte of a word is placed in the low-
address byte position. These values change when they are passed
through different rounds. There are 80 rounds in the SHA-1. After
the last round, the value of h0|h1|h2|h3|h4 is considered the message
digest of the entire message. Details of these rounds are discussed
later in this chapter.

11.3.3  Message Processing

As mentioned previously, every message passes through 80 different
rounds before generating the final message digest, which is shown in
Figure 11.2. It can be observed from the figure that in every round, one
word is passed, and from the message, Mi, only 16 words can be found.
The rest of the words are generated using the following expression:

	 = ⊕ ⊕ ⊕− − − −
/

3 8 14 16W W W W Wi i i i i

/W i is then rotated 1 bit to the left to generate Wi. Along with a word,
one constant, Ki, is passed to the ith round. The value of K varies with
rounds as follows:

  Ki = 0x5a827999	 (0 ≤ t ≤ 19)

  Ki = 0x6ed9eba1	 (20 ≤ t ≤ 39)

  Ki = 0x8f1bbcdc	 (40 ≤ t ≤ 59)

  Ki = 0xca62c1d6	 (60 ≤ t ≤ 79)

211Secure Hash Algorithm

Every round acquires a 160-bit or 5-word buffer value from the
previous round, except the initial one, which acquires this value
from the initialization technique discussed in the previous sub-
section. All the operations involved in a round are depicted in
Figure 11.3. Each round utilizes a function, F, which is calculated
as follows:

Assume,

	 A = h(i − 1, 1)

	 B = h(i − 1, 2)

	 C = h(i − 1, 3)

++++

Round 79

+

Round 1
K1

K79

<<<1+
W79

W63

W65

W71

W76

W1

K0

W0

h0 h1 h2 h3

Hi–1

Hi

h4

M
es

sa
ge

Round 0

Figure 11.2  Processing of a 512-bit block.

212 ﻿Saddam Hossain Mukta and Saiful Azad

	

= = ∧ ∨ − ∧ <= <=

= ⊕ ⊕ <= <=

= ∧ ∨ ∧ ∨ ∧ <= <=

= ⊕ ⊕ <= <=

(, , ,) () () (0 19)

(20 39)

() () () (40 59)

(60 79)

F f i A B C A B A C i

A B C i

A B A C B C i

A B C i

Again, a function could be defined by the following set of expressions:

	

=

=

=

=

= ⊕ ⊕ ⊕ ⊕

−

−

−

−

− −

()

((() ()))

(,1) (1,0)

(,2) 30 (1,1)

(,3) (1,2)

(,4) (1,3)

(,0) (1,4) 5 (1,0)

h h

h LS h

h h

h h

h h F LS h W K

i i

i i

i i

i i

i i i i i

where LSj is rotating j number of bits to the left and i is the round number.

11.3.4  Output

A 160-bit output is produced after completing all the rounds as follows:

  Hi = sum(H(i − 1), h79)

h(i–1,4)h(i–1,3)h(i–1,2)h(i–1,1)h(i–1,0)

<<<5

F

h(i,4)

Ki

Wi

h(i,3)h(i,2)h(i,1)h(i,0)

+

+

+

+
<<<30

Figure 11.3  Operations of a single round.

213Secure Hash Algorithm

In this process, all the blocks are processed. The final 160-bit resultant
output is considered the message digest. An example is given below to
understand the SHA-1 in detail.

11.4  An Example

The following example demonstrates the procedures followed by the
SHA-1 algorithm to generate a 160-bit message digest.

	 1.	Let us assume that the message for which a user wants to find
the message digest is: The quick fox jumps over the lazy dog.

	 2.	Following is the bit-level representation of the above message:

01010100 01101000 01100101 00100000 01110001
01110101 01101001 01100011 0110101100100000
01100110 01101111 01111000 00100000 01101010
01110101 01101101 0111000001110011 00100000
01101111 01110110 01100101 01110010 00100000
01110100 0110100001100101 00100000 01101100
01100001 01111010 0111100100100000 01100100
0110111101100111 00101110

	 3.	The message contains 304 bits. Therefore, it is necessary to pad
the message so that its length becomes congruent to 448 mod-
ulo 512. Since the entered message is 304 bits long, 144 bits
padding is necessary. The first bit is 1 and the remaining
143 bits are zeros. At the end, a 64-bit value appends that
represents the original size of the message. For this specific
example, we could find the following message after padding
and appending the length of the original message:

01010100 01101000 01100101 00100000 01110001
01110101 01101001 01100011 0110101100100000
01100110 01101111 01111000 00100000 01101010
01110101 01101101 0111000001110011 00100000
01101111 01110110 01100101 01110010
0010000001110100 0110100001100101 00100000
01101100 01100001 01111010 01111001 00100000
01100100 0110111101100111 00101110 10000000
00000000 00000000 00000000 00000000 00000000
0000000000000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
0000000000000000 00000000 0000000000000000

214 ﻿Saddam Hossain Mukta and Saiful Azad

00000000 00000000 00000000 00000000
0000000100110000

	 4.	The above message is now divided into 16 words and utilized in
16 different rounds ranging from 0 to 15. The first 32 bits are
stored in W0 and the last 32 bits are stored in W15. How to calcu-
late the other words that could be acquired from the message is
already discussed above. A 160-bit buffer is used to store the result
of the hash function. In this example, W0 = 01010100 01101000
01100101 00100000. K0 is also known, which is 0x5a827999,
or 01011010100000100111100110011001 (in binary). Initially,
a 160-bit buffer is initialized as the following:

h0: 00000001 00100011 01000101 01100111
h1: 10001001 10101011 11001101 11101111
h2: 11111110 11011100 10111010 10011000
h3: 01110110 01010100 00110010 00010000
h4: 11110000 11100001 11010010 11000011

	 After round 0:
h0: 11010011 11111101 00011100 11110100
h1: 00000001 00100011 01000101 01100111
h2: 11100010 01101010 11110011 01111011
h3: 11111110 11011100 10111010 10011000
h4: 01110110 01010100 00110010 00010000

	 After round 1:
h0: 11101110 11110000 11000101 01011011
h1: 11010011 11111101 00011100 11110100
h2: 11000000 01001000 11010001 01011001
h3: 11100010 01101010 11110011 01111011
h4: 11111110 11011100 10111010 10011000

	 After round 2:
h0: 10110001 00100101 00001111 00110011
h1: 11101110 11110000 11000101 01011011
h2: 01110100 00111111 00000111 11111101
h3: 11000000 01001000 11010001 01011001
h4: 11100010 01101010 11110011 01111011

215Secure Hash Algorithm

	 After round 3:
h0: 01111010 00111101 10010000 00001001
h1: 10110001 00100101 00001111 00110011
h2: 00111011 01111100 11110001 10010110
h3: 01110100 00111111 00000111 11111101
h4: 11000000 01001000 11010001 01011001

	 After round 4:
h0: 00101111 00100011 11001101 00110001
h1: 01111010 00111101 10010000 00001001
h2: 01101100 11001001 11000011 01001100
h3: 00111011 01111100 11110001 10010110
h4: 01110100 00111111 00000111 11111101

	 .
	 .
	 .
	 After final round (i.e., 79):

h0: 10100110 11101101 10001111 00011011
h1: 11011100 01010111 10011001 10111010
h2: 01000000 01000111 11111110 00000110
h3: 01000011 11001000 00111000 00101110
h4: 00010100 00111010 00100010 11100001

Since the message is less than 512 bits, a single block processing
is enough to find out the final message digest. In case of a larger
block, this procedure needs to continue again until all the blocks are
processed.

Therefore, the final message digest would be

h0: 10100111 00010000 11010101 10000010
h1: 01100101 00000011 01100111 10101010
h2: 00111110 00100100 10111001 10011111
h3: 10111001 00011100 01101011 00111110
h4: 00000100 00011100 11110101 10100100

The message digest (in hex):
82d510a7aa6703659fb9243e3e6b1cb9a4f51c04

216 ﻿Saddam Hossain Mukta and Saiful Azad

11.5  Implementation

All the codes (and program files) related to the SHA-1 algorithm are
included below with relevant comments.

/** SHA1.h file **/
#ifndef SHA1_H_
#define SHA1_H_

#include <stdint.h>
#include <vector>
#include <iostream>
#include <stdio.h>
#include <bitset>
#include <climits>

using namespace std;

#define MB 64//size of the message block in bytes
#def�ine AB 8//appended bytes where the length of the

message is stored
#define Byte 8

template<typename T>
voidshow_binrep(const T& a)
{
const char* beg = reinterpret_cast<const char*>(&a);
const char* end = beg + sizeof(a);
while(beg ! = end)
std::cout<<std::bitset<CHAR_BIT>(*beg++) << ' ';
std::cout<< '\t';
}

class SHA1 {
public:
SHA1();
~SHA1();

void Reset();
voidSetMessage();
voidMessageBlockProcessing(uint8_t* MessageBlock);
voidMessagePadding();
voi�d Rounds (uint32_t *DB, uint32_t W, uint32_t K,

intround_num);
void Result();

217Secure Hash Algorithm

voidClearMessageBlock();
voidClearDigestBlock();
voidShowMessageDigest();
private:
uint8_tMessageBlock[64];
uint32_tDigestBlock[5];
	 uint8_t *Message;
vector<char>InputMessage;
uint64_tMessageSize;
uint64_tMessageSizeAfterPadding;
};

#endif//SHA1_H_

/**SHA1.cpp file **/
#include <cstdlib>
#include "sha.h"

#def�ine LeftCircularShift(bits,word) (((word) <<
(bits)) | ((word) >> (32-(bits))))

SHA1 :: SHA1 ()
{
Reset();
}

SHA1 :: ~SHA1 () {}

void SHA1 :: ClearMessageBlock()
{
for (inti = 0; i< MB; i++) {
MessageBlock[i] = 0;
	 }
}

void SHA1 :: ClearDigestBlock()
{
for (inti = 0; i< 5; i++) {
DigestBlock[i] = 0;
	 }
}
void SHA1 :: Reset ()
{
ClearMessageBlock();
ClearDigestBlock();

218 ﻿Saddam Hossain Mukta and Saiful Azad

DigestBlock[0] = 0x67452301;
DigestBlock[1] = 0xEFCDAB89;
DigestBlock[2] = 0x98BADCFE;
DigestBlock[3] = 0x10325476;
DigestBlock[4] = 0xC3D2E1F0;
}

void SHA1 :: ShowMessageDigest ()
{
cout<< "h0: "; show_binrep(DigestBlock[0]); cout<<endl;
cout<< "h1: "; show_binrep(DigestBlock[1]); cout<<endl;
cout<< "h2: "; show_binrep(DigestBlock[2]); cout<<endl;
cout<< "h3: "; show_binrep(DigestBlock[3]); cout<<endl;
cout<< "h4: "; show_binrep(DigestBlock[4]); cout<<endl;
}

void SHA1 :: SetMessage() {
cout<< "Put a message (press enter to finish): ";
char c = getchar();
while (c ! = '\n') {
InputMessage.push_back(c);
	 c = getchar();
	 }
MessagePadding();
}

void SHA1 :: MessagePadding()
{
uint64_tMessageSize = (uint64_t)InputMessage.size();
uint64_t n = ((MessageSize + AB)/MB) + 1;
MessageSizeAfterPadding = n * MB;
	 Message = new uint8_t[MessageSizeAfterPadding];

int�padding_bytes = MessageSizeAfterPadding -
(MessageSize + AB);

cou�t<<dec<< "Number of padding bytes are: " <<padding_
bytes<<endl;

for (uint64_t i = 0; i<MessageSize; i++) {
	 Message[i] = InputMessage[i];
	 }
Message[MessageSize] = 0x80;

for� (int i = MessageSize + 1;
i<MessageSizeAfterPadding; i++) {

219Secure Hash Algorithm

	 Message[i] = 0;
	 }

uint64_tMessageSizeInBit = MessageSize * Byte;

Mes�sage[56] = (MessageSizeInBit& 0x000000000000ff00)
>> 56;

Mes�sage[57] = (MessageSizeInBit& 0x000000000000ff00)
>> 48;

Mes�sage[58] = (MessageSizeInBit& 0x000000000000ff00)
>> 40;

Mes�sage[59] = (MessageSizeInBit& 0x000000000000ff00)
>> 32;

Mes�sage[60] = (MessageSizeInBit& 0x000000000000ff00)
>> 24;

Mes�sage[61] = (MessageSizeInBit& 0x000000000000ff00)
>> 16;

Mes�sage[62] = (MessageSizeInBit& 0x000000000000ff00)
>> 8;

Message[63] = MessageSizeInBit& 0x00000000000000ff;

for (int i = 0; i<MessageSizeAfterPadding; i++) {
show_binrep(Message[i]);
	 }
}

voi�d SHA1 :: Rounds (uint32_t *DB, uint32_t W,
uint32_t K, intround_num)

{
uint32_t temp;	 /* Temporary word value	 */

cout<<endl;
if (round_num> = 0 &&round_num< 20) {
temp = LeftCircularShift(5,DB[0]) +
		 ((DB[1] & DB[2]) | ((~DB[1]) & DB[3])) +
DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 20 &&round_num< 40) {

220 ﻿Saddam Hossain Mukta and Saiful Azad

temp = LeftCircularShift(5,DB[0]) + (DB[1] ^ DB[2] ^
DB[3]) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 40 &&round_num< 60) {
temp = LeftCircularShift(5,DB[0]) +
		 ((DB[1] & DB[2]) | (DB[1] & DB[3]) |
(DB[2] & DB[3])) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else if (round_num> = 60 &&round_num< 80) {
temp = LeftCircularShift(5,DB[0]) + (DB[1] ^ DB[2] ^
DB[3]) + DB[4] + W + K;
DB[4] = DB[3];
DB[3] = DB[2];
DB[2] = LeftCircularShift(30,DB[1]);
DB[1] = DB[0];
DB[0] = temp;
cout<< "Round: " <<round_num<<endl;
ShowMessageDigest();
	 }
else {
cout<< "Wrong round is put" <<endl;
exit(1);
	 }
}

void� SHA1 :: MessageBlockProcessing (uint8_t*
MessageBlock)

{
uint32_t K[4] = {0x5A827999,
			 0x6ED9EBA1,

221Secure Hash Algorithm

			 0x8F1BBCDC,
			 0xCA62C1D6
	 };

uint32_t	 W[80];	/* Word sequence	 */
uint32_t	 A = DigestBlock[0],
		 B = DigestBlock[1],
		 C = DigestBlock[2],
		 D = DigestBlock[3],
	 E = DigestBlock[4]; /* Word buffers	 */

	 //Initialize the first 16 words in the array W
uint8_t t;
for(t = 0; t < 16; t++)
	 {
	 W[t] = MessageBlock[t * 4] << 24;
	 W[t] | = MessageBlock[t * 4 + 1] << 16;
	 W[t] | = MessageBlock[t * 4 + 2] << 8;
	 W[t] | = MessageBlock[t * 4 + 3];
	 }

	 //Storing other 64 words in the array W
for(t = 16; t < 80; t++)
	 {
	 W[t] = LeftCircularShift(1, W[t-3] ^ W[t-8] ^ W[t-14]
^ W[t-16]);
	 }

	 //round function calling
for(t = 0; t < 20; t++)
	 {
Rounds(DigestBlock, W[t], K[0], t);
	 }

for(t = 20; t < 40; t++)
	 {
Rounds(DigestBlock, W[t], K[1], t);
	 }

for(t = 40; t < 60; t++)
	 {
Rounds(DigestBlock, W[t], K[2], t);
	 }

222 ﻿Saddam Hossain Mukta and Saiful Azad

for(t = 60; t < 80; t++)
	 {
Rounds(DigestBlock, W[t], K[3], t);
	 }

	 //final addition
DigestBlock[0] + = A;
DigestBlock[1] + = B;
DigestBlock[2] + = C;
DigestBlock[3] + = D;
DigestBlock[4] + = E;
cout<< "Message Digest: " <<endl;
ShowMessageDigest();

}

void SHA1 :: Result () {
for� (uint64_t i = 0; i<MessageSizeAfterPadding; i = i

+ 64) {
uint8_t temp[64];
for (uint64_t j = i; j <i + MB; j++) {
temp[j - i] = Message[j];

	 }
MessageBlockProcessing (temp);

	 }

cout<< "Final Message Digest: " <<endl;
ShowMessageDigest();
cout<< "In hex: " <<endl;
for (inti = 0; i< 5; i++)
cout<< hex <<DigestBlock[i];
cout<<endl;

}

/** main.cpp **/
#include "sha.h"

int main()

{
	 SHA1 sha;
sha.ShowMessageDigest();
sha.SetMessage();
sha.Result();

return 0;

}

223Secure Hash Algorithm

11.6  Conclusion

The SHA-1 is considered one of the most secure hash algorithms.
Therefore, it is utilized is various applications, like Secure Sockets Layer
(SSL), Pretty Good Privacy (PGP), Extensible Markup Language
(XML) signatures, in the Microsoft® Xbox, and in hundreds of other
applications (including from IBM, Cisco, Nokia, etc.). After a thor-
ough cryptanalysis over the SHA-1 in 2005, it has been observed that
in practice, it is weaker than its theoretical strength. Consequently,
NIST made a recommendation to all federal agencies to migrate to the
SHA-2 algorithm by 2010.

225

12
Fundamentals of Identity-

Based Cryptography

AY M E N B O U D G U I G A , M A RY L I N E
L A U R E N T, A N D M O H A M E D H A M D I

Contents

Keywords	 226
12.1	 Introduction to Cryptography	 227

12.1.1	 Symmetric Cryptography	 227
12.1.2	 Asymmetric Cryptography	 229
12.1.3	 Diffie–Hellman (DH) Algorithms	 231
12.1.4	 Rivest, Shamir, and Adleman (RSA) Algorithms	 232
12.1.5	 Elliptic Curve Cryptography (ECC)	 233

12.1.5.1	 ECC Key Generation	 235
12.1.5.2	 Elliptic Curve Digital Signature

Algorithm	 236
12.2	 ID-Based Cryptography	 237

12.2.1	 ID-Based Key Construction	 238
12.2.2	 Pairing Functions	 240
12.2.3	 Examples of ID-Based Encryption Schemes	 242

12.2.3.1	 Boneh and Franklin Encryption Scheme	 243
12.2.3.2	 Boneh and Boyen Encryption Schemes	 243
12.2.3.3	 Chen et al. Encryption Scheme	 244

12.2.4	 Examples of ID-Based Signature Algorithms	 244
12.2.4.1	 Paterson Signature Scheme	 244
12.2.4.2	 Hess Signature Scheme	 245
12.2.4.3	 Barreto et al. Signature Scheme	 245

12.2.5	 Arguments in Favor of IBC	 245
12.2.6	 Use of IBC in Network Security	 247

12.3	 Conclusion	 247
References	 248

226 ﻿Aymen Boudguiga et al.

Keywords

Applied cryptography
Asymmetric cryptography
Elliptic curve cryptography
ID-based cryptography
ID-based encryption
ID-based signature
Network security
Pairing
Public-key infrastructure (PKI)
RSA
Symmetric cryptography

Cryptography, when applied to network security, describes the art
of coding information into secrets that are transmitted over a public
channel to an intended receiver. The latter is the only entity capable of
recovering the initial information from the secrets. That is, any entity
can get the encrypted information, i.e., the ciphertext. However, it will
not be able to recover the original content of the message, namely,
the plaintext, unless it gets the key that has been used for encryp-
tion. Cryptography has been used for a long time to provide security
properties such as data confidentiality, data integrity, and data origin
authentication.

Data confidentiality ensures that the ciphertext does not pro-
vide any information about the plaintext. Generally, the confiden-
tiality property is provided by symmetric or asymmetric encryption.
Integrity mechanisms serve to detect any modification of the trans-
mitted data thanks to the use of hash functions in a signature or in a
keyed-hash message authentication code (HMAC).

Cryptography not only serves to authenticate communicating enti-
ties thanks to the use of authentication protocols such as Transport
Layer Security (TLS), but also serves to authenticate data origin
thanks to the use of HMAC or signatures. Moreover, cryptography
ensures nonrepudiation; namely, none of the communicating parties
could deny its participation to the communication.

In this chapter, we review the concepts of symmetric cryptography
and public-key cryptography in Section 12.1. We review the famous
Diffie–Hellman and RSA algorithms. Then, we introduce elliptic

227Fundamentals of IBC

curve cryptography (ECC) before describing ID-based cryptography
(IBC) in Section 12.2.

12.1  Introduction to Cryptography

Cryptography is based on mathematical algorithms that use, in gen-
eral, abstract algebra and groups theory. These algorithms need a
secret input that is usually named a key. The encryption schemes are
trapdoor functions that are easy to compute with the key. However,
they are hard or almost impossible to invert without the key.
Kerckhoffs [1] announced that “a cryptosystem should be secure even
if everything about the system is public knowledge, except the key.”
The same principle was reformulated by Shannon [2], as “the enemy
knows the system.”

During the second part of the twentieth century, the field of
cryptography expanded drastically thanks to the appearance of new
cryptographic systems. In fact, Diffie and Hellman revolutionized cryp-
tography in 1976 by defining the first asymmetric cryptosystem. Then,
Shamir proposed the RSA algorithm with Rivest and Adleman, before
publishing his outstanding works on threshold and ID-based cryptog-
raphies. Then in 1985, Koblitz and Miller presented the first elliptic
curve-based cryptosystem. Finally, quantum cryptography appeared as
the cryptography of the future, as it relies on optic and light theories,
but not on groups and fields theory. In quantum cryptography, every
bit is represented by the polarization of a photon.

In this section, we briefly describe the concepts of symmetric
cryptography (Section 12.1.1). Then, in Section 12.1.2 we present
public-key cryptography in depth.

12.1.1  Symmetric Cryptography

Symmetric cryptography is based on sharing a secret key between
two communicating entities, Alice and Bob. Symmetric cryptog-
raphy, as well as asymmetric cryptography, relies on the use of two
related algorithms for message encryption and decryption. We denote
the encryption algorithm by E and the decryption algorithm by D.
The encryption algorithm takes as inputs the plaintext message m
and a key k, and outputs the ciphertext c. Meanwhile, the decryption

228 ﻿Aymen Boudguiga et al.

algorithm D takes as inputs c and k, and outputs m. Let K be the set
of keys, M the set of messages, and C the set of ciphertexts; we define
E and D as follows:

	 E:M  × K → C	 D:C × K → M
	 (m,k) → c	 (c,k) → m

We say that an encryption algorithm is well defined if it verifies
the equation

	 D (E (m, k), k) = m

The Vernam one-time pad [3] is one of the oldest symmetric
encryption algorithms. It was patented in 1919. Vernam assumes
that the message m, the key k, and the c ciphertext have the same bit
lengths. The one-time pad relies on the exclusive-or (XOR) as encryp-
tion and decryption functions. Recall that XOR is equivalent to a
binary sum modulo 2. When Alice wants to cipher a message m to
Bob (Figure 12.1), Alice computes c = m ⊕ k. Bob deciphers the mes-
sage using the same key m = c ⊕ k. Vernam’s encryption is called a one-
time pad, as the key k is used once for ciphering a unique message m.
Therefore, the key has to be renewed for every message.

Shannon proved that the Vernam algorithm provided perfect secrecy
if the key length is at least equal to the message length. Perfect secrecy
means that an eavesdropper, Eve, does not distinguish the encryption
of a message m0 from that of a message m1. That is, no information
is recovered about the plaintext from the ciphertext. In other words,
Vernam’s algorithm verifies the following equation for every key k
uniformly chosen in K:

	 Pr (m0 ⊕ k = c) = Pr (m1 ⊕ k = c), ∀ m0, m1 ∈ M/m0 ≠ m1	 (12.1)

k = 10101
AliceBob

C

Eve
m?

m = 00111
m = c k

k = 10101

c = 10010

m = 00111
c = m k

Figure 12.1  Vernam’s one-time pad.

229Fundamentals of IBC

In other words, Equation (12.1) implies that the ciphertexts are
uniformly distributed in C. Vernam encryption has many drawbacks.
We stated that the key has to be renewed for every message. As such,
Alice and Bob have to provide a secure communication channel to
exchange a new key for every transmitted message. This is not fea-
sible in practice because Alice and Bob will be wasting half of their
communication time in exchanging keys (supposing that they man-
age a secure channel, for example, by using quantum cryptography).
In order to remove the problems of the one-time pad algorithm, new
types of symmetric encryption algorithms appeared. They are called
the block ciphers, as they cipher small blocks of data using small keys
of 64, 128, or 256 bits length. These algorithms rely on permutation.
The most famous ones are the Data Encryption Standard (DES) [4]
and the Advanced Encryption Standard (AES) [5].

12.1.2  Asymmetric Cryptography

Public-key or asymmetric cryptography gives two entities the oppor-
tunity to exchange information over an insecure channel while pro-
viding data confidentiality, nonrepudiation, and authenticity. In
addition, it permits two entities that have never met before to mutu-
ally authenticate themselves. Contrary to symmetric cryptography
where two communicating entities have to share the same secret key,
public-key cryptography relies on two keys to secure the exchanged
information. The pair of keys is formed by a public key and a private
key, which are related by a mathematical equation. Solving this math-
ematical equation comes to breaking a hard mathematical problem
such as the discrete logarithm problem (DLP). Each entity shares
its public key with its communicating peers. However, its private key
must be kept secret (Figure 12.2).

In practice, a public-key infrastructure (PKI) is deployed and a cer-
tification authority (CA) is used to certify the mapping between an
entity and its public key. The CA is a trusted third party that signs a
certificate that contains the public key and the identification informa-
tion of a user. In addition, the certificate provides information about
its issuing CA and includes a unique serial number. The serial number
serves to quickly identify the certificate during management opera-
tions. The CA should not know the private key, which corresponds

230 ﻿Aymen Boudguiga et al.

to the public key included in the certificate. Examples of CAs include
Verisign, Comodo, CAcert, and Thawte.

Many certification authorities can be overlapped in a hierarchical
fashion. That is, the certificate of the parent CA serves to verify the
certificates of its children CAs until reaching the root CA. The root
CA self-signs its own certificate, and it has to be trusted. In practice,
we define two types of CAs. The private CA is defined inside a private
company or a university. It is easy to manage, as certificate usage is
limited to a local area. In addition, the user’s identification is easy and
can be done, for example, in a human resources service before issu-
ing a certificate. Meanwhile, the public CA issues certificates to secure
transactions over the Internet and to authenticate unknown parties.
These certificates are used widely and are not limited to small domains.
This type of CA requires more caution when authenticating the users.

The CA manages certificate revocation lists (CRLs) to indicate
which certificates are revoked, and so the keys that become invalid.
CRLs can be viewed as databases that are securely managed by the
CA. In practice, the CA has two different manners of updating the
CRLs. In the first case, the CA requests from the users to check
periodically the CRL. As such, the users have to always be online
to check the list of revoked certificates. In the second case, the CA
distributes its CRL periodically to the users.

The two ways of CRL management increase the bandwidth con-
sumption due to the number of CRL requests and responses, or due to
the size of the transmitted CRL. Moreover, in the period separating
two CRL updates, users do not know the newly revoked certificates,
and consequently, attackers that successfully compromised a pri-
vate key (also very recently revoked) can impersonate as a legitimate

Alice (A)Bob (B)

E(m, PubA)

m, Sign(Hash(m), - PrivB)

Hash(m)´= Verify(Sign(Hash(m), PrivB), PubB)

m = D(E(m, PubA), PrivA)

- PrivB
- PubA

- PrivA
- PubB

Encryption:

Signature:

?

Figure 12.2  Public-key cryptography.

231Fundamentals of IBC

network user. For more details about PKI, interested readers are
invited to consult the following books: [6], [7], and [8].

We next present the first public-key scheme: the Diffie and
Hellman (DH) key exchange algorithm [9] (Section 12.1.3). Then,
we review the Rivest, Shamir, and Adleman (RSA) algorithms [10]
(Section 12.1.4). DH and RSA cryptosystems are based on the theory
of multiplicative groups and on integer factorization into a product of
primes, respectively. Finally, we describe the elliptic curve cryptogra-
phy (ECC) [11] that relies on an additive group of points of an elliptic
curve (Section 12.1.5).

12.1.3  Diffie–Hellman (DH) Algorithms

Diffie and Hellman [9] proposed in 1976 a mechanism to share a
secret key between two parties, Alice (A) and Bob (B). The public ele-
ments provided to each party are the prime P and a generator g of �*

P .
Alice and Bob generate their public elements KA = g a and KB = g b and
from their secret private keys a and b, which are randomly selected in
� –1

*
P . The DH steps are the following:

•	 Alice → Bob: {IDA, KA}: Alice starts the key computation by
sending to Bob her public key KA with her identity IDA. Upon
receiving this message, Bob computes the shared key KAB such
that KAB = (KA)b = (ga)b. Then, Bob responds to Alice with his
own public key KB = gb.

•	 Bob → Alice: {IDB, KB}: Upon receiving this message, Alice
computes the shared key KAB = (gb)a.

The DH weakness is the man in the middle (MIM) attack. That
is, Eve creates a shared secret with Alice and Bob by impersonating
as Bob from one side and as Alice from the other side. However, the
MIM attack can be easily removed by making Alice and Bob sign
their chosen public elements.

The DH security is based on the definition of the following math-
ematical problems:

•	 The Diffie–Hellman problem (DHP) consists of recovering the
secret key k = ga.b mod[p] given the prime p, the generator g of
�*

P, gamod[p] and gbmod[p].

232 ﻿Aymen Boudguiga et al.

•	 The discrete logarithm problem (DLP) consists of finding the
secret value s ∈ � –1

*
P given the prime p, the generator g of �*

P,
and the public value k such that k = ga mod[p]. It is clear that the
DHP is not harder than the DLP because any algorithm that
solves the DLP solves the DHP too. Indeed, if Eve recovers a
from ga, she will be able to compute gb.a using the captured gb.

There are various methods for solving the DLP. The basic one is the
exhaustive search, which consists of evaluating gi for i = 0, 1, ..., p – 2 until
finding the sought value. This method requires an average of O(p) mul-
tiplications. The exhaustive search is actually inefficient for long prime p.
For example, if p is 160 bits long, the time needed for trying all the possi-
bilities is around O(2160). However, more efficient algorithms such as the
baby-step giant-step algorithm and Pollard’s rho algorithm require)(O p
steps. In addition, Pohlig–Hellman proposed an algorithm that solves

the DLP in ∑ ()+



 = Π

=
=log(– 1) where – 1

1
1O e p p p pi i

i

r
i
r

i
ei,

Pohlig–Hellman thought that the decomposition of p – 1 into a product
of prime numbers would impact the DLP resolution time, as it consists
of finding s from k = gs mod[p] with ∈ � –1p . Nowadays, the index calculus

is the most efficient method for solving the DLP in)(log(). log(log())O ec p p .
More details about DLP resolution can be found in Chapter 3 of the
Handbook of Applied Cryptography [12].

12.1.4  Rivest, Shamir, and Adleman (RSA) Algorithms

Rivest, Shamir, and Adleman [10] presented the famous RSA schemes
in 1978. RSA key generation, encryption, and signature are based on
the difficulty of integer factorization into a product of prime numbers.

To generate an RSA key, we first choose two large and distinct
random primes p and q and compute the integer n as n = p.q. Then,
we compute the Euler function φ(n) = (p–1).(q–1). We select a ran-
dom integer e such that 1 < e <φ (n), where e and φ(n) are coprime
(i.e., gcd (e, φ(n)) = 1). Finally, we compute the unique integer d such
that 1 < d < φ(n) and e. d. = 1 mod[φ(n)]. Such an integer d can be
found using the extended Euclidean algorithm ([13], Chapter 1). The
public key is formed by the tuple (n, e) and its corresponding private
key is the integer d.

233Fundamentals of IBC

We present, in the following, the RSA encryption and signature
algorithms:

•	 RSA encryption and decryption: Let us suppose that Bob is
going to encrypt a message to Alice. Bob transforms the mes-
sage to an integer m in �*

n. Then, Bob computes c = me mod[n]
and sends the ciphertext c to Alice. To recover the plaintext
from the ciphertext, Alice executes the following operation:

	 cdmod[n] = me.dmod[n] = m(1+k.φ(n)) mod[n] = m mod[n]

	 Note that the decryption is based on the theorem of Euler,
which states:

	 xφ(n) = 1 mod[n], ∀ x ∈ �*
n

•	 RSA signature generation and verification: We suppose that
Bob wants to sign the message m before sending it to Alice.
Bob first computes the hash h = H(m) and transforms it to an
integer in �*

n. Then, using its private key d, he computes s = hd
mod[n]. Finally, Bob sends s and m to Alice. Alice verifies the
RSA signature with Bob’s public key (e, n). First, she com-
putes h′ = H(m). Then, she recovers h = semod[n] = he,dmod[n]=
h mod[n]. Finally, Alice compares h to h′. If the two hash
values are equal, the signature is valid; otherwise, it is rejected.

The RSA security depends on the difficulty of factoring the number
n into the product of two primes p and q. If the trivial trial and division
method is used for the factoring, we divide n by i = 2, 3, 5, 7, 11, ... until
hitting the smallest prime between p and q. That is, the running time
for the trial and division algorithm will be around either o(p) if p < q
or o(q) if q < p. However, a more efficient method, called quadratic sieve
factoring, factors the integer n into a product of two primes in approxi-
mately)(log(). log(log())O e n n . More details about sieving methods can be
found in Chapter 3 of the Handbook of Applied Cryptography [12].

12.1.5  Elliptic Curve Cryptography (ECC)

Elliptic curves (ECs) are cubic forms that are defined over finite fields,
generally a prime or a binary field denoted Fp or

2 pF , where p and 2 p

234 ﻿Aymen Boudguiga et al.

represent the order of the field. By order, we mean the number of
elements of the field. In this chapter, we only consider elliptic curves
that are defined over finite prime fields. That is, all the calculus in the
field is done mod[p].

An elliptic curve ()E pF is defined by the following Weierstrass
equation [14]:

	
+ + = + + +

∈ ∈

F

F

() : ,

where , {1, 2,3,4,6}

2
1 3

3
2

2
4 6E y a x y a y x a x a x a

a i

p

i p

The points of F()E p form an additive abelian group. That is, the binary
operation of the group is the addition of two points, and the identity
element of the group is a special point, called the point at infinity P∞.

The addition of EC points can be specified graphically as pre-
sented in Figure 12.3. Let P and Q be two distinct points belonging
to F()E p ; the sum S of P and Q is obtained by drawing a line through
P and Q. This line intercepts E in a third point R.S is the reflection of
R relative to the x-axis.

The double of the point P is obtained by drawing the tangent to
F()E p in P. This tangent intercepts the curve in a point R. S, the sym-

metric of R relative to the x-axis, is equal to 2.P. When the tangent in
P happens to be vertical, we say that 2.P = P∞, where P∞ is the identity
element of the additive group. For simplicity, we imagine that the
curve cuts the vertical tangent at infinity in the point P∞.

y2 = x3 – x

P

Q

X

2.X

R

S = P + Q

Figure 12.3  Elliptic curve points addition.

235Fundamentals of IBC

To compute the inverse –P of a point P = (x, y), we just take –P = (x, –y).
As such, the vertical line passing through P and –P cuts the curve at
P∞. That is P + (–P) = P∞.

The elliptic curve F()E p is said to be well defined (or smooth) if its
discriminant ∆ is different from 0. The condition ∆ ≠ 0 ensures that
the EC does not contain singular points for which the addition can-
not be defined. The expression of the discriminant ∆ is described by
the following equalities:

	

∆ = +

= +
= +

= +

= + +

– . – 8. – 27. 9. . .
4.

2. .
4.

. 4. . – . . . –

2
2

8 4
3

6
2

2 4 6

2 1
2

2

4 4 1 3

6 3
2

6

8 1
2

6 2 6 1 3 4 2 3
2

4
2

b b b b b b b
b a a
b a a a
b a a
b a a a a a a a a a a

When the characteristic p of the field Fp is greater than 2, the
Weierstrass equation is simplified to become:

	 ∈() : = + . + , where ,2 3E y x a x b a bp pF F

	 ∆ = –16.(4.a3 + 27.b2)

12.1.5.1  ECC Key Generation  Let us take G, a subgroup of F()E p ,
which is generated by the point P of prime order n. G contains the n
following points: {P∞, P, 2.P, 3.P, ..., (n–1).P}. Alice chooses a random
integer a ∈ F()E p as her private key and computes her corresponding
public key as KA = a.P. The problem of finding a given the primitive
root P of G and the public key KA denotes the Elliptic Curve Discrete
Logarithm Problem (ECDLP). The ECDLP can be solved using the
baby-step giant-step algorithm or Pollard’s rho algorithm in ()O n
steps ([13], Chapter 5).

The DH protocol can be easily adapted to the elements of the addi-
tive group G. Alice and Bob have to just exchange their public ele-
ments KA = a.P and KB = b.P. Of course, Alice and Bob keep secret
their respective private keys a and b. Then, they compute respectively
their shared key as

	 KAB = a.b.P = b.a.P = KBA

236 ﻿Aymen Boudguiga et al.

In cryptography, the security level of a symmetric encryption algo-
rithm is defined as the number of operations needed to break the
algorithm when an lk-bit key is used. For example, the number of ele-
mentary operations needed to break a block cipher encryption scheme
is equal to 2l k [15]. The same result can be retrieved from Vernam’s
one-time pad where c = m ⊕ k. The attacker has theoretically to try 2l k

possibilities to find the good key k to recover m from c. Nowadays, lk has
to be at least equal to 80 bits. As such, the key research will take O(280)
steps. Using a 4 GHz processor, we need around 9 million years to try
all the possibilities, assuming that each possibility is computed during
a clock cycle.

In asymmetric cryptography, the security level of an algorithm is
set with respect to the hardness of the factoring integer (the case of
RSA) or solving the ECDLP (the case of ECDSA). This concept of
security level sets the length in bits of RSA and EC keys. Table 12.1
presents the equivalence between the lengths of RSA and EC keys,
respectively, to the security level lk, where lk corresponds to the length
in bits of a symmetric key k.

It is clear from Table 12.1 that it is more interesting to use EC keys
than RSA keys when asymmetric cryptography is needed. For example,
the current key size recommendation for legacy public schemes is 2048
bits. A vastly smaller 224-bit ECC key offers the same level of security.
This advantage only increases with the security level. For example, a
3072-bit legacy key and 256-bit ECC key are equivalent, something
that becomes important as stronger security systems become mandated
and devices get smaller. ECC usage is expanding because elliptic curves
require less storage, less power, less memory, and less bandwidth. They
permit the implementation of cryptography in platforms that are con-
strained, such as wireless devices, handheld computers, and smart cards.
They also provide a big gain in situations where efficiency is important.

12.1.5.2  Elliptic Curve Digital Signature Algorithm  We present, in this
section, the ECDSA, which is the elliptic curve analog of the digital

Table 12.1  RSA and ECC Key Length Equivalences for the Same Security Levels

lk 80 112 128 192 256
RSA key length (bits) 1024 2048 3072 7680 15,360
ECC key length (bits) 160 224 256 384 512

237Fundamentals of IBC

signature algorithm (DSA) [16]. Let us consider G, a subgroup of an
elliptic curve F()E p , which is generated by the point P of prime order n.

To sign a message m, Bob chooses a random k in �*
n and computes

the point k. P = (x, y). Then, he computes e = h(m) and s = k–1(e+b.x)
mod[n], where b is Bob’s private key. Finally, Bob sends m and its
signature (x, s) to Alice.

At the reception (x, s) of and m, Alice computes e = h(m) and
calculates the point X using the public key of Bob KB = b. P as follows:

	 X = e.s–1.P + x.s–1.KB = (x′, y′)
Then, Alice compares x′ to x. If the two values are equal, the sig-

nature is valid.
The signature verification holds because we have s = k–1 (e + b.x)

mod[n] which implies that k = s–1 (e + b.x) mod[n]. Recall that the
public key of Bob is KB = b. P, we get

	 X = (x′, y′) = e.s–1.P + x. s–1. KB = s–1(e.P + x.b.P) = k.P = (x, y)
In the next section, we introduce IBC, which is a promising kind

of asymmetric cryptography. In IBC, the public key of an entity is
directly derived from its identity.

12.2  ID-Based Cryptography

IBC was initially introduced by Shamir [17] to provide entities with
public and private key pairs with no need for certificates, CA and
PKI. Shamir assumes that each entity uses one of its identifiers as
its public key. These identifiers have to be unique. In addition, he
assigns the private key generation function to a special entity called
the private key generator (PKG). That is, before accessing the net-
work, every entity has to contact the PKG to get back a smart card
containing its private key. This private key is computed so as to be
bound to the public key of the entity.

During the last decade, IBC has been improved by the integration
of ECC [14]. As a consequence, new ID-based encryption and signa-
ture schemes emerged, and they differ from Shamir’s method in that the
PKG does not rely on smart cards to store the private key and the cipher-
ing information. In 2001, Boneh and Franklin [18] presented the first
ID-based encryption scheme, where they used bilinear pairing functions
to map elliptic curve points to a number in a multiplicative group.

238 ﻿Aymen Boudguiga et al.

Sometimes, certificates are considered as IBC, as they bind the
user’s public key to his or her identity. In this chapter, IBC is con-
sidered as the cryptographic schemes where the public key is com-
putationally derived from the identity. The public key is the output
of a function (mostly a hash function) that takes as input the user’s
identity.

There exist many types of IBC schemes. We focus, in this work,
on the most commonly used schemes based on pairing functions [19].
For other schemes, we can state the work done by Cocks [20] for
an ID-based encryption scheme using the computational difficulty of
integer factorization and the quadratic residuosity problem.

In the following sections, we present the key generation process-
ing for IBC. Furthermore, we introduce some well-known ID-based
encryption (IBE) and signature (IBS) schemes that proved to be
secure within the random oracle model [21]. The random oracle
model serves to mathematically establish security proofs where cryp-
tographic functions, like hash functions, are considered random
abstract functions [22].

12.2.1  ID-Based Key Construction

When a station needs a private key, it provides the PKG with the iden-
tity ID intended to be used for its private-key computation. The PKG
then derives the node’s private key using some domain parameters.
For generating these parameters, the PKG runs a probabilistic poly-
nomial time (PPT) algorithm that takes as input a security parameter
k and outputs the groups , ,1 2G G and TG , and the pairing function
ê from ×1 2G G in TG . and1 2G G are additive groups of prime order
q, and TG is a multiplicative group of the same order q. Note that the
order q is defined with respect to k such that q > 2k. Generally, 1G and

2G are subgroups of the group of points of an elliptic curve (EC) over
a finite field and TG is a subgroup of a multiplicative group of a related
finite field. The subgroup 1G is generated by the point P while the
subgroup 2G is generated by the point. The point P (or the point Q) is
used to compute another point Ppub = s.P (or Qpub = s.Q), where s is the
domain secret. The PKG chooses randomly the secret ∈ * .s qZ

In addition to the definition of groups, some hash functions
need to be defined in accordance to the IBE or IBS schemes that

239Fundamentals of IBC

are going to be used. For example, a hash function H1 that verifies
→: {0, 1}* *1 1H G is defined in order to transform the node’s identity

into an EC point. Generally, the public key of a station is computed as
a hash of one of its identities, and it is either a point of an elliptic curve
or a positive integer. The list containing the groups and and ,1 2G G
the bilinear mapping ê, the points P and Ppub and the hash functions
form the domain public elements noted IBC-PEs. These IBC-PEs are
distributed by the PKG to the network users because they are needed
during the public-key derivation and the cryptographic operations.

The key derivation process starts when the PKG receives the ID
of the node that is requesting a private key (Figure 12.4). First, the
PKG computes the user’s public key as PubID = Hash(ID). Then, the
PKG generates the corresponding private key using the local secret
value s. Note that the private key is computed as PrivID = f (s, PubID).
In practice, there are different ways for generating a private key from
the public key. Here, we present the most known methods for private-
key computation:

Basic key generation scheme: In the most common cases [18, 23, 24],
we have PrivID = s.PubID where ∈ ⋅G1PubID PubID is equal to
H1(ID), where →: {0, 1}* *.1 1H G

Sakai-Kasahara key generation scheme: Sakai and Kasahara [25]

proposed computing the private key as =
+







1
()

.Priv
Pub sID

ID

P where PubID = H1(ID) and →: {0, 1}* *1H qZ . As the public
key is not an elliptic curve point but a scalar, the public-key
computation is faster than hashing to an elliptic curve point.

Boneh and Boyen key generation scheme: Boneh and Boyen define
three public points that are computed as P1 = α.P, P2 = β.P,

Station
(STA)

Private key generator (PKG)
(secret parameter “s”) Key escrow

attackIDSTA

IDSTA = {I57.159.159.157,
00:1d:12:34:56:fe,
station@campus.org,
...}

PubSTA = Hash(IDSTA)
PrivSTA = f(s, PubSTA)
IBC_PE = {G1,G2,GT, ê, g, P, Ppub, Hash}
(where Ppub = s.P)

PrivSTA, IBC_PE

Figure 12.4  ID-based key generation.

240 ﻿Aymen Boudguiga et al.

and P3 = ϒ.P where α, β, and ϒ are secrets selected by the
PKG in *qZ . A node’s public key is computed as PubID =
H1(ID) where →: {0, 1}* *1H qZ . Meanwhile, the PKG com-
putes the corresponding private key using the random r in *qZ
as follows:

	 PrivID = (Priv1, Priv2) = (PubID.r.P1 + α.P2 + r.P3, r.P)	

	 That is, the private key is formed by two EC points.

After generating a private key, the PKG has to securely transmit it
to its owner either by the use of cryptography or directly to the physi-
cal person (using a secure transportation device).

In all the aforementioned key derivation schemes, the PKG is
generating the private key of stations (STAs) and, as such, is able to
impersonate any of them by illegally generating signature or decipher-
ing encrypted traffic. For mitigating that key escrow attack (KEA), a
strong assumption is usually made necessary that the PKG is a trust-
worthy entity.

12.2.2  Pairing Functions

The pairing function ê has to be bilinear, nondegenerate, and effi-
ciently computable. That is, the pairing function has to verify the
following properties:

Bilinearity: The pairing function has to be linear with respect to
each of its inputs. That is, the pairing function verifies:

	
+ = ⋅

+ = ⋅

ê(. . ,) ê(,) ê(,)

ê(, . .) ê(,) ê(,)

a P b P Q P Q P Q

P a Q b Q P Q P Q

x y x
a

y
b

x y x
a

y
b

Nondegeneracy: The nondegeneracy property means that for
all points ∈ =∞, ê(P, P) 1 .1P TG G In addition, for all points

∈ =∞, ê(P ,) 1 .2Q Q TG G If we consider a generator P of 1G and
a generator of Q of 2G , the value ê(P, Q) = g is equal to the
generator TG .

Efficiency: There is an efficient algorithm to compute the pair-
ing function.

241Fundamentals of IBC

Galbraith et al. [15] defined three types of pairing functions that
can be divided into two families:

	 1.	Symmetric pairing: It verifies = .1 2G G
	 2.	Asymmetric pairing: It verifies ≠ .1 2G G This pairing func-

tion can be further classified based on the existence, or not, of
an efficient homomorphism ψ →: .2 1G G

Menezes, Okamoto, and Vanstone [26] used a symmetric pairing
function to solve the ECDLP. They considered G G G× →ê: 1 1 T and
the point Q = x.P. Their idea consists of transposing the ECDLP to
a DLP in .TG They assumed that they have an efficient algorithm to
solve the DLP TG in and they used:

	
= ⇔ =

⇔ = = =

. ê(,) ê(,)

, where ê(,) and ê(,)

Q x P P Q P P

h g h P Q g P P

x

x

As a consequence, the security level of ê will be related to the hard-
ness of solving the DLP in the groups , , and .1 2 TG G G It is closely
related to the groups being selected, as some of them make the DLP
easier. To understand how to define this security level in practice, the
investigation of the structures of , , and1 2 TG G G is necessary.

Before specifying the structures of , , and1 2 TG G G , it is necessary
to review some definitions related to elliptic curves. We first define
the subgroup of q-torsion points as the subgroup of points having the
order q. The q-torsion subgroup defined over an elliptic curve ()E pF

is denoted by { }= ∈ = ∞([]) ()
.E q P E

q P Pp
pF F . If p does not divide

q, there is a theorem that states that it exists an integer k such that
([])E k qpF is isomorphic to ×q qZ Z ([27], Chapter 3, Theorem 3.2).

The smallest integer k verifying the previous theorem is called the
embedding degree of the curve ()E pF respectively to q.

Let ()E pF denote the elliptic curve defined over the finite prime
field pF . and1 2G G correspond mostly to the q-torsion subgroups of
and () and (),E Ep pkF F where k is the embedding degree of the curve

()E pF relative to q. Meanwhile, TG is a multiplicative subgroup of kpF
of order q [28].

For example, assume that the prime order p of pF is 512 bits long,
the order q is 160 bits long while the embedding degree relatively

242 ﻿Aymen Boudguiga et al.

to q of the curve ()E pF is 2. The pairing function ê is then defined
over the subgroups , , and1 2 TG G G of order q. The security level of ê
is defined respectively to the hardness of solving DLP in TG . As TG
is a subgroup of 2pF which has an order of 1024 bits, DLP hardness in

TG is defined respectively to this 1024-bit order. That is, the pairing ê
security level is equivalent to an RSA key of 1024 bits length, and so
to a security level of 80 bits with respect to Table 12.1.

In practice, bilinear mapping is derived from the Weil or Tate pair-
ing ([29], Chapter 9). We use the definition given by El-Mrabet [28] to
describe these two types of pairing. First, we define a rational function
f on the points of an elliptic curve. f takes as input two variables x and y,
which represent the coordinates of a point. Then, we specify the divisor
of this function Div(  f) as a formal sum that returns information about
the zeros and poles of f. To describe the Weil and Tate pairings, we use
the function fq,r that verifies: Div(fq,r ) = q.[R] − (q − 1).[P∞]. The two
types of pairing will be defined as follows:

•	 Weil Pairing:	 × →

→

ê:

(,)
()
()

1 2

,

,
P Q

f Q
f P

T

q p

q Q

G G G

•	 Tate Pairing:	 × →

→
−

ê:

(,) ()

1 2

,

1

P Q f Q

T

q p

p
q

k

G G G

These two formulas will not be used in this chapter. However, inter-
ested readers can refer to the books [14], [27], and [29] for a detailed
mathematical description of divisors and pairings.

12.2.3  Examples of ID-Based Encryption Schemes

In this section, we start by presenting some well-known ID-based
encryption algorithms. The first scheme uses a classical key con-
struction. That is, the public key is a point derived from station’s
identity using a hash-to-point function, while the private key is com-
puted as PrivID = s.PubID, s is PKG’s secret. The second encryption
scheme is the Boneh and Boyen encryption algorithm, which uses
the Boneh and Boyen key derivation method (Section 12.2.3.2).

243Fundamentals of IBC

The third presented scheme is Chen et al. encryption scheme which
relies on Sakai-Kasahara key construction (Section 12.2.3.3). All
these IBE schemes’ security is based on the bilinear Diffie–Hellman
(BDH) problem, which consists of computing ê(P, P)abc, given the
points P, a.P, b.P, and c.P and the symmetric pairing ê.

12.2.3.1  Boneh and Franklin Encryption Scheme  Boneh and Franklin [18]
proposed in 2001 an IBE scheme using symmetric pairing function.
They define two hash functions H1 and H2 such that: →: {0, 1}* *1 1H G
and →: {0, 1}2H T

nG . So, Boneh and Franklin IBC-PEs are { ,1 TG G ,
q, ê, g, P, Ppub, H1, H2}. The PKG computes the user’s public key as
PubID = H1(ID). Then, the PKG generates the corresponding private
key using a local secret value ∈ * .s qZ

To encrypt an M ∈{0, 1}n message using the public key PubID, a user
generates a secret random ∈ *k qZ and computes the ciphertext C as

	 = = ⊕(,) (. , (ê(Pub ,)))2C U V k P M H PID pub
k 	

The decrypting entity deciphers the received message as follows:

	 = ⊕ (ê(,))2M V H Priv UID 	

12.2.3.2  Boneh and Boyen Encryption Schemes  Boneh and Boyen [30]
proposed an IBE scheme using a symmetric pairing function. They
define two hash functions H1 and H2 such that: →: {0, 1}* *1H qZ and

→: {0, 1}2H T
nG . In addition, they define three points that are com-

puted as P1 = α.P, P2 = β.P, and P3 = ϒ.P where α, β, and ϒ are secrets
selected by the PKG in *qZ . From P1 and P2, they compute v = ê(P1, P2),
which is part of the IBC-PEs. So, Boneh and Boyen public elements
are { ,1 TG G , q, ê, v, P, P1, P2, P3, H1, H2}. The PKG computes the
user’s public key as PubID = H1(ID). However, the private key is com-
puted as the couple of points PrivID = (Priv1, Priv2) = (PubID.r.P1 +
α.P2 + r.P3, r.P) where r is a random number selected by PKG.

To encrypt a message M ∈{0, 1}n using the public key PubID, a
user generates a secret random ∈ *k qZ and computes the ciphertext
as the tuple C = (c, C0, C1), where c = M ⊕ H2(v k), C0 = k.P, and
C1 = PubID.k.P1 + k.P3. The deciphering entity starts by computing

= ê(,)
ê(,)

.0 0

1 1
k C Priv

C Priv
 Then, it recovers M as M = c ⊕ H2(v k).

244 ﻿Aymen Boudguiga et al.

12.2.3.3  Chen et al. Encryption Scheme  Chen et al. [31] presented an
IBE scheme using a symmetric pairing function. They define two hash
functions H1 and H2 such that →: {0, 1} *1H qZ and →: {0, 1}2H T

lG ,
where l is the size in bits of the message M that is going to be ciphered.
A user public key is computed as PubID = H1(ID) and its correspond-
ing private key is generated by the PKG using the Sakai–Kasahara
key generation scheme, i.e., PrivID = (1/(PubID + s)).P. In order to
encrypt M, the ciphering station chooses a random number ∈ *k qZ
and executes the following steps:

	 1.	U = k. (Ppub + pubID. P)
	 2.	n = H2(gk)
	 3.	V = M ⊕ n

The ciphered message is the pair (U,V) ∈ ×G {0,1}1
l . The recipient of

(U,V) computes first = H2(ê(U, PrivID)). Then, it recovers the message
M as: M = V ⊕ n.

12.2.4  Examples of ID-Based Signature Algorithms

In this section, we present three different signature schemes that rely
on pairing computation.

12.2.4.1  Paterson Signature Scheme  Paterson [23] proposed, in 2002,
an IBS scheme using ECC and a symmetric pairing function. He
defines three hash functions H1, H2, and H3 such that: H1: {0,1}* →
G1

, H2: {0,1} → �*
q, and H3: → �G1

*
q. So, Paterson IBC-PEs are

G G{ , , , ˆ, , , , , , }1 1 2 3q e g P P H H HT pub . The PKG computes the user’s
public key as PubID = H1(ID). Then, the PKG generates the corre-
sponding private key using a local secret value s ∈ �*

q.
To compute the signature of a message M, a user generates a secret

random k ∈ �*
q and computes its signature as the pair (R, S) ∈ ×G G1 1,

where
	 R = k.P

	 S = k–1 (H2(M).P + H3(R).PrivID)

The signature verifier has only to compare to ˆ(,) to (ˆ(,) .()2e R S e P P H M

ˆ(,))()3e P Pubpub ID
H R . The two values must be equal in order to consider

the signature as valid.

245Fundamentals of IBC

12.2.4.2  Hess Signature Scheme  Hess [24] presented an ID-based sig-
nature scheme in 2003. Hess signature relies on a symmetric pairing
function. His signature scheme keeps the Paterson public parameters
definition, but it replaces H2 and H3 with a new hash function that we
denote as × →: {0,1} *4

*H T qG � .
In order to sign a message M, the user chooses an arbitrary point
∈ *1P qG and a random number ∈ * .k qZ Then, he or she executes the

following steps:

	 1.	r = ê(P1, P)k

	 2.	v = H4(M, r)
	 3.	U = v.PrivID + k.P1

The signature is formed by the pair ∈ ×(,) * .1U v qG Z The signature
verifier then has to compute:

	 1.	r = ê(U, P). ê(PubID, − PPub)v

	 2.	The signature is accepted if and only if v = H4(M, r)

12.2.4.3  Barreto et al. Signature Scheme  Barreto et al. [32] presented their
ID-based signature scheme in 2005. Their signature basically uses one
asymmetric pairing function. It relies on two hash functions H1 and H2
such that: →: {0, 1}* *1H qZ and G Z→ →H T q: {0, 1}* *.2 So, Barreto
et al. IBC-PEs are where {G G GT, ,1 2 , q, ê, g, P, Q, Qpub, H1, H2} where
Qpub = s.Q (s is PKG’s secret). A user public key is computed as PubID
= H1(ID), and its corresponding private key is generated by the PKG
as PrivID = (1/(PubID + s)).P. In order to sign a message M, the signer
chooses a random number Z∈k q* and executes the following steps:

	 1.	n = gk

	 2.	h = H2(M, n)
	 3.	S = (k + h)PrivID

The signature is formed by the pair G Z∈ ×S h q(,) *1 . Then, the sig-
nature verifier has only to check the equality between h and H2(M,
ê(S, H1(ID)Q + Qpub)g−h).

12.2.5  Arguments in Favor of IBC

In wireless and mobile networks, such as sensor networks or ad hoc
networks, bandwidth, memory, and power consumptions are a big

246 ﻿Aymen Boudguiga et al.

concern, as they directly impact the network and station perfor-
mances. Consequently, the selection of cryptographic tools for secu-
rity support must be accurate. Certificates require deploying a PKI
and certificate management functions for the generation and delivery
of certificates by the CA to successfully authenticated STAs. In addi-
tion, periodic downloading of CRLs by STAs from the CA is neces-
sary to verify the validity of certificates.

IBC does not need certificates, CRL, and revocation procedures.
With IBC, the key lifetime is bound to a timer, and after its expi-
ration, keys are changed. Bandwidth for exchanging certificates
between STAs or downloading CRL is saved. For the derivation of
the keys of its peers, STA has only to store the IBC-PEs, extract
the hash function from the IBC-PEs, and compute the hash over the
identity of the peer. That is, no more memory space is used for storing
the certificates.

Table 12.2 presents a comparison between IBC and PKI (based on
Paterson and Price [33]). IBC relies on unique identities in order to
get different public keys, and so different private keys. However, in
a PKI, two different certificates can contain the same identity. That
is, a user can have two valid certificates that are used for different
purposes. With IBC, the public key of an STA can be used even if
its private key has not yet been derived. This can be interesting when
an STA ciphers some important data for other STAs and requires
that they authenticate to the PKG in order to get the private key for
the decryption. Compromising the PKG is very dangerous because

Table 12.2  IBC Comparison to PKI

IBC PKI

Trusted entity PKG CA
Trust guarantee None Certificate
Client identity Unique and authentic Authentic
Public-key generator PKG and clients CA or client

Private-key generator PKG CA or client
Public- and private-key

generation times
Can be different Same time, before

certificate issuance
Key escrow attack Not detected Detected
Key revocation Timer CRLs
Usage range Local domains Wide domains
Advantages No certificates, no CRLs, less storage No key escrow

247Fundamentals of IBC

the PKG secret will be revealed. Consequently, any station private
key can be computed and old encrypted messages can be deciphered.
However, when the CA is compromised, old encrypted messages are
not affected.

12.2.6  Use of IBC in Network Security

As shown above, IBC is not new. Its introduction to networks is,
however, quite recent. Seth and Keshav described a hierarchical IBC
solution that supports mutual authentication and key revocation mech-
anisms in delay-tolerant networks (DTNs) [34]. Liu et al. presented,
in 2009, an Extensible Authentication Protocol (EAP) authentication
method that is adapted for wireless mesh networks [35]. They proposed
a scheme that relies on Hess ID-based signature [24]. Boudguiga and
Laurent [36] presented, in 2011, a key escrow-resistant authentica-
tion scheme for wireless networks that relies on secure tokens. Ben-
Othman et al. [37, 38] used IBC to secure the Hybrid Wireless Mesh
Protocol (HWMP). They authenticate each HWMP path request
and response message thanks to an IBS. Moreover, RFC 6267 [39]
presented a variant of the Multimedia Internet Keying (MIKEY)
protocol, which relies on an IBC authenticated key exchange. Tan
et al. [40] described in their paper a lightweight IBE for body sensor
networks (BSNs). Drira et al. [41] also proposed a hybrid authentica-
tion scheme relying on symmetric cryptography and IBC to authenti-
cate sensors and mobile nodes in a BSN.

12.3  Conclusion

In this chapter, we present a general introduction to public-key cryp-
tography. We describe ID-based cryptography, which relies on the
use of elliptic curve groups. ECC and IBC are attractive for many
researchers, as they reduce the size of keys, encryption, and signature
schemes. They are well suited for the security applications that are spe-
cific to network stations with memory constraints. In addition, IBC
removes the cumbersome task of managing PKI and certificates, and
consequently, the network overhead is reduced. As such, IBC seems to
be a promising solution for security provisioning in wireless networks
where every saving in bandwidth and terminal memory is welcome.

248 ﻿Aymen Boudguiga et al.

References
	 1.	 A. Kerckhoffs. Military Cryptography (La cryptographie militaire).

Journal of Military Sciences (Journal des sciences militaires), 9, 5–38, 1883.
	 2.	 C. Shannon. Communication Theory and Secrecy Systems. Bell System

Technical Journal, 28, 656–715, 1949.
	 3.	 G. Vernam. Secret Signaling System. US 1310719A, 8, 1919. Available at

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5061224.
	 4.	 NIST. Data Encryption Standard (DES). 1999. Available at http://csrc.

nist.gov/publications/fips/fips46-3/fips46-3.pdf.
	 5.	 S. Heron. Advanced Encryption Standard (AES). Network Security,

2009(12), 8–12, 2001. Available at http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

	 6.	 N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design
Principles and Practical Applications, vol. 277. New York: Wiley, 2010.

	 7.	 J. Viega, P. Chandra, and M. Messier. Network Security with OpenSSL,
1st ed. Sebastopol, CA: O’Reilly & Associates, 2002.

	 8.	 R. Housley and T. Polk. Planning for PKI: Best Practices Guide for Deploying
Public Key Infrastructure, 1st ed. New York: John Wiley & Sons, 2001.

	 9.	 W. Diffie and M. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6), 644–654, 1976.

	 10.	 R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystem, vol. 21, no. 2. New York: ACM, 1978,
pp. 120–126. Available at http://doi.acm.org/10.1145/359340.359342.

	 11.	 D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Secaucus, NJ: Springer-Verlag, 2003.

	 12.	 A. Menezes, P.V. Oorschot, and S. Vanstone. Handbook of Applied
Cryptography, vol. 106, no. 2. Boca Raton, FL: CRC Press, 1997. Available
at http://www.cacr.math.uwaterloo.ca/hac/index.html.

	 13.	 J. Hoffstein, J. Pipher, and J. Silverman. An Introduction to Mathematical
Cryptography, vol. XVI. Berlin: Springer, 2008.

	 14.	 J. Silverman. The Arithmetic of Elliptic Curves, vol. 106. New York:
Springer, 2009. Available at http://www.springerlink.com/index/10.1007/​
978-0-387-09494-6.

	 15.	 S. Galbraith, K. Paterson, and N. Smart. Pairings for Cryptographers.
Discrete Applied Mathematics, 156(160), 3113–3121, 2008. Available at
http://www.sciencedirect.com/science/article/pii/S0166218X08000449.

	 16.	 NIST. The Digital Signature Standard. Communications of the ACM, 35(7),
36–40, 1992. Available at http://doi.acm.org/10.1145/129902.129904.

	 17.	 A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In
Proceedings of CRYPTO 84 on Advances in Cryptology. New York: Springer-
Verlag, 1985, pp. 47–53.

	 18.	 D. Boneh and M. Franklin. Identity-Based Encryption from the
Weil Pairing. In Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’01. London: Springer-
Verlag, 2001, pp. 213–229. Available at http://portal.acm.org/citation.
cfm?id=646766.704155.

249Fundamentals of IBC

	 19.	 D. Ratna, B. Rana, and S. Palash. Pairing-Based Cryptographic Protocols:
A Survey. 2004. Available at http://eprint.iacr.org/.

	 20.	 C. Cocks. An Identity Based Encryption Scheme Based on Quadratic
Residues. In Proceedings of the 8th IMA International Conference on
Cryptography and Coding. London: Springer-Verlag, 2001, pp. 360–363.
Available at http://dl.acm.org/citation.cfm?id=647995.742435.

	 21.	 M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm
for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security, ACM CCS ’93, New York, NY,
1993, pp. 62–73. Available at http://doi.acm.org/10.1145/168588.168596.

	 22.	 M. Bellare, C. Namprempre, and G. Neven. Security Proofs for Identity-
Based Identification and Signature Schemes. Journal of Cryptology, 22(1),
1–61, 2008. Available at http://dx.doi.org/10.1007/s00145-008-9028-8.

	 23.	 K. Paterson. ID-Based Signatures from Pairings on Elliptic Curves.
Electronics Letters, 38(18), 1025–1026, 2002.

	 24.	 F. Hess. Efficient Identity Based Signature Schemes Based on Pairings.
In SAC ’02: Revised Papers from the 9th Annual International Workshop
on Selected Areas in Cryptography. London: Springer-Verlag, 2003,
pp. 310–324.

	 25.	 R. Sakai and M. Kasahara. ID Based Cryptosystems with Pairing on
Elliptic Curve. Report 2003/054. Cryptology ePrint Archive, 2003.
Available at http://eprint.iacr.org/.

	 26.	 A. Menezes, T. Okamoto, and S. Vanstone. Reducing Elliptic Curve
Logarithms to Logarithms in a Finite Field. IEEE Transactions on
Information Theory, 39(5), 1639–1646, 1993. Available at http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=259647.

	 27.	 L. Washington. Elliptic Curves: Number Theory and Cryptography, 2nd ed.
London: Chapman & Hall/CRC, 2008.

	 28.	 N. El-Mrabet. Arithmetic, Performances and Resistance of Pairings to
Side Channel Attacks (Arithmetiques des couplages, performance et resis-
tance aux attaques par cannaux caches). PhD dissertation, Montpellier II
University, 2009.

	 29.	 I. Blake, G. Seroussi, and N. Smart. Advances in Elliptic Curve Cryptography
(London Mathematical Society Lecture Note Series). New York: Cambridge
University Press, 2005.

	 30.	 D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity-Based
Encryption without Random Oracles. In Advances in Cryptology—
EUROCRYPT 2004, ed. C. Cachin and J. Camenisch, vol. 3027. Lecture
Notes in Computer Science Series. Berlin: Springer, 2004, pp. 223–238.

	 31.	 L. Chen, Z. Cheng, J. Malone-Lee, and N. Smart. Efficient ID-KEM
Based on the Sakai-Kasahara Key Construction. IEEE Proceedings in
Information Security, 153(1), 19–26, 2006.

	 32.	 P. Barreto, B. Libert, N. McCullagh, and J.-J. Quisquater. Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from
Bilinear Maps. In Advances in Cryptology—ASIACRYPT 2005, ed. B. Roy,
vol. 3788. Lecture Notes in Computer Science Series. Berlin: Springer,
2005, pp. 515–532.

250 ﻿Aymen Boudguiga et al.

	 33.	 K. Paterson and G. Price. A Comparison between Traditional Public Key
Infrastructures and Identity-Based Cryptography. Technical Report. Royal
Holloway University of London, 2003.

	 34.	 A. Seth and S. Keshav. Practical Security for Disconnected Nodes.
In 1st IEEE ICNP Workshop on Secure Network Protocols (NPSec 2005),
June 2005, pp. 31–36.

	 35.	 W. Liu, Y. Shang, and Z. Wang. A Wireless Mesh Network
Authentication Method Based on Identity Based Signature. In 5th
International Conference on Wireless Communications, Networking and
Mobile Computing, 2009 (WiCom ’09), 2009, pp. 1–4.

	 36.	 A. Boudguiga and M. Laurent. Key-Escrow Resistant ID-Based
Authentication Scheme for IEEE 802.11s Mesh Networks. In 2011
IEEE Wireless Communications and Networking Conference (WCNC
2011), March 2011, pp. 784–789.

	 37.	 J. Ben-Othman and Y. Saavedra Benitez. On Securing HWMP Using
IBC. In 2011 IEEE International Conference on Communications (ICC),
June 2011, pp. 1–5.

	 38.	 J. Ben-Othman, L. Mokdad, and Y. Saavedra Benitez. Performance
Comparison between IBC-HWMP and Hash-HWMP. In 2011 IEEE
Global Telecommunications Conference (GLOBECOM), December 2011,
pp. 1–5.

	 39.	 V. Cakulev and G. Sundaram. MIKEY-IBAKE: Identity-Based
Authenticated Key Exchange (IBAKE) Mode of Key Distribution in
Multimedia Internet KEYing (MIKEY). RFC 6267 (Informational).
Internet Engineering Task Force, June 2011. Available at http://www.
ietf.org/rfc/rfc6267.txt.

	 40.	 C.C. Tan, H. Wang, S. Zhong, and Q. Li. IBE-Lite: A Lightweight
Identity-Based Cryptography for Body Sensor Networks. IEEE
Transactions on Information Technology in Biomedicine, 13(6), 926–932,
2009.

	 41.	 W. Drira, E. Renault, and D. Zeglache. A Hybrid Authentication and
Key Establishment Scheme for WBAN. Presented at International
Conference on Trust Security and Privacy in Computing and
Communications, 2012 IEEE TrustCom, June 2012.

251

13
Symmetric Key

Encryption Acceleration
on Heterogeneous Many-

Core Architectures

G I OVA N N I AG O S TA ,
A L E S S A N D R O B A R E N G H I ,

G E R A R D O P E L O S I , A N D
M I C H E L E S C A N DA L E

Keywords

Advanced Encryption Standard
AES
Counter mode
CTR

Contents

Keywords	 251
13.1	 Introduction	 252
13.2	 Modern Heterogeneous Many-Core Architectures	 253
13.3	 The OpenCL Programming Model	 255

13.3.1	 OpenCL Parallel Execution Model	 256
13.3.2	 OpenCL Memory Model	 258
13.3.3	 First OpenCL Example	 259

13.4	 Implementing AES in OpenCL	 263
13.4.1	 The AES Block Cipher	 263
13.4.2	 Modes of Operation	 265
13.4.3	 AES Kernels	 266
13.4.4	 AES Host Library	 270
13.4.5	 Putting It All Together	 277

13.5	 Implementation	 278
13.6	 Concluding Remarks	 295
References	 296

252 ﻿Giovanni Agosta et al.

General purpose graphics processing unit
GPGPU
Heterogeneous many-core architecture
Many-core computing system
MCCS
OpenCL

The wide diffusion of many-core computing systems (MCCSs),
in particular through general purpose graphics processing units
(GPGPUs), and more recently in high-end embedded hardware
(mobile GPUs), has provided developers with a plentiful source of
cheap computational power.

However, exploiting such computational power is not straight-
forward. Heterogeneous platforms require specialized application
programming interfaces (APIs) to interface the host side with the
accelerator device, as well as specialized language features to manage
the peculiar characteristics of the device itself. The OpenCL stan-
dard, introduced by the large industrial consortium Khronos Group,
is the most successful and widespread approach to programming het-
erogeneous MCCSs. It allows the programmer to interface C++ host
code with device code written in a restricted C code (OpenCL-C)
through the OpenCL API. However, developing efficient code with
the OpenCL standard requires specialized knowledge that is both
domain specific and platform specific.

In this chapter, we provide an overview of the implementation tech-
niques a developer needs to understand in order to produce efficient
implementations of cryptographic primitives on GPGPUs and other
heterogeneous MCCSs. We first introduce the OpenCL standard
through a simple example, and then provide a practical implementation
of the Advanced Encryption Standard (AES) cryptographic primi-
tive, employed in counter mode, which allows efficient parallelization.

13.1  Introduction

Modern implementations of cryptographic algorithms in C++ are
increasingly called to provide both flexibility, in terms of code reuse
on different platforms, and significantly good performances exploiting
the peculiarities of the underlying hardware architecture. To this end,

253Symmetric Key Encryption Acceleration

it is fundamental to take into account the modern architecture design
trend, which is pushing toward heterogeneous multicore architectures
as the main structure for high-end embedded systems and high-
performance computing systems alike. In particular, modern mul-
ticore architectures are typically composed of a reduced number of
high-performance processors, coupled with a large number of small,
simple ones, and possibly application-specific accelerators.

This structure is often coupled with programmer-addressable
scratchpad memories present directly on the same die as the proces-
sors. This shift toward parallel architectures provides a good fit for the
increased need of fast symmetric encryption on large amounts of data
at rest required by cloud storage providers, and the capability to per-
form a significant amount of concurrent Secure Sockets Layer (SSL)/
Transport Layer Security (TLS) handshakes required to provide secure
network communications. The complex and heterogeneous structure of
modern processors increases the possible options for architecture design,
thus calling, from a programmer’s point of view, for a programming
model that allows us to abstract the architectural details, while retain-
ing effective performance tuning capabilities. To this end, the OpenCL
language and programming models were proposed by the Khronos
consortium [1]; the OpenCL language is a subset of C99, with proper
language extensions to allow the programmer to effectively encode pro-
grams to be run in parallel on heterogeneous multicores.

Section 13.2 provides a brief survey and taxonomy of the modern
heterogeneous multicore platforms, while Section 13.3 describes the
OpenCL language and programming model, providing insights on
the memory hierarchy on which it is based. Section 13.3.3 provides a
brief example of an OpenCL program, while Section 13.4 provides a
full implementation of the Advanced Encryption Standard (AES) block
cipher, employed in counter (CTR) mode, which is both secure and effi-
ciently parallelizable. The core of the implementation is realized with
OpenCL, while the bindings are in C++11, providing an example of the
best practices in integrating OpenCL code into a C++ environment.

13.2  Modern Heterogeneous Many-Core Architectures

The current trend in computing architectures, in both the high-end
embedded and high-performance computing fields, is to replace single,

254 ﻿Giovanni Agosta et al.

complex superscalar processors with numerous but smaller and simpler
processing units, connected by an on-chip network. Such a change is
imposed by silicon technology frontiers, the reaching of which is get-
ting closer as the process density levels increase—the so-called Moore’s
wall. Clock speeds are not improving at the same rate they did in the
last 40 years, and even though the transistor density is still improving
according to Moore’s law, this does not translate into improved per-
formances, as increases in register bank or cache size or pipeline depth
are hitting the point of diminishing returns. For example, cache size
increases are only useful in case of a low cache hit rate, but when the
hit rate becomes very high, increasing the cache size will yield minimal
performance benefits. These trends have delineated a rapid growth in
the number of computing cores per chip. Even general purpose proces-
sors for high-end embedded systems have evolved from single-core to
twin quad-core designs, such as ARM big.LITTLE, in the last 3 years.
More specialized architectures, such as graphics processing units, are
already in the range of hundreds of cores—the class that is generally
named as many-core architectures.

Many-core architectures offer large amounts of parallel comput-
ing power by supplying the developer with hundreds of processing
cores, each endowed with limited resources. The benefits of many-
core architectures include a control on a finer grain for energy-
saving techniques, the accounting for local process variations, and an
improved silicon yield due to voltage/frequency island isolation possi-
bilities. Notable many-core architectures include the following: desk-
top GPGPUs such as nVidia GT200 [2], Fermi [3], Kepler [4], AMD
R700 [5], and R800 [6], and embedded GPGPUs such as ImgTech
PowerVR [7] and nVidia Tegra [8]. Moreover, also non-GPU copro-
cessors such as IBM CellBE [9], Intel Xeon Phi [10], and Adapteva
Epiphany [11] have gained popularity, together with many-core stand-
alone systems, of which an example is Intel SCC [12].

It is worth noting that, currently, GPGPUs are dominating the
many-core scene, although non-GPU accelerators have found applica-
tion in specialized domains, and may in the future become the domi-
nant paradigm, as they are expected to be more versatile. Even more
likely, the classification above might be overcome as GPGPUs become
more general purpose computation oriented, and the gap between
GPGPUs and other many-core accelerators narrows. What is likely,

255Symmetric Key Encryption Acceleration

on the other hand, is that heterogeneity will still play a role: many-core
architectures are not well suited for control-intensive applications, and
the emerging paradigm is that of a pairing between a multicore host
architecture and (one or more) many-core accelerator device(s). This is
the case, of course, of GPGPUs, which are always used as accelerators
to either desktop processors (based on the x86_64 architecture) or
high-end embedded processors (most commonly ARM based).

13.3  The OpenCL Programming Model

OpenCL (Open Computing Language) [1,23] is an open standard for
the development of parallel applications on a variety of heterogeneous
multicore architectures. The advantage of OpenCL, as well as other
modern programming models, is that it handles and combines differ-
ent implementation platforms (GPUs, CPUs, and DSPs) under the
same environment.

OpenCL consists of both a subset of C99 with appropriate language
extensions (OpenCL-C) and an OpenCL API, which allow programs
to be split into a host part and a compute device part. The OpenCL host
usually runs on a general purpose (multi)processor, and it is in charge
of executing the control-intensive code portion. Moreover, the host
uses the OpenCL API to query and select compute devices, to offload
compute-intensive code portions, called kernels, on them.

The offloading is managed through submitting the kernels to the
work queues of each device and managing the workload across com-
pute contexts and work queues. The execution of a kernel is orches-
trated as a perfect double-nested loop.

Each iteration of the innermost loop executes the kernel code on
an independent execution element called work item, whereas any
iteration of the outer loop gathers work items in independent sets
called work groups. Since the computation domain of the kernel (e.g.,
the data placement) can be thought as an N-dimensional domain,
where each tuple of coordinates corresponds to an execution ele-
ment, any work item is characterized by a unique identifier composed
of N unsigned integer values, depending on the definitions set up
by the host part of the application. Work groups are also uniquely
identified through a set of unsigned integer values ranging from 0 to
N – 1, according to an orthotropic geometry. In OpenCL application

256 ﻿Giovanni Agosta et al.

development, the main target is to obtain significant performance
improvements through optimally exploiting the resources of the
underlying platform.

To this end, the OpenCL programming model is characterized by
structures allowing the programmer to provide hints on the actual
data placement in the memory hierarchy of the target platform.

13.3.1  OpenCL Parallel Execution Model

OpenCL supports primarily data parallelism, and to a lesser extent
task parallelism. The support for data parallelism consists of an explic-
itly parallel function invocation (kernel) that is executed by a user-
specified number of work items, placed on an abstract N-dimensional
space. Every OpenCL kernel is explicitly started by the host code
through a clEnqueueNDRangeKernel call, and executed by the com-
pute device, while the host-side code continues its execution asyn-
chronously after instantiating the kernel.

Task-level parallelism is provided through allowing the program-
mer to enqueue multiple kernels for execution, which may be run in
parallel by the underlying hardware of the compute device.

Events can be used to provide a dependency relation among the
kernels. Indeed, each clEnqueueNDRangeKernel call takes as input
parameter a list of events that must be completed before the exe-
cution of the kernel begins and provides, as output parameter, an
event that can be waited upon to check the completion of the kernel
execution. To this end, the programmer is provided with a synchro-
nizing function call to wait for the completion of the active kernel
computations.

As anticipated in the previous section, the OpenCL program-
ming model abstracts the actual parallelism implemented by the
hardware architecture, providing the concepts of work group and
work item to express concurrency in algorithms. A work group cap-
tures the notion of a group of concurrent work items. Work groups
are required to be computed independently, so that it is possible to
run them in any order. Therefore, the OpenCL-C synchronization
primitives semantically act only among work items belonging to the
same work group.

257Symmetric Key Encryption Acceleration

A kernel call site (clEnqueueNDRangeKernel) must specify the
number of work groups as well as the number of work items within
each work group when executing the kernel code.

The work groups and work items can be laid out in a multidimensional
grid through the parameters of the clEnqueueNDRangeKernel call:

work_dim: Number N of dimensions used to describe the work
item grid.

global_work_offset: Start offset for each dimension (so that the
grid origin of the axes may be different from zero).

global_work_size: Total number of work items, for each
dimension.

local_work_size: Number of work items in each work group, for
each dimension.

Note that OpenCL does not impose limits on the number of dimen-
sions N employed to describe the work item grid at the language level.
It relies instead on a platform introspection API, and in particular on
the function clGetDeviceInfo, to retrieve at runtime such limits for
each available compute device on the platform. This allows greater
flexibility in the definition of kernels, as well as the ability to support
compute devices from multiple vendors and multiple compute devices
attached to the same host, through tuning the shape and size of the
work item grid at runtime. Specifically, the following constants can
be passed to clGetDeviceInfo to obtain the constraints for the afore-
mentioned parameters:

CL_DEVICE_MA X_WORK_ITEM_DIMENSIONS:
Maximum number of dimensions in the work item grid.

CL_DEVICE_MAX_WORK_GROUP_SIZE: Maximum
number of work items in a work group.

CL_DEVICE_MAX_WORK_ITEM_SIZES: Maximum
number of work items in each dimension of the work group.

The Khronos Group has also defined a C++ wrapper interface
for the OpenCL API, starting from the 1.1 version, which allows
the programmer to employ the described primitives with an object-
oriented approach. From now on, we will be employing this API to
provide pure C++ code examples.

258 ﻿Giovanni Agosta et al.

13.3.2  OpenCL Memory Model

OpenCL provides an explicit memory hierarchy model. The memory
model, shown in Figure 13.1, is distributed between the host and
the compute device, allowing us to access different address spaces.
The global memory of the device is shared among all work items regard-
less of the work group, whereas the host is allowed to read from and
write to the device memory space only using the OpenCL API. A local
memory is associated with each work group, and is mapped by the
OpenCL runtime to an on-chip memory, where possible, thus achiev-
ing better access latencies than the global memory. Communications
among work items of the same work group may employ the local
memory associated with that work group to perform shared memory
data transfer. Work items belonging to different work groups must
communicate through global memory.

The concurrent accesses to local memory by work items within
the same work group can be synchronized through an explicit bar-
rier synchronization primitive. In addition to the local memory and
the global memory, the OpenCL programming model allows each
work item to share a constant memory (regardless of the work group),
and to use a private memory for its exclusive data manipulation.

Host

Host Memory

Global Memory

Local MemoryLocal Memory

Private
Memory

Work Item Work Item Work Item Work Item

Private
Memory

Private
Memory

Private
Memory

Constant Memory

Compute Device

Figure 13.1  Overview of the OpenCL memory hierarchy model.

259Symmetric Key Encryption Acceleration

The keywords __global, __local, __constant, and __private are used as
qualifiers to specify the address space referenced by a pointer or variable.

Table 13.1 summarizes the allocation and access capabilities of
both host and compute device for the four OpenCL memory address
spaces. It is worth noting that dynamic memory allocation and recur-
sion are not available on the device. A kernel is allowed to declare and
use only automatic variables, while the host code portion is in charge
of managing all dynamically allocated data.

13.3.3  First OpenCL Example

To provide a first introduction to OpenCL programming, we will
use a simple program that computes the square of the first n natural
numbers (where n is an argument of the program). This computation
will be parallelized computing each square in different work items,
and collecting the work items in work groups of eight. To do so, the
host employs an OpenCL-C kernel that computes the square of each
element of an array of integers.

The code for this simple example opens with the following inclu-
sion directives and definitions:

#define __CL_ENABLE_EXCEPTIONS 1
#include <vector>
#include <iostream>
#include <sstream>
#include <string>
#include <CL/cl.hpp>
using namespace cl;

We include several headers from the C++ standard library, which
will be used in the host code. The definition of _ _CL_ENABLE_
EXCEPTIONS selects the use of C++ exceptions rather than C-style
status variables for error handling. The header file CL/cl.hpp provides

Table 13.1  OpenCL Memory Regions

GLOBAL CONSTANT LOCAL PRIVATE

Host allocation Dynamic Dynamic Dynamic None
Device allocation None Static Static Static
Host access Read/write Read/write None None
Device access Read/write Read only Read/write Read/write

260 ﻿Giovanni Agosta et al.

the C++ bindings to the OpenCL API,* which are collected in the
namespace cl.

The OpenCL kernel for the example program is included in the
host program as a constant string:

static const std::string source = "\
	 kernel void square(global int *output, \
	 global int *input){\
	 unsigned int i = get_global_id(0); \
	 output[i] = input[i] * input[i]; \
	 }";

It is an extremely simple kernel, but it showcases the use of three
essential elements of any OpenCL-C kernel: the kernel keyword,
the address spaces, and the work item identification built-in function
get_global_id. The kernel (or _ _kernel) keyword introduces
all entry points in an OpenCL-C program, i.e., the functions that can
be invoked from the host.

It is possible to define nonkernel functions in the OpenCL-C
code to be used as helper functions. The parameters of the kernel
function square are two arrays allocated in the global memory. The
get_global_id built-in function maps every work item to an
index in the work item space. Since the workspace is multidimen-
sional, get_global_id accepts as a parameter the dimension
index of the work item index to be fetched. In this example, the ker-
nel code expects the work item space to be monodimensional; thus,
the only element of the index read is the first dimension (indicated
by the 0 parameter). The host code is a standard C++ program, which
performs the parsing of the first command line argument to obtain
the number n of integers to be computed, which is subsequently
stored in the variable size.

int main(int argc, char *argv[]) {
	unsigned int size;
	try {
	 std::istringstream arg(argv[1]);
	 arg >> size;
	} catch (...) {

*	 C++ bindings are available for OpenCL versions 1.1 and 1.2.

261Symmetric Key Encryption Acceleration

	 std::cout << "Missing or incorrect argument";
	 std::cout << std::endl;
	 return 1;
	}

After the initialization of size, it can in turn be used to initialize
the vectors to hold the input and output values of the computation:

std::vector<cl_int> array_in(size);
std::vector<cl_int> array_out(size);
for(int i = 0; i<size; i++) array_in[i] = i;
for(auto &n : array_in) std::cout << n << " ";
std::cout << std::endl;

Now, we need to set up the OpenCL computing platform. The fol-
lowing boilerplate code performs all the necessary operations using
the introspection capabilities of the OpenCL runtime:

try {
	std::vector<Platform> platforms;
	std::vector<Device> devices;
	Platform::get(&platforms);
	platforms[0].getDevices(CL_DEVICE_TYPE_CPU, &devices);
	Context cxt(devices);
	CommandQueue cmdQ(cxt, devices[0], 0);

Specifically, invoking the Platform::get method yields all the
available OpenCL platforms, i.e., the different runtimes from different
vendors. For this simple example, we will only use the first available
platform, and get the list of devices (i.e., the actual OpenCL-enabled
hardware devices).

We then create a Context and a CommandQueue for it. The
Context provides all the necessary information for building
OpenCL-C kernels, and the CommandQueue will be used to actu-
ally interact with the devices. First, we need to allocate the memory
buffers used for the kernel execution, as well as for communicating
data from the host to the device, and vice versa:

const int in_flags = CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR;
const int out_flags = CL_MEM_WRITE_ONLY |
CL_MEM_USE_HOST_PTR;

262 ﻿Giovanni Agosta et al.

Buffer in(cxt, in_flags, size*sizeof(cl_int), &array_
in.at(0));
Buffer out(cxt, out_flags,size*sizeof(cl_int), &array_
out.at(0));

The in buffer will be initialized with a copy of the data in
array_in and will be read only on the device side. The out buf-
fer will be mapped in the host memory, since the data produced by
the kernel will need to be copied back to the host. Now, we need to
build the OpenCL-C program and select the entry point:

Program program(cxt, source, true);
Kernel kernel(program, "square");

The last parameter of the Program constructor specifies that the
program must be compiled and linked. The Kernel constructor
selects the entry point by name. We then need to set up the match
between the forvs of the kernel:

kernel.setArg<Buffer>(0, out);
kernel.setArg<Buffer>(1, in);

Kernel parameters are identified positionally rather than by their
own name on the host side. Finally, we invoke the kernel, providing
the geometry of the desired work item space to the OpenCL runtime:

NDRange global_range(size);
NDRange local_range(8);
cmdQ.enqueueNDRangeKernel(kernel, NullRange,
	 global_range, local_range);

The two NDRange variables indicate the work item space (possibly
with more than one dimension, although here only one is used)
and the work group size, respectively. The second parameter of the
enqueueNDRangeKernel call specifies that the origin of the work
item space is set at 0 (i.e., the value of get_global_id(0) for the
first work item is 0). The execution of OpenCL kernels is “per se” asyn-
chronous. Since here we do not need to perform other tasks on the host
side, we can explicitly wait for completion:

	cmdQ.finish();
} catch (Error error) {

263Symmetric Key Encryption Acceleration

	 std::cout << "Error" << error.what();
	 std::cout << "(" << error.err() << ")" << std::endl;
	 return 2;
}

The method finish is blocking, and returns once all commands in
the CommandQueue object cmdQ are completed. In case there are
any errors during the execution of the kernel, an exception typed as
cl::Error will be raised, which can be caught and managed.

Finally, we print out the results:

	 for (auto &n : array_out) std::cout << n << " ";
	 std::cout << std::endl;
	 return 0;
}

As the example shows, for simple kernels the setup code is much
larger than the kernel code. This is because the boilerplate code needs
to handle the heterogeneity of the machine (i.e., bridge the host-
device divide, through the buffer setup), as well as manage just-in-
time compilation (here through the Program constructor) and the
possible availability of multiple OpenCL runtimes and devices.

In real applications, it is possible to select the best platform for a
given kernel, and to provide specialized kernel implementations for
each device or platform.

13.4  Implementing AES in OpenCL

In this section, we provide an overview of a basic implementation
of AES using OpenCL and its C++ bindings introduced in Section
13.3.3. We first review the structure of the AES cipher and the possi-
ble modes of operation, and then introduce the necessary OpenCL-C
kernel and the host-side library for setting up the OpenCL environ-
ment and invoking the kernels.

13.4.1  The AES Block Cipher

The AES cipher is designed for executing a number of round trans-
formations on plaintext where the output of each round is the input
of the next one. The number of rounds is determined by the key

264 ﻿Giovanni Agosta et al.

length: 128-bit uses 10 rounds, 192-bit 12 rounds, and 256-bit
14 rounds. Each round is composed of the same steps, except for the
first round, where an extra addition of a round key is added, and for
the last round, where the last step (MixColumns) is skipped. Each
step operates on 16 bytes of data (referred to as the internal state of
the cipher) generally viewed as a 4 × 4 table of bytes or an array of
four 32-bit words, where each word corresponds to a column of the
state table.

The four round stages are AddRoundKey (xor addition of a sched-
uled round key for blending together the key and the state), SubBytes
(byte substitution by an S-box, i.e., a lookup table for nonlinearity
design reasons), ShiftRows (cyclical shifting of bytes in each row to
realize an interword byte diffusion), and MixColumns (linear trans-
formation that mixes column state data for intraword interbyte diffu-
sion). The different steps of the round transformation can be combined
in a single set of table lookups, allowing for very fast implementations
on processors having word lengths of 32 bits or greater [13]. Let us
denote with ai,j the generic element of the state table, with S[256] the
S-box table, and with ∙ a GF(28) finite field multiplication [13]. Let
T0, T1, T2, and T3 be four lookup tables containing results from the
combination of the aforementioned operations as follows:

	 T0[ai,j] = [S[ai,j] ∙ 02 ; S[ai,j] ; S[ai,j] ; S[ai,j] ∙ 03]

	 T1[ai,j] = [S[ai,j] ∙ 03 ; S[ai,j] ∙ 02 ; S[ai,j] ; S[ai,j]]

	 T2[ai,j] = [S[ai,j] ; S[ai,j] ∙ 03 ; S[ai,j] ∙ 02 ; S[ai,j]]

	 T3[ai,j] = [S[ai,j] ; S[ai,j] ; S[ai,j] ∙ 03 ; S[ai,j] ∙ 02]

These tables are used to compute the round stage operations as a
whole, as described by the following equation, where kj is the jth word
of the expanded key and ej is the jth column of the state table (seen as
a single 32-bit word):

	 ej = T0[a0, j] ⊕ T1[a1,j–1] ⊕ T2[a2,j–2] ⊕ T3[a3, j–3] ⊕ kj

The four tables T0, T1, T2, and T3 (called T-boxes from now on)
have 256 32-bit word entries each and make up for 4 KB of storage
space. A KeySchedule procedure associated to the AES algorithm is

265Symmetric Key Encryption Acceleration

responsible for the computation of each round key kj given the global
input key k. In contrast with the round computation, the key expan-
sion operated by the KeySchedule procedure does not expose signifi-
cant parallelism. However, its result is computed once and used for all
the blocks of a given plaintext.

13.4.2  Modes of Operation

The AES, as any other block cipher, operates on blocks of fixed 128-bit
length. Several modes of operation have been standardized to man-
age the encryption of any plaintext, with arbitrary length [14]. When
the length of the plaintext is not a multiple of the block size, it is
necessary to add padding to the original message, up to a multiple of
the block size. Of the block cipher modes employed for guaranteeing
confidentiality, electronic code book (ECB), cipher block chaining
(CBC), and counter (CTR) mode are the most popular.

The ECB mode is easily parallelizable, since the original plaintext is
split into blocks that are independently enciphered with the same key.
However, the ECB mode is not adopted in cryptographic protocols,
since identical plaintext blocks, encrypted with the same key (as would
happen when enciphering a file with repeated 16-byte blocks), lead to
the same ciphertext, which is a major leak of secret information.

CBC mode is the default choice in current distributions of
OpenSSL. In this mode, the sequence of plaintext blocks is enci-
phered using as input of each block the bitwise xor between a block
of plaintext and the ciphertext obtained from the previous block (or a
known initialization vector (IV) for the first block).

CTR mode produces the ciphertext as the bitwise xor between
each plaintext block and one of a series of cryptographic pads.
The cryptographic pads are obtained through the application of the
block cipher to counter initialized with a strong pseudorandomly
generated value and sequentially incremented for each subsequent
block. The fundamental advantage of the CTR mode over the other
modes of operation is that both its encryption and decryption actions
can be efficiently parallelized.

From a security point of view, CTR mode is considered even safer
than CBC [15, 16]; thus, it has been added in the 1.1 version of the
Transport Layer Security (TLS) protocol standard [17].

266 ﻿Giovanni Agosta et al.

13.4.3  AES Kernels

In this section, we introduce the necessary OpenCL-C kernels and
support functions to implement the AES cipher. For larger OpenCL
programs, where multiple or large functions and kernels are needed,
it is better to store the OpenCL-C code in one or more separate files.
There are several good reasons for using separate files rather than stor-
ing the OpenCL-C code in one or more strings in the host code.

First, writing long kernels as strings is cumbersome, and syntax
highlighting is not available. Second, separate files allow a stand-
alone compilation* of the kernels, which is useful for development and
debugging. OpenCL-C source files are customarily named using the
.cl extension. Header files can also be created, and included using
the standard C99 #include directive, which is supported in the
OpenCL specification.

In our case, we use a separate header file for storing the constants,
among which are the large constant lookup tables (substitution boxes
or S-boxes) needed by the AES:

#include "aes_kernel_constants.h"

Let us first introduce a few support functions. The routines
get_uint and put_uint are used to convert between arrays of
bytes and 32-bit unsigned integers:

uint get_uint(uchar *in) {
	return ((uint)in[0]) |
	 ((uint)in[1] << 8) |
	 ((uint)in[2] << 16) |
	 ((uint)in[3] << 24);
}

void put_uint(uint v, uchar *out) {
	out[0] = (uchar)(v);
	out[1] = (uchar)(v >> 8);
	out[2] = (uchar)(v >> 16);
	out[3] = (uchar)(v >> 24);
}

*	 This is currently supported by the Intel OpenCL SDK, but not by the SDKs of other
vendors.

267Symmetric Key Encryption Acceleration

uint get_uint_g(global uchar *in) {
	return ((uint)in[0]) |
	 ((uint)in[1] << 8) |
	 ((uint)in[2] << 16) |
	 ((uint)in[3] << 24);
}

The get_uint_g function performs the same operation in global
memory. get_ulong and put_ulong perform the same function
for 64-bit unsigned integers, leveraging the first two functions:

uint get_ulong(global uchar *in) {
	return (ulong)get_uint_g(in) |
	 (ulong)get_uint_g(in + 4) << 4;
}
void put_ulong(ulong v, uchar *out) {
	put_uint((uint)v, out);
	put_uint((uint)(v >> 4), out + 4);
}

The main function, aes_encrypt, takes as parameters the input
and output buffers, the round key, the number of AES rounds to per-
form (a function of the AES key length), and the addresses of the five
lookup tables:

void aes_encrypt(uchar *in, uchar *out, local uint *RK,
	 int nrounds, local uchar *FSb,
	 local uint *FT0, local uint *FT1,
	 local uint *FT2, local uint *FT3) {
	uint X0, X1, X2, X3, Y0, Y1, Y2, Y3;

X0 = get_uint(in + 0) ^ *RK++;
X1 = get_uint(in + 4) ^ *RK++;
X2 = get_uint(in + 8) ^ *RK++;
X3 = get_uint(in + 12) ^ *RK++;
for (int i = (nrounds >> 1) - 1; i > 0;— i){
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

}
AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
AES_SLIM_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);

put_uint(X0, out + 0);
put_uint(X1, out + 4);

268 ﻿Giovanni Agosta et al.

put_uint(X2, out + 8);
put_uint(X3, out + 12);

}

The function aes_encrypt reads the 16 bytes of the input
plaintext block as four unsigned integers, and combines via xor with
the round key. It then applies the required number of AES rounds,
including a last reduced round (AES_SLIM_FROUND). Finally, it
copies the resulting values into the output buffer. The macros named
AES_FROUND and AES_SLIM_FROUND, respectively, are defined
in aes_kernel_constants.h.

Regarding the kernel itself, it needs to be specialized with respect
to the mode of operation employed.

The following code presents the specialization of the AES kernel to
perform CTR mode encryption:

kernel void aes_ctr_mode(global uchar *buffer,
	 global const uchar *round_keys,
	 int nrounds) {
local uchar FSb[256];
local uint FT0[256], FT1[256], FT2[256], FT3[256], RK[60];
if �(get_local_id(0) = = 0) { //Local Memory

Initialization
for (int i = 0; i ! = 256; ++i) {
FSb[i] = glob_FSb[i];
FT0[i] = glob_FT0[i];
FT1[i] = glob_FT1[i];
FT2[i] = glob_FT2[i];
FT3[i] = glob_FT3[i];

}
uint RKw = (nrounds + 1) << 2;
for (uint i = 0; i ! = RKw; ++i) RK[i] = key[i];

}
barrier(CLK_LOCAL_MEM_FENCE);
//Counter Initialization
ulong nonce_lo = get_ulong(buffer);
ulong nonce_hi = get_ulong(buffer + 8);
ulong id = get_global_id(0);
if ((nonce_lo + = id) < id) ++nonce_hi;

uchar counter[16];
put_ulong(nonce_lo, counter);
put_ulong(nonce_hi, counter + 8);

269Symmetric Key Encryption Acceleration

//Encryption
aes_encrypt(counter, counter, RK, nrounds,
	 FSb, FT0, FT1, FT2, FT3);
//Output Write-Back
global uchar *output = buffer + (id + 1) * 16;
for (int i = 0; i ! = 16; ++i) output[i] ^ = counter[i];

}

The kernel takes three parameters: buffer is the data memory
region where the plaintext is found, and where the ciphertext will
be written; round_keys is the expanded key (i.e., the set of round
keys) computed by the key schedule (which will therefore be per-
formed by the host); and finally, nrounds is the number of AES
round to perform, which is determined by the AES key length. The
kernel function at first performs the setup of local memory, which is
used to hold the substitution boxes and the round key, all of which are
shared by all work items. The first work item performs this initializa-
tion procedure. With a slightly more complex code, it is also possible
to split the operation on 256 work items in a straightforward fashion:

uint i = get_local_id(0);
if (i < 256) {

FSb[i] = glob_FSb[i];
FT0[i] = glob_FT0[i];
FT1[i] = glob_FT1[i];
FT2[i] = glob_FT2[i];
FT3[i] = glob_FT3[i];

}
if (i < (nrounds + 1) << 2) RK[i] = key[i];

However, this version of the code forces the minimum work item
space size to 256. Willing to remove this limitation, it is possible to
refine the code parallelizing the initialization over less work items,
retrieving the actual number via the get_local_size method. In all
cases, a barrier is needed to prevent work items from starting their
operation while the local memory is uninitialized.

Since the CTR mode employs a counter, it is possible to exploit
the global work item identification number as part of it. The por-
tion of code between the barrier and the encryption function call
takes care of this. The nonce is read from the input buffer, and com-
bined with the work item identification number, taking into account

270 ﻿Giovanni Agosta et al.

a possible carry. The result is written to a byte array counter. Finally,
the aes_encrypt function is called, to effectively encrypt the coun-
ters to obtain the actual enciphered pads. Once the pads have been
obtained, they are combined via xor with the plaintext, and the results
are written to the output buffer.

13.4.4  AES Host Library

To provide a practical and reusable interface, it is crucial to design the
C++ bindings of our AES implementation according to the current
best practices in modern C++ programming. The key point of our
design is to specifically avoid virtual functions, so to obtain a compact
and efficient output binary, while retaining minimal code redundancy
and enhancing the code readability. Aiming at a high usability of the
library, we would be willing to invoke an encryption call simply as

ArrayRef<const uint8_t> In(buf, 1024);
ArrayRef<uint8_t> Out(buf, 1024);
AESOpenCL<AES_128, OM_CTR> Cipher(key);
Cipher.encrypt(In, Out);

where In and Out are the memory region wrapper objects contain-
ing, respectively, the plaintext and the ciphertext memory areas.
The AESOpenCL class object Cipher is instantiated, employing as
template parameters the key size and mode of operation, and provides
the encrypt method, which can be called passing the input and output
objects. The first, and most simple issue, to be tackled is to provide
a practical support to represent the possible modes of operation sup-
ported by the AES library. To this end, a simple enumeration will
suffice:

enum OperationMode {OM_ECB, OM_CBC, OM_CTR, OM_AES_GCM};

To support the three legal key lengths for AES, we will employ
traits, a meta-programming construct to represent a collection of
methods, which is implemented in C++ as follows:

extern const uint8_t SBox[256];
extern const uint32_t Rcon[10];
const unsigned BlockSize = 16;

271Symmetric Key Encryption Acceleration

enum AESKeyLength {AES_128,
	 AES_192,
	 AES_256
};

template<AESKeyLength KL>
struct AESParams;

template<> struct AESParams<AES_128> {
static const unsigned Rounds = 10;
static const unsigned RoundKeysWords = 44;

};

template<> struct AESParams<AES_192> {
static const unsigned Rounds = 12;
static const unsigned RoundKeysWords = 52;

};

template<> struct AESParams<AES_256> {
static const unsigned Rounds = 15;
static const unsigned RoundKeysWords = 60;

};

A trait in C++ is defined in terms of a template method, or col-
lection of methods, which is specialized to provide its behavior for
the specific template instance. In our case, we specify the number
of rounds and the size (in terms of number of 32-bit integers) of the
whole key schedule depending on the AES key length (represented
by the elements of the AESKeyLength enumeration). Moreover, the
necessary symbol references to the substitution tables are provided.

In the following, we will focus on the implementation of the CTR
mode of operation, which, as mentioned above, is currently consid-
ered among the most secure, and is also amenable to efficient parallel
implementation. The component of the library in charge of the defini-
tion of the selected OpenCL device and its runtime environment is
the AESOpenCLBase class.

class AESOpenCLBase {
public:
AESOpenCLBase() {
initDevice();

}

272 ﻿Giovanni Agosta et al.

private:
cl::Context Ctx;
cl::Program Prog;
cl::Device Dev;
cl::CommandQueue Queue;

void initDevice();

template<OperationMode M> friend class
AESOpenCLModeTraits;

};

The AESOpenCLBase class, when instantiated, initializes the first
available OpenCL device for the first available platform. This is per-
formed by the object constructor, through the initDevice method.
Notice that, in the class description, we specify a template friendship
relation for the instances of the template class AESOpenCLModeTraits
so that, upon specializing the trait to implement the required mode
of operation, we will be able to access freely the private members of
AESOpenCLBase.

Let us look at the implementation of initDevice:

void AESOpenCL::initDevice() {
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
assert(!platforms.empty());

std::vector<cl::Device> devices;
platforms.front().getDevices(CL_DEVICE_TYPE_ALL, &
devices);

assert(!devices.empty());
Ctx = cl::Context(devices);
Dev = devices.front();
Queue = cl::CommandQueue(Ctx, Dev);

std::ifstream in("aes_kernel_file.cl");
std::istreambuf_iterator<char> it(in);
std::string src(it, std::istreambuf_iterator<char>());

Prog = cl::Program(Ctx, src, true);
}

273Symmetric Key Encryption Acceleration

The code employs a similar structure to that seen in the first example
in Section 13.3.3. The main difference lies in the use of an external
source file for the AES kernels. As mentioned above, this is the rec-
ommended style for all but the simplest kernels. It is left as a simple
exercise for the reader to add a second

AESOpenCLBase(std::string platform,
	 std::string device, OperationMode M)

to delegate the selection of the platform and device to the caller.
The implementation of encryption and decryption, depend-
ing on the mode of operation, is obtained by specializing the
AESOpenCLModeTraits trait:

template<OperationMode M>
class AESOpenCLModeTraits {
public:
static void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys);
static void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys);
};

The AESOpenCLModeTraits trait has two static methods that
are to be specialized providing the encryption and decryption imple-
mentations for the proper mode of operation. ArrayRef is a C++ wrap-
per for a generic array. In particular, the code below implements the
specialized trait for CTR mode:

template<>
class AESOpenCLModeTraits<OM_CTR> {
public:
static void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys){

unsigned NBlocks = In.size()/BlockSize - 1;
assert(NBlocks > 0);

274 ﻿Giovanni Agosta et al.

cl::Context &Ctx = OpenCLCtx.Ctx;
cl::Program &Prog = OpenCLCtx.Prog;
cl::CommandQueue &Queue = OpenCLCtx.Queue;

cl::Buffer Buf(Ctx, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR,
	 In.sizeInBytes(), In.ptr());
cl::Buffer KeyBuf(Ctx,
	 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
	 RoundKeys.sizeInBytes(), RoundKeys.ptr());
cl_uint NR = RoundKeys.size()/4 - 1;

cl::Kernel K(Prog, "aes_ctr_mode");
K.setArg<cl::Buffer>(0, Buf);
K.setArg<cl::Buffer>(1, KeyBuf);
K.setArg<cl_int>(2, NR);

cl::NDRange GR(NBlocks);
Queue.enqueueNDRangeKernel(K, cl::NullRange, GR);
Queue.enqueueReadBuffer(Buf, CL_TRUE, 0,
	 Out.sizeInBytes(), Out.ptr());
Queue.finish();

}
static void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out,
	 ArrayRef<const uint32_t> RoundKeys) {

encrypt(OpenCLCtx, In, Out, RoundKeys);
}

};

Note that the decryption function is identical to the encryption
one, since the counter mode encrypts the plaintext by means of com-
bining it with the encryption of a counter via xor. Thus, it is possible to
decipher the ciphertext through adding the same pad via xor. We are
able to employ exactly the same cipher primitive, as our CTR mode
implementation expects both the ciphertext and the plaintext to con-
tain the nonce in the first 16 bytes. The encryption primitive sets up
and calls the kernel aes_ctr_mode. The setup and invocation steps
are analogous to the ones seen in the example in Section 13.3.3. The
AESOpenCLContext class serves as a container for the AES context,
i.e., the full key schedule, to allow the definition of encryption and
decryption methods.

275Symmetric Key Encryption Acceleration

template<AESKeyLength KL, OperationMode M>
class AESOpenCLContext {
public:
AESOpenCLContext(ArrayRef<const uint8_t> Key);

void encrypt(AESOpenCLBase &OpenCLCtx,
	 Arr�ayRef<const uint8_t> In, ArrayRef<uint8_t>

Out);
void decrypt(AESOpenCLBase &OpenCLCtx,

	 Arr�ayRef<const uint8_t> In, ArrayRef<uint8_t>
Out);

};

The key idea of the AESOpenCLContext class is to provide a
proper boxing to bind the key schedule action, and the instantiation of
a properly sized expanded key array, depending on the user key length.

In particular, the corresponding specialization for CTR mode is:

template<AESKeyLength KL>
class AESOpenCLContext<KL, OM_CTR> {
public:
AESOpenCLContext(ArrayRef<const uint8_t> Key) {
computeKeySchedule(Key);

}
void encrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out) {
AESOpenCLModeTraits<OM_CTR>::encrypt(OpenCLCtx, In,

	 Out, RoundKeys);
}
void decrypt(AESOpenCLBase &OpenCLCtx,

	 ArrayRef<const uint8_t> In,
	 ArrayRef<uint8_t> Out) {
AESOpenCLModeTraits<OM_CTR>::decrypt(OpenCLCtx, In,

	 Out, RoundKeys);
}

private:
void computeKeySchedule(ArrayRef<const uint8_t> Key);
uint32_t RoundKeys[AESParams<KL>::RoundKeysWords];

};

The above specialization binds effectively the mode of operation to
be the counter one, while retaining as a template parameter the AES

276 ﻿Giovanni Agosta et al.

user key length. Note that the implementation employs the encrypt and
decrypt static methods of the specialized AESOpenCLModeTraits
template class for the CTR mode. The computation of the expanded
round keys is delegated to the computeKeySchedule private method
called by the constructor of AESOpenCLContext.

The method operates on the private field of the AESOpenCLContext
class, computing the RoundKeys.

template<AESKeyLength KL>
void AESOpenCLContext<KL, OM_CTR>::computeKeySchedule(
	 ArrayRef<const uint8_t> Key) {
unsigned Nk = Key.sizeInBytes()/4;
std::memcpy(RoundKeys, Key.ptr(), Key.sizeInBytes());

for (unsigned i = Nk; i ! =
AESParams<KL>::RoundKeysWords; ++i) {
uint32_t temp = RoundKeys[i - 1];
if (i% Nk = = 0)
temp = subword(rotrb(temp)) ^ Rcon[i/Nk - 1];

else if (Nk > 6 && i% Nk = = 4)
temp = subword(temp);

RoundKeys[i] = RoundKeys[i - Nk] ^ temp;
}

}

The key schedule is computed on the host side, since it only accounts
for a small fraction of the computational load of the algorithm, and it
cannot be effectively parallelized, due to the loop-carried data depen-
dencies (i.e., the round key at round r depends on the one at round
r – 1) in the first for loop. The client interface is encapsulated by the
AESOpenCL template class, where the template parameters provide
the key length and mode of operation information:

template<AESKeyLength KL, OperationMode M>
class AESOpenCL : public AESOpenCLBase {
public:
AESOpenCL(ArrayRef<const uint8_t> Key) : Context(Key) {}
void encrypt(ArrayRef<const uint8_t> In,

	 ArrayRef<uint8_t> Out) {
Context.encrypt(*this, In, Out);

}
void decrypt(ArrayRef<const uint8_t> In,

277Symmetric Key Encryption Acceleration

	 ArrayRef<uint8_t> Out) {
Context.decrypt(*this, In, Out);

}
private:
AESOpenCLContext<KL, M> Context;

};

The class basically acts as a wrapper for the AESOpenCLContext
and AESOpenCLBase instances. In particular, the encrypt and
decrypt functions are able to employ the OpenCL context inherited
from the AESOpenCLBase, and invoking its encrypt and decrypt
methods, passing a reference to itself, as this class inherits from
AESOpenCLBase.

13.4.5  Putting It All Together

We can now provide the main function of our application as follows:

int main(int argc, char *argv[]) {
uint8_t key�[16] = {0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,​

0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,
0x3c};

uint8_t buf�[112] = {0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x32,0x43,0xf6,0xa8,0x88,0x5a,
0x30,0x8d,0x31,0x31,0x98,0xa2,0xe0,0x37,
0x07,0x34};

try {
AESOpenCL<AES_128, OM_CTR> Cipher(key);

ArrayRef<const uint8_t> In(buf, 112);
ArrayRef<uint8_t> Out(buf, 112);

278 ﻿Giovanni Agosta et al.

std::cout << "Input: " << In << std::endl;

Cipher.encrypt(In, Out);
std::cout << "Encryption output: " << Out << std::endl;

Cipher.decrypt(In, Out);
std::cout << "Decryption output: " << Out << std::endl;

} catch (cl::Error error) {
std::cout << "Error" << error.what();
std::cout << "(" << error.err() << ")" << std::endl;

}
return 0;

}

The main function encrypts a plaintext, initially contained in buf,
saving the ciphertext on the same memory region (thus In and Out
are set to point to the same address, buf), and then decrypts the
freshly encrypted ciphertext. There is no need to swap In and Out,
as they point to the same region of memory, with the only difference
being that In must be used as input, since it is marked as constant.

The error handling strategies are the same as those applied in
Section 13.3.3.

13.5  Implementation

1.	 //aes_opencl.cpp
2.	 #include "aes_opencl.h"
3.	 #include <cassert>
4.	 #include <cstring>
5.	 #include <fstream>
6.	 #include <iostream>
7.	 #include <iterator>
8.	 #include <vector>
9.
10.	using namespace AES;
11.
12.	const uint8_t AES::SBox[256] = {
13.	0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
14.	0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
15.	0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
16.	0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
17.	0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
18.	0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,

279Symmetric Key Encryption Acceleration

19.	0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
20.	0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
21.	0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
22.	0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
23.	0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
24.	0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
25.	0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
26.	0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
27.	0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
28.	0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
29.	0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
30.	0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
31.	0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
32.	0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
33.	0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
34.	0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
35.	0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
36.	0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
37.	0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
38.	0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
39.	0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
40.	0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
41.	0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
42.	0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
43.	0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
44.	0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
45.	};
46.
47.	const uint32_t AES::Rcon[10] = {
48.	0x00000001, 0x00000002, 0x00000004, 0x00000008,
49.	0x00000010, 0x00000020, 0x00000040, 0x00000080,
50.	0x0000001B, 0x00000036
51.	};
52.	void AESOpenCLBase::initDevice() {
53.	std::vector<cl::Platform> platforms;
54.	cl::Platform::get(&platforms);
55.
56.	assert(!platforms.empty());
57.
58.	std::vector<cl::Device> devices;
59.	�platforms.back().getDevices(CL_DEVICE_TYPE_ALL,

&devices);
60.
61.	assert(!devices.empty());
62.

280 ﻿Giovanni Agosta et al.

63.	Ctx = cl::Context(devices);
64.	Dev = devices.front();
65.	Queue = cl::CommandQueue(Ctx, Dev);
66.
67.	std::ifstream in("aes_kernel.cl");
68.	std::istreambuf_iterator<char> it(in);
69.	std::string src(it, std::istreambuf _ iterator<char>());
70.
71.	Prog = cl::Program(Ctx, src, true);
72.	}
73.
74.	voi�d AESOpenCLModeTraits<OM_

CTR>::encrypt(AESOpenCLBase &OpenCLCtx,
75.	 ArrayRef<const uint8_t> In,
76.	 ArrayRef<uint8_t> Out,
77.	 ArrayRef<const uint32_t> RoundKeys) {
78.	/* In CTR mode, both 'In' and 'Out' contain
79.	 the IV in the first 16 bytes.	 */
80.	unsigned NBlocks = In.size()/BlockSize - 1;
81.	assert(NBlocks > 0);
82.
83.	cl::Context &Ctx = OpenCLCtx.Ctx;
84.	cl::Program &Prog = OpenCLCtx.Prog;
85.	cl::CommandQueue &Queue = OpenCLCtx.Queue;
86.
87.	cl:�:Buffer Buf(Ctx, CL_MEM_READ_WRITE | CL_MEM_

COPY_HOST_PTR,
88.	 In.sizeInBytes(), In.ptr());
89.	cl:�:Buffer KeyBuf(Ctx, CL_MEM_READ_ONLY | CL_MEM_

COPY_HOST_PTR,
90.	 Rou�ndKeys.sizeInBytes(), RoundKeys.

ptr());
91.
92.	cl_uint NR = RoundKeys.size()/4 - 1;
93.
94.	cl::Kernel K(Prog, "aes_ctr_mode");
95.	K.setArg<cl::Buffer>(0, Buf);
96.	K.setArg<cl::Buffer>(1, KeyBuf);
97.	K.setArg<cl_int>(2, NR);
98.
99.	cl::NDRange GR(NBlocks);
100.
101.	 Que�ue.enqueueNDRangeKernel(K, cl::NullRange,

GR);
102.	 Queue.enqueueReadBuffer(Buf, CL_TRUE, 0,

281Symmetric Key Encryption Acceleration

103.	 Out.sizeInBytes(), Out.ptr());
104.	 Queue.finish();
105.	 }
106.	 int main(int argc, char *argv[]) {
107.	 uint8_t key�[16] = {0x2b,0x7e,0x15,0x16,0x28,

0xae,0xd2,0xa6,
108.	� 0xab,0xf7,0x15,0x88,0x09,0xcf,

0x4f,0x3c};
109.
110.	 uint8_t buf�[112] = {0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,
111.	� 0x00,0x00,0x00,0x00,0x00,0x00,

0x00, 0x00,
112.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30, 0x8d,
113.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34,
114.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34,
115.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30, 0x8d,
116.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30, 0x8d,
117.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34,
118.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30, 0x8d,
119.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34,
120.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34,
121.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30, 0x8d,
122.	� 0x32,0x43,0xf6,0xa8,0x88,0x5a,

0x30,0x8d,
123.	� 0x31,0x31,0x98,0xa2,0xe0,0x37,

0x07, 0x34};
124.	 try {
125.	 AESOpenCL<AES_128, OM_CTR> Cipher(key);
126.
127.	 ArrayRef<const uint8_t> In(buf, 112);
128.	 ArrayRef<uint8_t> Out(buf, 112);
129.
130.	 std::cout << "Input: " << In << "\n";
131.

282 ﻿Giovanni Agosta et al.

132.	 Cipher.encrypt(In, Out);
133.	 std�::cout << "Encryption output: " << Out

<< "\n";
134.
135.	 Cipher.decrypt(In, Out);
136.	 std�::cout << "Decryption output: " << Out

<< "\n";
137.	 } catch (cl::Error error) {
138.	 std::cout << "Error" << error.what();
139.	 std�::cout << "(" << error.err() << ")" <<

std::endl;
140.	 }
141.	 return 0;
142.	 }
143.	 //aes_opencl.h
144.
145.	 #ifndef AES_OPENCL_H
146.	 #define AES_OPENCL_H
147.
148.	 #define __CL_ENABLE_EXCEPTIONS
149.	 #include <CL/cl.hpp>
150.
151.	 #include <cstdint>
152.	 #include <iomanip>
153.	 #include <iostream>
154.	 #include <ostream>
155.
156.	 template<typename ElemTy>
157.	 class ArrayRef {
158.	 public:
159.	 typedef ElemTy *iterator;
160.
161.	 public:
162.	 Arr�ayRef(ElemTy *ptr, size_t len) :

Ptr(ptr), Length(len) {}
163.	 template<size_t N>
164.	 Arr�ayRef(ElemTy (&arr)[N]) : Ptr(arr),

Length(N) {}
165.	 ArrayRef &operator = (const ArrayRef &A) {
166.	 Ptr = A.Ptr;
167.	 Length = A.Length;
168.	 return *this;
169.	 }
170.
171.	 iterator begin() const {return Ptr;}

283Symmetric Key Encryption Acceleration

172.	 iterator end() const {return Ptr + Length;}
173.
174.	 Ele�&operator[](size_t I) const {return

Ptr[I];}
175.
176.	 ElemTy *data() const {return Ptr;}
177.	 size_t size() const {return Length;}
178.
179.	 siz�e_t sizeInBytes() const {return Length *

sizeof(ElemTy);}
180.	 void *ptr() const {return (void*)Ptr;}
181.	 private:
182.	 ElemTy *Ptr;
183.	 size_t Length;
184.	 };
185.
186.	 template<typename ElemTy>
187.	 struct ValuePrintTraits {
188.	 sta�tic void print(std::ostream &OS, const

ElemTy &V);
189.	 };
190.
191.	 template<typename ElemTy>
192.	 struct ValuePrintTraits<const ElemTy> {
193.	 sta�tic void print(std::ostream &OS, const

ElemTy &V) {
194.	 ValuePrintTraits<ElemTy>::print(OS, V);
195.	 }
196.	 };
197.	 template<>
198.	 struct ValuePrintTraits<uint32_t> {
199.	 sta�tic void print(std::ostream &OS,

uint32_t V) {
200.	 V = ((uint8_t)(V) << 24) |
201.	 ((uint8_t)(V >> 8) << 16) |
202.	 ((uint8_t)(V >> 16) << 8) |
203.	 ((uint8_t)(V >> 24));
204.	 OS �<< std::setw(8) << std::setfill('0') <<

std::hex << V;
205.	 }
206.	 };
207.
208.	 template<>
209.	 struct ValuePrintTraits<uint8_t> {

284 ﻿Giovanni Agosta et al.

210.	 sta�tic void print(std::ostream &OS, uint8 _ t V)
{

211.	 OS << std::setw(2) << std::setfill('0');
212.	 OS << std::hex << (uint16_t)V;
213.	 }
214.	 };
215.
216.	 template<typename ElemTy>
217.	 std�::ostream &operator<<(std::ostream &OS,

ArrayRef<ElemTy> A) {
218.	 for� (auto I = A.begin(), E = A.end(); I ! =

E; ++I)
219.	 ValuePrintTraits<ElemTy>::print(OS, *I);
220.	 return OS;
221.	 }
222.
223.	 enum OperationMode {
224.	 OM_ECB,
225.	 OM_CBC,
226.	 OM_CTR,
227.	 OM_AES_GCM
228.	 };
229.
230.	 namespace AES {
231.
232.	 extern const uint8_t SBox[256];
233.	 extern const uint32_t Rcon[10];
234.
235.	 /* TBox and/or reverse TBox should be added here
236.	 (e.g. key schedule computation for decryption
237.	 on ECB or CBC modes). */
238.
239.	 const unsigned BlockSize = 16;
240.	 enum AESKeyLength {AES_128, AES_192, AES_256};
241.
242.	 template<AESKeyLength KL>
243.	 struct AESParams;
244.
245.	 template<> struct AESParams<AES_128> {
246.	 static const unsigned Rounds = 10;
247.	 static const unsigned RoundKeysWords = 44;
248.	 };
249.
250.	 template<> struct AESParams<AES_192> {
251.	 static const unsigned Rounds = 12;

285Symmetric Key Encryption Acceleration

252.	 static const unsigned RoundKeysWords = 52;
253.	 };
254.
255.	 template<> struct AESParams<AES_256> {
256.	 static const unsigned Rounds = 15;
257.	 static const unsigned RoundKeysWords = 60;
258.	 };
259.
260.	 uint32_t rotrb(uint32_t v) {
261.	 return ((v & 0xFF) << 24) | (v >> 8);
262.	 }
263.
264.	 uint32_t rotl(uint32_t v, uint32_t k) {
265.	 uint32_t mask = (1 << k) - 1;
266.	 return ((v & mask) << (32 - k)) | (v >> k);
267.	 }
268.
269.	 uint32_t subword(uint32_t v) {
270.	 uint32_t b[4] = {
271.	 SBox[(v >> 24) & 0xFF],
272.	 SBox[(v >> 16) & 0xFF],
273.	 SBox[(v >> 8) & 0xFF],
274.	 SBox[(v) & 0xFF]
275.	 };
276.	 ret�urn (b[0] << 24) | (b[1] << 16) | (b[2]

<< 8) | b[3];
277.	 }
278.
279.	 class AESOpenCLBase {
280.	 public:
281.	 AESOpenCLBase() {
282.	 initDevice();
283.	 }
284.	 private:
285.	 void initDevice();
286.
287.	 cl::Context Ctx;
288.	 cl::Program Prog;
289.	 cl::Device Dev;
290.	 cl::CommandQueue Queue;
291.
292.	 tem�plate<OperationMode M> friend class

AESOpenCLModeTraits;
293.	 };
294.	 template<OperationMode M>

286 ﻿Giovanni Agosta et al.

295.	 class AESOpenCLModeTraits {
296.	 public:
297.	 static void encrypt(AESOpenCLBase &OpenCLCtx,
298.	 ArrayRef<const uint8_t> In,
299.	 ArrayRef<uint8_t> Out,
300.	 Arr�ayRef<const uint32_t>

RoundKeys);
301.	 static void decrypt(AESOpenCLBase &OpenCLCtx,
302.	 ArrayRef<const uint8_t> In,
303.	 ArrayRef<uint8_t> Out,
304.	 Arr�ayRef<const uint32_t>

RoundKeys);
305.	 };
306.
307.	 template<>
308.	 class AESOpenCLModeTraits<OM_CTR> {
309.	 public:
310.	 static void encrypt(AESOpenCLBase &OpenCLCtx,
311.	 ArrayRef<const uint8_t> In,
312.	 ArrayRef<uint8_t> Out,
313.	 Arr�ayRef<const uint32_t>

RoundKeys);
314.	 static void decrypt(AESOpenCLBase &OpenCLCtx,
315.	 ArrayRef<const uint8_t> In,
316.	 ArrayRef<uint8_t> Out,
317.	 Arr�ayRef<const uint32_t>

RoundKeys) {
318.	 encrypt(OpenCLCtx, In, Out, RoundKeys);
319.	 }
320.	 };
321.
322.	 template<AESKeyLength KL, OperationMode M>
323.	 class AESOpenCLContext {
324.	 public:
325.	 AESOpenCLContext(ArrayRef<const uint8_t> Key);
326.
327.	 void encrypt(AESOpenCLBase &OpenCLCtx,
328.	 ArrayRef<const uint8_t> In,
329.	 ArrayRef<uint8_t> Out);
330.	 void decrypt(AESOpenCLBase &OpenCLCtx,
331.	 ArrayRef<const uint8_t> In,
332.	 ArrayRef<uint8_t> Out);
333.	 };
334.	 template<AESKeyLength KL>
335.	 class AESOpenCLContext<KL, OM_CTR> {

287Symmetric Key Encryption Acceleration

336.	 public:
337.	 AESOpenCLContext(ArrayRef<const uint8_t> Key) {
338.	 computeKeySchedule(Key);
339.	 }
340.
341.	 void encrypt(AESOpenCLBase &OpenCLCtx,
342.	 ArrayRef<const uint8_t> In,
343.	 ArrayRef<uint8_t> Out) {
344.	 AES�OpenCLModeTraits<OM _

CTR>::encrypt(OpenCLCtx, In,
345.	 Out, RoundKeys);
346.	 }
347.	 void decrypt(AESOpenCLBase &OpenCLCtx,
348.	 ArrayRef<const uint8_t> In,
349.	 ArrayRef<uint8_t> Out) {
350.	 AES�OpenCLModeTraits<OM_

CTR>::decrypt(OpenCLCtx, In,
351.	 Out, RoundKeys);
352.	 }
353.	 private:
354.	 voi�d computeKeySchedule(ArrayRef<const uint8_t>

Key) {
355.	 unsigned Nk = Key.sizeInBytes()/4;
356.	 std�::memcpy(RoundKeys, Key.ptr(), Key.

sizeInBytes());
357.
358.	 for� (unsigned i = Nk; i ! =

AESParams<KL>::RoundKeysWords; ++i) {
359.	 uint32_t temp = RoundKeys[i - 1];
360.	 if (i% Nk = = 0)
361.	 temp = subword(rotrb(temp)) ^ Rcon[i/Nk - 1];
362.	 else if (Nk > 6 && i% Nk = = 4)
363.	 temp = subword(temp);
364.	 RoundKeys[i] = RoundKeys[i - Nk] ^ temp;
365.	 }
366.	 }
367.	 private:
368.	 uin�t32_t RoundKeys[AESParams<KL>::RoundKeysWords];
369.	 };
370.
371.	 template<AESKeyLength KL, OperationMode M>
372.	 class AESOpenCL : public AESOpenCLBase {
373.	 public:
374.	 AES�OpenCL(ArrayRef<const uint8_t> Key) :

Context(Key) {}

288 ﻿Giovanni Agosta et al.

375.
376.	 voi�d encrypt(ArrayRef<const uint8_t> In,

ArrayRef<uint8_t> Out) {
377.	 Context.encrypt(*this, In, Out);
378.	 }
379.	 voi�d decrypt(ArrayRef<const uint8_t> In,

ArrayRef<uint8_t> Out) {
380.	 Context.decrypt(*this, In, Out);
381.	 }
382.	 private:
383.	 AESOpenCLContext<KL, M> Context;
384.	 };
385.
386.	 }
387.
388.	 #endif//end aes_opencl.h
389.	 //aes_kernel.cl
390.
391.	 #include "aes_kernel_constants.h"
392.	 uint get_uint_g(global uchar *in) {
393.	 return ((uint)in[0]) |
394.	 ((uint)in[1] << 8) |
395.	 ((uint)in[2] << 16) |
396.	 ((uint)in[3] << 24);
397.	 }
398.
399.	 uint get_uint(uchar *in) {
400.	 return ((uint)in[0]) |
401.	 ((uint)in[1] << 8) |
402.	 ((uint)in[2] << 16) |
403.	 ((uint)in[3] << 24);
404.	 }
405.	 void put_uint(uint v, uchar *out) {
406.	 out[0] = (uchar)(v);
407.	 out[1] = (uchar)(v >> 8);
408.	 out[2] = (uchar)(v >> 16);
409.	 out[3] = (uchar)(v >> 24);
410.	 }
411.
412.	 uint get_ulong(global uchar *in) {
413.	 return (ulong)get_uint_g(in) |
414.	 (ulong)get_uint_g(in + 4) << 4;
415.	 }
416.
417.	 void put_ulong(ulong v, uchar *out) {

289Symmetric Key Encryption Acceleration

418.	 put_uint((uint)v, out);
419.	 put_uint((uint)(v >> 4), out + 4);
420.	 }
421.
422.	 voi�d aes_encrypt(uchar *in, uchar *out, local

uint *RK, int nrounds,
423.	 loc�al uchar *FSb, local uint *FT0,

local uint *FT1,
424.	 local uint *FT2, local uint *FT3) {
425.	 uint X0, X1, X2, X3, Y0, Y1, Y2, Y3;
426.
427.	 X0 = get_uint(in + 0) ^ *RK++;
428.	 X1 = get_uint(in + 4) ^ *RK++;
429.	 X2 = get_uint(in + 8) ^ *RK++;
430.	 X3 = get_uint(in + 12) ^ *RK++;
431.
432.	 for(int i = (nrounds >> 1) - 1; i > 0;— i){
433.	 AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
434.	 AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
435.	 }
436.	 AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);
437.	 AES _ SLIM _ FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);
438.
439.	 put_uint(X0, out + 0);
440.	 put_uint(X1, out + 4);
441.	 put_uint(X2, out + 8);
442.	 put_uint(X3, out + 12);
443.	 }
444.	 kernel void aes_ctr_mode(global uchar *buffer,
445.	 global const uchar *round_keys,
446.	 int nrounds) {
447.	 local uchar FSb[256];
448.	 local uint FT0[256], FT1[256], FT2[256], FT3[256];
449.	 local uint RK[60];
450.
451.	 if (get_local_id(0) = = 0) {
452.	 for (int i = 0; i ! = 256; ++i) {
453.	 FSb[i] = glob_FSb[i];
454.	 FT0[i] = glob_FT0[i];
455.	 FT1[i] = glob_FT1[i];
456.	 FT2[i] = glob_FT2[i];
457.	 FT3[i] = glob_FT3[i];
458.	 }
459.	 int RKw = (nrounds + 1) << 2;
460.	 for (int i = 0; i ! = RKw; ++i)

290 ﻿Giovanni Agosta et al.

461.	 RK[i] = round_keys[i];
462.	 }
463.
464.	 barrier(CLK_LOCAL_MEM_FENCE);
465.
466.	 ulong nounce_lo = get_ulong(buffer);
467.	 ulong nounce_hi = get_ulong(buffer + 8);
468.
469.	 ulong id = get_global_id(0);
470.
471.	 if ((nounce_lo + = id) < id)
472.	 ++nounce_hi;
473.
474.	 uchar counter[16];
475.	 put_ulong(nounce_lo, counter);
476.	 put_ulong(nounce_hi, counter + 8);
477.
478.	 aes_encrypt(counter, counter, RK, nrounds,
479.	 FSb, FT0, FT1, FT2, FT3);
480.
481.	 global uchar *output = buffer + (id + 1) * 16;
482.
483.	 for (int i = 0; i ! = 16; ++i)
484.	 output[i] ^ = counter[i];
485.	 }
486.
487.	 //aes_kernel_constants.h
488.	 #ifndef AES_KERNEL_CONSTANTS_H
489.	 #define AES_KERNEL_CONSTANTS_H
490.
491.	 constant uchar glob_FSb[256] = {
492.	 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
493.	 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
494.	 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
495.	 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
496.	 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
497.	 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
498.	 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
499.	 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
500.	 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
501.	 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
502.	 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
503.	 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
504.	 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
505.	 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,

291Symmetric Key Encryption Acceleration

506.	 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
507.	 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
508.	 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
509.	 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
510.	 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
511.	 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
512.	 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
513.	 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
514.	 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
515.	 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
516.	 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
517.	 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
518.	 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
519.	 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
520.	 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
521.	 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
522.	 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
523.	 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
524.	 };
525.
526.	 define FT \
527.	 V(A�5,63,63,C6), V(84,7C,7C,F8), V(99,77,77,EE),

V(8D,7B,7B,F6), \
528.	 V(0�D,F2,F2,FF), V(BD,6B,6B,D6), V(B1,6F,6F,DE),

V(54,C5,C5,91), \
529.	 V(5�0,30,30,60), V(03,01,01,02), V(A9,67,67,CE),

V(7D,2B,2B,56), \
530.	 V(1�9,FE,FE,E7), V(62,D7,D7,B5), V(E6,AB,AB,4D),

V(9A,76,76,EC), \
531.	 V(4�5,CA,CA,8F), V(9D,82,82,1F), V(40,C9,C9,89),

V(87,7D,7D,FA), \
532.	 V(1�5,FA,FA,EF), V(EB,59,59,B2), V(C9,47,47,8E),

V(0B,F0,F0,FB), \
533.	 V(E�C,AD,AD,41), V(67,D4,D4,B3), V(FD,A2,A2,5F),

V(EA,AF,AF,45), \
534.	 V(B�F,9C,9C,23), V(F7,A4,A4,53), V(96,72,72,E4),

V(5B,C0,C0,9B), \
535.	 V(C�2,B7,B7,75), V(1C,FD,FD,E1), V(AE,93,93,3D),

V(6A,26,26,4C), \
536.	 V(5�A,36,36,6C), V(41,3F,3F,7E), V(02,F7,F7,F5),

V(4F,CC,CC,83), \
537.	 V(5�C,34,34,68), V(F4,A5,A5,51), V(34,E5,E5,D1),

V(08,F1,F1,F9), \
538.	 V(9�3,71,71,E2), V(73,D8,D8,AB), V(53,31,31,62),

V(3F,15,15,2A), \

292 ﻿Giovanni Agosta et al.

539.	 V(0�C,04,04,08), V(52,C7,C7,95), V(65,23,23,46),
V(5E,C3,C3,9D), \

540.	 V(2�8,18,18,30), V(A1,96,96,37), V(0F,05,05,0A),
V(B5,9A,9A,2F), \

541.	 V(0�9,07,07,0E), V(36,12,12,24), V(9B,80,80,1B),
V(3D,E2,E2,DF), \

542.	 V(2�6,EB,EB,CD), V(69,27,27,4E), V(CD,B2,B2,7F),
V(9F,75,75,EA), \

543.	 V(1�B,09,09,12), V(9E,83,83,1D), V(74,2C,2C,58),
V(2E,1A,1A,34), \

544.	 V(2�D,1B,1B,36), V(B2,6E,6E,DC), V(EE,5A,5A,B4),
V(FB,A0,A0,5B), \

545.	 V(F�6,52,52,A4), V(4D,3B,3B,76), V(61,D6,D6,B7),
V(CE,B3,B3,7D), \

546.	 V(7�B,29,29,52), V(3E,E3,E3,DD), V(71,2F,2F,5E),
V(97,84,84,13), \

547.	 V(F�5,53,53,A6), V(68,D1,D1,B9), V(00,00,00,00),
V(2C,ED,ED,C1), \

548.	 V(6�0,20,20,40), V(1F,FC,FC,E3), V(C8,B1,B1,79),
V(ED,5B,5B,B6), \

549.	 V(B�E,6A,6A,D4), V(46,CB,CB,8D), V(D9,BE,BE,67),
V(4B,39,39,72), \

550.	 V(D�E,4A,4A,94), V(D4,4C,4C,98), V(E8,58,58,B0),
V(4A,CF,CF,85), \

551.	 V(6�B,D0,D0,BB), V(2A,EF,EF,C5), V(E5,AA,AA,4F),
V(16,FB,FB,ED), \

552.	 V(C�5,43,43,86), V(D7,4D,4D,9A), V(55,33,33,66),
V(94,85,85,11), \

553.	 V(C�F,45,45,8A), V(10,F9,F9,E9), V(06,02,02,04),
V(81,7F,7F,FE), \

554.	 V(F�0,50,50,A0), V(44,3C,3C,78), V(BA,9F,9F,25),
V(E3,A8,A8,4B), \

555.	 V(F�3,51,51,A2), V(FE,A3,A3,5D), V(C0,40,40,80),
V(8A,8F,8F,05), \

556.	 V(A�D,92,92,3F), V(BC,9D,9D,21), V(48,38,38,70),
V(04,F5,F5,F1), \

557.	 V(D�F,BC,BC,63), V(C1,B6,B6,77), V(75,DA,DA,AF),
V(63,21,21,42), \

558.	 V(3�0,10,10,20), V(1A,FF,FF,E5), V(0E,F3,F3,FD),
V(6D,D2,D2,BF), \

559.	 V(4�C,CD,CD,81), V(14,0C,0C,18), V(35,13,13,26),
V(2F,EC,EC,C3), \

560.	 V(E�1,5F,5F,BE), V(A2,97,97,35), V(CC,44,44,88),
V(39,17,17,2E), \

293Symmetric Key Encryption Acceleration

561.	 V(5�7,C4,C4,93), V(F2,A7,A7,55), V(82,7E,7E,FC),
V(47,3D,3D,7A), \

562.	 V(A�C,64,64,C8), V(E7,5D,5D,BA), V(2B,19,19,32),
V(95,73,73,E6), \

563.	 V(A�0,60,60,C0), V(98,81,81,19), V(D1,4F,4F,9E),
V(7F,DC,DC,A3), \

564.	 V(6�6,22,22,44), V(7E,2A,2A,54), V(AB,90,90,3B),
V(83,88,88,0B), \

565.	 V(C�A,46,46,8C), V(29,EE,EE,C7), V(D3,B8,B8,6B),
V(3C,14,14,28), \

566.	 V(7�9,DE,DE,A7), V(E2,5E,5E,BC), V(1D,0B,0B,16),
V(76,DB,DB,AD), \

567.	 V(3�B,E0,E0,DB), V(56,32,32,64), V(4E,3A,3A,74),
V(1E,0A,0A,14), \

568.	 V(D�B,49,49,92), V(0A,06,06,0C), V(6C,24,24,48),
V(E4,5C,5C,B8), \

569.	 V(5�D,C2,C2,9F), V(6E,D3,D3,BD), V(EF,AC,AC,43),
V(A6,62,62,C4), \

570.	 V(A�8,91,91,39), V(A4,95,95,31), V(37,E4,E4,D3),
V(8B,79,79,F2), \

571.	 V(3�2,E7,E7,D5), V(43,C8,C8,8B), V(59,37,37,6E),
V(B7,6D,6D,DA), \

572.	 V(8�C,8D,8D,01), V(64,D5,D5,B1), V(D2,4E,4E,9C),
V(E0,A9,A9,49), \

573.	 V(B�4,6C,6C,D8), V(FA,56,56,AC), V(07,F4,F4,F3),
V(25,EA,EA,CF), \

574.	 V(A�F,65,65,CA), V(8E,7A,7A,F4), V(E9,AE,AE,47),
V(18,08,08,10), \

575.	 V(D�5,BA,BA,6F), V(88,78,78,F0), V(6F,25,25,4A),
V(72,2E,2E,5C), \

576.	 V(2�4,1C,1C,38), V(F1,A6,A6,57), V(C7,B4,B4,73),
V(51,C6,C6,97), \

577.	 V(2�3,E8,E8,CB), V(7C,DD,DD,A1), V(9C,74,74,E8),
V(21,1F,1F,3E), \

578.	 V(D�D,4B,4B,96), V(DC,BD,BD,61), V(86,8B,8B,0D),
V(85,8A,8A,0F), \

579.	 V(9�0,70,70,E0), V(42,3E,3E,7C), V(C4,B5,B5,71),
V(AA,66,66,CC), \

580.	 V(D�8,48,48,90), V(05,03,03,06), V(01,F6,F6,F7),
V(12,0E,0E,1C), \

581.	 V(A�3,61,61,C2), V(5F,35,35,6A), V(F9,57,57,AE),
V(D0,B9,B9,69), \

582.	 V(9�1,86,86,17), V(58,C1,C1,99), V(27,1D,1D,3A),
V(B9,9E,9E,27), \

294 ﻿Giovanni Agosta et al.

583.	 V(3�8,E1,E1,D9), V(13,F8,F8,EB), V(B3,98,98,2B),
V(33,11,11,22), \

584.	 V(B�B,69,69,D2), V(70,D9,D9,A9), V(89,8E,8E,07),
V(A7,94,94,33), \

585.	 V(B�6,9B,9B,2D), V(22,1E,1E,3C), V(92,87,87,15),
V(20,E9,E9,C9), \

586.	 V(4�9,CE,CE,87), V(FF,55,55,AA), V(78,28,28,50),
V(7A,DF,DF,A5), \

587.	 V(8�F,8C,8C,03), V(F8,A1,A1,59), V(80,89,89,09),
V(17,0D,0D,1A), \

588.	 V(D�A,BF,BF,65), V(31,E6,E6,D7), V(C6,42,42,84),
V(B8,68,68,D0), \

589.	 V(C�3,41,41,82), V(B0,99,99,29), V(77,2D,2D,5A),
V(11,0F,0F,1E), \

590.	 V(C�B,B0,B0,7B), V(FC,54,54,A8), V(D6,BB,BB,6D),
V(3A,16,16,2C)

591.
592.	 #define V(a,b,c,d) 0x##a##b##c##d
593.	 constant uint glob_FT0[256] = {FT};
594.	 #undef V
595.
596.	 #define V(a,b,c,d) 0x##b##c##d##a
597.	 constant uint glob_FT1[256] = {FT};
598.	 #undef V
599.
600.	 #define V(a,b,c,d) 0x##c##d##a##b
601.	 constant uint glob_FT2[256] = {FT};
602.	 #undef V
603.
604.	 #define V(a,b,c,d) 0x##d##a##b##c
605.	 constant uint glob_FT3[256] = {FT};
606.	 #undef V
607.	 #undef FT
608.
609.	 #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) {\
610.	 X0 = *RK++ ^ FT0[(Y0) & 0xFF] ^ \
611.	 FT1[(Y1 >> 8) & 0xFF] ^ \
612.	 FT2[(Y2 >> 16) & 0xFF] ^ \
613.	 FT3[(Y3 >> 24) & 0xFF]; \
614.	 X1 = *RK++ ^ FT0[(Y1) & 0xFF] ^ \
615.	 FT1[(Y2 >> 8) & 0xFF] ^ \
616.	 FT2[(Y3 >> 16) & 0xFF] ^ \
617.	 FT3[(Y0 >> 24) & 0xFF]; \
618.	 X2 = *RK++ ^ FT0[(Y2) & 0xFF] ^ \
619.	 FT1[(Y3 >> 8) & 0xFF] ^ \

295Symmetric Key Encryption Acceleration

620.	 FT2[(Y0 >> 16) & 0xFF] ^ \
621.	 FT3[(Y1 >> 24) & 0xFF]; \
622.	 X3 = *RK++ ^ FT0[(Y3) & 0xFF] ^ \
623.	 FT1[(Y0 >> 8) & 0xFF] ^ \
624.	 FT2[(Y1 >> 16) & 0xFF] ^ \
625.	 FT3[(Y2 >> 24) & 0xFF]; \
626.	 }
627.	 #define AES_SLIM_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) { \
628.	 X0 = *RK++ ^ ((uint) FSb[(Y0) & 0xFF]) ^ \
629.		 ((uint) FSb[(Y1 >> 8) & 0xFF] << 8) ^ \
630.		 ((uint) FSb[(Y2 >> 16) & 0xFF] << 16)^ \
631.		 ((uint) FSb[(Y3 >> 24) & 0xFF] << 24); \
632.	 X1 = *RK++ ^ ((uint) FSb[(Y1) & 0xFF]) ^ \
633.		 ((uint) FSb[(Y2 >> 8) & 0xFF] << 8) ^ \
634.		 ((uint) FSb[(Y3 >> 16) & 0xFF] << 16)^ \
635.		 ((uint) FSb[(Y0 >> 24) & 0xFF] << 24); \
636.	 X2 = *RK++ ^ ((uint) FSb[(Y2) & 0xFF]) ^ \
637.		 ((uint) FSb[(Y3 >> 8) & 0xFF] << 8) ^ \
638.		 ((uint) FSb[(Y0 >> 16) & 0xFF] << 16)^ \
639.		 ((uint) FSb[(Y1 >> 24) & 0xFF] << 24); \
640.	 X3 = *RK++ ^ ((uint) FSb[(Y3) & 0xFF]) ^ \
641.		 ((uint) FSb[(Y0 >> 8) & 0xFF] << 8) ^ \
642.		 ((uint) FSb[(Y1 >> 16) & 0xFF] << 16)^ \
643.		 ((uint) FSb[(Y2 >> 24) & 0xFF] << 24); \
644.	 }
645.
646.	 #endif//end aes_kernel_constants.h

13.6  Concluding Remarks

In this chapter, we have provided an introduction to many-core het-
erogeneous architectures and to OpenCL, the industry standard for
programming such systems. Many-core heterogeneous architectures
provide vast amounts of computation power, which can be harnessed
for cryptographic applications such as volume encryption and brute
forcing. Therefore, we have provided a tutorial on implementing
cryptographic primitives in OpenCL, taking as a case study the AES
cipher. We provided a compact, efficient implementation in C++ of
the required bindings and interfaces, providing an implementation
schema that does not require the use of virtual functions, and exploits
traits as an effective means to provide code specialization. Finally, it
is worth noting that there is a significant corpus of scientific literature

296 ﻿Giovanni Agosta et al.

on optimization of several cryptographic primitives on GPGPU
platforms. Recent works on AES include [18] and [19], but other
ciphers such as DES [20], KeeLoq [21], and Serpent [22] have been
tackled as well.

References
	 1.	 Khronos WG. OpenCL—The Open Standard for Parallel Programming

of Heterogeneous Systems. 2011. Available at http://www.khronos.org/
opencl.

	 2.	 nVidia Corp. Geforce GTX 260 Specifications. 2013. Available at
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-260/
specifications.

	 3.	 nVidia Corp. Fermi Architecture Whitepaper. 2013. Available at http://
www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_
Compute_Architecture_Whitepaper.pdf.

	 4.	 nVidia Corp. Kepler Architecture Whitepaper. 2013. Available at http://
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

	 5.	 Advanced Micro Devices, Inc. R700 Family Instruction Set Architecture
Specifications. 2013. Available at http://developer.amd.com/wordpress/
media/2012/10/R700-Family_Instruction_Set_Architecture.pdf.

	 6.	 Advanced Micro Devices, Inc. R800 Evergreen Family Instruction
Set Architecture. 2013. Available at http://developer.amd.com/word-
press/media/2012/10/AMD_Evergreen-Family_Instruction_Set_
Architecture.pdf.

	 7.	 Imagination Technologies Limited. PowerVR Graphics. 2013. Available at
http://www.imgtec.com/powervr/powervr-graphics.asp.

	 8.	 nVidia Corp. NVIDIA Tegra 4 Family GPU Architecture, v1.0. 2013.
Available at http://www.nvidia.com/docs/IO//116757/Tegra_4_GPU_
Whitepaper _FINALv2.pdf.

	 9.	 IBM. Cell Broadband Engine Architecture, Version 1.02. 2007. Available
at https://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_
Broadband\ _Engine.

	 10.	 Intel. The Intel Xeon Phi Product Family. 2013. Available at http://www.
intel.com/content/dam/www/public/us/en/documents/product-briefs/
high-performance-xeon-phi-coprocessor-brief.pdf.

	 11.	 R. Trogan. Parallella Platform Reference Design. 2013. Available at http://
www.adapteva.com/white-papers/parallella-platform-reference-design.

	 12.	 J. Held and S. Koehl. Introducing the Single-Chip Cloud Computer. 2010.
Available at http://newsroom.intel.com/servlet/JiveServlet/preview-
Body/1088-102-1-1165/Intel_SCC_whitepaper_4302010.pdf.

	 13.	 J. Rijmen and V. Daemen. The Design of Rijndael: AES—The Advanced
Encryption Standard. Berlin: Springer, 2002.

297Symmetric Key Encryption Acceleration

	 14.	 National Institute of Standards and Technology. NIST Special Publication
800-38a—Recommendation for Block Cipher Modes of Operation: Methods
and Techniques. 2001. Available at http://csrc.nist.gov/publications/
nistpubs/800-38a/sp800-38a.pdf.

	 15.	 M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, FL, October
19–22, 1997.

	 16.	 H. Lipmaa, P. Rogaway, and D. Wagner. CTR-Mode Encryption. In First
NIST Workshop on Modes of Operation, 2000.

	 17.	 N. Modadugu and E. Rescorla. AES Counter Mode Cipher Suites
for TLS and DTLS. In Internet-Draft draft-ietf-tls-ctr-01. Internet
Engineering Task Force (IETF), 2006.

	 18.	 Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu. Implementation and
Analysis of AES Encryption on GPU. In 14th IEEE International
Conference on High Performance Computing and Communication and 9th
IEEE International Conference on Embedded Software and Systems, HPCC-
ICESS 2012, Liverpool, UK, June 25–27, 2012.

	 19.	 G. Agosta, A. Barenghi, A. Di Biagio, and G. Pelosi. Design of a Parallel
AES for Graphics Hardware Using the CUDA Framework. In 23rd
IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23–29, 2009.

	 20.	 G. Agosta, A. Barenghi, F. De Santis, and G. Pelosi. Record Setting
Software Implementation of DES Using CUDA. In Seventh International
Conference on Information Technology: New Generations, ITNG 2010,
Las Vegas, Nevada, April 12–14, 2010.

	 21.	 G. Agosta, A. Barenghi, and G. Pelosi. Exploiting Bit-Level Parallelism
in GPGPUs: A Case Study on KeeLoq Exhaustive Search Attacks.
In ARCS Workshops, Munchen, Germany, February 28–March 2, 2012.

	 22.	 G. Agosta, A. Barenghi, F. De Santis, A. Di Biagio, and G. Pelosi. Fast Disk
Encryption through GPGPU Acceleration. In International Conference on
Parallel and Distributed Computing, Applications and Technologies, PDCAT
2009, Higashi, Hiroshima, Japan, December 8–11, 2009.

	 23. Advanced Micro Devices, Inc. OpenCL Programming Guide for APP
Platforms. 2013. Available at http://developer.amd.com/wordpress/
media/2012/10/AMD_Accelerated_Parallel_Processing_OpenCL_
Programming_Guide.pdf.

299

14
Methods and Algorithms

for Fast Hashing in
Data Streaming

M A R AT Z H A N I K E E V

Contents

Keywords	 300
14.1	 Introduction and Practical Situations	 300
14.2	 Terminology	 303
14.3	 The Data Streaming Problem	 304

14.3.1	 Related Information Theory and Formulations	 304
14.3.2	 Practical Applications and Designs	 306
14.3.3	 Current Research Topics	 307

14.4	 Simple 32-Bit Fast Hashing	 308
14.4.1	 Hashing and Blooming Basics	 309
14.4.2	 Traditional Hashing Methods	 310
14.4.3	 Hashing by Bit Manipulation	 311
14.4.4	 Quality Evaluation of Hash Functions	 312
14.4.5	 Example Designs for Fast Hashing	 313

14.5	 Practical Data Streaming	 315
14.5.1	 Distributions in Practice	 316
14.5.2	 Bloom Filters: Store, Lookup, and Efficiency	 317
14.5.3	 Unconventional Bloom Filter Designs for

Data Streams	 319
14.5.4	 Practical Data Streaming Targets	 320
14.5.5	 Higher-Complexity Data Streaming Targets	 323

14.6	 Practical Fast Hashing and Blooming	 324
14.6.1	 Arbitrary Bit Length Hashing	 324
14.6.2	 Arbitrary Length Bloom Filters	 324
14.6.3	 Hardware Implementation	 325

300 ﻿Marat Zhanikeev

Keywords

Bloom filter
Data streaming
Efficient blooming
Fast hashing
Hash function
High-rate data streams
Packet traffic
Practical efficiency
Space efficiency
Statistical sketches
Streaming algorithm

14.1  Introduction and Practical Situations

This chapter exists in the space created by three separate (although
somewhat related) topics: hashing, Bloom filters, and data streaming.
The last term is not fully established in the literature, having been
created relatively recently—within the last decade or so, which is why
it appears under various code names in literature, some of which are
streaming algorithms, data streaming, and data streams. The title of this
chapter clearly shows that this author prefers the term data streaming.
The first two topics are well known and have been around in both
practice and theory for many years.

Although somewhat unconventional to start a new chapter
with a figure, Figure 14.1 can be helpful by clearly establishing
the scope. At the bottom of the pyramid is the hashing technol-
ogy. There are various classes of hash functions—discussed briefly
further on, while fast hashing is the specific kind pursued in this
chapter. Hashing has many applications, of which its use as part
of a Bloom filter is considered in detail. Finally, at the top of the
pyramid, data streaming is the specific application that uses both

14.7	 Practical Example: High-Speed Packet Traffic Processor	 325
14.7.1	 Example Data Streaming Target	 325
14.7.2	 Design for Hashing and Data Structures	 326

14.8	 Summary	 329
References	 330

301Methods and Algorithms for Fast Hashing

hashing generally and Bloom filters specifically as part of a practical
data streaming application.

The two major objectives posed in this chapter are as follows:

Objective 1: Fast hashing. How to calculate hash functions of
arbitrary length data using as few CPU cycles as possible.

Objective 2: Efficient lookup. How to find items in structures
of arbitrary size and complexity with the highest achievable
efficiency.

These objectives do not necessarily complement each other. In fact,
they can be conflicting under certain circumstances. For example,
faster hash functions may be inferior and cause more key collisions
on average. Such collisions have to be resolved by the lookup algo-
rithm, which should be designed to allow multiple records under the
same hash key. The alternative of not using collision resolution is a bad
design because it directly results in loss of valuable information.

Data streaming as a topic has appeared in the research community
relatively recently. The main underlying reason is a fundamental change
in how large volumes of data had to be handled. The traditional way to
handle large data (Big Data may be a better term)—which is still used
in many places today—is to store the data in a database and analyze it
later, where the latter is normally referred to as offline [4]. As the Big
Data problem—the problem of having to deal with an extremely large
volume of data—starts to appear in many areas, storing data in any
kind of database has become difficult and in some cases impossible.
Specifically, it is pointless to store Big Data if its arrival rate exceeds
processing capacity, by the way of logic.

All hashing
All blooming

A uses B
Fast hashing

All related technologies

Other
uses

Data
streaming

Other uses

Other hashing methods

Bloom filter

Figure 14.1  The ladder of technologies covered in this chapter.

302 ﻿Marat Zhanikeev

Hence the data streaming problem, which is defined as a process that
extracts all the necessary information from an input raw data stream
without having to store it. The first obvious logical outcome from this
statement is that such processing has to happen in real time. In view
of this major design feature, the need for both fast hashing and efficient
lookup should be obvious.

There is a long list of practical targets for data streaming. Some
common targets are

•	 Calculating a median of all the values in the arrival stream
•	 Counting all the distinct items
•	 Detecting the longest increasing or decreasing sequence of values

It should be obvious that the first two targets in the above list
would be trivial to achieve without any special algorithm had they
come without the conditions. For example, it is easy to calculate the
average—simply sum up all the values and divide them by the total
number of values. The same goes for the counting of distinct items.
This seemingly small detail makes for the majority of complexity in
data streaming.

Including the above, the following describes the catch of data
streaming:

•	 There is limited space for storing current state; otherwise, we
would revert back to the traditional database-oriented design.

•	 Data have to be accessed in their natural arrival sequence,
which is the obvious side effect of a real-time process—again,
a major change from the database-backed processes that can
access any record in the database.

•	 There is an upper limit on per-unit processing cost that, if
violated, would break the continuity of a data streaming algo-
rithm (arguably, buffering can help smoothen out temporary
spikes in arrival rate).

Note that all the above topics have deep roots in information theory.
There is a long list of literature on the topic, of which this author can
recommend a recently published book at [2], which discusses mod-
ern methods in hashing and blooming (blooming means “using Bloom
filters”). There is also a recent book specifically on hashing [3] that
provides even more detail on Bloom filters as one of the most popular

303Methods and Algorithms for Fast Hashing

end uses of hash functions. To the knowledge of this author, there is
not yet a book on data streaming given that the topic is relatively new,
with early publications dated around 2004.

For the background on the information theory underlying all three
main topics in this chapter, the reader is recommended to refer to the
above books as well as a long list of literature gradually introduced
throughout this chapter.

This chapter itself will try to stick to the minimum of mathematics
and will instead focus on the practical methods and algorithms. Practical
here partly refers to C/C++ implementations of some of the methods.
This chapter has the following structure. Section 14.2 establishes basic
terminology. The data streaming problem is introduced in detail in
Section 14.3. Section 14.4 talks about simple 32-bit hashing methods.
Sections 14.5 and 14.6 discuss practical data streaming and fast
hashing, respectively, and Section 14.7 presents a specific practical
application for data streaming—extraction of many-to-many commu-
nication patterns from packet traffic. The chapter is summarized in
Section 14.8.

Note that the C/C++ source code discussed in this chapter is
publically available at [43].

14.2  Terminology

As mentioned before, the terms data streams, data streaming, and
streaming algorithms all refer to the same class of methods.

Bloom filter or Bloom structure refers to a space in memory that stores
the current state of the filter, which normally takes the form of a bit
string. However, the Bloom filter itself is not only the data it contains,
but also the methods used to create and maintain the state.

Double-linked list (DLL) is also a kind of structure. However,
DLLs are arguably exclusively used in C/C++. This is not 100%
true—in reality, even this author has been able to use DLLs in
other programming languages like PHP or Javascript—but C/C++
programs can benefit the most from DLLs because of the nature of
pointers in C/C++ versus that in any other programming language.
DLLs refer to a memory structure (struct in C/C++) alternatively to
traditional lists—vectors, stacks, etc. In DLLs, each item/element is
linked to its neighbors via raw C/C++ pointers, thus forming a chain

304 ﻿Marat Zhanikeev

that can be traversed in either direction. DLLs are revisited later in
this chapter and are part of the practical application discussed at the
end of the chapter.

The terms word, byte, and digest are specific to hashing. The word is
normally a 32-bit (4-byte) integer on 32-bit architectures. A hashing
method digests an arbitrary length input at the grain of byte or word
and outputs a hash key. Hashing often involves bitwise operations
where individual bits of a word are manipulated.

This chapter promised minimum of mathematics. However, some
basic notation is necessary. Sets of variables a, b, and c are written as
{a, b, c} or {a}n if the set contains n values of a parameter a. In informa-
tion theory, the term universe can be expressed as a set.

Sequences of m values of variable b are denoted as m. Sequences
are important for data streaming where sequential arrival of input is one
of the environmental conditions. In the case of sequences, m can also
be interpreted as window size, given that arrival is normally continuous.

Operators are denoted as functions; that is, the minimum of a set is
denoted as min{a, b}.

14.3  The Data Streaming Problem

As mentioned before, data streaming has a relatively small body of
literature on the subject. Still, the seminal paper at [14] is a good
source for both the background and advanced topics in relation to
data streaming. The material at [15] is basically lecture notes pub-
lished as a 100+-page journal paper and can provide even more insight
as well as very good detail on each point raised in this chapter.

This section provides an overview of the subject and presents the
theory with its fundamental formulations as well as practical applica-
tions and designs. The last subsection presents a summary of current
research directions in relation to the core problem.

14.3.1  Related Information Theory and Formulations

We start with the universe of size n. In data streaming we do not have
access to the entire universe; instead, we are limited to the current
window of size m. The ultimate real-time streaming is when input is
read and processed one item at a time, i.e., m = 1.

305Methods and Algorithms for Fast Hashing

Using the complexity notation, the upper bound for the space
(memory, etc.) that is required to maintain the state is

	 S O min m n,(){ }=

If we want to build a robust and sufficiently generic method, it
would pay to design it in such a way that it would require roughly the
same space for a wide range of n and m, that is,

	 S O log min m n,()(){ }=

When talking about space efficiency, the closest concept in tradi-
tional information theory is channel capacity (see Shannon for the orig-
inal definition [1]). Let us put function f({a}n) as the cost (time, CPU
cycles, etc.) of operation for each item in the input stream. The cost
can be aggregated into f({a}n) to denote the entire output. It is possible
to judge the quality of a given data streaming method by analyzing
the latter metric. The analysis can extend into other efficiency metrics
like memory size, etc., simply by changing the definition of a per-unit
processing cost.

A simple example is in order. Let us discuss the unit cost defined as

	 f a f i a C i nn i: , 1, ,(){ } { }= = ∈ …

The unit cost in this case is the cost of defining—for each item in
the arrival stream—if it is equal to a given constant C. Although it
sounds primitive, the same exact formulation can be used for a much
more complicated unit function.

Here is one example of a slightly higher complexity. This time let
us phrase the unit cost as the following condition. Upon receiving
item ai, update a given record fj ← fj + C. This time, prior to updating
a record, we need to find the record in the current state. Since it is
common that i and j have no easily calculable relation between the
two, finding the j efficiently can be a challenge.

Note that the above formulations may make it look like data
streaming is similar to traditional hashing, where the latter also needs
to update its state on every item in the input. This is a gross misrepre-
sentation of what data streaming is all about. Yes, it is true that some
portion of the state is potentially updated on each item in the arrival
stream. However, in hashing the method always knows which part

306 ﻿Marat Zhanikeev

of the state is to be updated, given that the state itself is often just
a single 32-bit word. In data streaming, the state is normally much
larger, which means that it takes at least a calculation or an algo-
rithm to find a spot in the state that is to be updated. The best way
to describe the relation between data streaming and hashing is to
state that data streaming uses hashing as one its primitive operations.
Another primitive operation is blooming.

The term sketch is often used in relation to data streaming to
describe the entire state, that is, the {  f  }m set, at a given point of time.
Note that f  here denotes the value obtained from the unit function
f (), using the same name for convenience.

14.3.2  Practical Applications and Designs

Early proposals related to data streaming were abstract methodologies
without any specific application. For example, [15] contains several
practical examples referred to as puzzles without any overlaying theme.
Regardless, all the examples in early proposals were based on realistic
situations. In fact, all data streaming targets known today were estab-
lished in the very early works. For example, counting frequent items
in streams [17] or algorithms working with and optimizing the size
of sliding windows [18] are both topics introduced in early proposals.

Data streaming was also fast to catch up with the older area of
packet traffic processing. Early years have seen proposals on data
streaming methods in Internet traffic and content analysis [14],
as well as detection of complex communication patterns in traf-
fic [19, 25]. The paper in [25] specifically is an earlier work by this
author and is also this author’s particular interest as far as application
of data streaming to packet traffic is concerned. The particular prob-
lem of detecting complex communication patterns is revisited several
times in this chapter.

Figure 14.2 shows the scenario in which data streaming can be
applied to detection of many-to-many communication patterns.
The figure is split into upper and lower parts, where the upper part
represents conventional, and the lower the new method based on data
streaming. The traditional process collects and stores data for later
offline processing. The data streaming process removes the need for
storage—at least in the conventional sense, given small storage is still

307Methods and Algorithms for Fast Hashing

used to maintain the state—and aggregates the patterns in real time.
Note that this process also allows for real-time analysis because the
data can easily be made available once they are ready. In software, this
is normally done via timeouts, where individual records are exported
after a given period of inactivity, which naturally indicates that a pat-
tern has ended.

Data streaming has been applied to other areas besides traffic.
For example, [16] applies the discipline to detection of triangles in
large graphs, with obvious practical applications in social networks,
among many other areas where graphs can be used to describe under-
lying topology.

14.3.3  Current Research Topics

Figure 14.3 shows the generic model of a data streaming situation.
The parameters are arrival rate, record size, record count, and the index,
where the last term is a replacement term for data streaming. Note
that only arrival rate is important, because departure rate, by defini-
tion, cannot be higher than the arrival rate. On the other hand, arrival
rate is important because a data streaming method has to be able to
support a given rate of arrival in order to be feasible in practice.

Arrival rate is also the least popular topic in related research.
In fact, per-unit processing time is not discussed much in literature,
which instead focuses on efficient hashing or blooming methods.
Earlier work by this author in [36] shows that per-unit processing cost

Physical layer Meter Collector
One-to-one

record export

CaptureArrival
stream

Conventional

Streaming

Arrival
stream

Many-to-many
pattern records

Many-to-many
record export

(Online)
Analysis

Capture
and

aggregation

Storage

Collect
and store

(Offline)
Aggregation
and analysis

Figure 14.2  A common design for data streaming on top of packet traffic.

308 ﻿Marat Zhanikeev

is important—the study specifically shows that too much processing
can have a major impact on throughput.

The topic of arrival rate is especially important in packet traffic.
With constantly increasing transmission rates as well as traffic vol-
ume, a higher level of efficiency is demanded of switching equipment.
Click router is one such technology [34] that is in active development
phase with recent achievements of billion pps processing rates [35].
The same objectives are pursued by OpenVSwitch—a technology
in network virtualization. It is interesting that research in this area
uses roughly the same terminology as is found in data streaming.
For example, [35] is talking about space efficiency of data structures
used to support per-packet decision making. Such research often uses
Bloom filters to improve search and lookup efficiency. In general, this
author predicts with high probability that high-rate packet processing
research in the near future will discover the topic of data streaming
and will greatly benefit from the discovery.

14.4  Simple 32-Bit Fast Hashing

Hashing is the best option for a store-and-lookup technology. While
there are other options like burst trees, hash tables have been repeat-
edly proven to outperform their competitors [6].

The book at [3] is a good source of the background on hashing.
Unfortunately, the book does not cover the topic of fast hashing, which
is why it is covered in detail in this chapter. In fact, hashing perfor-
mance is normally interpreted as statistical quality of a given hash
function rather than the time it takes to compute a key.

One of the primary uses for fast hashing in this chapter is lookup.
For example, [12] proposes a fast hashing method for lookup of

Departure (µ2)Arrival (µ)

Record count (n)

Index

Record size (s)

Figure 14.3  Common components shared by all data streaming applications.

309Methods and Algorithms for Fast Hashing

per-flow context, which in turn is necessary to make a decision
on whether or not to capture a packet. Note that lookup is not the
only possible application of hashing. In fact, message digests and
encryption might greatly outweigh lookup if compared in terms of
popularity.

The target of this section is to discuss hashing defined as
manipulations of individual 32-bit words subject to obtaining qual-
ity hash keys. Note that there is a perfect example of such a work in
traffic—an IPv4 address. This chapter revisits practical applications
in traffic processing and even works with real packet traces like those
publicly available at [46] and [47].

14.4.1  Hashing and Blooming Basics

Figure 14.4 presents the basic idea about hashing and blooming in
one figure. Although blooming is not covered much in this figure,
presenting the two together helps by presenting how the two tech-
nologies fit together.

Hashing—the same as applying a hash function on an arbitrary
length message—produces an output in the form of a bit string of a
given length. The 32-bit hash keys are common—hence the title of
this section.

The main point about a hashing method is the quality of a hash key
it produces. The subject of quality and its evaluation is covered further
in this section.

Replace
current

state

...
...

OR
Bit
length

Bloom
filter

Each
in turn

Hash
keys

1 1

1

1

1

1

1

0

0

1

1

1

0

0

1

0

Item Multiple
hash

functions

Figure 14.4  Generic model of hashing used in the context of blooming.

310 ﻿Marat Zhanikeev

Now, here is how the Bloom filter puts hashing to practical use.
In the official definition, a Bloom filter can use multiple hash func-
tions for each insert or lookup operations—the number is obviously
the same for both operations in the same setting.

Each hash function produces its own bit string. This string is then
merged with the current state of the Bloom filter via the bitwise OR
operation, the result of which is stored at the new state of the filter.
The same is done for each of the multiple hash functions provided
there is more than one (not necessarily the case in practice).

It should be obvious that bit lengths of the Bloom filter and each
hash key should be the same.

This, in a nutshell, describes the essence of hashing and blooming.
The concepts are developed further in this chapter.

14.4.2  Traditional Hashing Methods

Konheim [3] lists all the main classes of hash functions. This subsec-
tion is a short overview.

Perfect hashing refers to a method that maps each distinct input to
a distinct slot in the output. In other words, perfect hashing is perfect
simply because it is free of collisions.

Minimal perfect hashing is a subclass of perfect hashing with the
unique feature that the count of distinct items on the output equals
that on the input regardless of the range of possible value on the input.
This confusing statement can be untangled simply by noting that
minimal perfect hashing provides very space efficient outputs. This is
why this method is actively researched by methods that require space-
efficient states while streaming the data.

Universal hashing is a class of randomized hashing. Note that most
methods—including those used in packet traffic, the most famous of
which is arguably the CHECKSUM algorithm, also known as the
cyclic redundancy check (CRC) family—are deterministic and will
always produce the same output for the same input. Randomized
hashing is often based on multiplication, which is also known in
hashing as “the most time consuming operation” [8]. For this reason
alone, fast hashing avoids some of the methods in the universal class.

There are several other classes, like message digests and generally
cryptography, both of which have little to do with fast hashing.

311Methods and Algorithms for Fast Hashing

The study in [7] is an excellent performance comparison of several
popular hash functions and will provide better background on the
subject.

14.4.3  Hashing by Bit Manipulation

Bit manipulation is a basic unit of action in hashing. Most existing
methods, especially those that are supposed to be fast, are based on
bitwise operations. Here is a practical example that shows how the
CRC24 method creates its keys (the full implementation of the algo-
rithm can be found in crc24.c at [43]):

Let us analyze what is happening in this code. First, there is some
variable L that contains deterministic values for each of the 256 states
it carries. The states are accessed by using the tail of each actual byte
from the input stream. The function also makes use of two XOR
operations. The initial value of key is set as the first element of L, but
then it evolves as it moves through the bytes filtered through prede-
termined values at various spots in L. All in all, the method looks
simple in code, but it is known to provide good quality hash keys.
The actual meaning of the word quality is covered later in this section.

As far as bitwise manipulations are concerned, they can be classi-
fied into reversible versus irreversible operations. Although keys do not
always have to be reversible to be feasible in practice, it is important to
know which are which.

The following operations are reversible:

312 ﻿Marat Zhanikeev

The following operations are nonreversible:

The multiplication operation is a special case not only because it is
reversible only if the constant is odd, but also because it incurs more
cost than, say, the bitwise shift. It is trivial to understand why bitwise
shift to the left is the same as multiplying a number by 2. However,
the two operations are very different on most hardware architec-
tures, specifically in the number of CPU cycles an operation incurs or
can potentially incur in case the cost is not a fixed number of cycles.
Hardware implementation is revisited further in this chapter.

14.4.4  Quality Evaluation of Hash Functions

Quality estimation of a hash function is common knowledge.
The following are the main metrics:

Uniform distribution. The output of a hash function should
be uniformly distributed. This means that each combination
of bits in the output should be equally likely to occur. This
metric is easy to test and analyze statistically. Simply collect
a set of outputs and plot their distribution to see if it forms a
roughly horizontal line.

Avalanche condition. This is a tricky metric that is both the
objective of a hash function and the metric that evaluates its
quality. The statement is that a change in any one bit on the
input should affect every output bit with 50% probability.
There is one easy way to understand this metric. If our input
changes only in one bit (say, an increment of one), the out-
put should change to a very different bit string from the one
before. In fact, the 50% rule says that on average, the XOR
difference between the two keys should roughly have 50% of
its bits set to 1. Note that this applies to any input bit, mean-
ing that large change in input should cause about the same
change in output as a small change in input. Another way

313Methods and Algorithms for Fast Hashing

to think about this metric is by realizing that this is how the
uniform distribution is achieved in the first place.

No partial correlation. There should be no correlation between any
parts of input versus output bit strings. Again, this metric is related
to both the above metrics but has its own unique underlying sta-
tistical mechanisms. Correlation is easy to measure. Simply take
time series of partial strings in input versus output and see if the
two correlate. You will have to try various combinations—that
is, x bits from the head, tail, in the middle, etc.

One-way function. The statement is that it should be computa-
tionally infeasible to identify two keys that produce the same
hash value or to identify a key that produces a given hash
value. This metric is highly relevant in cryptography, but is
not much useful for fast hashes.

14.4.5  Example Designs for Fast Hashing

There are two fundamental ways to create a fast hashing method:

	 1.	Create a more efficient method to calculate hash keys while
retaining the same level of quality (metrics were discussed
above).

	 2.	Use a simple—and therefore faster—hashing method and
resolve quality problems algorithmically.

Arguably, these two methods are the opposite extremes, while the
reality is a spectrum between the two. Regardless, the rest of this sec-
tion will show how to go about writing each of the two algorithms.

The d-left method in [13] is a good example of a fast hashing method
that attempts to retain the quality while speeding up calculations. The
method uses multiple hash functions for its Bloom filter but proposes
an algorithm that avoids using all the functions when calculating each
key. In fact, each time the algorithm skips one of k functions, it saves
calculation time. The study formulates the method as an optimization
problem where the number of overflows is to be minimized. Some
level of overflow is inevitable under the method since the space is
minimized for faster access. The point therefore is to find a good bal-
ance in the trade-off between high number of overflows (basically
lost/missed records) and fast hash calculations.

314 ﻿Marat Zhanikeev

While the above method is scientifically sound, practice often favors
simple solutions. Earlier work by this author is one such example [38].
What it does is use simple CRC24 as the only hashing function—
thus causing lower quality of keys in terms of collisions, especially
given that the keys feature the compression ratio of over five times
(141 bits are compressed into 24). This quality problem is dealt with
algorithmically using the concept of sideways DLL.

Figure 14.5 shows the basic idea behind sideways DLL. Virtual
stem in the figure is the traditional DLL where each item is con-
nected to its neighbor using the traditional to C/C++ variables prev
and next. These variables are assigned pointers to neighboring items,
thus forming a list-like chain that can be traversed.

Since simple hashing will have higher number of collisions on aver-
age, they have to be resolved programmatically. The horizontal chain
in Figure 14.5 is one obvious solution. All items in the horizontal
chain share the same hash key and are connected into the DLL chain
using sidenext and sideprev pointers.

The collisions are resolved as follows. Fast hashing quickly pro-
vides a key. The program finds the headmost DLL item for that key.
However, there is no guarantee that the headmost element is the cor-
rect one—hence the collision. So, the program has to traverse the
chain and check whether a given item is the one it is looking for.
Granted that such a resolution will also waste CPU cycles, this per-
formance overhead is not fixed for each lookup. In fact, this author’s
own practice shows that less than 5% of keys will have sideways
chains, while the rest will have only one item in each slot.

ItemItem

Item

Item

Item

Si
de

pr
ev

Si
de

pr
ev prev

prev

next

next

Si
de

ne
xt

Si
de

ne
xt

Figure 14.5  Example DLL design that can deal with hash key collisions using the ability to
traverse DLL sideways.

315Methods and Algorithms for Fast Hashing

The following is the actual C/C++ code for a DLL structure with
sideways chains:

Note that the chain itself is built by DLL element (DLLE) only.
Yet, the DLL part is also necessary, especially for traversal. It is also
useful to be able to traverse the chain from both the head and the tail.
Here is the list of some of the useful properties of DLLs:

•	 It is easy for two DLLEs to swap positions, which can be done
simply by changing assignments in next and prev pointers—
the same way any DLLE can be moved to the head or the tail
of the DLL.

•	 Given the easy swapping, it is possible to put a recently used
DLLE at the head of the DLL so that it is found first during
the next traversal; this way old DLLEs will naturally sink to
the bottom (tail) of the DLL. This can also be described as a
natural sorting of the DLL by last used timestamp.

•	 Given the above property, garbage collection is easy—simply
pick the oldest DLLEs at the tail of the DLL and dispose of
them (or export them, etc.).

DLL is commonplace in packet traffic processing where C/C++
programming is in the overwhelming majority [20]. Earlier research
by this author [25] makes extensive use of DLLs. A similar example
will be considered as a practical application further in this chapter.

14.5  Practical Data Streaming

This section puts together all the fundamentals presented earlier as
part of practical data streaming. The scope of the practice extends
from the contents of the input stream to fairly advanced practical data
streaming targets.

316 ﻿Marat Zhanikeev

14.5.1  Distributions in Practice

Research in [41] was the first to argue that traditional distributions,
of which beta, exponential, Pareto, etc., are the most common, perform
badly as models of natural processes. In fact, this phenomenon was
noticed in packet traffic many years before. Yet, research in [41] is the
first to present a viable alternative based on the concept of hotspots.
The research shows that hotspots are found in many natural systems.

Many statistics collected from real processes support the notion of
hotspots. For example, [42] shows that hotspots and flash events exist
in data centers that are part of large-scale cloud computing.

Earlier work by this author in [37] developed a model that can syn-
thesize flash events in packet traces. The output of such a synthesis is
a packet trace that looks just like a real trace, only with all the time-
stamps and packet sizes being artificially created by the model.

The model in [37] is based on a stick-breaking (SB) process, which
in Figure 14.6 is compared to one of the traditional choices—the
beta distribution. The SB process is known to create more realistic
power-law distributions—hence its selection as the underlying struc-
ture. For realistic traces, not only synthetic sources but also their
dynamics are important, which is why a large part of the synthesis
is dedicated to creating flash events (left bottom plot of the figure).
The modeling logic is simple and is evident from the plot—locations

43

Synthetic Flash
vs. real

Synthetic Normal
vs. real

2
Log (real per-dest volume)

Lo
g

(s
yn

th
et

ic
 p

er
-d

es
t v

ol
um

e)

10

0

0.6

1.2

1.8

2.4

3

3.6

4.2
Beta

Stick-breaking

Normal
Flash event

2.51.50.50

6

0

0 0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1

Beta/SB Count (Histogram)

4

Lo
g

(p
op

ul
ar

ity
)

N
or

m
. B

et
a/

SB
 S

eq
. N

o.

2

0

1
Log (seq. no.)

2

Figure 14.6  The stick-breaking process (left) used to create a synthetic trace versus beta dis-
tribution as a common traditional choice, and comparison of the synthetic trace to a real one (right).

317Methods and Algorithms for Fast Hashing

(sources, destinations, content items, etc.) that are already popular can
“go viral,” which is where the access count can grow substantially for
a limited period of time.

The right-side plot in Figure 14.6 shows that even such an elabo-
rate synthesis fails to emulate reality. The plot shows that only the
upper 30% of the trace (top flows by volume) closely follows the real
distribution, where the resemblance in smaller flow size is almost
completely gone. Note that the real packet traces used in comparison
come from [47].

Nevertheless, even with the relatively high error margin, synthetic
traces are preferred in trace-based simulations specifically because they
allow us to test various conditions simply by changing the parameters
during synthesis. In this respect, real traces can be considered as the
average or representative case, while synthetic traces can be used to
test the limits of performance in some methods.

Traces—both real and synthetic—are related to fast hashing via
the notion of arrival rate introduced earlier in this chapter. If the
method is concerned with per-unit processing cost, the contents of the
input stream are of utmost importance. In this respect, packet traffic
research provides a fresh new prospective on the subject of fast hash-
ing. While traditionally fast hashing is judged in terms of the quality
of its keys, this chapter stresses the importance of the distribution in
the input stream.

As far as real packet traces are concerned, CAIDA [48], WAND [46],
and WIDE [47] are good public repositories and contain a wide variety
of information at each site.

The above synthetic method is not the only available option. There
are generators for workloads in many different disciplines, where, for
example, RUBIS is a generator of workloads for cloud computing.
RUBIS generates synthetic request arrival processes, service times,
etc. [49].

14.5.2  Bloom Filters: Store, Lookup, and Efficiency

The study in [9] provides a good theoretical background on the notion
of Bloom filters. This section is a brief overview of commonly available
information before moving on to the more advanced features actively
discussed in research today.

318 ﻿Marat Zhanikeev

Remember Figure 14.4 from before? Some of this section will
discuss the traditional design presented by this figure, but then
replace it with a more modern design. From earlier in this chapter
we know that blooming is performed by calculating one or more
hash keys and updating the value of the filter by OR-ing each hash
key with its current state. This is referred to as the insert operation.
The lookup operation is done by taking the bitwise AND between a
given hash key and current state of the filter. The decision making
from this point on can go in one of the following two directions:

•	 The result of AND is the same as the value of the hash key—
this is either true positive or false positive, with no way to tell
between the two.

•	 The result of AND is not the same as the value of the hash
key—this is a 100% reliable true negative.

One common way to describe the above lookup behavior of
Bloom filters is to describe the filter as a person with memory who
can only answer the question “Have you seen this item before?”
reliably. This is not to underestimate the utility of the filter, as the
answer to this exact question is exactly what is needed in many
practical situations.

Let us look at the Bloom filter design from the viewpoint of hash-
ing, especially given that the state of the filter is gradually built by
adding more hash keys onto its state.

Let us put n as number of items and m the bit length of hash keys,
and therefore the filter. We know from before that each bit in the hash
key can be set to 1 with 50% probability. Therefore, omitting details,
the optimal number of hash function can be calculated as

	 k In m
n

m
n

2 0.6= 



 ≈

If each hash function is perfectly independent of all others, then the
probability of a bit remaining 0 after n elements is

	 p
m

e
kn kn

m1 1= −



 ≈

−

319Methods and Algorithms for Fast Hashing

False positive—an important performance metric of a Bloom filter is
then

	 pFP p ek
kn

m

k

k1 1 1
2()= − ≈ −







≈
−

for the optimal k. Note with that increasing k, the probability of false
positive is actually supposed to decrease, which is an unintuitive outcome
because one would expect the filter to get filled up with keys earlier.

Let us analyze the k. For the majority of cases m << n, which means
that the optimal number of hash functions is 1. Two functions are
feasible only with m > 2.5n. In most realistic cases this is almost never
the case because n is normally huge, while m is something practical,
like 24 or 32 (bits).

14.5.3  Unconventional Bloom Filter Designs for Data Streams

Based on the above, the obvious problem in Bloom filters is how to
improve their flexibility. As a side note, such Bloom filters are nor-
mally referred to as dynamic.

The two main changes are (1) extended design of the Bloom filter
structure itself, which is not a bit string anymore, and (2) nontrivial
manipulation logic dictated by the first change—simply put, one can-
not use logical ORs between hashes and Bloom filter states.

Figure 14.7 shows the generic model that applies to most of the
proposals of dynamic Bloom filters. The simple idea is to replace a

Replace
current

state

...
...

OR
Bit
length

Bloom
�lter

State*
* ...

*

*

*

*

*

*

Each
in turn

Hash
keys

A nontrivial
manipulation

1

1

1

1

0

0

1

0

Item Multiple
hash

functions

Figure 14.7  A generic model representing Bloom filters with dynamic functionality.

320 ﻿Marat Zhanikeev

simple bit string with a richer data structure (the change in the Bloom
filter in the figure). Each bit in the filter now simply is a pointer to a
structure that supports dynamic operations.

The other change that ensues is that the OR operation is no longer
applicable. Instead, a nontrivial manipulation has to be performed on
each bit of the value that was supposed to be OR-ed in the traditional
design. Naturally, this incurs a considerable overhead on performance.

The following classes of dynamic Bloom filters are found in literature.

Stop additions filter. This filter will stop accepting new keys
beyond a given point. Obviously this is done in order to keep
false positive beyond a given target value.

Deletion filter. This filter is tricky to build, but if accomplished,
it can revert to a given previous state by forgetting the change
introduced by a given key.

Counting filters. This filter can count on both individual bits
of potential occurrences of entire values and combinations of
bits. This particular class of filters obviously can find practi-
cal applications in data streaming. In fact, the example of the
d-left hashing method discussed earlier in this chapter uses a
kind of counting Bloom filter [13]. Another example can be
found in [12], where it is used roughly for the same purpose.

There are other kinds of unconventional designs. The study in [10]
declares that it can do with fewer hash functions while providing the
same blooming performance. Bloom filters specific to perfect hashing
are proposed in [11].

14.5.4  Practical Data Streaming Targets

This subsection considers several practical data streaming targets.

Example 14.1:  A Simple Sampling Problem

We need a median of the stream. The problem is to find a uniform
sample s from a stream of unknown length and unknown content
in advance. Again, by definition, even having seen all the input,
we cannot use it because there is not enough storage for its entire
volume.

Algorithm: Set originally s = x1. On seeing the tth element, the
probability of s ← xt is 1/t.

321Methods and Algorithms for Fast Hashing

Analysis: The probability that s = xi at some time t ≥ i is

	 []= = ⋅ −
+

⋅ ⋅ −











=1 1 1
1 1

1 1 1P s x
i t ti …

To get k samples, we use O(k log n) bits of space.

Example 14.2:  The Sliding Window Problem

Maintain a uniform sample from the last w items algorithm:

•	 For each xi pick a random value vk ∈ (0, 1).
•	 In a window (xj–w + 1, …, xj) return value xi with smallest

the xi.
•	 To do this, maintain a set of all elements in a sliding win-

dow whose v value is minimal among subsequent values.

Analysis: The probability that the jth oldest element is in S is
1/j, so the expected number of items in S is

)(+
−

+ + =1 1
1

..... 1
1

log
w w

O w

Therefore, the algorithm only uses O(log w log n) bits of memory.

Example 14.3:  The Sketch Problem

Apply a linear projection “on the fly” that takes high-dimensional
data to a smaller dimensional space. Post-process the lower-
dimensional image to estimate the quantities of interest.

Input: Stream from two sources:

)([] [])(∈ ∪, ,...,1 2x x x A n B nm
m

The objective is to estimate the difference between distribu-
tions of A values and B values, so

	 ∑ −
[]∈

f gi i

i n

where

	 { } { }= = = =: and :f k x i g k x ii k i k

322 ﻿Marat Zhanikeev

Example 14.4:  Count-Min Sketch

For example, we might detect heavy hitters fi ≥ m, or range sum
estimate:

	 ∑ ≤ ≤ fi k j k

when i, j are not known in advance. For k-quantiles, find values
q0, …, qk such that

	 ∑∑= = < ≤
≤≤ −

0, ,0q q n f jm
k

fk i i

i qi q q jj

Algorithm: Maintain a list of counters ci, j for i ∈ [d] and j ∈ [w].
Construct d random hash functions h1, h2, …, hd: [n] → [d].
Update counters, when the encounter value v increment is ci,hi (v)
for i ∈ [d]. To get an estimate of fk return

	 = min , ()f ck
i

i h kj

Analysis: For d = O(log(1/δ)) and w = O(1/ε2),

	 − ∈ ≤ ≤  ≥ − δ1*P f m f fk k k

Example 14.5:  The Counting Problem

Count distinct elements in stream.
Input: Stream (x1, x2, …, xm) ∈ [n]m. The objective is to estimate

the number of distinct values in the stream up to a multiplicative
factor 1 + ε with high probability.

Algorithm: Apply random function h: [n] ∈ [0, 1] to each ele-
ment. Compute a—the tth smallest value of the hash seen where
t = 21/ε2. Return r* = t/a as the estimate of r—the number of dis-
tinct items.

Analysis: Algorithm uses O(e–2 log n) bits of space. Estimate has
good accuracy with reasonable probability:

	 []∗ − ≤ ∈ ≤| | 9/10P r r r

The proof involves the concept of Chebyshev analysis and is
pretty complicated, but it is out there if you do a quick search in
the literature provided above.

323Methods and Algorithms for Fast Hashing

14.5.5  Higher-Complexity Data Streaming Targets

Besides the relatively simple (you can call them traditional) data
streaming targets, there are several interesting practical targets that
need a higher level of algorithmic complexity. This subsection lists
only the problems and leaves the search for solutions to the reader.
In fact, some solutions are the subject of active discussion in the
research community today. Pointers to such research are provided.

Example 14.6:  Finding Heavy Hitters
(beyond the Min-Count Sketch)

Find k most frequently accessed items in a list. One algorithm is
proposed in [17]. Generally, more sound algorithms for sliding
windows can be found in [18].

Example 14.7:  Triangle Detection

Detect triangles defined as A talks to B, B talks to C, and C talks
to A (other variants are possible as well) in the input stream. An
algorithm is proposed in [16].

Example 14.8:  Superspreaders

Detect items that access or are accessed by exceedingly many
other items. Related research can be found in [19].

Example 14.9:  Many-to-Many Patterns

This is a more generic case of heavy hitters and superspreaders,
but in this definition the patterns are not known in advance.
Earlier work by this author [25] is one method. However, the
subject is popular with several methods, such as M2M broadcast-
ing [26] and various M2M memory structures [27, 31], and data
representations (like graph in [28]) are proposed—all outside of
the concept of data streaming. The topic is of high intrinsic value
because it has direct relevance to group communications where
one-to-many and many-to-many are the two popular types of
group communications [29, 30, 32, 33].

A practical example later in this chapter will be based on a
many-to-many pattern capture.

324 ﻿Marat Zhanikeev

14.6  Practical Fast Hashing and Blooming

This section expands further into the practical issues in relation with
fast hashing and blooming.

14.6.1  Arbitrary Bit Length Hashing

Obvious choices when discussing long hashes are the MD5 and SHA-
family of methods.

It is interesting that bit length is about the only difference of such
methods from simpler 32-bit hash keys. The state is still created and
updated using bitwise operations, with the only exception that the
state now extends over several words and updates are made by rotation.

Both groups of methods are created with hardware implementation
in mind where it is possible to update the entire bit length or even
digest the entire message in one CPU cycle.

The methods, however, are useless for data streaming in general,
mostly due to the long bit length. With CRC24, it is possible to
procure a memory space with 224 memory slots (where each slot is a
4-byte C/C++ pointer). But there is no feasible solution for a memory
region addressable using an MD5 key as an index.

However, given the uniform distribution condition, it is possible to
use only several bits from any region of the hash key. However, given
that MD5 or SHA- methods take much longer to compute than the
standard CRC24 or even a simpler bitwise manipulation, such a use
would defeat the purpose of fast hashing.

14.6.2  Arbitrary Length Bloom Filters

Again, using longer Bloom filters has dubious practical value. Based
on the simple statistics presented above, increasing the bit length of
the filter only makes sense when it helps increase the number of hash
functions. However, the equation showed that increase in bit length
is reduced by 40%. Even before that, m is part of the ratio m/n, which
makes it nearly impossible to have any practical impact n when n is
large. In practice, n is always large.

In view of this argument, it appears that the dynamic filters pre-
sented earlier in this paper present a better alternative to using longer
bit strings in traditional Bloom filters.

325Methods and Algorithms for Fast Hashing

14.6.3  Hardware Implementation

Hashing is often considered in tandem with hardware implementation.
The related term is hardware offload—where a given operation is offloaded
to hardware. It is common to reduce multi-hundred-cycle operations to
single CPU cycles. This subsection presents several such examples.

One common example is to offload CHECKSUM calculations to
hardware. For example, the COMBO6 card [20] has done that and
has shown that it has major impact on performance.

Note that the most popular hashing methods today—the MD5
and SHA-2 methods—are created with hardware implementation in
mind. MD5 is built for 32-bit architectures and has its implementa-
tion code in RFC1321 [22], fully publicly open. The SHA-* family of
hashing methods are also built for hardware implementation but are
still being improved today [24]. One shared feature between these
methods is that they avoid multiplication, resorting to simple bitwise
manipulations instead.

Two other main threads in hardware offloading are

•	 GPU-based hardware implementation, specifically using the
industry default CUDA programming language [21]

•	 Memory access optimization where the method itself tries to
make as few accesses to memory as possible [23]—although
not particularly a hardware technology, such methods are
often intimately coupled with specific hardware, like special
kind of RAM, etc.

14.7  Practical Example: High-Speed Packet Traffic Processor

This section dedicates its full attention to an example data streaming
method from the area of packet traffic processing.

14.7.1  Example Data Streaming Target

Let us assume that there is a service provided by a service provider. The
realm of the service contains many users. A many-to-many (M2M)
pattern is formed by a subset of these users that communicate among
each other. Favoring specificity over generalization, M2M parties
can be classified into M2M sources and M2M destinations. While this

326 ﻿Marat Zhanikeev

specificity may not be extended to M2M problems in other disciplines,
it makes perfect sense in traffic analysis because flows are directional.
Besides, the generality can be easily restored if it is assumed that
sources can be destinations, and vice versa. In fact, in many communi-
cation patterns today, this is actually the case, which means that two
flows in opposite directions can be found between two parties.

Traffic capture and aggregation happens at the service provider
(SP), which is the location of convenience because all the traffic that
flows through the SP already can be captured without any change in
communication procedures.

The problem is then defined as the need to develop a method and
software design capable of online capture and aggregation of such
M2M patterns.

Note that this formulation is one level up from the superspreaders
in [19]. While the latter simply identifies singular IP addresses that
are defined as superspreaders, this problem needs to capture the com-
munication pattern itself.

14.7.2  Design for Hashing and Data Structures

Figure 14.8 shows the rough design of the system. Hash keys of x bits
long are used as addressed in the index. Collision avoidance is imple-
mented using sideways DLL, as was described earlier in this chapter
(this particular detail is not shown in the figure). Each slot in the
index points to an entry that in turn can contain multiple subentries.
In this context, entry is the entire multiparty communication pattern,
while subentry is its unit component that describes a single communi-
cation link between two members of a communication group.

Export
Entry/Subentry DLL

Entry
Digests

IP address
lists

Hash
function

Packet
Entry#001

#002

1
0

2x

No Pointer

Subentry

Subentry
Subentry
Subentry

Figure 14.8  Overall design of an index for capturing many-to-many group communication.

327Methods and Algorithms for Fast Hashing

Since each pattern can have multiple parties, each with its own IP
address, multiple slots in the hash table can point to the same entry.
This is not a problem in C/C++, where the same pointer can be stored
in multiple places in memory.

Figure 14.9 finally reveals the entire data structure. The source code
can be found in m2meter.c at [43]. The design is shown in the manner
traditional to such systems where the actual bit lengths of all parts
are marked. The unit (the width of each part) is 32 bits. Note that the
word can be split into smaller bit strings, as they can be handled by
bitwise operations in C/C++ with relative ease.

The following parts of the figure are relatively unimportant.
Timestamp log is not crucial for this particular operation, as well as
from the viewpoint of data streaming. However, if necessary, time-
stamps—where each word is a bitwise merger of sublist ID and the
timestamp of the last activity of that particular sublist—can be stored
in sequence after the source header in entry. Also, the design of the
conventional meter—that is used in traditional flow-based packet
capture—is shown for reference.

Below the level of entry there are sublists where each sublist is
a DLL containing subentries. The actual hierarchy is as follows.

Entry
0 8 16 24 32 bits

Source
header

Timestamp log

One-to-one
header

DLL previous
DLL next

Entry pointer
DLL Previous

DLL Next
Pos in listSublist

Destination
Header

Conventional

meter
Last sublist

Global bloom

DLL next
M2M meter

Conventional
aggregator

DLL previous

10

10

Subid Timestamp

CounterBits
Previous sublist
Next sublist

1st subentry pointer
Sublist bloom

Subentry

AND

Sublist item

Timestamp
log item

C/C++ pointer

. . .

Figure 14.9  The actual data structure compared to the traditional one-to-one flows.

328 ﻿Marat Zhanikeev

Each entry has a DLL of sublists, and each sublist has a DLL of
subentries. Although slightly confusing, the intermediate step of the
sublist is necessary as an efficiency mechanism where the mecha-
nism itself is explained further on.

Bloom filters are an important part of operation. First, there is
global Bloom, which is used to find out right away if a given subentry
has been created earlier in this entry. In a sense, this is a form of col-
lision control at the time when deciding whether or not to create a
new subentry. Sublists also have each their own sublist Bloom, which
is used for the same purpose, only within the bounds of each sublist.
This is in fact the sole purpose of each sublist—to split all subentries
into smaller groups to improve lookup performance.

Let us consider how this structure performs in practice. The entry
itself is accessed directly via a hash key; there is zero ambiguity in this
operation. Each access needs to either create new or update a subentry
inside the entry. The following sequence of actions is performed:

•	 First, global Bloom is queried, resulting in either true nega-
tive, true positive, or false positive, with no way to tell the
difference between the latter two outcomes. True negative is
the best outcome because it tells us that we can go ahead and
create a new subentry, as we are certain that no such subentry
has been created in this entry before. In case of either of the
two positives, we have to verify the outcome by traversing
the DLL of sublists. To facilitate this traversal, the entry has
a pointer to the last used sublist. Regardless of the outcome,
global Bloom has to be updated using the current subentry
hash key.

•	 We are at this step because global Bloom produced a positive
outcome. Traversing the list of sublists, each sublist Bloom
is queried using the same subentry hash key. Again, either
a true negative or positive outcome can be produced. If true
negative, we move on to the next sublist. If we run out of
sublists, it means that a subentry is not found, which in turn
means that we need to create a new subentry. In the case of
a positive outcome, we need to traverse the subentry DLL of
the respective sublist, to either find the subentry we are look-
ing for or verify that the positive outcome is a false positive.

329Methods and Algorithms for Fast Hashing

Note that with all the algorithmic complexity, the purpose is
simply to improve lookup time as often as possible. This means that
the system needs to achieve a relatively higher ratio of true negatives
to positive outcomes on all the Bloom filters.

The data structure in Figure 14.9 can be further improved. For
example, one obvious problem is with the global Bloom, which gets
filled up too fast. Potentially, it can be replaced with a dynamic filter,
as was described earlier in this chapter. However, keep in mind that
there are potentially 224 such Bloom filters in the entire structure,
which means that if dynamic filters are used, they have to be extremely
efficient in terms of the space they occupy. The use of dynamic filters
would also potentially remove the need for sublists, which would sim-
plify the design of each entry.

14.8  Summary

This chapter discussed the topic of fast hashing and efficient bloom-
ing in the context of data streaming. Higher efficiency in both the
former operations are demanded by the operational realities of data
streaming, which are forced to run under very strict per-unit process-
ing deadlines.

Having reviewed all the existing methods in both hashing and
blooming, the following two extreme designs were presented in detail.
At one extreme was a data streaming method that invests heavily into
developing a faster hashing method without losing the quality of its
hash keys. At the other extreme was a method that selects the lightest
possible hash function at the cost of reduced quality, but resolves key
collisions programmatically. The designs are presented without any
judgment as to which method is better. However, in reality, it is likely
that real methods will form a spectrum in between the two extremes.

Note that the same can be said about Bloom filters as well. The two
extremes in this case are traditional versus dynamic Bloom filters, where
dynamic ones require much heavier calculation overheads to maintain
and use. While analyzing the practical application in the last section,
it was stated that dynamic Bloom filters might help to improve lookup
performance, provided the overhead would stay below the one caused
by the programmatic method presented in the example.

330 ﻿Marat Zhanikeev

There are several topics that are immediately adjacent to the main
topic in the chapter. For example, the closest other topic is that of
multicore architectures. Good shared memory designs for C/C++ can
be found in [5]. A lock-free shared memory design developed by this
author can be found at [44]. These subjects are related because data
streaming on multicore needs to be extremely efficient, beyond the
level that can be offered with traditional parallel processing designs
based on memory locking or message passing. Note that the subject
of multicore is already a hot topic [40] in traffic. The title of such
research can be hashing for multicore load balancing.

Alternative methods for traffic processing other than flows can also
benefit from fast hashing and efficient blooming. For example, earlier
work by this author converted traffic to graphics for visual analysis [38].
Also, as was mentioned before, smart traffic sampling can be directly
formulated as a data streaming problem [39]. Such a formulation is yet
to be adopted by the research community. The key term is context-based
sampling in traffic research, but would be rephrased as packet streaming
when viewed as a data streaming problem.

Since hashing is a large part of indexing and even broader, search,
fast hashing can help new areas where indexing is starting to find its
application. For example, Fullproof at [50] is a Lucene indexing engine
rewritten from scratch to work in restrictive local storage in browsers
(running as a web application). Earlier work by this author proposed a
browser-based indexer for cloud storage called Stringex [45], in which
the key feature is that read and write access has an upper restriction on
throughput. This restriction is very similar to that of CPU operations
in fast hashing, which is where the parallel can be drawn.

Broadly speaking, data streaming is yet to be recognized as an
important discipline. Once it is recognized as such, however, it will
open all the research venues related to fast hashing and dynamic
blooming listed in this chapter.

References
	 1.	 C. Shannon. A Mathematical Theory of Communication. Bell System

Technical Journal, 27, 379–423, 1948.
	 2.	 D. MacKay. Information Theory, Inference, and Learning Algorithms.

Cambridge: Cambridge University Press, 2003.

331Methods and Algorithms for Fast Hashing

	 3.	 A. Konheim. Hashing in Computer Science: Fifty Years of Slicing and Dicing.
Hoboken, NJ: Wiley, 2010.

	 4.	 R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, and B. Becker. The Data
Warehouse Lifecycle Toolkit. New York: John Wiley & Sons, 2008.

	 5.	 K. Michael. The Linux Programming Interface. San Francisco: No Starch
Press, 2010.

	 6.	 S. Heinz, J. Zobel, and H. Williams. Burst Tries: A Fast, Efficient Data
Structure for String Keys. ACM Transactions on Information Systems
(TOIS), 20(2), 192–223, 2002.

	 7.	 M. Ramakrishna and J. Zobel. Performance in Practice of String Hashing
Functions. In 5th International Conference on Database Systems for Advanced
Applications, April 1997.

	 8.	 D. Lemire and O. Kaser. Strongly Universal String Hashing Is Fast. Cornell
University Technical Report arXiv:1202.4961. 2013.

	 9.	 F. Putze, P. Sanders, and J. Singler. Cache-, Hash- and Space-Efficient
Bloom Filters. Journal of Experimental Algorithmics (JEA), 14, 4, 2009.

	 10.	 A. Kirsch and M. Mitzenmacher. Less Hashing, Same Performance:
Building a Better Bloom Filter. Wiley Interscience Journal on Random
Structures and Algorithms, 33(2), 187–218, 2007.

	 11.	 G. Antichi, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci. Blooming
Trees for Minimal Perfect Hashing. In IEEE Global Telecommunications
Conference (GLOBECOM), December 2008, pp. 1–5.

	 12.	 H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast Hash Table
Lookup Using Extended Bloom Filter: An Aid to Network Processing.
Presented at SIGCOMM, 2005.

	 13.	 F. Bonomi, M. Mitzenmacher, R. Panigrahi, S. Singh, and G. Vargrese. An
Improved Construction for Counting Bloom Filters. In 14th Conference
on Annual European Symposium (ESA), 2006, vol. 14, pp. 684–695.

	 14.	 M. Sung, A. Kumar, L. Li, J. Wang, and J. Xu. Scalable and Efficient
Data Streaming Algorithms for Detecting Common Content in Internet
Traffic. Presented at ICDE Workshop, 2006.

	 15.	 S. Muthukrishnan. Data Streams: Algorithms and Applications.
Foundations and Trends in Theoretical Computer Science, 1(2), 117–236,
2005.

	 16.	 Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in Streaming
Algorithms, with an Application to Counting Triangles in Graphs.
Presented at 13th ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2002.

	 17.	 M. Charikar, K. Chen, and M. Farach-Colton. Finding Frequent Items in
Data Streams. Presented at 29th International Colloquium on Automata,
Languages, and Programming, 2002.

	 18.	 M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM Journal on Computing, 31(6),
1794–1813, 2002.

	 19.	 S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New Streaming
Algorithms for Fast Detection of Superspreaders. Presented at Distributed
System Security Symposium (NDSS), 2005.

332 ﻿Marat Zhanikeev

	 20.	 M. Zadnik, T. Pecenka, and J. Korenek. NetFlow Probe Intended for
High-Speed Networks. In International Conference on Field Programmable
Logic and Applications, 2005, pp. 695–698.

	 21.	 S. Manavski. CUDA Compatible GPU as an Efficient Hardware
Accelerator for AES Cryptography. In IEEE International Conference on
Signal Processing and Communication, 2007, pp. 65–68.

	 22.	 The MD5 Message-Digest Algorithm. RFC1321. 1992.
	 23.	 G. Antichi, A. Pietro, D. Ficara, S. Giordano, G. Procissi, and F. Vitucci.

A Heuristic and Hybrid Hash-Based Approach to Fast Lookup. In
International Conference on High Performance Switching and Routing
(HPSR), June 2009, pp. 1–6.

	 24.	 R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Improving SHA-2
Hardware Implementations. In Cryptographic Hardware and Embedded
Systems (CHES), Springer LNCS vol. 4249. Berlin: Springer, 2006, pp.
298–310.

	 25.	 M. Zhanikeev. A Holistic Community-Based Architecture for Measuring
End-to-End QoS at Data Centres. Inderscience International Journal of
Computational Science and Engineering (IJCSE), 2013.

	 26.	 C. Bhavanasi and S. Iyer. M2MC: Middleware for Many to Many
Communication over Broadcast Networks. In 1st International Conference
on Communication Systems Software and Middleware, 2006, pp. 323–332.

	 27.	 D. Digby. A Search Memory for Many-to-Many Comparisons. IEEE
Transactions on Computers, C22(8), 768–772, 1973.

	 28.	 Y. Keselman, A. Shokoufandeh, M. Demirci, and S. Dickinson. Many-to-
Many Graph Matching via Metric Embedding. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2003, pp. 850–857.

	 29.	 D. Lorenz, A. Orda, and D. Raz. Optimal Partition of QoS Requirements
for Many-to-Many Connections. In International Conference on Computers
and Communications (ICC), 2003, pp. 1670–1680.

	 30.	 V. Dvorak, J. Jaros, and M. Ohlidal. Optimum Topology-Aware
Scheduling of Many-to-Many Collective Communications, In 6th
International Conference on Networking (ICN), 2007, p. 61.

	 31.	 M. Hattori and M. Hagiwara. Knowledge Processing System Using
Multidirectional Associative Memory. In IEEE International Conference
on Neural Networks, 1995, vol. 3, pp. 1304–1309.

	 32.	 A. Silberstein and J. Yang. Many-to-Many Aggregation for Sensor
Networks. In 23rd International Conference on Data Engineering, 2007,
pp. 986–995.

	 33.	 M. Saleh and A. Kamal. Approximation Algorithms for Many-to-Many
Traffic Grooming in WDM Mesh Networks. In INFOCOM, 2010, pp.
579–587.

	 34.	 E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems (TOCS), 18(3),
263–297, 2000.

	 35.	 M. Zec, L. Rizzo, and M. Mikuc. DXR: Towards a Billion Routing
Lookups per Second in Software. ACM SIGCOMM Computer
Communication Review, 42(5), 30–36, 2012.

333Methods and Algorithms for Fast Hashing

	 36.	 M. Zhanikeev. Experiments with Practical On-Demand Multi-Core
Packet Capture. Presented at 15th Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2013.

	 37.	 M. Zhanikeev and Y. Tanaka. Popularity-Based Modeling of Flash Events
in Synthetic Packet Traces. IEICE Technical Report on Communication
Quality, 112(288), 1–6, 2012.

	 38.	 M. Zhanikeev and Y. Tanaka. A Graphical Method for Detection of
Flash Crowds in Traffic. Springer Telecommunication Systems Journal,
63(4), 2013.

	 39.	 J. Zhang, X. Niu, and J. Wu. A Space-Efficient Fair Packet Sampling
Algorithm. In Asia-Pacific Network Operation and Management Symposium
(APNOMS), Springer LNCS5297, September 2008, pp. 246–255.

	 40.	 M. Aldinucci, M. Torquati, and M. Meneghin. FastFlow: Efficient Parallel
Streaming Applications on Multi-Core. Technical Report TR-09-12.
Universita di Pisa, September 2009.

	 41.	 P. Bodík, A. Fox, M. Franklin, M. Jordan, and D. Patterson. Characterizing,
Modeling, and Generating Workload Spikes for Stateful Services. In 1st
ACM Symposium on Cloud Computing (SoCC), 2010, pp. 241–252.

	 42.	 T. Benson, A. Akella, and D. Maltz. Network Traffic Characteristics of
Data Centers in the Wild. In Internet Measurement Conference (IMC),
November 2010, pp. 202–208.

	 43.	 Source code for this chapter. Available at https://github.com/maratishe/
fasthash4datastreams.

	 44.	 MCoreMemory project page. Available at https://github.com/maratishe/
mcorememory.

	 45.	 Stringex Project Repository. Available at https://github.com/maratishe/
stringex.

	 46.	 WAND Network Traffic Archive. Available at http://www.wand.net.nz/
wits/waikato/5/.

	 47.	 MAWI Working Group Traffic Archive. Available at http://mawi.wide.
ad.jp/mawi.

	 48.	 CAIDA homepage. Available at http://www.caida.org.
	 49.	 Rubis homepage. Available at http://rubis.ow2.org/.
	 50.	 Fullproof: Browser Side Indexing. Available at https://github.com/reyesr/

fullproof.

www.auerbach-publications.com

Cryptography, the science of encoding and decoding information, allows
people to do online banking, online trading, and make online purchases,
without worrying that their personal information is being compromised.
The dramatic increase of information transmitted electronically has led to
an increased reliance on cryptography. This book discusses the theories and
concepts behind modern cryptography and demonstrates how to develop and
implement cryptographic algorithms using C++ programming language.

Written for programmers and engineers, Practical Cryptography explains
how you can use cryptography to maintain the privacy of computer data. It
describes dozens of cryptography algorithms, gives practical advice on how
to implement them into cryptographic software, and shows how they can be
used to solve security problems.

Covering the latest developments in practical cryptographic techniques,
this book shows you how to build security into your computer applications,
networks, and storage. Suitable for undergraduate and postgraduate students
in cryptography, network security, and other security-related courses, this
book will also help anyone involved in computer and network security who
wants to learn the nuts and bolts of practical cryptography.

Features
•	Discusses the theories and concepts behind modern cryptography

•	Describes dozens of cryptography algorithms

•	Covers recent developments in practical cryptographic techniques

•	Explains how to implement the algorithms using C++ and supplies
the source code

Cryptography / Information Security

ISBN: 978-1-4822-2889-2

9 781482 228892

90000

K22599

PRACTICAL
CRYPTOGRAPHY
Algorithms and Implementations Using C++

Edited by
Saiful Azad

Al-Sakib Khan Pathan
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

P
R

A
CTICA

L
 CR

Y
P

TOG
R

A
P

H
Y

A
zad

P
athan

K22599 mech rev.indd 1 10/14/14 2:20 PM

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Editors
	Contributors
	Chapter 1: Basics of Security and Cryptography
	Chapter 2: Classical Cryptographic Algorithms
	Chapter 3: Rotor Machine
	Chapter 4: Block Cipher
	Chapter 5: Data Encryption Standard
	Chapter 6: Advanced Encryption Standard
	Chapter 7: Asymmetric Key Algorithms
	Chapter 8: The RSA Algorithm
	Chapter 9: Elliptic Curve Cryptography
	Chapter 10: Message Digest Algorithm 5
	Chapter 11: Secure Hash Algorithm
	Chapter 12: Fundamentals of Identity-Based Cryptography
	Chapter 13: Symmetric Key Encryption Acceleration on Heterogeneous Many-Core Architectures
	Chapter 14: Methods and Algorithms for Fast Hashing in Data Streaming
	Back Cover

