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About this Edition

This edition is mostly a minor revision of the 2004 edition. Some new orthogonal arrays were added
and there are a few other changes to the %MktEx macro. The %MktEx macro has grown and evolved a
lot over the years. At first, %MktEx was going to be just a minor new design tool. Then it evolved to
be our main design work horse, incorporating PROC FACTEX, PROC OPTEX, the }MktDes macro,
and a great deal of new code. At that point, I envisioned it as a design solution not a design tool. 1
thought people would just specify a factor list, the number of runs, and maybe some interactions, and
that would be it. %MktEx would do the rest with little user involvement. For many problems, I was
correct. However, what I did not envision at that point was how %MktEx would open up whole new
design frontiers, particularly in the area of large and highly-restricted designs. For those problems,
#MktEx became a tool and not a solution. It takes a sophisticated user, many options, and a potentially
complicated restrictions macro to make highly-restricted designs. Most of the new options in %MktEx
are designed to make that process easier. Still, many highly-restricted design problems are hard, and
I will continue to do what I can in future releases to make them easier.

The new %MktEx option, order=matrix=SAS-data-set, allows you to specify exactly what columns
are worked on in what order and in what groups. This can be very useful for certain highly-restricted
designs and designs with interactions. The init= data set is much more flexible now. You can initialize
any arbitrary part of the design and let %MktEx search for the rest. One way you can use this is when
you want to force perfect balance and orthogonality in certain specific factors. See page 390. The
%MktEx balance= option has changed with this release. It now has a stage, based on the new mintry=
option, where it just seeks to improve efficiency before imposing balance restrictions. This approach
seems to be superior to the old approach. Also, you can now differentially weight the contributors to
design badness when there are ad hoc restrictions and also balance= or partial= restrictions. Another
new option, repeat= gives you more control on the algorithm with restricted designs. When you specify
examine=i v the formatting for the information and variance matrices has been improved.

The %MktKey macro, which aids the creation of the Key data set, for use with the %MktRoll macro,
has been changed. You can still use it the way you always did, but now it can rearrange the list into
a matrix, and for simple generic designs, it can directly create the Key data set without cutting and
pasting and running a subsequent data step.

In this edition, the Experimental Design, Efficiency, Coding, and Choice Designs chapter on
pages 47-97 has been revised and some new material was added. If you are interested in choice modeling,
read this chapter first. Among other things, this chapter now has a complete choice modeling example,
from start to finish. Since it does not have all of the facets and nuances of the examples in the discrete
choice chapter, it should be better than those examples in helping you get started. A new section
starting on page 70 lists the steps in designing a choice experiment and analyzing choice data and
points you to all of the examples of each step in the discrete choice chapter.

In this edition, almost all of the examples have been modified to use the %ChoicEff macro to evaluate
the choice design under the assumption that 8 = 0. This is in addition to using the %MktEval macro
to evaluate the linear design. I really like the idea of using %ChoicEff specifying the most complicated
model that you intend to use to ensure that all the right parameters are estimable before you collect
any data.

The Food Product Example with Asymmetry and Availability Cross Effects example has
had an error in it from the start. Previous versions confused cross effects and availability cross effects.
That has been fixed with this edition. I apologize for the error.



A big part of this book is about experimental design. Efficient experimental-design software, like some
other search software, is notorious for not finding the exact same results if anything changes (operating
system, computer, SAS release, code version, compiler, math library, phase of the moon, and so on),
and %MktEx is no exception. It will find the same design if you specify a random number seed and run
the same macro over and over again on the same machine, but if you change anything, it might find a
different design. The algorithm is seeking to optimize an efficiency function. All it takes is one little
difference, such as two numbers being almost identical but different in the last bit, and the algorithm
can start down a different path. We expect as things change and the code is enhanced that the designs
will be similar. Sometimes two designs may even have the exact same efficiency, but they will not
be identical. %MktEx and other efficient design software take every step that increases efficiency. One
could conceive of an alternative algorithm that repeatedly evaluates every possible step and then takes
only the largest one with fuzzing to ensure proper tie handling. Such an algorithm would be less likely
to give different designs, but it would be much slower. Hence, we take the standard approach of using
a fast algorithm that makes great designs, but not always the same designs.

For many editions and with every revision, I regenerated every design, every sample data set, every bit
of output, and then made changes all over the text to refer to the new output. Many times I had to do
this more than once when a particularly attractive enhancement that changed the results occured to
me late in the writing cycle. It was difficult, tedious, annoying, error prone, and time consuming, and
it really did not contribute much to the book since you would very likely be running under a different
configuration than me and not get exactly the same answers as me, no matter what either you or I
did. Starting with the January 2004 edition, I said enough is enough! For many versions now, in the
accompanying sample code, I have hard-coded in the actual example design after the code so you could
run the sample and reproduce my results. I am continuing to do that, however I have not redone every
example. Expect to get similar but different results, and use the sample code if you want to get the
exact same design that was in the book. I would rather spend my time giving you new capabilities
than rewriting old examples that have not changed in any important way.

In this and every other edition, all of the data sets in the discrete choice and conjoint examples are
artificial. As a software developer, I do not have access to real data. Even if I did, it would be hard
to use since most of those chapters are about design. Of course the data need to come from people
making judgments based on the design. If I had real data in an example, I would no longer be able to
change and enhance the design strategy for that example. Many of the examples have changed many
times over the years as better design software and strategies became available. In this edition, like all
previous editions, the emphasis is on showing the best-known design strategies not on illustrating the
analysis of real data.

The orthogonal array catalog is now complete to the best of my knowledge up through 143 runs with
pretty good coverage from 144 to 513 runs. If you know of any orthogonal arrays that are not in it,
please e-mail Warren.Kuhfeld@sas.com. Also, if you know how to construct any of these difference
schemes, I would appreciate hearing from you: D(60, 36, 3), D(102, 51, 3), D(60, 21, 4), D(112, 64, 4),
D(30, 15, 5), D(35, 17, 5), D(40, 25, 5), D(55, 17, 5), D(60, 25, 5), D(65, 25, 5), D(85, 35, 5), D(48, 10,
6), D(60, 11, 6), D(84, 16, 6), D(35, 11, 7), D(42, 18, 7), D(63, 28, 7), D(70, 18, 7), D(40, 8, 10), D(30,
7,15), D(21, 6, 21). The notation D(r, ¢, s) refers to an r X ¢ matrix of order s. For the first time with
this release, the list of missing difference schemes does not contain any generalized Hadamard matrices.

I hope you like these enhancements. Feedback is welcome. Your feedback can help make these tools
better.



Contents Overview

Marketing Research: Uncovering Competitive Advantages .......................... 21-34
This chapter is based on a SUGI (SAS Users Group International) paper and provides a basic intro-
duction to perceptual mapping, biplots, multidimensional preference analysis (MDPREF), preference
mapping (PREFMAP or external unfolding), correspondence analysis, multidimensional scaling, and
conjoint analysis.

Introducing the Market Research Analysis Application .............................. 35—46
This SUGI paper discusses a point-and-click interface for conjoint analysis, correspondence analysis,
and multidimensional scaling.

Experimental Design, Efficiency, Coding, and Choice Designs ....................... 47-97
This chapter discusses experimental design including full-factorial designs, fractional-factorial designs,
orthogonal arrays, nonorthogonal designs, choice designs, conjoint designs, design efficiency, orthogon-
ality, balance, and coding. If you are interested in choice modeling, read this chapter first.

Efficient Experimental Design with Marketing Research Applications ............ 99-120
This chapter is based on a Journal of Marketing Research paper and discusses D-efficient experimental
designs for conjoint and discrete-choice studies, orthogonal arrays, nonorthogonal designs, relative
efficiency, and nonorthogonal design algorithms.

A General Method for Constructing Efficient Choice Designs .................... 121-139
This chapter discusses efficient designs for choice experiments.

Discrete ChoiCe . .......... i 141-465
This chapter discusses the multinomial logit model and discrete choice experiments. This is the longest
chapter in the book, and it contains numerous examples covering a wide range of choice experiments
and choice designs. Study the chapter Experimental Design, Efficiency, Coding, and Choice
Designs before tackling this chapter.

Multinomial Logit Models .......... ... 467481
This SUGI paper discusses the multinomial logit model. A travel example is discussed.

Conjoint Analysis ........o..oiiiii 483—-596
This chapter discusses conjoint analysis. Examples range from simple to complicated. Topics include
design, data collection, analysis, and simulation. PROC TRANSREG documentation that describes
just those options that are most likely to be used in a conjoint analysis is included.

Experimental Design and Choice Modeling Macros ................................ 597784
This chapter provides examples and documentation for all of the autocall macros used in this book.

Linear Models and Conjoint Analysis with Nonlinear Spline Transformations .. 785-802
This chapter is based on an AMA ART (American Marketing Association Advanced Research Tech-
niques) Forum paper and discusses splines, which are nonlinear functions that can be useful in regression
and conjoint analysis.

Graphical Scatter Plots of Labeled Points ............ .. .. .. ... ... ... ... ..., 803-816
This chapter is based on a paper that appeared in the SAS journal Observations that discusses a macro
for graphical scatterplots of labeled points.

Graphical Methods for Marketing Research ............. . ... . ... ... ... . ..... 817-828
This chapter is based on a National Computer Graphics Association Conference presentation and
discusses the mathematics of biplots, correspondence analysis, PREFMAP, and MDPREF.
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Marketing Research:

Uncovering Competitive Advantages

Warren F. Kuhfeld

Abstract

SAS provides a variety of methods for analyzing marketing data including conjoint analysis, corre-
spondence analysis, preference mapping, multidimensional preference analysis, and multidimensional
scaling. These methods allow you to analyze purchasing decision trade-offs, display product positioning,
and examine differences in customer preferences. They can help you gain insight into your products,
your customers, and your competition. This chapter discusses these methods and their implementation
in SAS.*

Introduction

Marketing research is an area of applied data analysis whose purpose is to support marketing decision
making. Marketing researchers ask many questions, including:

e Who are my customers?

e Who else should be my customers?

e Who are my competitors’ customers?

e Where is my product positioned relative to my competitors’ products?

e Why is my product positioned there?

e How can I reposition my existing products?

e What new products should I create?

e What audience should I target for my new products?

*This is a minor modification of a paper that was presented to SUGI 17 by Warren F. Kuhfeld and to the 1992
Midwest SAS Users Group meeting by Russell D. Wolfinger. Copies of this chapter (T'S-722A) and all of the macros are
available on the web http://support.sas.com/techsup/tnote/tnote_stat.html#market.
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Marketing researchers try to answer these questions using both standard data analysis methods, such
as descriptive statistics and crosstabulations, and more specialized marketing research methods. This
chapter discusses two families of specialized marketing research methods, perceptual mapping and
conjoint analysis. Perceptual mapping methods produce plots that display product positioning, product
preferences, and differences between customers in their product preferences. Conjoint analysis is used
to investigate how consumers trade off product attributes when making a purchasing decision.

Perceptual Mapping

Perceptual mapping methods, including correspondence analysis (CA), multiple correspondence analy-
sis (MCA), preference mapping (PREFMAP), multidimensional preference analysis (MDPREF), and
multidimensional scaling (MDS), are data analysis methods that generate graphical displays from data.
These methods are used to investigate relationships among products as well as individual differences
in preferences for those products.f

CA and MCA can be used to display demographic and survey data. CA simultaneously displays in a
scatter plot the row and column labels from a two-way contingency table (crosstabulation) constructed
from two categorical variables. MCA simultaneously displays in a scatterplot the category labels from
more than two categorical variables.

MDPREF displays products positioned by overall preference patterns. MDPREF also displays dif-
ferences in how customers prefer products. MDPREF displays in a scatter plot both the row labels
(products) and column labels (consumers) from a data matrix of continuous variables.

MDS is used to investigate product positioning. MDS displays a set of object labels (products) whose
perceived similarity or dissimilarity has been measured.

PREFMAP is used to interpret preference patterns and help determine why products are positioned
where they are. PREFMAP displays rating scale data in the same plot as an MDS or MDPREF plot.
PREFMAP shows both products and product attributes in one plot.

MDPREF, PREFMAP, CA, and MCA are all similar in spirit to the biplot, so first the biplot is
discussed to provide a foundation for discussing these methods.

The Biplot. A biplot (Gabriel, 1981) simultaneously displays the row and column labels of a data
matrix in a low-dimensional (typically two-dimensional) plot. The “bi” in “biplot” refers to the joint
display of rows and columns, not to the dimensionality of the plot. Typically, the row coordinates are
plotted as points, and the column coordinates are plotted as vectors.

Consider the artificial preference data matrix in Figure 1. Consumers were asked to rate their preference
for products on a 0 to 9 scale where 0 means little preference and 9 means high preference. Consumer
1’s preference for Product 1 is 4. Consumer 1’s most preferred product is Product 4, which has a
preference of 6.

fAlso see pages 803 and 817.
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Y = A X B’
Consumer 1 Consumer 2  Consumer 3
Product 1 4 1 6 4 1 6 = 1 2 X 2 1 2
Product 2 4 2 4 4 2 4 20 1 0 2
Product 3 1 0 2 1 0 2 0 1
Product 4 6 2 8 6 2 8 2 2
Figure 1. Preference Data Matriz Figure 2. Preference Data Decomposition

The biplot is based on the idea of a matrix decomposition. The (n x m) data matrix Y is decomposed
into the product of an (n X ¢) matrix A and a (¢ x m) matrix B’. Figure 2 shows a decomposition of
the data in Figure 1.} The rows of A are coordinates in a two-dimensional plot for the row points in
Y, and the columns of B’ are coordinates in the same two-dimensional plot for the column points in
Y. In this artificial example, the entries in Y are exactly reproduced by scalar products of coordinates.
For example, the (1,1) entry in Y is y11 = a11 X bi1 +a12 xbio=4=1x2+2x 1.

The rank of Y is ¢ < MIN(n,m). The rank of a matrix is the minimum number of dimensions that are
required to represent the data without loss of information. The rank of Y is the full number of columns
in A and B. In the example, ¢ = 2. When the rows of A and B are plotted in a two-dimensional
scatter plot, the scalar product of the coordinates of a; and b;- ezactly equals the data value y;;. This
kind of scatter plot is a biplot. When ¢ > 2 and the first two dimensions are plotted, then AB’ is
approzimately equal to Y, and the display is an approzimate biplot.® The best values for A and B, in
terms of minimum squared error in approximating Y, are found using a singular value decomposition
(SVD).Y An approximate biplot is constructed by plotting the first two columns of A and B.

When ¢ > 2, the full geometry of the data cannot be represented in two dimensions. The first two
columns of A and B provide the best approximation of the high dimensional data in two dimensions.
Consider a cloud of data in the shape of an American football. The data are three dimensional. The
best one dimensional representation of the data—the first principal component—is the line that runs
from one end of the football, through the center of gravity or centroid and to the other end. It is the
longest line that can run through the football. The second principal component also runs through the
centroid and is perpendicular or orthogonal to the first line. It is the longest line that can be drawn
through the centroid that is perpendicular to the first. If the football is a little thicker at the laces,
the second principal component runs from the laces through the centroid and to the other side of the
football. All of the points in the football shaped cloud can be projected into the plane of the first two
principal components. The resulting scatter plot will show the approximate shape of the data. The
two longest dimensions are shown, but the information in the other dimensions are lost. This is the
principle behind approximate biplots. See Gabriel (1981) for more information on the biplot.

tFigure 2 does not contain the decomposition that would be used for an actual biplot. Small integers were chosen to
simplify the arithmetic.

$In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.

YSVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition. SVD is closely
tied to the statistical method of principal component analysis.
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MOPREF Analysis for Automokiles Manufastured in 1280
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Figure 3. Multidimensional Preference Analysis

Multidimensional Preference Analysis. ~ Multidimensional Preference Analysis (Carroll, 1972) or
MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate
their preference for a set of objects—products in marketing research.

Questions that can be addressed with MDPREF analyses include: Who are my customers? Who else
should be my customers? Who are my competitors’ customers? Where is my product positioned
relative to my competitors’ products? What new products should I create? What audience should 1
target for my new products?

For example, consumers were asked to rate their preference for a group of automobiles on a 0 to 9 scale,
where 0 means no preference and 9 means high preference. Y is an (n x m) matrix that contains ratings
of the n products by the m consumers. Figure 3 displays an example in which 25 consumers rated
their preference for 17 new (at the time) 1980 automobiles. Each consumer is a vector in the space,
and each car is a point identified by an asterisk (*). Each consumer’s vector points in approzimately
the direction of the cars that the consumer most preferred.

The dimensions of this plot are the first two principal components. The plot differs from a proper
biplot of Y due to scaling factors. At one end of the plot of the first principal component are the most
preferred automobiles; the least preferred automobiles are at the other end. The American cars on the
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average were least preferred, and the European and Japanese cars were most preferred. The second
principal component is the longest dimension that is orthogonal to the first principal component. In
the example, the larger cars tend to be at the top and the smaller cars tend to be at the bottom.

The automobile that projects farthest along a consumer vector is that consumer’s most preferred
automobile. To project a point onto a vector, draw an imaginary line through a point crossing the
vector at a right angle. The point where the line crosses the vector is the projection. The length of
this projection differs from the predicted preference, the scalar product, by a factor of the length of the
consumer vector, which is constant within each consumer. Since the goal is to look at projections of
points onto the vectors, the absolute length of a consumer’s vector is unimportant. The relative lengths
of the vectors indicate fit, with longer vectors indicating better fit. The coordinates for the endpoints
of the vectors were multiplied by 2.5 to extend the vectors and create a better graphical display. The
direction of the preference scale is important. The vectors point in the direction of increasing values of
the data values. If the data had been ranks, with 1 the most preferred and n the least preferred, then
the vectors would point in the direction of the least preferred automobiles.

Consumers 9 and 16, in the top left portion of the plot, most prefer the large American cars. Other
consumers, with vectors pointing up and nearly vertical, also show this pattern of preference. There is
a large cluster of consumers, from 14 through 20, who prefer the Japanese and European cars. A few
consumers, most notably consumer 24, prefer the small and inexpensive American cars. There are no
consumer vectors pointing through the bottom left portion of the plot between consumers 24 and 25,
which suggests that the smaller American cars are generally not preferred by any of these consumers.

Some cars have a similar pattern of preference, most notably Continental and Eldorado. This indicates
that marketers of Continental or Eldorado may want to try to distinguish their car from the competition.
Dasher, Accord, and Rabbit were rated similarly, as were Malibu, Mustang, Volare, and Horizon.
Several vectors point into the open area between Continental /Eldorado and the European and Japanese
cars. The vectors point away from the small American cars, so these consumers do not prefer the small
American cars. What car would these consumers like? Perhaps they would like a Mercedes or BMW.

Preference Mapping.  Preference mapping!l (Carroll, 1972) or PREFMAP plots resemble biplots,
but are based on a different model. The goal in PREFMAP is to project external information into a
configuration of points, such as the set of coordinates for the cars in the MDPREF example in Figure
3. The external information can aid interpretation.

Questions that can be addressed with PREFMAP analyses include: Where is my product positioned
relative to my competitors’ products? Why is my product positioned there? How can I reposition my
existing products? What new products should I create?

I'Preference mapping is sometimes referred to as external unfolding.
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Preference Batings for Automobiles Manufactured in 12680
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Figure 4. Preference Mapping, Vector Model

The PREFMAP Vector Model. Figure 4 contains an example in which three attribute variables
(ride, reliability, and miles per gallon) are displayed in the plot of the first two principal components
of the car preference data. Each of the automobiles was rated on a 1 to 5 scale, where 1 is poor and
5 is good. The end points for the attribute vectors are obtained by projecting the attribute variables
into the car space. Orthogonal projections of the car points on an attribute vector give an approximate
ordering of the cars on the attribute rating. The ride vector points almost straight up, indicating that
the larger cars, such as the Eldorado and Continental, have the best ride. Figure 3 shows that most
consumers preferred the DL, Japanese cars, and larger American cars. Figure 4 shows that the DL and
Japanese cars were rated the most reliable and have the best fuel economy. The small American cars
were not rated highly on any of the three dimensions.

Figure 4 is based on the simplest version of PREFMAP—the vector model. The vector model operates
under the assumption that some is good and more is always better. This model is appropriate for
miles per gallon and reliability—the more miles you can travel without refueling or breaking down, the
better.
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Preference Ratings for Automobiles Manufactured in 12680
Preference Mapping, ldsal Point Modsl
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Figure 5.  Preference Mapping, Ideal Point Model

The PREFMAP Ideal Point Model. The ideal point model differs from the vector model, in that
the ideal point model does not assume that more is better, ad infinitum. Consider the sugar content of
cake. There is an ideal amount of sugar that cake should contain—mnot enough sugar is not good, and
too much sugar is also not good. In the cars example, the ideal number of miles per gallon and the
ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal point is
infinitely far away. This argument is less compelling for ride; the point for a car with smooth, quiet
ride may not be infinitely far away. Figure 5 shows the results of fitting an ideal point model for the
three attributes. In the vector model, results are interpreted by orthogonally projecting the car points
on the attribute vectors. In the ideal point model, Euclidean distances between car points and ideal
points are compared. Eldorado and Continental have the best predicted ride, because they are closest
to the ride ideal point. The concentric circles drawn around the ideal points help to show distances
between the cars and the ideal points. The numbers of circles and their radii are arbitrary. The overall
interpretations of Figures 4 and 5 are the same. All three ideal points are at the edge of the car points,
which suggests the simpler vector model is sufficient for these data. The ideal point model is fit with a
multiple regression model and some pre- and post-processing. The regression model uses the MDS or
MDPREF coordinates as independent variables along with an additional independent variable that is
the sum of squares of the coordinates. The model is a constrained response-surface model.
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The results in Figure 5 were modified from the raw results to eliminate anti-ideal points. The ideal
point model is a distance model. The rating data are interpreted as distances between attribute ideal
points and the products. In this example, each of the automobiles was rated on these three dimensions,
on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be—a
ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean
this car is different from a car with a good ride. So the raw coordinates must be multiplied by —1 to
get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for
the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the
possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative,
the two multiplications by —1 cancel, and the coordinates are ideal points. When the coefficient for
the sum-of-squares variable is positive, the coordinates are multiplied by —1 to get an ideal point.

Correspondence Analysis. Correspondence analysis (CA) is used to find a low-dimensional graphical
representation of the association between rows and columns of a contingency table (crosstabulation).
It graphically shows relationships between the rows and columns of a table; it graphically shows the
relationships that the ordinary chi-square statistic tests. Each row and column is represented by a
point in a Euclidean space determined from cell frequencies. CA is a popular data analysis method
in France and Japan. In France, CA analysis was developed under the strong influence of Jean-Paul
Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart, Morineau, and Warwick (1984);
Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi (1990); Greenacre and Hastie
(1987); and many other sources. Hoffman and Franke (1986) provide a good introductory treatment
using examples from marketing research.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should
be my customers? Who are my competitors’ customers? Where is my product positioned relative to
my competitors’ products? Why is my product positioned there? How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

MCA Example. Figure 6 contains a plot of the results of a multiple correspondence analysis (MCA)
of a survey of car owners. The questions included origin of the car (American, Japanese, European),
size of car (small, medium, large), type of car (family, sporty, work vehicle), home ownership (owns,
rents), marital/family status (single, married, single and living with children, and married living with
children), and sex (male, female). The variables are all categorical.

The top-right quadrant of the plot suggests that the categories single, single with kids, one income, and
renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are
associated. In the bottom-left quadrant you can see the association between being married, owning your
own home, and having two incomes. Having children is associated with owning a large American family
car. Such information can be used to identify target audiences for advertisements. This interpretation is
based on points being located in approximately the same direction from the origin and in approximately
the same region of the space. Distances between points are not interpretable in MCA.



TS-722A — Marketing Research: Uncovering Competitive Advantages

MCA of Car Owners and Car Origin
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Figure 6. Multiple Correspondence Analysis
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Multidirmensional Scaling of Bewverages
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Figure 7. MDS and PREFMAP

Multidimensional Scaling.  Multidimensional scaling (MDS) is a class of methods for estimating
the coordinates of a set of objects in a space of specified dimensionality from data measuring the
distances between pairs of objects (Kruskal and Wish, 1978; Schiffman, Reynolds, and Young, 1981;
Young, 1987). The data for MDS consist of one or more square symmetric or asymmetric matrices of
similarities or dissimilarities between objects or stimuli. Such data are also called proximity data. In
marketing research, the objects are often products. MDS is used to investigate product positioning.

For example, consumers were asked to rate the differences between pairs of beverages. In addition,
the beverages were rated on adjectives such as Good, Sweet, Healthy, Refreshing, and Simple Tasting.
Figure 7 contains a plot of the beverage configuration along with attribute vectors derived through
preference mapping. The alcoholic beverages are clustered at the bottom. The juices and carbonated
soft drinks are clustered at the left. Grape and Apple juice are above the carbonated and sweet soft
drinks and are perceived as more healthy than the other soft drinks. Perhaps sales of these drinks
would increase if they were marketed as a healthy alternative to sugary soft drinks. A future analysis,
after a marketing campaign, could check to see if their positions in the plot change in the healthy
direction.
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Water, coffee and tea drinks form a cluster at the right. V8 Juice and Milk form two clusters of
one point each. Milk and V8 are perceived as the most healthy, whereas the alcoholic beverages are
perceived as least healthy. The juices and carbonated soft drinks were rated as the sweetest. Pepsi and
Coke are mapped to coincident points. Postum (a coffee substitute) is near Hot Coffee, Orange Soda
is near Orange Crush, and Lemon Koolaid is near Lemonade.

Geometry of the Scatter Plots. 1t is important that scatter plots displaying perceptual mapping
information accurately portray the underlying geometry. All of the scatter plots in this chapter were
created with the axes equated so that a centimeter on the y-axis represents the same data range as
a centimeter on the x-axis.*™ This is important. Distances, angles between vectors, and projections
are evaluated to interpret the plots. When the axes are equated, distances and angles are correctly
presented in the plot. When axes are scaled independently, for example to fill the page, then the correct
geometry is not presented. This important step of equating the axes is often overlooked in practice.

For MDPREF and PREFMAP, the absolute lengths of the vectors are not important since the goal
is to project points on vectors, not look at scalar products of row points and column vectors. It is
often necessary to change the lengths of all of the vectors to improve the graphical display. If all of
the vectors are relatively short with end points clustered near the origin, the display will be difficult
to interpret. To avoid this problem in Figure 3, both the x-axis and y-axis coordinates were multiplied
by the same constant, 2.5, to lengthen all vectors by the same relative amount. The coordinates must
not be scaled independently.

Conjoint Analysis

Conjoint analysis is used in marketing research to analyze consumer preferences for products and
services. See Green and Rao (1971) and Green and Wind (1975) for early introductions to conjoint
analysis and Green and Srinivasan (1990) for a recent review article.

Conjoint analysis grew out of the area of conjoint measurement in mathematical psychology. In its
original form, conjoint analysis is a main effects analysis-of-variance problem with an ordinal scale-
of-measurement dependent variable. Conjoint analysis decomposes rankings or rating-scale evaluation
judgments of products into components based on qualitative attributes of the products. Attributes
can include price, color, guarantee, environmental impact, and so on. A numerical utility or part-worth
utility value is computed for each level of each attribute. The goal is to compute utilities such that the
rank ordering of the sums of each product’s set of utilities is the same as the original rank ordering or
violates that ordering as little as possible.

When a monotonic transformation of the judgments is requested, a monmetric conjoint analysis is
performed. Nonmetric conjoint analysis models are fit iteratively. When the judgments are not trans-
formed, a metric conjoint analysis is performed. Metric conjoint analysis models are fit directly with
ordinary least squares. When all of the attributes are nominal, the metric conjoint analysis problem
is a simple main-effects ANOVA model. The attributes are the independent variables, the judgments
comprise the dependent variable, and the utilities are the parameter estimates from the ANOVA model.
The metric conjoint analysis model is more restrictive than the nonmetric model and will generally
fit the data less well than the nonmetric model. However, this is not necessarily a disadvantage since
over-fitting is less of a problem and the results should be more reproducible with the metric model.

**If the plot axes are not equated in this chapter, it is due to unequal distortions of the axes that occurred during the
final printing process.
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In both metric and nonmetric conjoint analysis, the respondents are typically not asked to rate all pos-
sible combinations of the attributes. For example, with five attributes, three with three levels and two
with two levels, there are 3 x 3 x 3 x 2 x 2 = 108 possible combinations. Rating that many combinations
would be difficult for consumers, so typically only a small fraction of the combinations are rated. It
is still possible to compute utilities, even if not all combinations are rated. Typically, combinations
are chosen from an orthogonal array which is a fractional-factorial design. In an orthogonal array, the
zero/one indicator variables are uncorrelated for all pairs in which the two indicator variables are not
from the same factor. The main effects are orthogonal but are confounded with interactions. These
interaction effects are typically assumed to be zero.

Questions that can be addressed with conjoint analysis include: How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

Consider an example in which the effects of four attributes of tea on preference were evaluated. The
attributes are temperature (Hot, Warm, and Iced), sweetness (No Sugar, 1 Teaspoon, 2 Teaspoons),
strength (Strong, Moderate, Weak), and lemon (With Lemon, No Lemon). There are four factors:
three with three levels and one with two levels. Figure 8 contains the results. '

Sweetness was the most important attribute (the importance is 55.795). This consumer preferred two
teaspoons of sugar over one teaspoon, and some sugar was preferred over no sugar. The second most
important attribute was strength (25.067), with moderate and strong tea preferred over weak tea. This
consumer’s most preferred temperature was iced, and no lemon was preferred over lemon.

Software

SAS includes software that implements these methods. SAS/STAT software was used to perform the
analyses for all of the examples. Perceptual mapping methods are described with more mathematical
detail starting on page 817.

Correspondence Analysis. The SAS/STAT procedure CORRESP performs simple and multiple
correspondence analysis and outputs the coordinates for plotting. Raw data or tables may be input.
Supplementary classes are allowed.

Multidimensional Preference Analysis. The SAS/STAT procedure PRINQUAL performs multidi-
mensional preference analysis and outputs the coordinates for plotting. Nonmetric MDPREF, with
transformations of continuous and categorical variables, is also available.

Preference Mapping. The SAS/STAT procedure TRANSREG performs preference mapping and
outputs the coordinates. Nonmetric PREFMAP, with transformations of continuous and categorical
variables, is also available.

Multidimensional Scaling. The SAS/STAT procedure MDS performs multidimensional scaling and
outputs the coordinates. Metric, nonmetric, two-way, and three-way models are available.

t1See page 483 for more information on conjoint analysis. Note that the results in Figure 8 have been customized using
ODS. See page 485 for more information on customizing conjoint analysis output.
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Conjoint Analysis of Tea-Tasting Data

The TRANSREG Procedure Hypothesis Tests for Linear(subj2)

The TRANSREG Procedure

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Source

Model
Error
Corrected Total

Root MSE
Dependent
Coeff Var

Sum of

DF Squares

7 617.7222
10 26.7778
17 644.5000

1.63639

Mean 12.16667
13.44979

Mean
Square

88.24603
2.67778

R-Square
Adj R-Sq

F Value

32.95

0.9585
0.9294

Utilities Table Based on the Usual Degrees of Freedom

Label
Intercept

Lemon: No
Lemon: Yes

Temperature:
Temperature:
Temperature:

Hot
Iced
Warm

Sweetness: No Sugar

Sweetness: 1
Sweetness: 2

Teaspoon
Teaspoons

Strength: Moderate
Strength: Strong
Strength: Weak

Figure 8. Conjoint Analysis

Utility
12.1667

0.7222
-0.7222

0.5000
1.0000
-1.5000

-7.3333
3.1667
4.1667

1.8333
1.5000
-3.3333

Standard
Error

0.38570

0.38570
0.38570

0.54546
0.54546
0.54546

0.54546
0.54546
0.54546

0.54546
0.54546
0.54546

Importance
(% Utility
Range)

7.008

12.129

55.795

25.067

Pr > F

<.0001
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Scatter Plots. The Base SAS procedure PLOT can plot the results from these analyses and optimally
position labels in the scatter plot. PROC PLOT uses an algorithm, developed by Kuhfeld (1991), that
uses a heuristic approach to avoid label collisions. Labels up to 200 characters long can be plotted.

The %PlotIt macro, was used to create graphical scatter plots of labeled points. There are options
to draw vectors to certain symbols and draw circles around other symbols. This macro is in the SAS
autocall macro library. Also see page 803.

Congjoint Analysis. The SAS/STAT procedure TRANSREG can perform both metric and nonmetric
conjoint analysis. PROC TRANSREG can handle both holdout observations and simulations. Holdouts
are ranked by the consumers but are excluded from contributing to the analysis. They are used to
validate the results of the study. Simulation observations are not rated by the consumers and do
not contribute to the analysis. They are scored as passive observations. Simulations are what-if
combinations. They are combinations that are entered to get a prediction of what their utility would
have been if they had been rated. Conjoint analysis is described in more detail starting on page 483.

The %MktEx macro can generate orthogonal designs for both main-effects models and models with in-
teractions. Nonorthogonal designs—for example, when strictly orthogonal designs require too many
observations—can also be generated. Nonorthogonal designs can be used in conjoint analysis studies to
minimize the number of stimuli when there are many attributes and levels. This macro is in the SAS au-
tocall ~macro library and is also available free of charge on the web:
http://support.sas.com/techsup/tnote/tnote_stat.html#market. Experimental design and the %MktEx
macro are described in more detail in starting on pages 47, 99, 121, 141, 483, 597, and 667.

Other Data Analysis Methods. Other procedures that are useful for marketing research include the
SAS/STAT procedures for regression, ANOVA, discriminant analysis, principal component analysis,
factor analysis, categorical data analysis, covariance analysis (structural equation models), and the
SAS/ETS procedures for econometrics, time series, and forcasting. Discrete choice data can be analyzed
with multinomial logit models using the PHREG procedure. Discrete choice is described in more detail
in starting on page 141.

Conclusions

Marketing research helps you understand your customers and your competition. Correspondence anal-
ysis compactly displays survey data to aid in determining what kinds of consumers are buying your
products. Multidimensional preference analysis and multidimensional scaling show product positioning,
group preferences, and individual preferences. Plots from these methods may suggest how to reposition
your product to appeal to a broader audience. They may also suggest new groups of customers to tar-
get. Preference mapping is used as an aid in understanding MDPREF and MDS results. PREFMAP
displays product attributes in the same plot as the products. Conjoint analysis is used to investigate
how consumers trade off product attributes when making a purchasing decision.

The insight gained from perceptual mapping and conjoint analysis can be a valuable asset in marketing
decision making. These techniques can help you gain insight into your products, your customers, and
your competition. They can give you the edge in gaining a competitive advantage.



Introducing the Market Research
Analysis Application

Wayne E. Watson

Abstract

Market research focuses on assessing the preferences and choices of consumers and potential consumers.
A new component of SAS/STAT software in Release 6.11 of the SAS System is an application written
in SAS/AF that provides statistical and graphical techniques for market research data analysis. The
application allows you to employ statistical methods such as conjoint analysis, discrete choice analysis,
correspondence analysis, and multidimensional scaling through intuitive point-and-click actions.*

Conjoint Analysis

Conjoint analysis is used to evaluate consumer preference. If products are considered to be composed
of attributes, conjoint analysis can be used to determine what attributes are important to product
preference and what combinations of attribute levels are most preferred.

Usually, conjoint analysis is a main-effects analysis of variance of ordinally-scaled dependent variables.
Preferences are used as dependent variables, and attributes are used as independent variables. Often,
a monotone transformation is used with the dependent variables to fit a model with no interactions.

As an example, suppose you have four attributes that you think are related to automobile tire purchase.
You want to know how important each attribute is to consumers’ stated preferences for a potential tire
purchase. The four attributes under investigation are

e brand name
e expected tread mileage
e purchase price

e installation cost

The attributes of brand name, tread mileage, and purchase price have three possible values and instal-
lation cost has two values. The values for each attribute are:

*For current documentation on the Market Research Application see SAS Institute Inc, Getting Started with The
Market Research Application, Cary, NC: SAS Institute Inc., 1997, 56 pp. This paper was written and presented at SUGI
20 (1995) by Wayne E. Watson. This paper was also presented to SUGI-Korea (1995) by Warren F. Kuhfeld. Wayne
Watson is a Research Statistician at SAS and wrote the Marketing Research Application which uses procedures and
macros written by Warren F. Kuhfeld. Copies of this chapter (TS-722B) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote_stat.html#market.
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Figure 1. Selecting a Data Set and Analysis Figure 2. Conjoint Analysis Variable Selection
Brand: Michelin, Goodyear, Firestone
Tread Mileage: 40,000, 60,000, 80,000
Price: $45.00, $60.00, $75.00

Installation Cost: $0.00, $7.50

Seven respondents are asked to rank in order of preference 18 out of the possible 54 combinations.
Although rankings are used in this example, preference ratings are frequently used in conjoint analysis.

Invoking the Application. With the data in the SAS data set, SASUSER.TIRES, you can invoke the
Market Research application and perform a conjoint analysis. The application is invoked by issuing
the “market” command on any command line.

Selecting a Data Set and Analysis. The first window displayed requires you to select a data set and
an analysis. Because your data set is SASUSER.TIRES, select SASUSER as the library in the left-hand
list box and TIRES as the data set in the right-hand list box. Then, select an analysis by clicking
on the down arrow to the right of the analysis name field below the list boxes and select “Conjoint
Analysis” from the displayed popup menu. See Figure 1.

View the data by pressing the View Data button and then selecting “Data values.” The other selection
under the View Data button, “Variable attributes,” displays information about each variable.

Selecting Variables. To proceed with the analysis once you have selected a data set and an analysis,
press the OK button at the bottom of the window.

The analysis requires preference and attribute variables. The preference variables are the ranks from
the seven respondents and the attribute variables are the four factors. See Figure 2.

You can choose to perform a metric or a non-metric conjoint analysis; the metric analysis uses the
ranks as they are, while the non-metric analysis performs a monotone transformation on the ranks. To
set the measurement type for the preferences, click on the down arrow in the Preferences box at the
top right of the window. Select “Metric (reflected).” “Reflected” is used because the lowest rank value,
1, corresponds to the most preferred offering. If the highest preference value corresponded to the most
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preferred offering, the “Metric” selection should be used instead.

To select preference variables, select RANK1, RANK2, ... RANKY in the Variables list box on the left
side of the window, and press the Preference button in the Variable Roles box.

Likewise, you must select a measurement type for the attribute variables you want to use. The default
measurement type for attributes is Qualitative, which treats the variable as a set of dummy variables
with the coefficients of the dummy variables summing to 0. In this way, the utility coefficients T of
each attribute sum to 0.

Use this measurement type for all four attribute variables, BRAND, MILEAGE, CHARGES, and
PRICE. After selecting these four variables in the Variables list box, press the Attribute button in the
Variable Roles box. Alternatively, you could use the “Continuous” measurement type for MILEAGE,
CHARGES, or PRICE because these attributes are quantitative in nature.

To delete one or more of the Preference or Attribute variables, either double-click on each one in the
appropriate right-hand list box or select them in any of the three list boxes and press the Remove
button.

To obtain help about the window, press the Help button at the bottom of the window or click on any
of the border titles on the window, for example, “Variables,” “Variable Roles,” “Preferences.”

Once the variables have been selected, press the OK button at the bottom of the window to perform
the analysis. To change the analysis, return to the Variable Selection window by pressing the Variables
button on the analysis main window.

Results. The first result is a plot of the relative importance of each attribute. Relative importance is
a measure of importance of the contribution of each attribute to overall preference; it is calculated by
dividing the range of utilities for each attribute by the sum of all ranges and multiplying by 100.

In the example, Tire Mileage is the most important attribute with an average relative importance
of 49%. The box-and-whisker plot displays the first and third quartiles as the ends of the box, the
maximum and minimum as the whiskers (if they fall outside the box), and the median as a vertical bar
in the interior of each box. See Figure 3.

To display a selection of additional results, press the Results button on the window. The first selection,
the Utilities Table window, displays the utility coefficients for each level of an attribute for all pref-
erences (the dependent variables). The relative importance of each attribute is displayed separately
for each preference variable. This table illustrates that BRAND is the most important attribute for
RANKI1, the first respondent, and Michelin is the most preferred brand, because it has the highest
utility coefficient value. Thus, the first respondent preferred a 80,000 mile, $45 Michelin with no
installation charge.

After closing this window, you can view these results in graphical form by pressing the Results button
again and selecting “Utilities plots.” The plot of the Brand utilities indicates that one respondent
clearly prefers Michelin while the other respondents only mildly prefer one brand over another.

To change the plot from the BRAND to the MILEAGE attribute, select MILEAGE in the list box at
the right. All but one person prefer longer over shorter mileage tires, and that one prefers the 60,000
mile tire. You can examine plots for the PRICE and CHARGES attributes in the same way.

TUtility coefficients are estimates of the value or worth to a subject of each level of an attribute. The most preferred
combination of attributes for a subject is the one with the attribute levels having the highest utility coefficient values for
each attribute.
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Figure 3. Plot of Relative Importance of Attributes Figure 4. Estimating Market Share

Estimating Market Share. You also can calculate the expected market share for each tire purchase
alternative in the sample. To do so, press the Results button and select “Market Share Simulation.” The
entry in the table with the largest market share is the 80,000 mile, $45 Firestone with no installation
charge. It is expected to account for 42.9% of the market. The maximum utility simulation model,
the default, was used to calculate the market share. You can choose from two other models: the logit
model and the Bradley-Terry-Luce model. Click on the down arrow at the top of the window and select
the desired model from the displayed list. See Figure 4.

Only 18 of the 54 possible tire purchase combinations were presented to the respondents. You may
want to predict the expected market share of one or more of the combinations that were not present in
the sample. To do so, press the Add Row button at the bottom of the window and fill in the observation
in the top row of the table. Click on “-Select-” in each attribute column and select the desired level.
If the observation that you create is a duplicate, a warning message is displayed. You can modify the
contents of the Id column to contain a description of your own choice. After you have added some
combinations, you can produce the expected market shares by pressing the Rerun button.

As an example an 80,000 mile, $45 Michelin with no installation charges would be expected to have a
64.3% market share if it was the only combination added to the original sample. Adding combinations
may change the estimated market share of the other combinations.

Discrete Choice Analysis

Conjoint analysis is used to examine the preferences of consumers. The rationale for the use of prefer-
ences is that they indicate what people will choose to buy. Often in market research, the choices that
consumers actually make are the behavior of interest. In these instances, it is appropriate to analyze
choices directly using discrete choice analysis.

In discrete choice analysis, the respondent is presented with several choices and selects one of them.
As in conjoint analysis, the factors that define the choice possibilities are called attributes. Here, they
are called choice attributes to distinguish them from other factors, like demographic variables, that
may be of interest but do not contribute to the definition of the choices. Each set of possible choices
is called a choice set.
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Figure 5. Discrete Choice Analysis Variable Selection

This example has choice possibilities defined by two attributes, price and brand. Five choice alternatives
are presented at a time to a respondent, from which one alternative is chosen. Eight of these choice
sets are presented, each one with a different set of five combinations of price and brand.

To change to a different data set or analysis, select “File — New dataset/analysis” on the main analysis
window. Each time you change the data set or analysis or exit the application, you are asked if you
want save the changes that you have made during the session. On the data set selection window, select
the PRICE data set in the SASUSER library and then select “Discrete choice analysis.” To continue,
press the OK button.

With the other analyses in the application, you would be taken directly to the appropriate variable
selection window. With discrete choice analysis, a supplementary window is displayed to help you
determine if your data are in the appropriate form.

With discrete choice analysis, the structure of the data is important and must be in one of several
layouts. After specifying if your data are contained in one or two data sets and whether a frequency
variable is used, you can view the appropriate layout by pressing the Examine button. The most
important requirement of the data layout is that all choice alternatives must be included, whether
chosen or not.

If your data are not in the proper form, they must be rearranged before proceeding with the analysis.
If your data are in the proper form, continue with the analysis by pressing the OK button. If not, press
the Cancel button.

On the Variable Selection window that appears next, you must select several required variables: a
response variable, some choice attribute variables, and a subject variable. Optionally, you can also
choose a frequency variable and some non-choice attribute variables. If you select a frequency variable,
a subject variable is not necessary.

For this example, select CHOOSE as the response variable. You also must indicate which value of
the variable represents a choice. Click on the down arrow to the right of “Choice Value:” and select
1 from the list. In this example the value 1 indicates the chosen alternative and the value 0 indicates
the non-chosen alternatives. See Figure 5.
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Next, select PRICE and BRAND1, BRAND?2, ..., BRAND4 as Choice attributes. BRAND is a nominal
variable with five levels. It can be represented as four dummy-coded variables. *

Select FREQ as the frequency variable. The frequency variable contains the count of the number of
times that a choice alternative was selected.

Because the data include more than one choice set, a Choice Set variable is needed; the choice set
variable in this example is SET. After selecting the appropriate variables, press the OK button to
perform the analysis.

On the analysis main window, a bar chart is displayed of the significances of each of the choice and
non-choice attributes. The chart illustrates that PRICE, BRAND1, BRAND2, and BRAND4 are
significant.

You can view other results by pressing the Results button and selecting “Statistics,” “Choice probabil-
ities,” or “Residual plots” from the ensuing menu. Overall model fit statistics and parameter estimates
for the attributes are available from the Statistics window. Probabilities for each choice alternative are
available from the Choice Probabilities window. Plots of residual and predicted values are available
from the Residual Plots window.

Correspondence Analysis

Categorical data are frequently encountered in the field of market research. Correspondence analysis
is a technique that graphically displays relationships among the rows and columns in a contingency
table. In the resulting plot there is a point for each row and each column of the table. Rows with
similar patterns of counts have points that are close together, and columns with similar patterns of
counts have points that are close together.

The CARS data set in the SASUSER library is used as an example (also described in the SAS/STAT
User’s Guide). The CARS data are a sample of individuals who were asked to provide information
about themselves and their cars. The pertinent questions for the example are country of origin of their
car and their family status.

Simple Correspondence Analysis. Simple correspondence analysis analyzes a contingency table made
up of one or more column variables and one or more row variables. To select a data set on which to
perform a correspondence analysis, select “File — New dataset/analysis” on the main analysis window.
First, select the CARS data set, then select “Correspondence analysis” as the analysis, and then press
the OK button.

This example uses raw variables instead of an existing table. The desired type of analysis (simple
correspondence analysis) and data layout (raw variables) are default selections on the Variable Selection
window. Select ORIGIN, the country of origin of the car, as the column variable and MARITAL, family
status, as the row variable to create the desired contingency table. See Figure 6.

tBach dummy-coded variable has the value of 1 for a different level of the attribute. In this way, each dummy-coded
variable represents the presence of that level and the absence of the other levels.
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Figure 6. Simple Correspondence Analysis Figure 7. Correspondence Analysis Plot

Variable Selection

Plot. The plot displays the column points and row points. The first example in the SAS/STAT
User’s Guide provides an interpretation of the plot. The interpretation has two aspects: what each
dimension represents and what the relationship of the points in the dimensional space represents. An
interpretation of the vertical dimension is that it represents the country of origin of the cars, with
most of the influence coming from whether the car is American or Japanese. The horizontal dimension
appears to represent “Single with kids” versus all of the other values. See Figure 7.

Although the row and column points are spread throughout the plot, “married” and “single” appear
to be slightly more similar to each other than any of the other points. Keep in mind that distances
between row and column points cannot be compared, only distances among row points and distances
among column points. However, by treating the country-of-origin points as lines drawn from the 0,0
point and extending off the graph, you can see that the “Married with kids” point is closest to the
American car line and the “Single” point is closest to the Japanese car line.

Plot Controls. To enlarge the plot, click on the up arrow in the zoom control box. To return the plot
to its zero zoom state, click on the [0] button. If the plot is zoomed, you can move the plot left and
right and up and down using the scroll bars.

Results.  You can view other results by pressing the Results button and selecting “Inertia table,”
“Statistics,” or “Frequencies.” The Inertia Table window lists the singular values and inertias for all
possible dimensions in the analysis. The Statistics window displays tables of statistics that aid in
the interpretations of the dimensions and the points: the row and column coordinates, the partial
contributions to inertia, and the squared cosines. The Frequency Table window displays observed,
expected, and deviation contingency tables and row and column profiles.
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Multiple Correspondence Analysis.  In a multiple correspondence analysis, only column variables
are used. They are used to create a Burt table ¥ which is then used in the analysis.

The same data set can be used to illustrate multiple correspondence analysis. Return to the Variables
Selection window by pressing the Variables button on the main analysis window. See Figure 8. Perform
the following steps:

1. Remove the current column and row variables either by double-clicking on them or by selecting
them and pressing the Remove button.

2. Select “Multiple Correspondence Analysis” in the Type of Analysis box in the upper left of the
window.

3. Select the column variables ORIGIN, TYPE, SIZE, HOME, SEX, INCOME, and MARITAL by
clicking on the ORIGIN variable and dragging through the list to the MARITAL variable, then
press the Column button.

4. Press the OK button to perform the analysis.

Type of Analysis
Simple Correspondence Analysis
Multiple Correspondence Analysis
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Figure 8. Multiple Correspondence Analysis Variable Selection

The distances between points of different variables can be interpreted in multiple correspondence anal-
ysis because they are all column points. However, the multiple correspondence analysis example has
more dimensions (12) to interpret and examine than the single correspondence analysis example (2).
The total number of dimensions can be examined in the inertia table, which is accessed from the Results
button.

By default, a two-dimensional solution is computed. To request a higher dimensional solution, open
the Variable Selection window, press the Options button, and select (or enter) the desired number of
dimensions.

If you request a three-dimensional (or higher) solution, you can plot the dimensions two at a time by
pressing the Plot button and selecting dimensions for the x axis and the y axis.

§A Burt table is a partitioned symmetric matrix containing all pairs of crosstabulations among a set of categorical
variables. For further explanation, see the SAS/STAT User’s Guide
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Figure 9. MDPREF Analysis Variable Selection  Figure 10. MDPREF Plot
Multidimensional Preference Analysis

With conjoint analysis, respondents indicate their preferences for products that are composed of at-
tributes determined by the experimenter. Sometimes, the data of interest may be preferences of existing
products for which relevant attributes are not defined for the respondent. Multidimensional preference
analysis (MDPREF) is used to analyze such data.

MDPREF is a principal component analysis of a data matrix whose columns correspond to people
and whose rows correspond to objects, the transpose of the usual people by objects multivariate data
matrix.

The CARPREF data set in the SASUSER library is used as an example (also described in the
SAS/STAT User’s Guide. It contains data about the preferences of 25 respondents for 17 cars. The
preferences are on a scale of 0 to 9 with 0 meaning a very weak preference and 9 meaning a very strong
preference. Select the data set and analysis as described in the preceding examples.

As in conjoint analysis, you can choose to perform a metric or non-metric analysis. Choose the mea-
surement type by clicking the arrow in the upper right corner of the window and selecting the desired
type. Other, less frequently used, types are available under the “Other” selection. The measurement
type is used for all subsequently selected Subject variables. Infrequently, subject variables with different
types may be used.

For the example, use the Metric measurement type. Select the preference ratings of each respondent,
JUDGEL, JUDGE2, ..., JUDGE25, as Subject variables. Also, select MODEL as the Id variable. See
Figure 9.

You also can set the number of dimensions for the analysis; the default is two. A scree plot of the
eigenvalues is useful in determining an appropriate number of dimensions. To display the scree plot,
press the Scree Plot button. The plot illustrates that the magnitude of the eigenvalues falls off for
the first two dimensions; then the plot flattens out for the third and remaining dimensions. From this
graph, two dimensions appear appropriate. After closing the Scree Plot window, press the OK button
to perform the analysis. See Figure 10.
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Results. The plot on the main analysis window contains points for the 17 car models and vectors
for the 25 respondents. Interpretations of the two dimensions are 1) the vertical dimension separates
foreign and domestic cars in the upper half and lower half, respectively, and 2) the horizontal dimension
separates small cars and big cars in the left and right halves, respectively. Respondents prefer cars
whose points are closest to their vector. Notice that there are a number of vectors in the upper right
quadrant of the plot but there are no cars. This lack of available products to satisfy peoples’ preferences
indicates a possible niche to fill.

Other results are the “Initial Eigenvalue Plot,” “Final Eigenvalue Plot,” and “Configuration Table.”
The Initial Eigenvalue plot is the same as the scree plot on the Variable Selection window. The Final
Eigenvalue plot is also a scree plot; it differs from the initial plot only if a measurement type other
than Metric is used. The Configuration Table contains the coordinates for the car points.

Multidimensional Scaling

Multidimensional Scaling (MDS) takes subjects’ judgments of either similarity or difference of pairs of
items and produces a map of the perceived relationship among items.

For example, suppose you ask seven subjects to state their perceived similarity on a 1 to 7 scale for pairs
of beverages, with 1 meaning very similar and 7 meaning very different. The beverages are milk, coffee,
tea, soda, juice, bottled water, beer, and wine. Someone may state that their perceived similarity
between coffee and tea is 3, somewhat similar, or 7, very different. There are 28 possible pairs of these
eight beverages.

The data are ordered in an eight observation by eight variable matrix with one matrix (eight obser-
vations) for each subject. On the Data Set Selection window, select the BEVERAGE data set in the
SASUSER library, then press the OK button. A message window informs you that MDS requires either
similarity or distance data. Press the Continue button.

On the Variables Selection window, select the variables MILK, COFFEE, TEA, SODA, JUICE, BOT-
WATER, BEER, AND WINE as the objects. See Figure 11. It is crucial that the order of the objects
is the same as their order in the rows of each matrix. In other words, from the above order, the upper
left corner element in the matrix is MILK, MILK (which has a distance of zero) and the element to its
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right is MILK, COFFEE.

Also, select BEVERAGE, the beverage names, as the ID variable and NAME, the subject identifiers,
as the SUBJECT variable. Because the objects are ordinally-scaled, the ordinal measurement level,
the default, is appropriate for this example.

If you think that your subjects may use different perceptual schemes for judging similarity, you can
choose to perform an individual differences analysis. Press the Options button and select “Individual
Differences Analysis.” The data are distances, the default, because larger numbers represent more
difference (less similarity). If the data were similarities, you would choose the appropriate selection on
the Options window. To close the options window, press the OK button.

As in correspondence analysis and MDPREF analysis, you can set the number of dimensions for the
solution. With MDS you have an extra capability; you can solve for several dimensional solutions in
one analysis.

Choose a three-dimensional solution by entering a “3” in the input field to the right of the “From:”
label or by clicking on the up arrow to its right until the number 3 appears in the input field. As with
the other dimensional analyses, a scree plot may be useful in determining the appropriate number of
dimensions. You can create the plot by pressing the Scree Plot button.

To continue with the analysis, press the OK button on the Variable Selection window.

Results. As with the correspondence analysis and MDPREF plots, interpreting the MDS plot has two
parts: 1) finding a reasonable interpretation for each of the plot dimensions, and 2) finding a reasonable
interpretation of the relationship of the points in the plot. See Figure 12.

The presence of bottled water, milk, and juice at the top of the plot and wine, beer, and coffee
at the bottom of the plot might indicate a good for you/not so good for you interpretation for the
vertical dimension, Dimension 1. The horizontal dimension, Dimension 2, does not have as clear an
interpretation. Try to come up with your own interpretation that would have tea, coffee, and water on
one side and juice, beer, and wine on the other.
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Because you requested a three-dimensional solution, two other plots can be displayed: Dimensions 1
and 3 and Dimensions 2 and 3. To change which dimensions are plotted, press the Plot button and
select the desired dimensions. Also, on this window you can choose to display the coefficients of the
individual differences analysis instead of the coordinates. To do so, select “Coefficient” at the bottom
of the window and press the OK button.

In an individual differences analysis, there is a common perceptual map for all subjects, but different
subjects have different weights for each dimension. See Figure 13. SUBJ4 is found to be highest on the
vertical axis and lowest on the horizontal axis. In other words, SUBJ4 weights whatever this dimension
represents more than do the other subjects and it weights whatever dimension 2 represents less than
the other subjects. If the good-for-you interpretation is appropriate for Dimension 1, then it plays a
larger role in SUBJ4’s perceptual mapping of these beverages than it does for other subjects.

It is possible that SUBJ1, SUBJ2, SUBJ3, SUBJ6, and SUBJ7 may cluster together and SUBJ4 and
SUBJ5 may be outliers. Additional subjects may sharpen this possible clustering or eliminate it. MDS
is useful in market research for discovering possible perceptual perspectives used by consumers and for
revealing possible market segments.

You can display other results by pressing the Results button. These results include Fit statistics,
Configuration tables, Residual plots, and the Iteration history. The fit statistics are measures of how
well the data fit the model. The Configuration tables contain the coordinates and, optionally, the
individual difference coefficients that are used in the plots. The Residual plots allow you to assess the
fit of the model graphically. The iteration history contains information about how many iterations
were needed and how the criterion changed over the iterations.

Summary

Investigators in the field of market research are interested in how consumers make decisions when they
choose to buy products. What attributes are important? Do all people make decisions in the same
way? If not, how do they differ? What are the perceptual schemes that people use in their purchasing
decisions?

The analyses described in this paper can be used with many different types of data to investigate these
questions. The Market Research application makes these analyses easy to use, and it is available in
Release 6.11 and subsequent releases with the SAS/STAT product.

Acknowledgements

I would like to thank Greg Goodwin, Warren Kuhfeld, Julie LaBarr, Donna Sawyer, and Maura Stokes
for their thoughtful comments on this paper.



Experimental Design, Efficiency,
Coding, and Choice Designs

Warren F. Kuhfeld

Abstract

This chapter discusses some of the fundamental concepts in marketing research experimental design
including standard factorial designs, orthogonal arrays, nonorthogonal designs, and choice and conjoint
designs. Design terminology is introduced, design efficiency is explained, and the process of going from
an efficient linear design to a choice design is explained. You should be familiar with the concepts in
this chapter before studying the conjoint or discrete choice chapters. After you are comfortable with
the material in this chapter, it would be good to also look at the design chapters starting on pages 99
and 121 as well.*

Introduction

Experimental designs are fundamental components of marketing research, conjoint analysis, and choice
modeling. An experimental design is a plan for running an experiment. The factors of an experimental
design are the columns or variables that have two or more fixed values, or levels. The rows of a design
are sometimes called runs and correspond to product profiles. Experiments are performed to study
the effects of the factor levels on the dependent or response variable. The factors are the attributes of
the hypothetical products or services. In a discrete-choice study, the rows of the design correspond to
product alternatives, and blocks of several rows comprise a set of products and are called choice sets.
The dependent variable or response is choice. In a conjoint study, the rows of the design correspond
to products, and the dependent variable or response is a rating or a ranking of the products. See page
483 for an introduction to conjoint analysis and page 144 for an introduction to choice models. The
next two sections show simple examples of conjoint and choice experiments.

*Copies of this chapter (TS-722C), the other chapters, and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote_stat.html#market. This chapter is based on the tutorial that Don Anderson
and I have given for many years at the American Marketing Association’s Advanced Research Techniques Forum. Be
forewarned that this chapter still contains some of the occasional silliness that is in the tutorial.
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The Basic Conjoint Experiment

A conjoint study uses experimental design to create a list of products, and subjects rate or rank the
products. Here is a conjoint design and the layout of a simple conjoint experiment with two factors. In
a real experiment, the product descriptions would be more involved and may use art or pictures, but
the basic experiment involves people seeing products and rating or ranking them. The brand factor
has three levels, Acme, Ajax, and Widget, and the price factor has two levels, $1.99 and $2.99. There
are a total of six products.

Full-Profile Conjoint Experiment

Rate Your
Purchase Interest

| Acme  $1.99 | ]
| Acme  $2.99 | ]
Conjoint Design ’ Ajax $1.99 ‘ |:|
Acme $1.99
Acme  $2.99 [Ajax  $2.99 | ]
Ajax $1.99
Ajax $2.99 [ Widget  $1.99 | ]
Widget  $1.99
Widget  $2.99 [Widget  $2.99 | ]

The Basic Choice Experiment

A discrete choice study uses experimental design to create sets of products, and subjects choose a
product from each set. Here is a choice design and the layout of a simple choice experiment. In a real
experiment, the product descriptions would be more involved and they may use art or pictures, but the
basic experiment involves people seeing sets of products and making choices. This example has four
choice sets, each composed of three alternative products, so subjects would make four choices. Each
alternative is composed of two factors: brand has three levels, and price has two levels.

Choice Design

1| Acme  $2.99
Ajax $1.99
Widget  $1.99
2 | Acme $2.99 Discrete Choice Experiment
Ajax $2.99 1 2 3 Choice
Widget  $2.99 | Acme  $2.99 | | Ajax $1.99 | | Widget $1.99 | |
3| Acme  $1.99
Ajax  $1.99 | Acme  $2.99 | | Ajax $2.99 | | Widget $2.99 | |
Widget $2.99
4| Acme  $1.99 | Acme  $1.99 | | Ajax $1.99 | [ Widget $2.99 | |
Ajax $2.99
Widget  $1.99 | Acme $1.99 | [ Ajax $2.99 | | Widget $1.99 | |
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Experimental Design Terminology

Here again is the conjoint design but presented in three forms. The following tables contain a “raw”
experimental design with two factors, the same design with factor names and levels assigned, and a
randomized version of the raw design.

Full-Factorial Full-Profile Randomized
Design Conjoint Design Design
x1 x2 Brand Price x1 x2
1 1 Acme 1.99 2 2
1 2 Acme 2.99 1 1
2 1 Ajax 1.99 1 2
2 2 Ajax 2.99 3 1
3 1 Widget 1.99 3 2
3 2 Widget 2.99 2 1

This is an example of a full-factorial design. It consists of all possible combinations of the levels of the
factors. Full-factorial designs allow you to estimate main effects and interactions. A main effect is a
simple effect, such as a price or brand effect. In a main effects model, for example, the brand effect is
the same at the different prices and the price effect is the same for the different brands. Interactions
involve two or more factors, such as a brand by price interaction. In a model with interactions, for
example, brand preference is different at the different prices and the price effect is different for the
different brands. In Figure 1, there is a main effect for price, and utility increases by one when price
goes from $2.99 to $1.99 for all brands. Similarly, the change in utility from Acme to Ajax to Widget
does not depend on price. In contrast, there are interactions in Figure 2, so the price effect is different
depending on brand, and the brand effect is different depending on price.

Before an experimental design is used, it should be randomized. This involves sorting the rows into a
random order and randomly reassigning all of the factor levels. It is not unusual, for example, for the

Main — Effects Model Main Effects and Interactions
7 7
6 6
Price = $1.99
z z
5 5
2 - 2 -
1 \ \ \ 1 B \ \
Acme Ajax Widget Acme Ajax Widget

Figure 1 Figure 2
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first row of a design to contain all ones, the first level. Randomization takes care of this by mixing
things up. It also eliminates showing all of one brand, then all of the next, and so on. Randomization
for example will change levels (1 2 3) to one of the following: (12 3), (132),(213),(231),(312),
(321).

In a full-factorial design, all main effects, all two-way interactions, and all higher-order interactions
are estimable and uncorrelated. The problem with a full-factorial design is that, for most practical
situations, it is too cost-prohibitive and tedious to have subjects consider all possible combinations.
For example, with five factors, two at four levels and three at five levels (denoted 4253), there are
4x4x5x5x5=2000 combinations in the full-factorial design. For this reason, researchers often
use fractional-factorial designs, which have fewer runs than full-factorial designs. The price of having
fewer runs is that some effects become confounded. Two effects are confounded or aliased when they
are not distinguishable from each other. This means that lower-order effects such as main effects or
two-way interactions may be aliased with higher order interactions in most of our designs. We estimate
lower-order effects by assuming that higher-order effects are zero or negligible. See page 306 for an
example of aliasing.

Fractional-factorial designs that are both orthogonal and balanced are of particular interest. A design
is balanced when each level occurs equally often within each factor, which means that the intercept
is orthogonal to each effect. When every pair of levels occurs equally often across all pairs of factor,
the design is said to be orthogonal. Another way in which a design can be orthogonal is when the
frequencies for level pairs are proportional instead of equal. For example, with 2 two-level factors,
an orthogonal design could have pair-wise frequencies proportional to 2, 4, 4, 8. Such a design will
not be balanced—one level will occur twice as often as the other. Imbalance is a generalized form of
nonorthogonality, hence it increases the variances of the parameter estimates and decreases efficiency.

Fractional-factorial designs are categorized by their resolution. The resolution identifies which effects,
possibly including interactions, are estimable. For example, for resolution III designs, all main effects
are estimable free of each other, but some of them are confounded with two-factor interactions. For
resolution IV designs, all main effects are estimable free of each other and free of all two-factor in-
teractions, but some two-factor interactions are confounded with other two-factor interactions. For
resolution V designs, all main effects and two-factor interactions are estimable free of each other. More
generally, if resolution (r) is odd, then effects of order e = (r — 1)/2 or less are estimable free of each
other. However, at least some of the effects of order e are confounded with interactions of order e + 1.
If r is even, then effects of order e = (r — 2)/2 are estimable free of each other and are also free of
interactions of order e + 1. Higher resolutions require larger designs. Resolution III fractional-factorial
designs are frequently used in marketing research.

A special type of factorial design is the orthogonal array. An orthogonal array or orthogonal design is
one in which all estimable effects are uncorrelated. Orthogonal arrays come in specific numbers of runs
for specific numbers of factors with specific numbers of levels. Here is a list of all orthogonal arrays up
to 28 runs. The list shows the number of runs followed by the design, in notation: levels raised to the
number-of-factors power.
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4 23 122U 16 215 18 2137 21 371 24 9223 25 59
6 213! 2431 21241 2191 22 2111t 22041 26 21131
8 27 2261 2942 3661 21631 27 313
2441 3141 2881 20 219 21461 3991

9 34 14 217t 2643 2851 2133141 28 9227
10 215! 15 315! 2344 2210t 212191 21271
45 4151 2114161 22141

318! 4171

An orthogonal array is both balanced and orthogonal, and hence 100% efficient and optimal. Efficiency,
which is explained starting on page 53, is a measure of the goodness of the experimental design. The
term “orthogonal array,” as it is sometimes used in practice, is imprecise. It is correctly used to refer
to designs that are both orthogonal and balanced, and hence optimal. However, the term is sometimes
also used to refer to designs that are orthogonal but not balanced, and hence not 100% efficient and
sometimes not even optimal. Orthogonal designs are often practical for main-effects models when the
number of factors is small and the number of levels of each factor is small. However, there are some
situations in which orthogonal designs are not practical, such as when

e not all combinations of factor levels are feasible or make sense

e the desired number of runs is not available in an orthogonal design

e a nonstandard model is being used, such as a model with interactions, polynomials, or splines.

When an orthogonal and balanced design is not practical, you must make a choice. One choice is to
change the factors and levels to fit some known orthogonal design. This choice is undesirable for obvious
reasons. When a suitable orthogonal and balanced design does not exist, efficient nonorthogonal designs
can be used instead. Nonorthogonal designs, where some coefficients may be slightly correlated, can
be used in all of the situations listed previously. You do not have to adapt every experiment to fit
some known orthogonal array. First you choose the number of runs. You are not restricted by the
sizes of orthogonal arrays, which come in specific numbers of runs for specific numbers of factors with
specific numbers of levels. Then you specify the levels of each of the factors and the number of runs.
Algorithms for generating efficient designs select a set of design points from a set of candidate points,
such as a full factorial, that optimize an efficiency criterion. Throughout this book, we will use the
%MktEx macro to find good, efficient experimental designs. The %MktEx macro is a part of the SAS
autocall library. See page 597 for information on installing and using SAS autocall macros.
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Eigenvalues, Means, and Footballs

The next section will discuss experimental design efficiency. To fully understand that section, you need
some basic understanding of eigenvalues, and various types of means or averages. This section explains
these and other concepts, but without a high degree of mathematical rigor. An American football
provides a nice visual image for understanding the eigenvalues of a matrix.

The rows or columns of a matrix can be thought of as a swarm of points in Euclidean space. Similarly,
a football consists of a set of points in a space. Sometimes, it is helpful to get an idea of the size of
your group of points. For a football, you might think of three measures because a football is a three-
dimensional object: the longest length from end to end, the height in the center and perpendicular to
the length, and finally the width, which for a fully-inflated football is the same as the height. One can
do similar things for matrices, and that’s where eigenvalues come in. For many of us, eigenvalues are
most familiar from factor analysis and principal component analysis. In principal component analysis,
one rotates a cloud of points to a principal axes orientation, just as this football has been rotated
so that its longest dimension is horizontally displayed. The principal components correspond to: the
longest squared length, the second longest squared length perpendicular or orthogonal to the first, the
third longest squared length orthogonal to the first two, and so on. The eigenvalues are the variances
of the principal components and are proportional to squared lengths. The eigenvalues provide a set of
measures of the size of a matrix, just as the lengths provide a set of measures of the size of a football.

Here is a small experimental design, the coded design X, the sum of squares and cross products matrix
X'X, the matrix inverse (X’X)~!, and the eigenvalues of the inverse, A.

Design X X'X (X'X)~! A

1 1 1441 1 1 1 6 0 -2 01]|0.18 0.000 0.063 0.000 || 1/4 0 0 0
1 2 21 1 -1 -1 0 6 0 -2/|0.000 0.188 0.000 0.063 0 1/4 0 0
12 2y1 1 -1 -1{|-2 0 6 0]]|0.063 0.000 0.188 0.000 0 0 1/8 0
21 21 -1 1 -1 0 -2 0 6| 0.000 0.063 0.000 0.188 0 0 0 1/8
2 2 1(/1 -1 -1 1
2 2 1)1 -1 -1 1
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X is made from the raw design by coding, which in this case simply involves creating an intercept and
appending the design, replacing 2 with -1. See page 64 for more on coding. The X’X matrix comes from
a matrix multiplication of the transpose of X times X. For example the -2 in the first row comes from
xXjxs3=(1 1111 1)(1 -1 -1 1 -1 -1)=1x14+1x—-141x—-14+1x14+Ix-14+1x-1=-2.
Explaining the computations involved in finding the matrix inverse and eigenvalues is beyond the scope
of this chapter, however, they are explained in many linear algebra and multivariate statistics texts.

The trace is the sum of the diagonal elements of a matrix, which for (X’X)~! is both the sum of the
variances and the sum of the eigenvalues: trace ((X'X)~!) = trace (A) = 0.188+0.188+0.188+0.188 =
1/4+1/4+41/8+1/8 = 0.75. The determinant of (X’X)™!, denoted |(X'X)~!], is the product of the
eigenvalues and is 0.0009766: |(X'X)™!| = |A| =1/4x 1/4 x 1/8 x 1/8 = 0.0009766. The determinant
of a matrix is geometrically interpreted in terms of the volume of the space defined by the matrix.
The formula for the determinant of a nondiagonal matrix is complicated, so determinants are more
conveniently expressed as a function of the eigenvalues.

Given a set of eigenvalues, or any set of numbers, we frequently want to create a single number that
summarizes the values in the set. The most obvious way to do this is to compute the average or
arithmetic mean. The familiar arithmetic mean is found by adding together p numbers and then
dividing by p. A trace, divided by p, is an arithmetic mean. The arithmetic mean is an enormously
popular and useful statistic, however it is not the only way to average numbers. The less familiar
geometric mean is found by multiplying p numbers together and then taking the pth root of the
product. The pth root of a determinant is a geometric mean of eigenvalues. To better understand the
geometric mean, consider an example. Say your investments increased by 7%, 5%, and 12% over a
three year period. The arithmetic mean of these numbers, (7 + 5 + 12)/3 = 8%, is not the average
increase that would have come if the investments had increased by the same amount every year. To
find that average, we need the geometric mean: (1.07 x 1.05 x 1.12)'/3 = 1.0796. The average increase
is 7.96%.

Experimental Design Efficiency

This section discusses precisely what is meant by an efficient design. While this section is important,
it is not critical that you understand every mathematical detail. The concepts are explained again
in a more intuitive and less mathematical way in the next section. Also, refer to page 99 for more
information on efficient experimental designs.

The goodness or efficiency of an experimental design can be quantified. Common measures of the
efficiency of an (Np X p) design matrix X are based on the information matriz X’X. The variance-
covariance matrix of the vector of parameter estimates [5’ in a least-squares analysis is proportional
to (X’X)~!. An efficient design will have a “small” variance matrix, and the eigenvalues of (X'X)~!
provide measures of its “size.” The two most prominent efficiency measures are based on quantifying
the idea of matrix size by averaging (in some sense) the eigenvalues or variances.

A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also the arithmetic mean
of the variances, and is given by trace ((X'X)~1)/p. A-efficiency is perhaps the most obvious measure
of efficiency. As the variances get smaller and the arithmetic mean of the variances of the parameter
estimates goes down, A-efficiency goes up. However, as we learned in the previous section, there
are other averages that we might consider. D-efficiency is a function of the geometric mean of the
eigenvalues, which is given by |(X’X)~!|'/?. Both D-efficiency and A-efficiency are based on the idea of
average variance, but in different senses of the word “average.” We will usually use D-efficiency for two
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reasons. It is the easier and faster of the two for a computer program to optimize. Furthermore, relative
D-efficiency, the ratio of two D-efficiencies for two competing designs, is invariant under different coding
schemes. This is not true with A-efficiency. A third common efficiency measure, G-efficiency, is based
on o), the maximum standard error for prediction over the candidate set. All three of these criteria
are convex functions of the eigenvalues of (X'X)~! and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency;
conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design
is balanced and orthogonal when (X’X)~! is diagonal and equals NLDI for a suitably coded X. A
design is orthogonal when the submatrix of (X’X)~!, excluding the row and column for the intercept,
is diagonal; there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-
diagonal elements in the intercept row and column are zero. How we choose X determines the efficiency
of our design. Ideally, we want to choose our X’s so that the design is balanced and orthogonal or at

least very nearly so. More precisely, we want to choose X so that we maximize efficiency.

These measures of efficiency can be scaled to range from 0 to 100 (see pages 64— 66 for the orthogonal
coding of X that must be used with these formulas):

1
Np trace ((X'X)~1)/p

1
Np [(X/X)~1[/r

G-efficiency = 100 x 7‘]7/ND
oM
These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that
may not exist, so they are not useful as absolute measures of design efficiency. Instead, they should be
used relatively, to compare one design to another for the same situation. Efficiencies that are not near
100 may be perfectly satisfactory.

A-efficiency = 100 x

D-efficiency = 100 x

Experimental Design: Rafts, Rulers, Alligators, and Stones

A good physical metaphor for understanding experimental design and design efficiency is a raft. A raft
is a flat boat, often supported by flotation devices attached to the corners. The raft in Figure 3 has
four Styrofoam blocks under each corner, which provide nice stability and equal support. This raft
corresponds to 2 two-level factors from a 16-run design (see Table 1). The four corners correspond to
each of the four possible combinations of 2 two-level factors, and the four blocks under the raft form
an up-side-down bar chart showing the frequencies for each of the four combinations. Looking at the
raft, one can tell that the first factor is balanced (equal support on the left and on the right) as is the
second (equal support in the front and the back). The design is also orthogonal (equal support in all
four corners). Making a design that supports your research conclusions is like making a raft that you
are actually going to use in water full of piranha and alligators. You want good support no matter
which portion of the raft you find yourself on. Similarly, you want good support for your research and
good information about all of your product attributes and attribute levels.

Now compare the raft in Figure 3 to the one shown in Figure 4. The Figure 4 raft corresponds to
the two-level factors in the design shown in Table 2. This design has 18 runs, and since 18 cannot be
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divided by 2 x 2, a design that is both balanced and orthogonal is not possible. Clearly this design is
not balanced in either factor. There are twelve blocks on the left and only six on the right, and there
are twelve blocks on the back and only six on the front. This design is however orthogonal because the
corner frequencies are proportional. These two factors can be made from 2 three-level factors in the Lqg
design, which has up to 7 three-level factors. See Table 3. The three-level factors are all orthogonal,
and recoding levels, replacing 3 with 1, preserves that orthogonality at the cost of decreased efficiency
and a horrendous lack of balance. See Table 3 on page 106 for the information and variance matrices
for the Figure 4 raft.

Finally, compare the raft in Figure 4 to the one shown in Figure 5. Both of these correspond to designs
with two-level factors in 18 runs. The Figure 5 raft corresponds to a design that is balanced. There
are nine blocks on the left and nine on the right, and there are nine blocks on the back and nine on the
front. The design is not however orthogonal since the corner frequencies are 4, 5, 4, and 5, which are
not equal or even proportional. Ideally, you would like a raft like the one in Figure 3, which corresponds
to a design that is both orthogonal and balanced. However, to have both two or more three-level and
two or more two-level factors, you need 36 runs. In 18 runs, you can make an optimal design, like
the one in Table 4 and Figure 5, that provides good support under all corners but not perfectly equal
support. See Tables 3 and 4 in the next chapter on pages 107 and 106 for the information and variance
matrices for the Figure 4 and 5 rafts.

Which raft would you rather walk on? The Figure 3 and Figure 5 rafts are going to be pretty stable.
The Figure 3 raft is in fact optimal, given exactly 16 Styrofoam blocks, and the Figure 5 raft is also
optimal, given exactly 18 Styrofoam blocks. The Figure 4 raft might be fine if you stay in the back
left corner, but take one step, and you will be alligator bait.T Seriously though, all alligator silliness
aside, if you do not provide stable and well supported research, your clients or brand managers will
find someone else who can. In both raft and design terms, the problem is one of stability and support.
In design terms, part of your results will not be stable due to a lack of information about the front
right combination in your factorial design. How confident will you be in your results when you have so
little information about some of your product attribute levels?

The Table 4 design (Figure 5 raft) brings to mind a cup containing exactly one half cup of water. The
optimist sees the cup as half full, and the pessimist sees it as half empty. In the design, the optimist
sees a little extra support in the back left and front right corners. The pessimist sees a little less
support in the front left and back right corners. Either way, all available resources (design points) are
optimally allocated to maximize efficiency and stability. What you would really like is both balance
and orthogonality. However, you cannot get both in 18 runs, because 2 x 2 does not divide 18. Still,
you can do pretty well. Mick Jagger and Keith Richards (1969) summed it up best in one of their

tThe alligator knows where your weakness is, and he is watching! The alligator was in the ART Forum tutorial from
the start, and I did not want to leave him out of this chapter, even if this part is a bit silly. Here is the alligator story
that started all of this silliness. I live in central North Carolina. There are alligators in the southeast part of NC, but
there are not supposed to be any in my part. In fact, on rare occasions, they swim up river in the summer and end up in
surprising places like the time a ten-footer ended up in a golf course lake outside of Raleigh. I live not too far from Jordan
lake, which contrary to popular belief was not named after Michael Jordan, who played his college ball nearby at UNC.
Just before our first design tutorial, some fishermen were out bow fishing one night on Jordan lake. One of them shot
what he thought was a really big fish. It turned out, it was a small alligator. Shooting an alligator is North Carolina is a
very illegal thing to do. Nevertheless, the fishermen decided to have their trophy stuffed. They took it to a taxidermist,
which was a very stupid thing to do, because a law-abiding taxidermist must turn you in to the authorities if you bring in
a protected animal to be mounted. They were both arrested and slapped with a hefty fine. In their defense, they argued,
“But how were we supposed to know it was an alligator? There are no alligators in this part of North Carolina!” The
authorities agreed that this was true, but they still had to pay the fine. The moral of the story is you always have to
watch for alligators, because you never know where they will turn up. The real point is, the alligator is a predator, just
like your competition. Just as you would be foolish to float through the gators on an unstable raft, you would be unwise
to use anything less than the most efficient design you can find to support your research conclusions.
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Two-Level Factors in 16 Runs
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most influential commentaries on choice designs: “You can’t always get what you want, but if you try
sometimes, you just might find, you get what you need!”* What you want is orthogonality and balance.
What you need is good stability. Efficient designs can give you what you need.

The Table 2 and Figure 4 design may seem like just a “straw man,” something that we build up just so
that we can knock it down. However, this design was widely used in the past, and in fact, in spite of
the fact that its deficiencies have been known for over 10 years (Kuhfeld, Tobias, and Garratt 1994) it
is still used in some sources as a text-book example of a good design. In fact, it is a text-book example
of how not to make designs. It is an example of what can happen when you choose orthogonality
as the be-all-end-all design criterion, ignoring both balance and statistical efficiency. It is also an
example of what can happen when you construct designs from a small, inferior, and incomplete catalog
instead of using a comprehensive designer. Even among orthogonal designs, it is not optimal (see
pages 105-107). If we can achieve perfect orthogonality and balance, our design will be optimal and
have maximum efficiency. The key consideration is that maximizing statistical efficiency minimizes the
variability of our parameter estimates, and that is what we want to achieve. Recall that for a linear
model, the variance-covariance matrix of the vector of parameter estimates is proportional to (X'X)~1.
Maximizing efficiency minimizes those variances, covariances, and hence standard errors. These designs
are discussed in more detail, including an examination of their variance matrices, starting on page 105.

How we choose our design, our X values, affects the variability of our parameter estimates. Previously
we talked about eigenvalues and the variance matrix, which provided a mathematical representation
of the idea that we choose our X values so that our parameter estimates will have small standard
errors. Now, we will discuss this less mathematically. Imagine that we are going to construct a very
simple experiment. We are interested in investigating the purchase interest of a product as a function
of its price. So we design an experiment with two prices, $1.49 and $1.50 and ask people to rate how
interested they are in the products at those two prices. We plot the results with price on the horizontal
axis and purchase interest on the vertical axis. We find that the price effect is minimal. See Figure
6. Now imagine that the line is a ruler and the two dots are your fingers. Your fingers are the design
points providing support for your research. Your fingers are close together because in our research
design, we chose two prices that are close together. Furthermore, imagine that there is a small amount
of error in your data, that is error in the reported purchase interest, which is in the vertical direction.
To envision this, move your fingers up and down, just a little bit. What happens to your slope and
intercept as you do this?$ They vary a lot! This is not a function of your data; it is a function of your
design being inefficient because you did not adequately sample a reasonable price range.

Next, let’s design a similar experiment, but this time with prices of $0.99 and $1.99. See Figure 7.
Imagine again that the line is a ruler and the two dots are your fingers, but this time they are farther
apart. Again, move your fingers up and down, just a little bit. What happens to your slope and
intercept as you do this? Not very much; they change a little bit. The standard errors for Figure
6 would be much greater than the standard errors for Figure 7. How you choose your design points
affects the stability of your parameter estimates. This is the same lesson that the mathematics involving
(X'X)~1 gives you. You want to choose your X’s so that efficiency is maximized and the variability of
your parameter estimates is minimized. This example does not imply, however, that you should pick
prices like $0.01 and $1,000,000,000. Your design levels need to make sense for the product.

Like the alligator, Mick and Keith have been a part of the tutorial for many years. Of course they weren’t really
writing about choice designs when they wrote this immortal line, but this line is amazingly applicable to the problems of
applied design!

$1 encourage you to actually try this and see what happens! At this point in the tutorial, I am up front demonstrating
this. It is a great physical demonstration showing that you you choose X affects the stability of the parameter estimates.
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The Number of Factor Levels

The number of levels of the factors can affect design efficiency. Since two points define a line, it is
inefficient to use more than two points to model a linear function. When a quadratic function is used
(r and 22 are included in the model), three points are needed—the two extremes and the midpoint.
Similarly, four points are needed for a cubic function. More levels are needed when the functional form
is unknown. Extra levels allow for the examination of complicated nonlinear functions, with a cost of
decreased efficiency for the simpler functions. When the function is assumed to be linear, experimental
points should not be spread throughout the range of experimentation.

We are often tempted to have more levels than we really need, particularly for factors like price. If
you expect to model a quadratic price function, you only need three price points. It may make sense
to have one or two more price points so that you can test for departures from the quadratic model,
but you do not want more than that. You probably would never be interested in a price function
more complicated than a cubic function. Creating a design with many price points and then fitting a
low-order price function reduces efficiency at analysis time. The more factors you have with more than
two or three levels, the harder it is usually going to be to find an orthogonal and balanced design or
even a close approximation.

There are times, however, when you can reasonably create factors with more levels than you really
need. Say you have a design with two-level and four-level factors and you want to create quadratic
price effects, which would mean three evenly-spaced levels. Say you also want the ability to test for
departures from a quadratic model. One strategy is to create an eight-level price factor. Then you can
recode it as follows: (123456 78) — (123451 35). Notice that you will end up with twice
as many points at the min, middle, and max positions as in the second and fourth positions. This
will give you good efficiency for the quadratic effect and some information about higher-order effects.
Furthermore, there are many designs with mixtures of (2, 4, and 8)-level factors in 64 runs, which you
can easily block. You need 400 runs before you can find a design with mixes of (2, 4, and 5)-level
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factors in an orthogonal array. If you are assigning levels with a format, you can assign levels and do
the recoding all at the same time.

proc format;
value price 1

$3.09 4 = $3.19 5
$3.09 8

$3.29
$3.29;

$2.89 2 = $2.99 3
$2.89 7

run;

Conjoint, Linear, and Choice Designs

Consider a simple example of three brands each at two prices. We always use linear-model theory to
guide us in creating designs for a full-profile conjoint studies. Usually we pick orthogonal arrays for
conjoint studies. For choice modeling, the process is somewhat different. We will often use linear-model
theory to create a linear design from which we could construct a choice design to use in a discrete choice
study. The conjoint and linear (choice) designs are shown next.

Full-Profile

Conjoint Design mear Design

Used to Make a Choice Design

Brand  Price Brand 1 Brand 2  Brand3
1 1.99 i ' i
X 500 Price Price Price
! 1.99 1.99 1.99 1.99
. 2.99 1.99 2.99 2.99
’ 1.99 2.99 1.99 2.99
; Y00 2.99 2.99 1.99

This conjoint design has two factors, brand and price, and six runs or product profiles. Subjects would
be shown each combination, such as brand 1 at $1.99 and be asked to report purchase interest through
either a rating (for example, on a 1 to 9 scale) or a ranking of the six profiles.

The linear version of the choice design for a pricing study with three brands has three factors (Brand
1 Price, Brand 2 Price, and Brand 3 Price) and one row for each choice set. More generally, the linear
design has one factor for each attribute of each alternative (or brand), and brand is not a factor in
the linear design. Each brand is a “bin” into which its factors are collected. Subjects would see these
sets of products and report which one they would choose (and implicitly, which ones they would not
choose). However, before we fit the choice model, we will need to construct a true choice design from
the linear design and code the choice design. See Tables 5, 6, and 7.

The linear design has one row per choice set. The choice design has three rows for each choice set,
one for each alternative. The linear design and the choice design contain different arrangements of the
exact same information. In the linear design, brand is a bin into which its factors are collected (in
this case one factor per brand). In the choice design, brand and price are both factors, because the
design has been rearranged from one row per choice set to one row per alternative per choice set. For
this problem, with only one attribute per brand, the first row of the choice design matrix corresponds
to the first value in the linear design matrix, Brand 1 at $1.99. The second row of the choice design
matrix corresponds to the second value in the linear design matrix, Brand 2 at $1.99. The third row of
the choice design matrix corresponds to the third value in the linear design matrix, Brand 3 at $1.99,
and so on.
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Table 7
Table 5 Table 6 Choice Design Coding
Brand

Linear Design Choice Design Effects Brand by Price
1 2 3 Set Brand Price Set 1 2 3 1 2 3
1.99 1.99 1.99 1 1 1.99 1 1 0 0 1.99 0 0
2 1.99 0 1 0 0 1.99 0

3 1.99 0 0 1 0 0 1.99
1.99 299 2.99 2 1 1.99 2 1 0 0 1.99 0 0
2.99 1 0 0 299 0

3 2.99 0 0 1 0 0 2.99
299 1.99 299 3 1 2.99 3 1 0 0 299 0 0
1.99 1 0 0 1.99 0

3 2.99 0 0 1 0 0 2.99
299 299 1.99 4 1 2.99 4 1 0 0 299 0 0
2 2.99 0 1 0 0 299 0

3 1.99 0 0 1 0 0 1.99

A design is coded by replacing each factor with one more columns of indicator variables (which are
often referred to as “dummy variables”) or other codings. In this example, a brand factor is replaced
by the three binary variables. We will go through how to construct and code linear and choice designs
many times in the examples using a number of different codings. For now, just notice that the conjoint
design is different from the linear design, which is different from the choice design. They aren’t even
the same size! Also note that we cannot use linear efficiency criteria to directly construct the choice
design bypassing the linear design step. Usually, we will use the %MktEx macro to make a linear design,
the %MktRoll macro to convert it into a choice design, and the TRANSREG procedure to code the
choice design.

Here is a slightly more involved illustration of the differences between the linear and final version of a
choice design. This example has three brands and three alternatives, one per brand. The category is
sports beverages, and they are available in three sizes, at two prices with three different types of tops
including a pop up top and two different twist versions. Six choice sets are shown in Table 8.

The linear design has one row per choice set. The full choice design has 36 choice sets. There is one
factor for each attribute of each alternative. This experiment has three alternatives, one for each of
three brands, and three attributes per alternative. The first goal is to make a linear design where each
attribute, both within and between alternatives, is orthogonal and balanced, or at least very nearly so.
Brand is the bin into which the linear factors are collected, and it becomes an actual attribute in the
choice design. The right partition of the table shows the choice design. The x1 attribute in the choice
design is made from x1, x4, and x7, in the linear design. These are the three size factors. Similarly,
x2 is made from x2, x5, and x8, in the linear design. These are the three price factors. Finally, x3 is
made from the three top factors, x3, x6, and x9.
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Table 8
Linear Design Choice Design
Brand 1 Brand 2 Brand 3
x1 x2 x3 x4 x5 x6 x7 x8 x9 Brand X1 x2 x3

200z. 0.89 Twist1 | 20 0z. 0.99 Twist2 | 16 oz. 0.89 Twist 2

16 oz. 0.89 Twist 1 | 24 0z. 0.89 Twist 2 | 20 0z. 0.99 Pop-Up 16 oz. 0.89 Twist 1
24 oz. 0.89 Twist 2

20 oz. 0.99 Pop-Up

20 0z. 0.99 Pop-Up | 24 0z. 0.89 Twist 1| 20 0z. 0.89 Twist 2 20 oz. 0.99 Pop-Up
24 oz. 0.89 Twist 1

20 oz. 0.89 Twist 2

20 oz. 0.89 Twist 1
20 0z. 0.99 Twist 2
16 oz. 0.89 Twist 2

20 0z. 0.89 Twist 1 | 16 oz. 0.99 Twist 1 | 24 oz. 0.99 Pop-Up 20 0z. 0.89 Twist 1
16 oz. 0.99 Twist 1

24 oz. 0.99 Pop-Up

16 oz. 0.89 Twist 2 | 24 0z. 0.99 Pop-Up | 16 oz. 0.99 Twist 2 16 oz. 0.89 Twist 2
24 oz. 0.99 Pop-Up

16 oz. 0.99 Twist 2

24 oz. 0.99 Twist 2
16 oz. 0.89 Twist 2
16 oz. 0.89 Pop-Up

24 0z. 0.99 Twist 2 | 16 oz. 0.89 Twist 2 | 16 oz. 0.89 Pop-Up

LN FFIWN RWNRFRWND R WNRFRWN -

Blocking the Choice Design

The sports beverage example has 36 choice sets. This may be too many judgments for one subject to
make. How many blocks to use depends on the number of choice sets and the complexity of the choice
task. For example, 36 choice sets might be small enough that no blocking is necessary, or instead, they
may be divided into 2 blocks of size 18, 3 blocks of size 12, 4 blocks of size 9, 6 blocks of size 6, 9
blocks of size 4, 12 blocks of size 3, 18 blocks of size 2, or even 36 blocks of size 1. Technically, subjects
should each see exactly one choice set. Showing subjects more than one choice set is economical, and
in practice, most researchers almost always show multiple choice sets to each subject. The number
of sets shown does not change the expected utilities, however, it does affect the covariance structure.
Sometimes, attributes will be highly correlated within blocks, particularly with small block sizes, but
that is not a problem as long as they are not highly correlated over the entire design.

Efficiency of a Choice Design

All of the efficiency theory discussed so far concerned linear models. In linear models, the parameter
estimates (3 have variances proportional to (X'X)~!. In contrast, the variances of the parameter
estimates in the discrete choice multinomial logit model are given by

. 2 -1 Mo exp(a )i Y™ exp(a B)x;) (ST exp(aB)z;) 1]
V(ﬁ):_laafﬁ@] :l z_lN[ Jorexp(@;Bazay (S exp(a)f)e)) (X5 exp(a0) )H

T exp(a)3) (X7 exp(a}8))?




TS-722C — Experimental Design, Efficiency, Coding, and Choice Designs 63

where
. exp((XTLy fi2))B)
0B =TIy =T
(Ej=1 eXP(%ﬂ))
m — brands
n — choice sets
N — people

In the choice model, ideally we would like to pick x’s that make this variance matrix “small.” Unfortu-
nately, we cannot do this unless we know 3, and if we knew 3, we would not need to do the experiment.
However, in the chair example on pages 363—382, we will see how to make an efficient choice design
when we are willing to make assumptions about (3.

Because we do not know 3, we will often create experimental designs for choice models using efficiency
criteria for linear models. We make a good design for a linear model by picking x’s that minimize a
function of (X’X)~! and then convert our linear design into a choice design. Certain assumptions must
be made before applying ordinary general-linear-model theory to problems in marketing research. The
usual goal in linear modeling is to estimate parameters and test hypotheses about those parameters.
Typically, independence and normality are assumed. In full-profile conjoint analysis, each subject
rates all products and separate ordinary-least-squares analyses are run for each subject. This is not a
standard general linear model; in particular, observations are not independent and normality cannot
be assumed. Discrete choice models, which are nonlinear, are even more removed from the general
linear model.

Marketing researchers have always made the critical assumption that designs that are good for general
linear models are also good designs for conjoint analysis and discrete choice models. We also make
this assumption. We will assume that an efficient design for a linear model is a good design for the
multinomial logit model used in discrete choice studies. We assume that if we create the linear design
(one row per choice set and all of the attributes of all of the alternatives comprise that row), and if
we strive for linear-model efficiency (near balance and orthogonality), then we will have a good design
for measuring the utility of each alternative and the contributions of the factors to that utility. When
we construct choice designs in this way, our designs will have two nice properties. 1) Each attribute
level will occur equally often (or at least nearly equally often) for each attribute of each alternative
across all choice sets. 2) Each attribute will be independent of every other attribute (or at least nearly
independent), both those in the current alternative and those in all of the other alternatives. The
design techniques discussed in this book, based on the assumption that linear design efficiency is a
good surrogate for choice design goodness, have been used quite successfully in the field for many
years.

In most of the examples, we will use the %MktEx macro to create a good linear design, from which we
will construct our choice design. This seems to be a good, safe strategy. It is a good strategy because
it makes designs where all attributes, both within and between alternatives, are orthogonal or at least
nearly so. It is safe in the sense that you have enough choice sets and collect the right information so
that very complex models, including models with alternative-specific effects, availability effects, and
cross effects, can be fit. However, it is good to remember that when you run the %MktEx macro and
you get an efficiency value, it corresponds to the linear design, not the choice design. It is a surrogate
for the criterion of interest, the efficiency of the choice design, which is unknowable unless you know
the parameters.
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Coding, Efficiency, Balance, and Orthogonality

We mentioned on page 54 that we use a special orthogonal coding of X when computing design
efficiency. This section shows that coding and other codings. Even if you gloss over the mathematical
details, this section is informative, because it provides insights into coding and the meaning of 100%
efficiency and less than 100% efficient designs.

Here are nonorthogonal less-than-full-rank binary or indicator codings for two-level through five-level
factors. There is one column for each level, and the coding contains a 1 when the level matches the
column and a zero otherwise. We will use these codings in many places throughout the examples.

Two-Level Three-Level Four-Level Five-Level
a 1 0 a 1 0 0 a 1 0 0 0 a 1 0 0 0 O
b 0 1 b 0 1 0 b 0 1 0 0 b 01 0 0 O
c 0 0 1 c 0 0 1 O c 0 0 1 0 O
d 0 0 0 1 d 0 0 0 1 0
e 0 0 0 O 1

Here are nonorthogonal full-rank binary or indicator codings for two-level through five-level factors.
This coding is like the full-rank coding above, except that the column corresponding to the reference
level has been dropped. Frequently, the reference level is the last level, but it can be any level. We will
use these codings in many places throughout the examples.

Two-Level Three-Level Four-Level Five-Level
a 1 a 1 0 a 1 0 0 a 1 0 0 O
b 0 b 0 1 b 0 1 0 b 01 0 0
¢c O 0 c 0 0 1 c 0 0 1 0

d 0 0 0 d 0 0 0 1

e 0 0 O O

Here are nonorthogonal effects coding for two-level ! through five-level factors. The effects coding differs
from the full-rank binary coding in that the former always has a -1 to indicate the reference level. The
binary and effects codings are explained in more detail in the SAS/STAT manual, PROC TRANSREG,
DETAILS, “ANOVA Codings” section. We will use these codings in many places throughout the
examples.

Two-Level Three-Level Four-Level Five-Level
a 1 a 1 0 a 1 0 0 a 1 0 0 O
b -1 b 0 1 b 0 1 0 b 0 1 0 0
c -1 -1 c 0 0 1 c 0 0 1 0
d -1 -1 -1 d 0 0 0 1
e -1 -1 -1 -1

Table 9, using the design in Table 8, shows the less-than-full-rank binary coding (brand, 3 parameters),
the full-rank binary coding (size, 2 parameters), and the effects coding (top, 2 parameters). Price (1
parameter) is not coded and instead is entered as is for a linear price effect.

YThe two-level effects coding is orthogonal, but the three-level and beyond codings are not.
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Table 9
Choice Design Coding

Brand Brand Brand 16 20 Twist Twist
Brand x1 x2 x3 1 2 3 0z. OZ. Price 1 2
1 16 oz. 0.89 Twist 1 1 0 0 1 0 0.89 1 0
2 24 oz. 0.89 Twist 2 0 1 0 0 0 0.89 0 1
3 20 oz. 0.99 Pop-Up 0 0 1 0 1 0.99 -1 -1
1 20 oz. 0.99 Pop-Up 1 0 0 0 1 0.99 -1 -1
2 24 oz. 0.89 Twist 1 0 1 0 0 0 0.89 1 0
3 20 oz. 0.89 Twist 2 0 0 1 0 1 0.89 0 1
1 20 oz. 0.89 Twist 1 1 0 0 0 1 0.89 1 0
2 20 oz. 0.99 Twist 2 0 1 0 0 1 0.99 0 1
3 16 oz. 0.89 Twist 2 0 0 1 1 0 0.89 0 1
1 20 oz. 0.89 Twist 1 1 0 0 0 1 0.89 1 0
2 16 oz. 0.99 Twist 1 0 1 0 1 0 0.99 1 0
3 24 oz. 0.99 Pop-Up 0 0 1 0 0 0.99 -1 -1
1 16 oz. 0.89 Twist 2 1 0 0 1 0 0.89 0 1
2 24 oz. 0.99 Pop-Up 0 1 0 0 0 0.99 -1 -1
3 16 oz. 0.99 Twist 2 0 0 1 1 0 0.99 0 1
1 24 oz. 0.99 Twist 2 1 0 0 0 0 0.99 0 1
2 16 oz. 0.89 Twist 2 0 1 0 1 0 0.89 0 1
3 16 oz. 0.89 Pop-Up 0 0 1 1 0 0.89 -1 -1

Here is the orthogonal contrast coding for two-level through five-level factors. These are the same as
the orthogonal codings that will be discussed in detail next, except that this version has been scaled
so that all values are integers.

Two-Level Three-Level Four-Level Five-Level
a 1 a 1 -1 a 1 -1 -1 a 1 -1 -1 -1
b -1 b 0 2 b 0 2 -1 b 0 2 -1 -1
c -1 -1 c 0 0 3 c 0 0 3 -1
d -1 -1 -1 d 0 0 0 4
e -1 -1 -1 -1

Here is the standardized orthogonal coding for two-level through five-level factors that the design soft-
ware uses internally.

Two-Level Three-Level Four-Level Five-Level

a 1.00 a 122 -0.71 a 141 -0.82 -0.58 1.58 -0.91 -0.65 -0.50
b -1.00 b 0 1.41 b 0 1.63 -0.58 0 183 -0.65 -0.50
c
d

c -1.22 -0.71 0 0 1.73 0 0 194 -0.50
-1.41 -0.82 -0.58 0 0 0 2.00
-1.58 -091 -0.65 -0.50

o a0 o e
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Notice that the sum of squares for the orthogonal coding of the two-level factor is 2. For both columns
of the three-level factor, the sums of squares are 3; for the three columns of the four-level factor, the
sums of squares are all 4; and for the four columns of the five-level factor, the sums of squares are all
5. Also notice that each column within a factor is orthogonal to all of the other columns—the sum of
cross products is zero. For example, in the last two columns of the five-level factor, —0.65 x —0.5 +
—0.65 x —0.54+1.94 x —.054+0 x 2+ —0.65 x —0.5 = 0. Finally notice that the codings for each level
form a contrast—the ith level versus all of the preceding levels and the last level.

Recall that our measures of design efficiency are scaled to range from 0 to 100.

1
Np trace ((X'X)~1)/p

1
Np [(XX) 117

A-efficiency = 100 x

D-efficiency = 100 x

When computing D-efficiency or A-efficiency, we code X so that when the design is orthogonal and
balanced, X’X = NpI where I is a p X p identity matrix. When our design is orthogonal and balanced,
(X'X)™t = %I, and trace (X'X)™1)/p = [(X’X)~'|'/? = 1/Np. In this case, the two denominator
terms cancel and efficiency is 100%. As the average variance increases, efficiency decreases.

This next example shows the coding of a 2 x 6 full-factorial design in 12 runs using a coding function
that requires that the factor levels are consecutive positive integers beginning with one and ending

with m for an m-level factor. Note that the IML operator # performs ordinary (scalar) multiplication,
and ## performs exponentiation.

proc iml; /* orthogonal coding, levels must be 1, 2, ..., m */
reset fuzz;

start orthogcode(x);
levels = max(x);
xstar = shape(x, levels - 1, nrow(x))‘;
j = shape(1l : (levels - 1), nrow(x), levels - 1);
r = sqrt(levels # (x / (x + 1))) # (j = xstar) -
sqrt(levels / (j # (j + 1))) # (j > xstar | xstar = levels);
return(r);
finish;
design = (1:2)¢ @ j(6, 1, 1) || {1, 1} @ (1:6)°;
x = j(12, 1, 1) || orthogcode(design[,1]) || orthogcode(designl[,2]);
print design[format=1.] °’> ’ x[format=5.2 colname={’Int’ ’Two’ ’Six’}];

Xpx = x¢ * X; print xpx[format=best5.];
inv = inv(xpx); print inv[format=best5.];
d_eff = 100 / (nrow(x) # det(inv) ## (1 / ncol(inv)));
a_eff 100 / (nrow(x) # trace(inv) / ncol(inv));
print ’D-efficiency =’ d_eff[format=6.2]

> A-efficiency =’ a_eff[format=6.2];
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With this orthogonal and balanced design, X'X = NpI = 12I, which means (X’X)~! = NLDI =1L
and D-efficiency = 100%. With a nonorthogonal design, for example with the first 10 rows of the 2 x 6

full-factorial design, D-efficiency and A-efficiency are less than 100%.
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design = design[1:10,];

x = j(10, 1, 1) || orthogcode(design[,1]) || orthogcode(designl[,2]);
inv = inv(x‘ * x);

d_eff = 100 / (nrow(x) # det(inv) ## (1 / ncol(inv)));

a_eff = 100 / (nrow(x) # trace(inv) / ncol(inv));
print ’D-efficiency =’ d_eff[format=6.2]

> A-efficiency =’ a_eff[format=6.2];
quit;

D_EFF A_EFF

D-efficiency = 92.90 A-efficiency = 84.00

In this case, |(X’X)~ /7 and trace ((X'X)~!)/p are multiplied in the denominator of the efficiency
formulas by NLD = %. If an orthogonal and balanced design were available for this problem, then
(X'X)~! would equal ﬁI = %I. Since an orthogonal and balanced design is not possible (6 does not
divide 10), both D-efficiency and A-efficiency will be less than 100%, even with the optimal design. A
main-effects, orthogonal and balanced design, with a variance matrix equal to NLDI, is the standard by
which 100% efficiency is gauged, even when we know such a design cannot exist. The standard is the
average variance for the maximally efficient potentially hypothetical design, which is knowable, not the

average variance for the optimal design, which for many practical problems we have no way of knowing.

For our purposes in this book, we will only consider experimental designs with at least as many runs
as parameters. A saturated or tight design has as many runs as there are parameters. The number
of parameters in a main-effects model is the sum of the numbers of levels of all of the factors, minus
the number of factors, plus 1 for the intercept. Equivalently, since there are m — 1 parameters in an
m-level factor, the number of parameters is 1 4 E?zl(mj — 1) for k factors, each with m; levels.

If a main-effects design is orthogonal and balanced, then the design must be at least as large as the
saturated design and the number of runs must be divisible by the number of levels of all the factors
and by the products of the number of levels of all pairs of factors. For example, a 2 x 2 x 3 x 3 x 3
design cannot be orthogonal and balanced unless the number of runs is divisible by 2 (twice because
there are two 2’s), 3 (three times because there are three 3’s), 2 x 2 = 4 (once, because there is one
pair of 2’s), 2 x 3 = 6 (six times, two 2’s times three 3’s), and 3 x 3 = 9 (three times, three pairs of
3’s). If the design is orthogonal and balanced, then all of the divisions will work without a remainder.
However, all of the divisions working is a necessary but not sufficient condition for the existence of an
orthogonal and balanced design. For example, 45 is divisible by 3 and 3 x 3 = 9, but an orthogonal
and balanced saturated design 3?2 (22 three-level factors) in 45 runs does not exist.

Orthogonally Coding Price and Other Quantitative Attributes

For inherently quantitative factors like price, you may want to use different strategies for coding
instead of using indicator variables or effects coding. When we create a design with a quantitative
factor such as price, we do not have to do anything special. The orthogonal coding what we use to
make qualitative factors is just as applicable when the factor will become quantitative. See page 107
for more information. However, for analysis, we may want a different coding than the binary or effects
coding. Imagine, for example, a choice experiment in the SUV category with price as an attribute
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and with levels of $27,500, $30,000, and $32,500. You probably will not want to code them as is and
just add these prices directly to the model, because these values are considerably larger than the other
values in your coded independents, which will usually consist of values like -1, 0, and 1. You might
believe that choice is not a linear function of price; it may be nonlinear or quadratic. Hence, you might
think about adding a price-squared term, but squaring values this large is almost certain to cause
collinearity. When you are dealing with factors like this, you are usually better off recoding them in a
“nicer” way. The first column of the next table shows some of the steps in the recoding.

Price Centered Price Divide By Increment Square
27,500 27,500 - 30,000 = -2,500 -2,500 / 2,500 = -1 -17 =1
30,000 30,000 - 30,000 = 0 0/2500 = 0 02 =
32,500 32,500 - 30,000 = 2,500 2,500 /2,500 = 1 12 =1

The second column shows the results of centering them—subtracting the mean price of $30,000. The
third column shows the results of dividing the centered values by the increment between values, 2,500.
The fourth column shows the square of the third column. These last two columns would make much
better linear and quadratic price terms than the original price and the original price squared, however,
we can do better still. The first part of the next table shows the final steps and the full, orthogonal,
quadratic coding.

Orthogonal

Code Centered Quadratic Multiply Through Code
1 -1 1 1 - 2/3 = 1/3 3 x  1/3 = 1 1 -1 1
1 00 0 - 2/3 = -2/3 3 x =2/3 = -2 1 0 -2
111 1 - 2/3 = 1/3 3 x  1/3 = 1 11 1

The first coding consists of an intercept, a linear term, and a quadratic term. Notice that the sum
of the quadratic term is not zero, so the quadratic term is not orthogonal to the intercept. We can
correct this by centering (subtracting the mean which is 2/3). After centering, all three columns are
orthogonal. We can make the coding nicer still by multiplying the quadratic term by 3 to get rid of
the fractions. The full orthogonal coding is shown in the last set of columns. Note however, that only
the last two columns would be used. The intercept is just there to more clearly show that all columns
are orthogonal. This orthogonal coding will work for any three-level quantitative factor with equal
intervals between adjacent levels.

For four equally-spaced levels, and with less detail, the linear and quadratic coding is shown in the last
two columns of the next table.

Make Into Smallest
Price Center Divide Integers Square Center Integers Code
27500  -3750 -1.5 -3 9 4 1 301
30000  -1250 -0.5 -1 1 -4 -1 -1 -1
32500 1250 0.5 1 1 -4 -1 1 -1
35000 3750 1.5 9 4 1 3 1
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Canonical Correlations

We will use canonical correlations to evaluate nonorthogonal designs and the extent to which factors
are correlated or are not independent. To illustrate, consider a design with four three-level factors in
9 runs shown next along with its coding.

Coded Linear Design

Linear Design x1 x2 x3 x4
xl x2 x3 x4 1 2 3 1 2 3 1 2 3 1 2 3
1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0
12 3 3 1 0 0 0 1 0 0 0 1 0 0 1
1 3 2 2 1 0 0 0 0 1 0 1 0 0 1 0
2 1 2 3 0 1 0 1 0 0 0 1 0 0 0 1
2 2 1 2 0 1 0 0 1 0 1 0 0 0 1 0
2 3 3 1 0 1 0 0 0 1 0 0 1 1 0 0
3 1 3 2 0 0 1 1 0 0 0 0 1 0 1 0
3 2 2 1 0 0 1 0 1 0 0 1 0 1 0 0
3 3 1 3 0 0 1 0 0 1 1 0 0 0 0 1

Each three-level factor can be coded with three columns that contains the less-than-full-rank binary
coding (see page 64). A factor can be recoded by applying a coefficient vector &’ = (a1 a2 ag) or
B = (B1 B2 B3) to a coded factor to create a single column. In other words, the original coding of
(12 3) can be replaced with arbitrary (a1 az asz) or (61 B2 f3) If two factors are orthogonal, then for
all choices of a and 3, the simple correlation between recoded columns is zero. A canonical correlation
shows the maximum correlation between two recoded factors that can be obtained with the optimal «
and B. This design, 3* in 9 runs is orthogonal so for all pairs of factors and all choices of a and 3, the
simple correlations between recoded factors will be zero. The canonical correlation between a factor
and itself is 1.0.

For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a
substitute for looking at the variance matrix discussed on pages 196, 243, and 683. It just provides
a quick and more-compact picture of the correlations between the factors. The variance matrix is
sensitive to the actual model specified and the actual coding. The canonical-correlation matrix just
tells you if there is some correlation between the main effects. A matrix of canonical correlations
provides a useful picture of the orthogonality or lack of orthogonality in a design. For example, this
canonical-correlation matrix from the vacation example on page 194, shown next, shows a design with
16 factors that is mostly orthogonal. However, x13-x15 are not orthogonal to each other. Still, with
r? = 0.25% = 0.0625, these factors are nearly independent.

The Process of Designing a Choice Experiment

It is important that you understand a number of things in this chapter before you design your first
choice experiment. Most of this chapter is fairly straight-forward, but without a clear understanding
of it, you will no doubt get confused when you actually design an experiment. You should go back and
review if you are not completely comfortable with the meaning of any of these terms: linear design,
choice design, generic choice design, factors, attributes, alternatives, choice sets, orthogonality, balance,
and efficiency. In particular, the meaning of linear design and choice design (pages 60—61) and the
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relationship between the two is fundamental and the source of a great deal of confusion when most
people start out. Make sure you understand them. You do not have to understand the formula for the
variance matrix for a choice model, the orthogonal coding, or the formuulas for efficiency. However,
you should be comfortable with the idea of average variability of the parameter estimates and how that
is related to efficiency.

This section lists the steps in designing a choice experiment. The next section illustrates these steps
with a simple example. All of the page numbers in this section refer to the more complicated examples
in the discrete choice chapter. Before consulting them, work through the simple example in the next
section.

The first step in designing a choice experiment involves determining:

Is this a generic study (no brands) or a branded study? Branded studies have a label for each
alternative that conveys meaning beyond ordinary attributes. Brand names are the most common
example. The destinations in the vaction example (pages 184 and 229) also act like brands. In a
generic study, the alternatives are simply bundles of attributes (page 363).

If it is branded, what are the brands?

How many alternatives?

Is there a constant (none, no purchase, delay purchase, or stick with my regular brand) alternative?
What are the attributes of all of the alternatives, and what are their levels?

Are any the attributes generic? In other words, are there attributes that you expect to behave
the same way across all alternatives?

Are any the attributes alternative-specific? In other words, are there attributes that you expect
to behave differently across all alternatives (brand by attribute interactions)?
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Step 1. Write down all of your attributes of all of your alternatives and their levels. See for example
pages 184, 229, 284, and 363 .

Step 2. Is this a generic study (like the chair example on page 363) or a branded example (like the
vacation examples on pages 184 and 229 and the food example on page 284)?

Step 3. If this is a branded study:

Use the %MktRuns macro to suggest the number of choice sets. See page 740 for documentation
and pages 156, 185, 230, 234, 294, 296, and 345 for examples.

Use the %MktEx macro to make a linear design. See page 667 for documentation and pages 158,
158, 178, 188, 196, 232, 233, 235, 243, 287, 292, 297, 297, 300, 346, 383, 385, 386, 389, 404, 410,
413, 420, 420, 423, 430, 435, 438, 449, 452, 452, 455, 458, 460, 461, 464, and 465 for examples.

Use the %MktEval macro to evaluate the linear design. See page 663 for documentation and pages
160, 161, 161, 194, 197, 232, 242, 292, 297, and 348 for examples.

Print and check the linear design. See for example page 159.

Use the %MktKey and %MktRoll macros to make a choice design from the linear design. See page
735 for documentation on the %MktRoll macro, page 710 for documentation on the %MktKey
macro, and pages 165, 200, 223, 247, 317, 353, 363, 378, 416, 425, 432, and 438, for examples.

Step 4. If this is a generic study:

Use the %MktRuns macro to suggest a size for the candidate design. See page 740 for documentation
and page 364 for an example.

Use the %MktEx macro to make a candidate design. See page 667 for documentation and pages
363, 365, 374, and 378 for examples.

Use the %MktLab macro to add alternative flags. See page 712 for documentation and page 365
for an example.

Print and check the candidate design. See for example page 365.

Use the %ChoicEff macro to find an efficient choice design. See page 600 for documentation and
pages 366, 370, 372, 374, 375, 378, 379, 417, 425, 428, 432, 438, 440, 455, 458, 461, 464, and 465

for examples.
Print and check the choice design. See for example page 369.

Go back and try the %MktEx step with other size choice sets. Stop when you feel comfortable with
the results.

Step 5. Continue processing the design:

Print and check the choice design. See for example page 201.
Assign formats and labels. See for example page 202.
Print and check the choice design. See for example page 202.

Use the %ChoicEff macro to evaluate the design. See page 600 for documentation and pages 166,
203, 248, 320, 321, 437, 452, and 453 for examples.
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e For larger designs, you will need to block the design. See page 638 for documentation and pages
244 and 308 for examples. Alternatively, with the linear design approach, you can sometimes just
add a blocking factor directly to the linear design. See page 197 for an example.

Step 6. Collect data and process the design:

e Print or otherwise generate the choice tasks, and then collect and enter the data. See for example
page 207.

e Use the %MktMerge macro to merge the data and the design. See page 723 for documentation and
pages 171, 208, 223, 255, 331, and 339, for examples.

e Print part of the data and design and check the results. See for example page 208.

e Optionally, particularly for large data sets, you can aggregate the data set using PROC SUM-
MARY. See for example page 332.

e Use the TRANSREG procedure to code the design. See for example pages 173, 209, 214, 216,
219, 223, 255, 263, 265, 269, 275, 276, 278, 280, 333, 337, 340, and 357.

e Print part of the coded design and check the results. See for example page 209.

e Use the %PhChoice macro to customize the output. See page 748 for documentation and page
143 for an example.

e Use the PHREG procedure to fit the multinomial logit model. See for example pages 257, 259,
264, 266, 273, 278, 280, 334, 337, 342, 357, and 360.

There are many variations not covered in this simple outline. For example, you could use the %ChoicEff
macro even for branded studies. Also, restricted designs and partial profile designs are not mentioned
here. See the examples in the discrete choice chapter (pages 141—465) for lots of other possibilities.

A Simple Choice Experiment from A to Z

This section outlines a small and simple choice experiment from start to finish. The examples on pages
141 through 465 tend to be much more involved and have many more nuances. This example shows
the basic steps in the context of a simple example with no complications. Understanding this one will
help you with the more involved examples that come later.

The category is breakfast bars, and there are three brands, Branolicious, Brantopia, and Brantasia.|
The choice sets will consist of three brands and a constant (no purchase) alternative. Each brand has
two attributes, a four-level price factor and a two-level number of bars per box attribute. The prices
are $2.89, $2.99, $3.09, and $3.19, and the sizes are 6 count and 8 count. The design will consist of the
following factors, shown here organized by brand and also organized by attribute. There is only one
set of attributes shown here, however it is shown in two different ways.

1Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
We picked these silly names so no one would confuse our artificial data with real data.
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Factors Organized By Brand Factors Organized By Attribute
Linear Choice Linear Choice
Factor Design Factor Design
Name Levels Brand Attribute Name Levels Brand Attribute
x1 4 levels Branolicious Price x1 4 levels Branolicious Price
x2 2 levels Branolicious Count x3 4 levels Brantopia Price

x5 4 levels Brantasia Price
x3 4 levels Brantopia Price
x4 2 levels Brantopia Count x2 2 levels Branolicious Count
x4 2 levels Brantopia Count
x5 4 levels Brantasia Price x6 2 levels Brantasia Count
x6 2 levels Brantasia Count

We need a linear design with 6 factors: Branolicious Price, Branolicious Count, Brantopia Price,
Brantopia Count, Brantasia Price, and Brantasia Count. From it, we will make a choice design with
three attributes, brand, count, and price. We can use the %MktRuns macro to suggest the number of
choice sets. The input is the number of levels of all of the factors. See for example pages 185 and 230
for more about the syntax of this macro.

title ’Cereal Bars’;

Ymktruns( 4 2 4 2 4 2 )

The output from the macro is shown next. It tells us that there are 3 two-level factors and 3 four-
level factors. The saturated design has 13 runs or rows, so we need at least 13 choice sets with this
approach. The full-factorial design has 512 runs, so there are a maximum of 512 possible choice sets.
Sixteen choice sets is ideal since there is an orthogonal-array design that we could use. The macro
stops considering larger sizes when it finds a perfect size (in this case 32) that is twice as big as another
perfect size (16). The last part of the output lists the orthgonal arrays.

Cereal Bars

Design Summary

Number of

Levels Frequency
2 3
4 3

Cereal Bars

13
512

Saturated
Full Factorial
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Some Reasonable Cannot Be
Design Sizes Violations Divided By

16 * 0
32 * 0
24 3 16
20 12 8 16
28 12 8 16
14 18 4 8 16
18 18 4 8 16
22 18 4 8 16
26 18 4 8 16
30 18 4 8 16

* — 100% Efficient Design can be made with the MktEx Macro.

Cereal Bars

n Design Reference

16 2 xx 6 4 *xx 3 Fractional-Factorial
16 2 %% 3 4 xx 4 Fractional-Factorial
32 2 *xx 22 4 x*x 3 Fractional-Factorial
32 2 %% 19 4 *xx 4 Fractional-Factorial
32 2 *xx 16 4 x*x b Fractional-Factorial
32 2 %% 15 4 *xx 3 8 *x 1 Fractional-Factorial
32 2 *x 13 4 x*x 6 Fractional-Factorial
32 2 *x%x 12 4 xx 4 8 *x 1 Fractional-Factorial
32 2 *x*x 10 4 *xx 7 Fractional-Factorial
32 2 %% 9 4 xx b5 8 *x 1 Fractional-Factorial
32 2 *xx 7 4 xx 8 Fractional-Factorial
32 2 %% 6 4 *xx 6 8 *x 1 Fractional-Factorial
32 2 *xx 4 4 *xx 9 Fractional-Factorial
32 2 %% 3 4 xx 7 8 *x 1 Fractional-Factorial

We will create a linear design with 16 choice sets. The %MktRuns macro suggests 16 because it can be
divided by 2 (we have two-level factors), 4 (we have four-level factors), 2 x 2 (we have more than one
two-level factor), 4 x 4 (we have more than one four-level factor), and 2 x 4 (we have both two-level
factors and four-level factors). The number of choice sets must be divisible by all of these it the design
is going to be orthogonal and balanced. Sixteen is a reasonable number of judgments for people to
make, and the other suggestions (24, 20, 28, 14, 18, 22, 26, 30) all cannot be divided by at least one of
these numbers.

We will use the %MktEx macro to get our linear design. It accepts a factor-level list like %MktRuns along
with the number of runs or choice sets. We specify a random number seed so that we always get the
same design if we rerun the %MktEx macro.

Ymktex( 4 2 4 2 4 2, n=16, seed=17 )

The output is next. The %MktEx macro found a 100% efficient, orthogonal and balanced design with
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3 two-level factors and 3 four-level factors, just as the %MktRuns told us it would. The levels are all
positive integers, starting with 1 and continuing to the number of levels.

Cereal Bars
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes

1 Start 100.0000 100.0000 Tab
End 100.0000

Cereal Bars
The OPTEX Procedure
Class Level Information

Class Levels Values

x1 4 1234
x2 2 12
x3 4 1234
x4 2 12
x5 4 1234
x6 2 12

Cereal Bars

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.9014

Next, we examine some of the properties of the design and we print it. The %MktEval macro tells us
which factors are orthogonal and which are correlated. It also tells us how often each level occurs, how
often each pair of levels occurs across pairs of factors, and how often each run or choice set occurs.

title2 ’Examine Correlations and Frequencies’;
%mkteval;

title2 ’Examine Design’;
proc print data=randomized; run;

Here is the first part of the output. It tells us that the design is orthogonal, that every factor is
uncorrelated with every other factor.
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x1
X2
x3
x4
x5
x6

X

O O O O O =

Cereal Bars

Examine Correlations and Frequencies
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

1

x2

O O O O+~ O

x3

O O O+~ O O

x4

O O+ O O O

x5 x6

O, O O O O
=, O O O O O

Here is the next part of the output. It tells us that each level occurs equally often, (4 times in the
four-level factors and 8 times in the two-level factors), and each pair of levels occurs equally often. The
n-way frequencies tell us that every choice set occurs only once in the design—there are no duplicates.

Cereal Bars

Examine Correlations and Frequencies
Summary of Frequencies
There are O Canonical Correlations Greater Than 0.316
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x4 x5 22222222
x4 x6 4 4 4 4

x5 x6 22222222
N-Way 1111111111111 111

Here is the randomized design. It has 3 four-level factors with levels 1, 2, 3, 4, followed by 3 two-level
factors with levels 1, 2, 3. It has 16 rows. The levels and rows are not sorted, so this is in a good form
for use.

Cereal Bars
Examine Design

Obs x1 x2 x3 x4 x5 x6
1 1 1 2 1 2 1
2 4 1 2 2 4 2
3 3 2 2 1 3 2
4 3 1 4 1 4 1
5 2 2 2 2 1 1
6 4 1 1 1 1 1
7 3 2 1 2 2 1
8 1 2 3 2 4 1
9 2 1 4 2 2 2

10 1 2 4 1 1 2
11 4 2 4 2 3 1
12 2 1 3 1 3 1
13 2 2 1 1 4 2
14 1 1 1 2 3 2
15 3 1 3 2 1 2
16 4 2 3 1 2 2

Next, we need to make a choice design from our linear design. We need to specify in a SAS data set the
rules for doing this. We need to specify that the brands are Branolicious, Brantopia, Brantasia, and
None. We need to specify that the Branolicious Price is made from x1, the Branolicious Count is made
from x2, the Brantopia Price is made from x3, the Brantopia Count is made from x4, the Brantasia
Price is made from x5, and the Brantasia Count is made from x6. We also need to specify that the
none alternative is not made from any of the attributes. We call this data set the key to constructing
the choice design. The variables in this data set correspond to the attributes in the choice design, and
the values correspond to the brands and to the linear design factors. The %MktKey macro gives us the
linear design factor names that we can cut and paste into this data set. For large designs, this makes
it much easier to construct the design key.

Jmktkey (3 2)

Here are the three rows and two columns of the names x1-x6 for pasting into our key data set.
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x1 x2
x1 X2
x3 x4
x5 x6

Here is the key data set.
title2 ’Create the Choice Design Key’;

data key;
input
Brand $ 1-12 Price $ Count $; datalines;
Branolicious x1 x2
Brantopia x3 x4
Brantasia x5 x6
None

The %MktRoll macro uses the linear design and the information in the key data set to make the choice
design.

title2 ’Create Choice Design from Linear Design’;
Jmktroll( design=randomized, key=key, alt=brand,
out=cerealdes )

proc print; id set; by set; run;

The Brand variable contains literal names, and it is named on the alt= option, which designates the
alternative name (brand) attribute. The remaining variables contain factor names from the linear data
set. Here is the choice design. It contains the variable Set along with the variable names and brands
from the key data set and also the information from the linear design all stored in the right places.

Cereal Bars
Create Choice Design from Linear Design

Set Brand Price Count

1 Branolicious 1 1
Brantopia 2 1
Brantasia 2 1
None

2 Branolicious 4 1
Brantopia 2
Brantasia 4 2

None
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13 Branolicious 2 2
Brantopia 1 1
Brantasia 4 2
None

14 Branolicious 1 1
Brantopia
Brantasia 3 2
None

15 Branolicious 3 1
Brantopia
Brantasia 1 2
None

16 Branolicious 4
Brantopia 3 1
Brantasia 2
None

These next steps assign formats to the levels and print the choice sets. In the interest of space, only
the first four choice sets are printed. The design is stored in a permanent SAS data set so it will still
be available at analysis time.

title2 ’Final Choice Design’;

proc format;
value price 1 = $2.89 2 = $2.99 3 = $3.09 4 = $3.19 . =’ 7;
value count 1 = ’Six Bars’ 2 = ’Eight Bars’ . =’ ’;
run;

data sasuser.cerealdes;
set cerealdes;
format price price. count count.;
run;

proc print data=sasuser.cerealdes(obs=16);
by set; id set;
run;

Here are the first four choice sets.

Cereal Bars
Final Choice Design

Set Brand Price Count
1 Branolicious $2.89 Six Bars
Brantopia $2.99 Six Bars
Brantasia $2.99 Six Bars

None



82 TS-722C — Experimental Design, Efficiency, Coding, and Choice Designs

2 Branolicious $3.19 Six Bars
Brantopia $2.99 Eight Bars
Brantasia $3.19 Eight Bars
None

3 Branolicious $3.09 Eight Bars
Brantopia $2.99 Six Bars
Brantasia $3.09 Eight Bars
None

4 Branolicious $3.09 Six Bars
Brantopia $3.19 Six Bars
Brantasia $3.19 Six Bars
None

This step evaluates the goodness of the design for a choice model using the %ChoicEff macro. This
macro can also be used to search for efficient choice designs.

title2 ’Evaluate Design’;

hchoiceff (model=class(brand price count), /* model, expand to dummy vars */

nalts=4, /* number of alternmatives */
nsets=16, /* number of choice sets x/
beta=zero, /* assumed beta vector, Ho: b=0 */
intiter=0, /* no internal iterations just */

/* evaluate the input design x/
data=sasuser.cerealdes, /* the input design to evaluate */

init=sasuser.cerealdes(keep=set))/* choice set number from design*/

Here is the last output table, which is what we are most interested in seeing. We see three parameters
for brand (4 alternatives including none minus 1), three for price (4 - 1), one one for count (2 - 1). All
are estimable and all have reasonable standard errors. These results look good.

Cereal Bars
Evaluate Design

Standard
n Variable Name Label Variance DF Error
1 BrandBranolicious Brand Branolicious 0.94444 1 0.97183
2 BrandBrantasia Brand Brantasia 0.94444 1 0.97183
3 BrandBrantopia Brand Brantopia 0.94444 1 0.97183
4 Price_2_89 Price $2.89 0.88889 1 0.94281
5 Price_2_99 Price $2.99 0.88889 1 0.94281
6 Price_3_09 Price $3.09 0.88889 1 0.94281
7 CountSix_Bars Count Six Bars 0.44444 1 0.66667




TS-722C — Experimental Design, Efficiency, Coding, and Choice Designs

Next, the questionaire is designed. Here are two sample choice sets.

In practice, data collection is usually much more elaborate than this.

Branolicious | Brantopia | Brantasia | No Purchase
$2.89 $2.99 $2.99

Six Bars Six Bars Six Bars

Branolicious | Brantopia | Brantasia | No Purchase
$3.19 $2.99 $3.19

Six Bars Fight Bars | Eight Bars

83

It may involve art work or

photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the essential
ingredients remain the same. Subjects are shown sets of alternatives and are asked to make a choice,
then they go on to the next set. Each subject sees all 16 choice sets and chooses one alternative from
each. The data for each subject consist of 16 integers in the range 1 to 4 showing which alternative
was chosen. The data are collected and entered into a SAS data set. There is one row for each subject
containing the number of the chosen alternatives for each choice set.

title2 ’Read Data’;

data results;

O© 00 N O O WN -

I e S T e e ol
O ©O©W 0 NO Ol WN = O

1331132331312213
3231322131312233
1233332111132233
1211232111313233
1233122111312233
3231323131212313
3231232131332333
3233332131322233
1223332111333233
1332132111233233
1233222211312333
1221332111213233
1231332131133233
3211333211313233
3313332111122233
3321123231331223
3223332231312233
3211223311112233
1232332111132233
1213233111312413

input Subject (r1-ri16) (1.);
datalines;
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21 1333232131212233
22 3321322111122231
23 3231122131312133
24 1232132111311333
25 3113332431213233
26 3213132141331233
27 3221132111312233
28 3222333131313231
29 1221332131312231
30 3233332111212233
31 1221332111342233
32 2233232111111211
33 2332332131211231
34 2221132211312411
35 1232233111332233
36 1231333131322333
37 1231332111331333
38 1223132211233331
39 1321232131211231
40 1223132331321233
The %MktMerge macro merges the data and the design and creates the dependent variable.

title2 ’Merge Data and Design’;

Jmktmerge (design=sasuser.cerealdes, /* input design */
data=results, /* input data set x/
out=res2, /* output data set with design and data */
nsets=16, /* number of choice sets */
nalts=4, /* number of alternatives x/
setvars=ri-ri16) /* variables with the chosen alt nums  */

This data set has one row for each alternative of each choice set for each subject (in this case, there
are 4 x 16 x 40 = 2560 rows). This step prints the first four choice sets for the first subject.

title2 ’Design and Data Both’;

proc print data=res2(obs=16);
by set subject; id set subject;
run;

Here are the first four choice sets for the first subject.

Cereal Bars
Design and Data Both

Set Subject Brand Price Count c
1 1 Branolicious $2.89 Six Bars 1
Brantopia $2.99 Six Bars 2

Brantasia $2.99 Six Bars 2

None 2



TS-722C — Experimental Design, Efficiency, Coding, and Choice Designs 85

2 1 Branolicious $3.19 Six Bars 2
Brantopia $2.99 Eight Bars 2
Brantasia $3.19 Eight Bars 1
None 2
3 1 Branolicious $3.09 Eight Bars 2
Brantopia $2.99 Six Bars 2
Brantasia $3.09 Eight Bars 1
None 2
4 1 Branolicious $3.09 Six Bars 1
Brantopia $3.19 Six Bars 2
Brantasia $3.19 Six Bars 2
None 2

The dependent variable is c. A 1 in ¢ indicates first choice, and a 2 indicates the alternatives that were
not chosen (second or subsequent choice).

This next step codes the design variables for analysis and prints the coded results for the first subject
for the first four choice sets. All of the independent variables are names in the class specification.
PROC TRANSREG options are explained in detail in throughout the other examples, particularly on
page 173.

title2 ’Code the Independent Variables’;

proc transreg design norestoremissing data=res2;
model class(brand price count);
id subject set c;
output out=coded(drop=_type_ _name_ intercept) lprefix=0;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Dependent Variable’;
format price price. count count.;
var Brand Price Count Subject Set c;
by set subject; id set subject;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Coding of Brand’;
format price price. count count.;
var brandbranolicious brandbrantasia brandbrantopia brand;
by set subject; id set subject;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Coding of Price and Count’;
format price price. count count.;
var Price_2_89 Price_2_99 Price_3_09 CountSix_Bars Price Count;
by set subject; id set subject;
run;

Here is the coded design for the first four choice sets, shown in three panels.
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Cereal Bars
Code the Independent Variables
ID Information and the Dependent Variable

Set Subject Brand Price Count Subject Set o
1 1 Branolicious $2.89 Six Bars 1 1 1
Brantopia $2.99 Six Bars 1 1 2

Brantasia $2.99 Six Bars 1 1 2

None 1 1 2

2 1 Branolicious $3.19 Six Bars 1 2 2
Brantopia $2.99 Eight Bars 1 2 2

Brantasia $3.19 Eight Bars 1 2 1

None 1 2 2

3 1 Branolicious $3.09 Eight Bars 1 3 2
Brantopia $2.99 Six Bars 1 3 2

Brantasia $3.09 Eight Bars 1 3 1

None 1 3 2

4 1 Branolicious $3.09 Six Bars 1 4 1
Brantopia $3.19 Six Bars 1 4 2

Brantasia $3.19 Six Bars 1 4 2

None 1 4 2

Cereal Bars
Code the Independent Variables
ID Information and the Coding of Brand

Set Subject Branolicious Brantasia Brantopia Brand

1 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

2 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

3 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

4 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None
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Cereal Bars
Code the Independent Variables

ID Information and the Coding of Price and Count

Six

Set Subject $2.89 $2.99 $3.09 Bars Price

1 1 1 0 0 1 $2.
0 1 0 1 $2.
0 1 0 1 $2.
0 0 0 0

2 1 0 0 0 1 $3.
0 1 0 0 $2.
0 0 0 0 $3.
0 0 0 0

3 1 0 0 1 0 $3.
0 1 0 1 $2.
0 0 1 0 $3.
0 0 0 0

4 1 0 0 1 1 $3.
0 0 0 1 $3.
0 0 0 1 $3.
0 0 0 0

89
99
99

19
99
19

09
99
09

09
19
19

Count

Six Bars
Six Bars
Six Bars

Six Bars
Eight Bars
Eight Bars

Eight Bars
Six Bars
Eight Bars

Six Bars
Six Bars
Six Bars
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This code fits the choice model. Notice that we use the %PhChoice macro to customize the output from
PROC PHREG so it looks more like discrete choice output and less like survival analysis output. The
choice model is a special case of a survival-analysis model. Before the model equals sign, ¢ indicates
the chosen alternative and also the alternatives that were not chosen, those with values of 2 or greater.
After the equal sign is a macro variable that PROC TRANSREG creates with the list of coded variables.
Each subject and set combination or stratum makes a contribution to the likelihood function.

%phchoice( on )
title2 ’Multinomial Logit Discrete Choice Model’;

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subject set;
run;

%phchoice( off )

Here are the results.
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Cereal Bars
Multinomial Logit Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 2560
Number of Observations Used 2560

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 640 4 1 3

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 1774 .457 1142.630
AIC 1774 .457 1156.630
SBC 1774 .457 1187.860

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 631.8271 7 <.0001
Score 518.1014 7 <.0001

Wald 275.0965 7 <.0001
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Cereal Bars
Multinomial Logit Discrete Choice Model

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Branolicious 1 2.64506 0.47268 31.3142 <.0001
Brantasia 1 2.94600 0.47200 38.9571 <.0001
Brantopia 1 2.44876 0.47416 26.6706 <.0001
$2.89 1 2.69907 0.20307 176.6557 <.0001
$2.99 1 1.72036 0.17746 93.9845 <.0001
$3.09 1 0.76407 0.17437 19.2008 <.0001
Six Bars 1 -0.54645 0.11899 21.0912 <.0001

Notice near the top of the output that there was one pattern of results. There were 640 times (16
choice sets times 40 people) that four alternatives were presented and one was chosen. This table
provides a check on the data entry. Usually, the number of alternatives is the same in all choice sets,
as it is here. Multiple patterns would mean a data entry error had occured. The “Multinomial Logit
Parameter Estimates” table is of primary interest. All of the part-worth utilities (parameter estimates)
are significant, and the clearest pattern in the results is that the lower prices have the highest utility.

These are the basic steps in designing, processing, and analyzing a choice experiment. Pages 141
through 465 have many more examples, much greater detail, and show how to use other tools.

Optimal Generic Choice Designs

In some situations, particularly for certain generic choice experiments, we can make optimal choice
designs under the assumption that 8 = 0. A generic choice experiment is one that does not have
any brands. The alternatives are simply bundles of attributes. For example, a manufacturer of any
electronic product may construct a choice study with potential variations on a new product to see
which attributes are the most important drivers of choice. Consider for example a study that involves
4 two-level factors and four choice sets, each with two alternatives. Here is an the optimal generic choice
design along with a three fractional-factorial designs. The first fractional-factorial design consists of 3
two-level factors in 4 runs and an intercept. The second fractional-factorial design consists of 3 two-
level factors in 4 runs and a “shifted intercept,” a column of twos instead of the customary column of
ones. The third fractional-factorial design consists of 1 four-level factor and 4 two-level factors in eight
runs.
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Optimal Fractional
Generic Factorial Shifted Fractional
Choice 23 in 4 Runs Fractional Factorial
Design With Intercept Factorial 412% in 8 Runs
1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1
2 2 2 2 1 1 2 2 2 2 1 1 2 1 1 2 2
1 2 2 1 2 1 1 2 31 2 21
1 1 2 1 2 1 2 2 1 2 1 4 1 2 1 2
2 1 1 1 2 2 2 2
2 2 2 1 1
1 2 2 1 3 21 1 2
2 1 1 2 4 2 1 2 1
1 2 1
1 2 1

The first fractional-factorial design exactly matches the two-level factors in the first half of the third
fractional-factorial design, and the second fractional-factorial design exactly matches the two-level
factors in the second half of the third fractional-factorial design. Sorting the third fractional-factorial
design on the four-level factor and using it as the choice set number yields the optimal generic choice
design.

The optimal generic choice design can be constructed by creating a fractional-factorial design with
an intercept and using it to make the first alternative of each choice set. The second alternative is
made from the first by shifting or cycling through the levels (changing 1 to 2 and 2 to 1). The first
alternative is shown in the fractional-factorial table, and the second alternative is shown in shifted
fractional-factorial table. The plan for the second alternative is a different fractional-factorial plan.
Alternatively and equivalently, this design can be made from the orthogonal array 4'2% in 8 runs by
using the four-level factor as the choice set number. Note that the optimal generic choice design never
shows two alternatives with the same levels of any factor. For this reason, some researchers do not
use them and consider this class of designs to be more of academic and combinatorial interest than of
practical significance.

Here is an optimal generic choice design with 9 three-level attributes, with three alternatives, and nine
choice sets, each in a separate box. It is made from the orthogonal design 3?9! in 27 runs by using
the nine-level factor as the choice set number. Notice that each alternative is made from the previous
alternative by adding one to the previous level, mod 3. Similarly, the first alternative is made from the
third alternative by adding one to the previous level, mod 3.

w
—_
—_
—_
—_
—_
w
—
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111 3 3 3 2 2 2 1 2 2 1 2 1

22 2 1 11 3 3 3 1 2 1 1

3 3 3 1 1 1 3 1 1 3 1 3

1 2 1 2 1 2 1 3 2 3 2 1 2 1 3
3 1 3 1 3 1 1 3 1 3 3 1

31 2 3 1 2 3 1 2 3 2 1 1 3 1 3

H
o =
—

Here is an optimal generic choice design with 8 four-level attributes, with four alternatives, and eight
choice sets, each in a separate box. It is made from the fractional-factorial design 488 in 32 runs by
using the eight-level factor as the choice set number. Notice that every attribute has all four levels
in each factor. With four-level factors, the rules that are used to make orthogonal arrays are more
complicated than the mod 3 addition that is used with three-level factors, so you do not get the same
pattern of shifted results that we saw previously.

1111 1 1 11 1 3 2 1 4 2 3 4
2 2 2 2 2 2 2 2 2 41 2 3 1 4 3
33 3 3 3 3 3 3 31 4 3 2 4 1 2
4 4 4 4 4 4 4 4 4 2 3 41 3 2 1
11 3 4 2 2 4 3 1 3 4 4 3 1 2 2
2 2 4 3 1 1 3 4 2 4 3 3 4 2 1 1
3 3 1 2 4 4 2 1 31 2 2 1 3 4 4
4 4 2 1 3 3 1 2 4 2 1 1 2 4 3 3
1 2 2 3 3 4 4 1 1 4 1 3 2 3 2 4
21 1 4 4 3 3 2 2 3 2 4 1 4 1 3
3 4 4 1 1 2 2 3 3 2 3 1 4 1 4 2
4 3 3 2 2 1 1 4 4 1 4 2 3 2 3 1
1 2 4 2 4 3 1 3 1 4 3 2 1 4 3 2
21 3 1 3 4 2 4 2 3 41 2 3 4 1
3 4 2 4 2 1 3 1 3 21 4 3 2 1 4
4 31 3 1 2 4 2 41 2 3 4 1 2 3

If you need a generic choice design and you do not have the level of symmetry shown in these examples
(all m-level factors with m alternatives) then you can use the %ChoicEff macro to find an efficient
generic design using the methods shown in the chair example on page 363.

In general, optimal generic designs can be constructed for experiments with p choice sets and m-level
factors with m alternatives when there is an orthogonal array p'm? in p x m runs where ¢ < p. We
can process the design catalog from the %MktOrth macro to find these.
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Jmktorth (maxn=100, options=parent) ;

data x;

set mktdeslev;

array x[50];

c =0; one =0; q =0;

do i =1 to 50;
c + (x[1] > 0); /* how many differing numbers of levels */
if x[i] > 1 then do; m = i; q = x[i]; end; /* m~q */
if x[i] = 1 then do; one + 1; p = i; end; /* p~1 */
end;

if c =2 and one =1 and p > qand q > 2 and p * m = n;

design = compbl(left(design));

run;

proc print; var n design; run;

Here are a few of the smaller designs that work.

Obs n Design

1 8 2 k% 4 4 xkx 1

2 16 2 %% 8 8 x* 1

3 18 3 %% 6 6 x* 1

4 24 2 %% 12 12 *x 1

5 27 3 *%x 9 9 *xx 1

6 32 2 %% 16 16 *x 1

7 32 4 *x 8 8 x* 1

8 36 3 %k 12 12 *x*x 1

9 40 2 %% 20 20 *x 1
10 45 3 %% 9 15 *x*x 1
11 48 2 %% 24 24 *x 1
12 48 4 x*x 12 12 *x 1
13 50 5 %% 10 10 *x 1
14 54 3 %% 18 18 *x 1
15 56 2 %% 28 28 *x 1
16 63 3 k*x 12 21 *x 1
17 64 2 x*%x 32 32 *x*x 1
18 64 4 *x 16 16 ** 1
19 72 2 %% 36 36 *x 1
20 72 3 %% 24 24 *x 1
21 75 B %% 8 15 *x* 1
22 80 2 %% 40 40 *x 1
23 80 4 x*x 10 20 **x 1
24 81 3 %k 27 27 *x 1
25 88 2 k% 44 44 *x 1
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26 90 3 **x 30 30 *x* 1
27 96 2 %% 48 48 ** 1
28 98 7 %% 14 14 %% 1
29 99 3 k% 13 33 ** 1
30 100 5 xx 20 20 ** 1

For a specification of p, ¢, and m, assuming the orthogonal array p'm? in pm runs exists, this code
makes an optimal generic choice design. The %ChoicEff macro evaluates the results.

%let p = 6;
%let m = 3;
%let q = &p;

Jmktex(&p &m ** &g, n=&p * &m)
Jmktlab(data=design, vars=Set x1-x&q)

proc print; id set; by set; run;

%choiceff (data=final, init=final(keep=set), model=class(xl-x&q),
nsets=&p, nalts=&m, beta=zero)

Here is an example with m = 3 and p = ¢ = 6 choice sets.

Set x1 x2 x3 x4 x5 x6

1 1 1 1 1 1 1
2 2
3 3 3 3 3 3
2 1 1 2 2 3
2 3 1 1
3 3 1 1 2
3 1 2 1 3 2
3 2 1 1
3 1 3 2 1
4 1 2 3 1 2
3 1 2 1
3 1 2 3 1
5 1 2 2 1
1 3 1
3 1 1 3
6 1 3 2 1 2
1 1 3
3 2 1 3 1

Here are the parameters names and their variances under the null hypothesis that 8 = 0.
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Variable Standard
n Name Label Variance DF Error
1 x11 x1 1 1 1 1
2 x12 x1 2 1 1 1
3 x21 x2 1 1 1 1
4 x22 x2 2 1 1 1
5 x31 x3 1 1 1 1
6 x32 x3 2 1 1 1
7 x41 x4 1 1 1 1
8 x42 x4 2 1 1 1
9 x51 x5 1 1 1 1
10 x52 x5 2 1 1 1
11 x61 x6 1 1 1 1
12 x62 x6 2 1 1 1
12

The rest of this section is optional and can be skipped by readers not interested in the combinatorial
details of this construction method. The next section starts on page 96. An orthogonal array p'm? in
p X m runs is made by developing a difference scheme (Wang and Wu 1991). A difference scheme is
a matrix that is a “building block” used in the construction of many orthogonal arrays. It is called a
difference scheme because if you subtract any two columns, all differences occur equally often. Note
however, that the meaning of the term “subract” in this context is quite different from its customary
meaning in the real number system. Here, subtraction is in a Galois or abelian field. Explaining this
fully is beyond the scope of this discussion, but we will provide an example. Here for example are
the addition, subtraction, multiplication, and inversion tables that are used in a Galois field of order 5
(GF(5)). These tables are used when constructing factors with five levels (0 1 2 3 4).

Addition Subtraction Multiplication Inverse
01 2 3 4 01 2 3 4 01 2 3 4
010 1 2 3 4 0|0 4 3 2 1 00 0 0 O O 0
111 2 3 4 0 111 0 4 3 2 170 1 2 3 4 1 1
212 3 4 0 1 212 1 0 4 3 210 2 4 1 3 21 3
313 4 0 1 2 313 2 1 0 4 310 3 1 4 2 3| 2
414 0 1 2 3 414 3 2 1 0 410 4 3 2 1 4| 4

The rules for addition and multiplication follow the rules for integer arithmetic mod 5, so for example,
44+ 4mod5=8modb5=3and4x4 mod5 =16 mod 5 = 1. The results can also be seen by accessing
the row 4, column 4 entries of the addition and multiplication tables. The rules for subtraction can
easily be derived from the rules for addition, and the rules for inversion can easily be derived from the
rules for multiplication. For example, since 4 + 3 = 2 in GF(5), then 4 = 2 - 3, and since 3 x 2 = 1,
then 2 is the inverse of 3. Note that in many cases, the rules for field arithmetic are not this simple.
In some cases, like when the order of the field is a power of a prime (4, 8, 9 ...) or a composite number
that contains a power of a prime (12, 18, ...), the rules are much more complicated, and modulo m
arithmetic does not work.

In GF(5), the multiplication table is a 5 x 5 difference scheme, D. You can verify that if you subract
every column from every other column, the five elements of the field (0 1 2 3 4) all occur exactly once
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in all of the difference vectors. An orthogonal array is made by constructing

D+0 (0,1,234)
D+1 (01,234)
D+2 (0,1,234)
D+3 (01,234)
D+4 (01,234)

For each new block, the difference scheme is shifted, adding 1 each time to the previous matrix. An
additional factor can be added which consists of the levels (0, 1, ..., p—1). Here is the orthogonal array
on the left and the generic choice design made from sorting this orthogonal array on the right.

Orthogonal Array Generic Choice Design
Set Factors

00 0 0 O 0 0 00 0 0 O
01 2 3 4 1 0 11 1 1 1
0 2 4 1 3 2 0 2 2 2 2 2
0 3 1 4 2 3 0 3 3 3 3 3
0 4 3 2 1 4 0 4 4 4 4 4
11 1 1 1 0 1 01 2 3 4
1 2 3 4 0 1 1 1 2 3 4 0
1 3 0 2 4 2 1 2 3 4 0 1
1 4 2 0 3 3 1 3 4 0 1 2
1 0 4 3 2 4 1 4 0 1 2 3
2 2 2 2 2 0 2 0 2 4 1 3
2 3 4 0 1 1 2 1 3 0 2 4
2 4 1 3 0 2 2 2 41 3 0
2 0 3 1 4 3 2 3 0 2 4 1
2 1 0 4 3 4 2 4 1 3 0 2
3 3 3 3 3 0 3 0 3 1 4 2
3 4 0 1 2 1 3 1 4 2 0 3
3 0 2 4 1 2 3 2 0 3 1 4
3 1 4 2 0 3 3 31 4 2 0
3 2 1 0 4 4 3 4 2 0 3 1
4 4 4 4 4 0 4 0 4 3 2 1
4 01 2 3 1 4 1 0 4 3 2
4 1 3 0 2 2 4 2 1 0 4 3
4 2 0 3 1 3 4 3 2 1 0 4
4 3 2 1 0 4 4 4 3 2 1 0

This is the same orthogonal array that %MktEx produces except that by default, %MktEx uses one-based
integers instead of a zero base. For a generic choice design, the difference scheme provides levels for
the first alternative, and all other alternatives are made from the previous alternative by adding 1 in
the appropriate field.
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Conclusions

This chapter introduced some choice design terminology and ideas without going into great detail on
how to make designs and process data for analysis. The information in this chapter should provide a
good foundation for all of the detailed examples in the discrete choice chapter.

Choice Design Glossary

Choice modeling, like all other areas, has its own vocabulary. This section defines some of those terms.
These terms are used and also defined throughout the discrete choice chapter (pages 141—465).

allocation study - An allocation study is a choice study where multiple, not single choices are made.
For example, in prescription drug marketing, physicians are asked questions like “For the next ten
prescriptions you write for a particular condition, how many would you write for each of these drugs?”

alternative-specific attribute - An alternative-specific attribute is one that is expected to interact
with brand. If you expect utility to change in different ways for the different brands, then the attribute
is alternative-specific. Otherwise, it is generic. In the analysis, there is a set of alternative-specific
attribute parameters for each alternative.

alternative - An alternative is one of the options available to be chosen in a choice set. An alternative
might correspond to a particular brand in a branded study or just a bundle of attributes in a generic
study.

attribute - An attribute is one of the characteristics of an alternative. Common attributes include
price, size, and a variety of other product-specific factors.

availability cross effects - A design may have a varying number of alternatives. When not all
alternatives are available in every choice set, availability cross effects, may be of interest. These
capture the effects of the presence/absence of one brand on the utility of another.

blocking - Large choice designs need to be broken into blocks. Subjects will just see a subset of the
full design. How many blocks depends on the number of choice sets and the complexity of the choice
task.

branded design - A branded choice design has one factor that consists of a brand name or other
alternative label. The vacation examples on pages 184-260 are examples of branded designs even
though the labels, destinations, and not brands. The examples starting on pages 156, 283, and 261 use
branded designs and actual brand names.

choice design - A choice design has one column for every different product attribute and one row for
every alternative of every choice set. In some cases, different alternatives will have different attributes
and different choice sets may have differing numbers of alternatives. See pages 48 and 60—61.

choice set - A choice set consists of two or more alternatives. Subjects see one or more choice sets
and choose one alternative from each set.

cross effects - A cross effect represents the effect of one alternative on the utility of another alternative.
When the ITA assumption holds, all cross effects will be zero.

generic attribute - A generic attribute is one that is not expected to interact with brand. If you
expect utility to change as a function of the levels of the attribute in the same way for every brand, then
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the attribute is generic. In contrast, if you expect utility to change in different ways for the different
brands, then the attribute is alternative-specific. All attributes in generic designs are generic. In the
analysis, there is one set of parameters for generic attributes, regardless of the number of alternatives.

generic design or generic model - A generic design is unbranded. The alternatives are simply
bundles of attributes. Each alternative may be for example a cell phone or computer all made by the
same manufacturer.

ITA - The independence of irrelevant alternatives or IIA property states that utility only depends on
an alternative’s own attributes. IIA means the odds of choosing alternative ¢; over ¢; do not depend
on the other alternatives in the choice set. Departures from IIA exist when certain subsets of brands
are in more direct competition and tend to draw a disproportionate amount of share from each other
than from other members in the category.

linear design - A linear design is a factorial design. In the choice model context, it contains one row
for each choice set and one column for every attribute of every alternative. The columns are grouped,
the first group contains every attribute for the first alternative, ..., and the jth group contains every
attribute for the jth alternative. The linear design is used to construct a choice design. Each of the
m blocks for the m alternatives is moved below the preceding block creating a choice design with m
times as many rows as previously and approximately 1/m times as many columns. See pages 60—61.

mother logit model - The mother logit model is a model with cross effects that can be used to test
for violations of ITA.
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Abstract

We suggest using D-efficient experimental designs for conjoint and discrete-choice studies, and discuss
orthogonal arrays, nonorthogonal designs, relative efficiency, and nonorthogonal design algorithms. We
construct designs for a choice study with asymmetry and interactions and for a conjoint study with
blocks and aggregate interactions.*

Introduction

The design of experiments is a fundamental part of marketing research. Experimental designs are
required in widely used techniques such as preference-based conjoint analysis and discrete-choice studies
(e.g., Carmone and Green 1981; Elrod, Louviere, and Davey 1992; Green and Wind 1975; Huber, et al.
1993; Lazari and Anderson 1994; Louviere 1991; Louviere and Woodworth 1983; Wittink and Cattin
1989). Ideally, marketing researchers prefer orthogonal designs. When a linear model is fit with an
orthogonal design, the parameter estimates are uncorrelated, which means each estimate is independent
of the other terms in the model. More importantly, orthogonality usually implies that the coefficients
will have minimum variance, though we discuss exceptions to this rule. For these reasons, orthogonal
designs are usually quite good. However, for many practical problems, orthogonal designs are simply
not available. In those situations, nonorthogonal designs must be used.

*This chapter is a revision of a paper that appeared in Journal of Marketing Research, November, 1994, pages 545—557.
Warren F. Kuhfeld is now Manager, Multivariate Models R&D, SAS. Randall D. Tobias is now Manager, Linear Models
R&D, SAS. Mark Garratt was Vice President, Conway | Milliken & Associates when this paper was first published in
1994 and is now with Miller Brewing Company. The authors thank Jordan Louviere, JMR editor Barton Weitz, and three
anonymous reviewers for their helpful comments on earlier versions of this article. Thanks to Michael Ford for the idea
for the second example. The JMR article was based on a presentation given to the AMA Advanced Research Techniques
Forum, June 14, 1993, Monterey CA.

Our primary message when this paper was published in 1994 was that marketing researchers should use D-efficient
experimental designs. This message remains as strong as ever, but today, we have much better tools for accomplishing
this than we had in 1994. Most of the revisions of the original paper are due to improvements in the tools. Our new design
tool, the MktEx SAS macro, is easier to use than our old tools, and it usually makes better designs. Copies of this chapter
(TS-722D) and all of the macros are available on the web http://support.sas.com/techsup/tnote/tnote_stat.html#market.
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Orthogonal designs are available for only a relatively small number of very specific problems. They
may not be available when some combinations of factor levels are infeasible, a nonstandard number of
runs (factor level combinations or hypothetical products) is desired, or a nonstandard model is being
used, such as a model with interaction or polynomial effects. Consider the problem of designing a
discrete choice study in which there are alternative specific factors, different numbers of levels within
each factor, and interactions within each alternative. Orthogonal designs are not readily available for
this situation, particularly when the number of runs must be limited. When an orthogonal design
is not available, an alternative must be chosen—the experiment can be modified to fit some known
orthogonal design, which is undesirable for obvious reasons, or a known design can be modified to fit
the experiment, which may be difficult and inefficient.

Our primary purpose is to explore a third alternative, the use of optimal (or nearly optimal) designs.
Such designs are typically nonorthogonal; however they are efficient in the sense that the variances and
covariances of the parameter estimates are minimized. Furthermore, they are always available, even for
nonstandard situations. Finding these designs usually requires the aid of a computer, but we want to
emphasize that we are not advocating a black-box approach to designing experiments. Computerized
design algorithms do not supplant traditional design-creation skills. Our examples show that our best
designs were usually found when we used our human design skills to guide the computerized search.

First, we will summarize our main points; next, we will review some fundamentals of the design
of experiments; then we will discuss computer-generated designs, a discrete-choice example, and a
conjoint analysis example.

Summary of Main Points. Our goal is to explain the benefits of using computer-generated designs
in marketing research. Our main points follow:

1. The goodness of an experimental design (efficiency) can be quantified as a function of the vari-
ances and covariances of the parameter estimates. Efficiency increases as the variances decrease.
Designs should not be thought of in terms of the dichotomy between orthogonal versus nonorthog-
onal but rather as varying along the continuous attribute of efficiency. Some orthogonal designs
are less efficient than other (orthogonal and nonorthogonal) alternatives.

2. Orthogonality is not the primary goal in design creation. It is a secondary goal, associated with
the primary goal of minimizing the variances of the parameter estimates. Degree of orthogonality
is an important consideration, but other factors should not be ignored.

3. For complex, nonstandard situations, computerized searches provide the only practical method
of design generation for all but the most sophisticated of human designers. These situations do
not have to be avoided just because it is extremely difficult to generate a good design manually.

4. The best approach to design creation is to use the computer as a tool along with traditional
design skills, not as a substitute for thinking about the problem.

Background and Assumptions. We present an overview of the theory of efficient experimental
design, developed for the general linear model. This topic is well known to specialists in statistical
experimentation, though it is not typically taught in design classes. Then we will suggest ways in which
this theory can be applied to marketing research problems.



TS-722D — Efficient Experimental Design with Marketing Research Applications 101

Certain assumptions must be made before applying ordinary general linear model theory to problems in
marketing research. The usual goals in linear modeling are to estimate parameters and test hypotheses
about those parameters. Typically, independence and normality are assumed. In conjoint analysis, each
subject rates all products and separate ordinary-least-squares analyses are run for each subject. This
is not a standard general linear model; in particular, observations are not independent and normality
cannot be assumed. Discrete choice models, which are nonlinear, are even further removed from the
general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general
linear models are also good for conjoint analysis and discrete choice. We also make this assumption.
Specifically, we assume the following;:

1. Market share estimates computed from a conjoint analysis model using a more efficient design
will be better than estimates using a less efficient design. That is, more efficient designs mean
better estimates of the part-worth utilities, which lead to better estimates of product utility and
market share.

2. An efficient design for a linear model is a good design for the multinomial logit (MNL) model
used in discrete choice studies.

Investigating these standard assumptions is beyond the scope of this article. However, they are sup-
ported by Carson and colleagues (1994), our experiences in consumer product goods, and limited
simulation results. Much more research is needed on this topic, particularly in the area of discrete
choice.

Design of Experiments

Orthogonal Experimental Designs. An experimental design is a plan for running an experiment.
The factors of an experimental design are variables that have two or more fixed values, or levels.
Experiments are performed to study the effects of the factor levels on the dependent variable. In a
conjoint or discrete-choice study, the factors are the attributes of the hypothetical products or services,
and the response is preference or choice.

A simple experimental design is the full-factorial design, which consists of all possible combinations
of the levels of the factors. For example, with five factors, two at two levels and three at three levels
(denoted 2233), there are 108 possible combinations. In a full-factorial design, all main effects, two-
way interactions, and higher-order interactions are estimable and uncorrelated. The problem with
a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to
have subjects rate all possible combinations. For this reason, researchers often use fractional-factorial
designs, which have fewer runs than full-factorial designs. The price of having fewer runs is that some
effects become confounded. Two effects are confounded or aliased when they are not distinguishable
from each other.

A special type of fractional-factorial design is the orthogonal array, in which all estimable effects are
uncorrelated. Orthogonal arrays are categorized by their resolution. The resolution identifies which
effects, possibly including interactions, are estimable. For example, for resolution III designs, all main
effects are estimable free of each other, but some of them are confounded with two-factor interactions.
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For resolution V designs, all main effects and two-factor interactions are estimable free of each other.
Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (e.g., 16,
18, 20, 24, 27, 28) for specific numbers of factors with specific numbers of levels.

Resolution III orthogonal arrays are frequently used in marketing research. The term “orthogonal
array,” as it is sometimes used in practice, is imprecise. It correctly refers to designs that are both
orthogonal and balanced, and hence optimal. It is also imprecisely used to refer to designs that
are orthogonal but not balanced, and hence potentially nonoptimal. A design is balanced when each
level occurs equally often within each factor, which means the intercept is orthogonal to each effect.
Imbalance is a generalized form of nonorthogonality, which increases the variances of the parameter
estimates.

Design Efficiency. Efficiencies are measures of design goodness. Common measures of the
efficiency of an (Np X p) design matrix X are based on the information matriz X’X. The variance-
covariance matrix of the vector of parameter estimates B in a least-squares analysis is proportional
to (X’X)~!. An efficient design will have a “small” variance matrix, and the eigenvalues of (X'X)~!
provide measures of its “size.” Two common efficiency measures are based on the idea of “average
eigenvalue” or “average variance.” A-efficiency is a function of the arithmetic mean of the eigenvalues,
which is given by trace ((X'X)™1)/p. D-efficiencyis a function of the geometric mean of the eigenvalues,
which is given by |[(X/X)~!['/P. A third common efficiency measure, G-efficiency, is based on oy, the
maximum standard error for prediction over the candidate set. All three of these criteria are convex
functions of the eigenvalues of (X’X)~! and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency;
conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design
is balanced and orthogonal when (X’X)~! is diagonal (for a suitably coded X, see page 64). A design is
orthogonal when the submatrix of (X’'X)~!, excluding the row and column for the intercept, is diagonal;
there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-diagonal elements
in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (for a suitably coded X):

1
Np trace (X'X)~1)/p
1
Np |(X'X)~1[1/p

100 x YP/ND

oM

A-efficiency = 100 x

D-efficiency = 100 x

G-efficiency =

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that
may be far from possible, so they are not useful as absolute measures of design efficiency. Instead, they
should be used relatively, to compare one design with another for the same situation. Efficiencies that
are not near 100 may be perfectly satisfactory.

Figure 1 shows an optimal design in four runs for a simple example with two factors, using interval-
measure scales for both. There are three candidate levels for each factor. The full-factorial design is
shown by the nine asterisks, with circles around the optimal four design points. As this example shows,
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Table 1
Figure 1 Full-Factorial Design
Candidate Set and Optimal Design

Information Matrix
Two 3-Level Factors

mt X1 X2 X3 - X4 - X5 -
T @ * @ Imt 1008 0 0 0O 0 0 0 0 0
X1 0 108 0 0 0 0 0 0 0
X2 0 0 108 0 0 0 0 0 0
0 ——

* * * X3 0 0 0 108 0 0 0 0 0
-0 0 0 ©0 108 0 0 0 0
41 @ * @ X4 0 0 0 0 0 18 0 0 0
-0 0 0 0 0 0 108 0 0
| | | X5 0 0 0 0 0 0 0 108 0
1 0 1 -0 ©0 ©0 0 0 0 0 0 108

* - Candidate Point 100.0000  D-efficiency

. . . 100.0000  A-efficiency

@ - Optimal Design Point 100.0000  C-efficiency

efficiency tends to emphasize the corners of the design space. Interestingly, nine different sets of four
points form orthogonal designs—every set of four that forms a rectangle or square. Only one of these
orthogonal designs is optimal, the one in which the points are spread out as far as possible.

Computer-Generated Design Algorithms. When a suitable orthogonal design does not exist, computer-
generated nonorthogonal designs can be used instead. Various algorithms exist for selecting a good set
of design points from a set of candidate points. The candidate points consist of all of the factor-level
combinations that can potentially be included in the design—for example the nine points in Figure 1.
The number of runs, Np, is chosen by the researcher. Unlike orthogonal arrays, Np can be any number
as long as Np > p.I The algorithm searches the candidate points for a set of Np design points that is
optimal in terms of a given efficiency criterion.

It is almost never possible to list all Np-run designs and choose the most efficient or optimal design,
because run time is exponential in the number of candidates. For example, with 2232 in 18 runs, there
are 108!/(18!(108 — 18)!) = 1.39 x 10?" possible designs. Instead, nonexhaustive search algorithms are
used to generate a small number of designs, and the most efficient one is chosen. The algorithms select
points for possible inclusion or deletion, then compute rank-one or rank-two updates of some efficiency
criterion. The points that most increase efficiency are added to the design. These algorithms invariably
find efficient designs, but they may fail to find the optimal design, even for the given criterion. For
this reason, we prefer to use terms like information-efficient and D-efficiency over the more common
optimal and D-optimal.

There are many algorithms for generating information-efficient designs. We will begin by describing
some of the simpler approaches and then proceed to the more complicated (and more reliable) algo-

In fact, this restriction is not strictly necessary. So called “super-saturated” designs (Booth and Cox, 1962) have
more runs than parameters. However, such designs are typically not used in marketing research. The %MktRuns SAS
macro provides some guidance on the selection of Np. See page 740.
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rithms. Dykstra’s (1971) sequential search method starts with an empty design and adds candidate
points so that the chosen efficiency criterion is maximized at each step. This algorithm is fast, but it
is not very reliable in finding a globally optimal design. Also, it always finds the same design (due to
a lack of randomness).

The Mitchell and Miller (1970) simple exchange algorithm is a slower but more reliable method. It
improves the initial design by adding a candidate point and then deleting one of the design points,
stopping when the chosen criterion ceases to improve. The DETMAX algorithm of Mitchell (1974)
generalizes the simple exchange method. Instead of following each addition of a point by a deletion,
the algorithm makes excursions in which the size of the design may vary. These three algorithms add
and delete points one at a time.

The next two algorithms add and delete points simultaneously, and for this reason, are usually more
reliable for finding the truly optimal design; but because each step involves a search over all possible
pairs of candidate and design points, they generally run much more slowly (by an order of magnitude).
The Fedorov (1972) algorithm simultaneously adds one candidate point and deletes one design point.
Cook and Nachtsheim (1980) define a modified Fedorov algorithm that finds the best candidate point
to switch with each design point. The resulting procedure is generally as efficient as the simple Fedorov
algorithm in finding the optimal design, but it is up to twice as fast. We extensively use one more
algorithm, the coordinate exchange algorithm of Meyer and Nachtsheim (1995). This algorithm does
not use a candidate set. Instead it refines an initial design by exchanging each level with every other
possible level, keeping those exchanges that increase efficiency. In effect, this method uses a virtual
candidate set that consists of all possible runs, even when the full-factorial candidate set is too large
to generate and store.

Choice of Criterion and Algorithm. Typically, the choice of efficiency criterion is less important
than the choice between manual design creation and computerized search. All of the information-
efficient designs presented in this article were generated optimizing D-efficiency because it is faster to
optimize than A-efficiency and because it is the standard approach. It is also possible to optimize
A-efficiency, though the algorithms generally run much more slowly because the rank-one updates
are more complicated with A-efficiency. G-efficiency is an interesting ancillary statistic; however, our
experience suggests that attempts to maximize G-efficiency with standard algorithms do not work very
well.

The candidate set search algorithms, ordered from the fastest and least reliable to the slowest and
most reliable, are: sequential, simple exchange, DETMAX, and modified Fedorov. We always use the
modified Fedorov and coordinate exchange algorithms even for extremely large problems; we never
even try the other algorithms. For small problems in which the full factorial is no more than a few
thousand runs, modified Fedorov tends to work best. For larger problems, coordinate exchange tends
to be better. Our latest software, the %MktEx macro, tries a few iterations with both methods, then
picks the best method for that problem and continues on with more iterations using just the chosen
method. See page 667 and all of the examples starting on page 141.

Nonlinear Models. The experimental design problem is relatively simple for linear models and much
more complicated for nonlinear models. The usual goal when creating a design is to minimize some
function of the variance matrix of the parameter estimates, such as the determinant. For linear models,
the variance matrix is proportional to (X’X)~!, and so the design optimality problem is well-posed.
However, for nonlinear models, such as the multinomial logit model used with discrete-choice data, the
variance matrix depends on the true values of the parameters themselves. (See pages 121, 600, and
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363 for more on efficient choice designs based on assumptions about the parameters.) Thus in general,
there may not exist a design for a discrete-choice experiment that is always optimal. However, Carson
and colleagues (1994) and our experience suggest that D-efficient designs work well for discrete-choice
models.

Lazari and Anderson (1994) provide a catalog of designs for discrete-choice models, which are good
for certain specific problems. For those specific situations, they may be as good as or better than
computer-generated designs. However, for many real problems, cataloged designs cannot be used
without modification, and modification can reduce efficiency. We carry their work one step further by
discussing a general computerized approach to design generation.

Design Comparisons

Comparing Orthogonal Designs. All orthogonal designs are not perfectly or even equally efficient.
In this section, we compare designs for 223%. Table 1 gives the information matrix, X'X, for a full-
factorial design using an orthogonal coding. The matrix is a diagonal matrix with the number of runs
on the diagonal. The three efficiency criteria are printed after the information matrix. Because this
is a full-factorial design, all three criteria show that the design is 100% efficient. The variance matrix
(not shown) is (1/108)I = 0.0093I.

Table 2 shows the information matrix, efficiencies, and variance matrix for a classical 18-run orthogonal
design for 2233, Chakravarti’s (1956) Lig, for comparison with information-efficient designs with 18
runs. (The SAS ADX menu system was used to generate the design. Tables Al and A2 contain the
factor levels and the orthogonal coding used in generating Table 2.) Note that although the factors are
all orthogonal to each other, X1 is not balanced. Because of this, the main effect of X1 is estimated
with a higher variance (0.063) than X2 (0.056).

The precision of the estimates of the parameters critically depends on the efficiency of the experimental
design. The parameter estimates in a general linear model are always unbiased (in fact, best linear
unbiased [BLUE]) no matter what design is chosen. However, all designs are not equally efficient. In
fact, all orthogonal designs are not equally efficient, even when they have the same factors and the
same number of runs. Efficiency criteria can be used to help choose among orthogonal designs. For
example, the orthogonal design in Tables 3 and A3 (from the Green and Wind 1975 carpet cleaner
example) for 2233 is less D-efficient than the Chakravarti Lig (97.4166/98.6998 = 0.9870). The Green
and Wind design can be created from a 3° balanced orthogonal array by collapsing two of the three-
level factors into two-level factors. In contrast, the Chakravarti design is created from a 2'3% balanced
orthogonal array by collapsing only one of the three-level factors into a two-level factor. The extra
imbalance makes the Green and Wind design less efficient. (Note that the off-diagonal 2 in the Green
and Wind information matrix does not imply that X1 and X2 are correlated. It is an artifact of the
coding scheme. The off-diagonal 0 in the variance matrix shows that X1 and X2 are uncorrelated.)

Orthogonal Versus Nonorthogonal Designs. Orthogonal designs are not always more efficient than
nonorthogonal designs. Tables 4 and A4 show the results for an information-efficient, main-effects-only
design in 18 runs. The OPTEX procedure of SAS software was used to generate the design, using the
modified Fedorov algorithm. The information-efficient design is slightly better than the classical Lqg,
in terms of the three efficiency criteria. In particular, the ratio of the D-efficiencies for the classical
and information-efficient designs are 99.8621/98.6998 = 1.0118. In contrast to the Lig, this design is
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Table 2 Table 3
Orthogonal Design Green & Wind Orthogonal Design
Information Matrix Information Matrix
Int X1 X2 X3 - X4 - X5 - Int X1 X2 X3 - X4 - X5 -
Int 18 6 0 0 0 0 0 0 0 Int 18 -6 -6 0 0 0 0 0 0
X1 6 18 0 0 0 0 0 0 0 X1 -6 18 2 0 0 0 0 0 0
X2 0 0 18 0 0 0 0 0 0 X2 -6 2 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0 X3 0 0 0 18 0 0 0 0 0
- 0 0 0 0 18 0 0 0 0 - 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 0 0 X4 0 0 0 0 0 18 0 0 0
- 0 0 0 0 0 0 18 0 0 - 0 0 0 0 0 0 18 0 0
X5 0 0 0 0 0 0 0 18 0 X5 0 0 0 0 0 0 0 18 0
- 0 0 0 0 0 0 0 0 18 - 0 0 0 0 0 0 0 0 18
98.6998  D-efficiency 97.4166  D-efficiency
97.2973  A-efficiency 94.7368  A-efficiency
94.8683  G-efficiency 90.4534  G-efficiency
Variance Matrix Variance Matrix
Int X1 X2 X3 - X4 - X5 - Int X1 X2 X3 - X4 - X5 -
Int 63 -21 0 0 0 0 0 0 0 Int 69 21 21 0 0 0 0 0 0
X1 -21 63 0 0 0 0 0 0 0 X1 21 63 0 0 0 0 0 0 0
X2 0 0 56 0 0 0 0 0 0 X2 21 0 63 0 0 0 0 0 0
X3 0 0 0 56 0 0 0 0 0 X3 0 0 0 56 0 0 0 0 0
- 0 0 0 0 56 0 0 0 0 - 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 56 0 0 0 X4 0 0 0 0 0 56 0 0 0
- 0 0 0 0 0 0 56 0 0 - 0 0 0 0 0 0 56 0 0
X5 0 0 0 0 0 0 0 56 0 X5 0 0 0 0 0 0 0 56 0
- 0 0 0 0 0 0 0 0 56 - 0 0 0 0 0 0 0 0 56
Note: multiply variance matrix values by 0.001. Notes: multiply variance matrix values by 0.001.

balanced in all the factors, but X1 and X2 are slightly correlated, shown by the 2’s off the diagonal.
There is no completely orthogonal (that is, both balanced and orthogonal) 2232 design in 18 runs.* The
nonorthogonality in Table 4 has a much smaller effect on the variances of X1 and X2 (1.2%) than the
lack of balance in the orthogonal design in Table 2 has on the variance of X2 (12.5%). In optimizing
efficiency, the search algorithms effectively optimize both balance and orthogonality. In contrast, in
some orthogonal designs, balance and efficiency may be sacrificed to preserve orthogonality.

This example shows that a nonorthogonal design may be more efficient than an unbalanced orthogonal
design. We have seen this phenomenon with other orthogonal designs and in other situations as well.
Preserving orthogonality at all costs can lead to decreased efficiency. Orthogonality was extremely
important in the days before general linear model software became widely available. Today, it is more
important to consider efficiency when choosing a design. These comparisons are interesting because they
illustrate in a simple example how lack of orthogonality and imbalance affect efficiency. Nonorthogonal
designs will never be more efficient than balanced orthogonal designs, when they exist. However,
nonorthogonal designs may well be more efficient than unbalanced orthogonal designs. Although this
point is interesting and important, what is most important is that good nonorthogonal designs exist in

In order for the design to be both balanced and orthogonal, the number of runs must be divisible by 2, 3, 2 x 2,
3 x 3, and 2 x 3. Since 18 is not divisible by 2 x 2, orthogonality and balance are not both simultaneously possible for
this design.
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Table 4 Table 5
Information-Efficient Orthogonal Design Unrealistic Combinations Excluded
Information Matrix Information Matrix
Int X1 X2 X3 - X4 - X5 - Int X1 X2 X3 - X4 - X5 -
Int 18 0 0 0 0 0 0 0 0 Int 18 0 0 0 0 0 0 0 0
X1 0 18 2 0 0 0 0 0 0 X1 0 18 2 0 0 0 0 0 0
X2 0 2 18 0 0 0 0 0 0 X2 0 2 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0 X3 0 0 0 18 0 0 0 0 0
- 0 0 0 0 18 0 0 0 0 - 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 0 0 X4 0 0 0 0 0 18 0 -6 5
- 0 0 0 0 0 0 18 0 0 - 0 0 0 0 O 0 18 5 0
X5 0 0 0 0 0 0 0 18 0 X5 0 0 0 0 0 -6 5 18 0
- 0 0 0 0 O 0 O 0 18 - 0 0 0 0 o0 5 0 0 18
99.8621  D-efficiency 96.4182  D-efficiency
99.7230  A-efficiency 92.3190  A-efficiency
98.6394  G-efficiency 91.0765  G-efficiency
Variance Matrix Variance Matrix
Int X1 X2 X3 - X4 - X5 - Int X1 X2 X3 - X4 - X5 -
Int 56 0 0 0 0 0 0 0 0 Int 56 0 0 0 O 0 0 0 0
X1 0 56 -6 0 0 0 0 0 0 X1 0 5 -6 0 O 0 0 0 0
X2 0 -6 56 0 0 0 0 0 0 X2 0 -6 56 0 0 0 0 0 0
X3 0 0 0 5 0 0 0 0 0 X3 0 0 0 5 0 0 0 0 0
- 0 0 0 0 56 0 0 0 0 - 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 56 0 0 0 X4 0 0 0 0 0 69 -7 25 -20
- 0 0 0 0 0 0 56 0 0 - 0 0 0 o o0 -7 61 -20 2
X5 0 0 0 0 0 0 0 56 0 X5 0 0 0 o 0 25 -20 69 -7
- 0 0 0 0 0 0 0 0 56 - 0 0 0 0 0 -20 2 -7 61

Notes: multiply variance matrix values by 0.001.

The diagonal entries for X1 and X2 are slightly larger

at 0.0563 than the other diagonal entries of 0.0556.

Notes: multiply variance matrix values by 0.001.

many situations in which no orthogonal designs exist. These designs are also discussed and at a more
basic level starting on page 54.

Codings and Efficiency.

Design Considerations

The specific design matrix coding does not affect the relative D-

efficiency of competing designs. Rank-preserving linear transformations are immaterial, whether they
are from full-rank indicator variables to effects coding or to an orthogonal coding such as the one
shown in Table A2. Any full-rank coding is equivalent to any other. The absolute D-efficiency values
will change, but the ratio of two D-efficiencies for competing designs is constant. Similarly, scale for
quantitative factors does not affect relative efficiency. The proof is simple. If design X; is recoded
to XA, then [(X;A) (X1A)| = [A/X[XA| = |AA'||X|X1]. The relative efficiency of design X;
compared to Xz is the same as XA compared to XA, since the |[AA’|’s terms in efficiency ratios
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will cancel. We prefer the orthogonal coding because it yields “nicer” information matrices with the
number of runs on the diagonal and efficiency values scaled so that 100 means perfect efficiency.

Quantitative Factors. The factors in an experimental design are usually qualitative (nominal), but
quantitative factors such as price are also important. With quantitative factors, the choice of levels
depends on the function of the original variable that is modeled. To illustrate, consider a pricing study
in which price ranges from $0.99 to $1.99. If a linear function of price is modeled, only two levels
of price should be used—the end points ($0.99 and $1.99). Using prices that are closer together is
inefficient; the variances of the estimated coefficients will be larger. The efficiency of a given design is
affected by the coding of quantitative factors, even though the relative efficiency of competing designs
is unaffected by coding. Consider treating the second factor of the Chakravarti Lg, 223° as linear.
It is nearly three times more D-efficient to use $0.99 and $1.99 as levels instead of $1.49 and $1.50
(58.6652/21.0832 = 2.7826). To visualize this, imagine supporting a yard stick (line) on your two index
fingers (with two points). The effect on the slope of the yard stick of small vertical changes in finger
locations is much greater when your fingers are closer together than when they are near the ends.

Of course there are other considerations besides the numerical measure of efficiency. It would not make
sense to use prices of $0.01 and $1,000,000 just because that is more efficient than using $0.99 and
$1.99. The model is almost certainly not linear over this range. To maximize efficiency, the range
of experimentation for quantitative factors should be as large as possible, given that the model is
plausible.

The number of levels also affects efficiency. Because two points define a line, it is inefficient to use more
than two points to model a linear function. When a quadratic function is used (z and 2? are included
in the model), three points are needed—the two extremes and the midpoint. Similarly, four points are
needed for a cubic function. More levels are needed when the functional form is unknown. Extra levels
allow for the examination of complicated nonlinear functions, with a cost of decreased efficiency for
the simpler functions. When the function is assumed to be linear, experimental points should not be
spread throughout the range of experimentation. See page 785 for a discussion of nonlinear functions
of quantitative factors in conjoint analysis.

Most of the discussion outside this section has concerned qualitative (nominal) factors, even if that
was not always explicitly stated. Quantitative factors complicate general design characterizations. For
example, we previously stated that “if a balanced and orthogonal design exists, then it has optimum
efficiency.” This statement must be qualified to be absolutely correct. The design would not be optimal
if, for example, a three-level factor were treated as quantitative and linear.

Nonstandard Algorithms and Criteria. Other researchers have proposed other algorithms and cri-
teria. Steckel, DeSarbo, and Mahajan (SDM) (1991) proposed using computer-generated experimental
designs for conjoint analysis to exclude unacceptable combinations from the design. They considered a
nonstandard measure of design goodness based on the determinant of the (m-factor x m-factor) corre-
lation matrix (|R|) instead of the customary determinant of the (p-parameter x p-parameter) variance
matrix (|(X'X)"![). The SDM approach represents each factor by a single column rather than as a
set of coded indicator variables. Designs generated using nonstandard criteria will not generally be
efficient in terms of standard criteria like A-efficiency and D-efficiency, so the parameter estimates will
have larger variances. To illustrate graphically, refer to Figure 1. The criterion |R| cannot distinguish
between any of the nine different four-point designs, constructed from this candidate set, that form a
square or a rectangle. All are orthogonal; only one is optimal.
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We generated a D-efficient design for SDM’s example, treating the variables as all quantitative (as
they did). The |R| for the SDM design is 0.9932, whereas the |R| for the information-efficient design
is 0.9498. The SDM approach works quite well in maximizing |R|; hence the SDM design is close to
orthogonal. However, efficiency is not always maximized when orthogonality is maximized. The SDM
design is approximately 75% as D-efficient as a design generated with standard criteria and algorithms
(70.1182/93.3361 = 0.7512).

Choosing a Design. Computerized search algorithms generate many designs, from which the re-
searcher must choose one. Often, several designs are tied or nearly tied for the best D, A, and G
information efficiencies. A design should be chosen after examining the design matrix, its information
matrix, its variance matrix, factor correlations, and levels frequencies. It is important to look at the
results and not just routinely choose the design from the top of the list.

For studies involving human subjects, achieving at least nearly-balanced designs is an important con-
sideration. Consider for example a two-level factor in an 18-run design in which one level occurs 12
times and the other level occurs 6 times versus a design in which each level occurs 9 times. Subjects
who see one level more often than the other may try to read something into the study and adjust their
responses in some way. Alternatively, subjects who see one level most often may respond differently
than those who see the second level most often. These are not concerns with nearly balanced designs.
One design selection strategy is to choose the most balanced design from the top few.

Many other strategies can be used. Perhaps correlation and imprecision are tolerable in some variables
but not in others. Perhaps imbalance is tolerable, but the correlations between the factors should be
minimal. Goals will no doubt change from experiment to experiment. Choosing a suitable design can
be part art and part science. Efficiency should always be considered when choosing between alternative
designs, even manually created designs, but it is not the only consideration.*

Adding Observations or Variables. These techniques can be extended to augment an existing design.
A design with r runs can be created by augmenting m specified combinations (established brands or
existing combinations) with » — m combinations chosen by the algorithm. Alternatively, combinations
that must be used for certain variables can be specified, and then the algorithm picks the levels for
the other variables (Cook and Nachtsheim 1989). This can be used to ensure that some factors are
balanced or uncorrelated; another application is blocking factors. Using design algorithms, we are able
to establish numbers of runs and blocking patterns that fit into practical fielding schedules.

Designs with Interactions. There is a growing interest in using both main effects and interactions
in discrete-choice models, because interaction and cross-effect terms may improve aggregate models
(Elrod, Louviere, and Davey 1992). The current standard for choice models is to have all main-effects
estimable both within and between alternatives. It is often necessary to estimate interactions within
alternatives, such as in modeling separate price elasticities for product forms, sizes or packages. For
certain classes of designs, in which a brand appears in only a subset of runs, it is often necessary to
have estimable main-effects, own-brand interactions, and cross-effects in the submatrix of the design
in which that brand is present. One way to ensure estimability is to include in the model interactions
between the alternative-specific variables of interest and the indicator variables that control for presence
or absence of the brand in the choice set. Orthogonal designs that allow for estimation of interactions
are usually very large, whereas efficient nonorthogonal designs can be generated for any linear model,
including models with interactions, and for any (reasonable) number of runs.

*See the %MktEval macro, page 663, for a tool that helps evaluate designs.
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Unrealistic Combinations. It is sometimes useful to exclude certain combinations from the candidate
set. SDM (1991) have also considered this problem. Consider a discrete-choice model for several brands
and their line extensions. It may not make sense to have a choice set in which the line extension is
present and the “flagship” brand absent. Of course, as we eliminate combinations, we may introduce
unavoidable correlation between the parameter estimates. In Tables 5 and A5, the twenty combinations
where (X1 = 1 and X2 = 1 and X3 = 1) or (X4 = 1 and X5 = 1) were excluded and an 18-run
design was generated with the modified Fedorov algorithm. With these restrictions, all three efficiency
criteria dropped, for example 96.4182/99.8621 = 0.9655. This shows that the design with excluded
combinations is almost 97% as D-efficient as the best (unrestricted) design. The information matrix
shows that X1 and X2 are correlated, as are X4 and X5. This is the price paid for obtaining a design
with only realistic combinations.

In the “Quantitative Factors” section, we stated “Because two points define a line, it is inefficient to
use more than two points to model a linear function.” When unrealistic combinations are excluded,
this statement may no longer be true. For example, if minimum price with maximum size is excluded,
an efficient design may involve the median price and size.

Choosing the Number of Runs. Deciding on a number of runs for the design is a complicated
process; it requires balancing statistical concerns of estimability and precision with practical concerns
like time and subject fatigue. Optimal design algorithms can generate designs for any number of runs
greater than or equal to the number of parameters. The variances of the least-squares estimates of the
part-worth utilities will be roughly inversely proportional to both the D-efficiency and the number of
runs. In particular, for a given number of runs, a D-efficient design will give more accurate estimates
than would be obtained with a less efficient design. A more precise value for the number of choices
depends on the ratio of the inherent variability in subject ratings to the absolute size of utility that
is considered important. Subject concerns probably outweigh the statistical concerns, and the best
course is to provide as many products as are practical for the subjects to evaluate. In any case, the
use of information-efficient designs provides more flexibility than manual methods.

Asymmetry in the Number of Levels of Variables. In many practical applications of discrete-
choice modeling, there is asymmetry in the number of factor levels, and interaction and polynomial
parameters must be estimated. One common method for generating choice model designs is to create a
resolution IIT orthogonal array and modify it. The starting point is a ¢>i design, where ¢ represents
a fixed number of levels across all attributes and M; represents the number of attributes for brand j.
For example, in the “Consumer Food Product” example in a subsequent section, with five brands with
1, 3, 1, 2, and 1 attributes and with each attribute having at most four levels, the starting point is
a 48 orthogonal array. Availability cross-effect designs are created by letting one of the M; variables
function as an indicator for presence/absence of each brand or by allowing one level of a common
variable (price) to operate as the indicator. These methods are fairly straightforward to implement in
designs in which the factor levels are all the same, but they become quite difficult to set up when there
are different numbers of levels for some factors or in which specific interactions must be estimable.

Asymmetry in the number of levels of factors may be handled either by using the “coding down”
approach (Addelman 1962b) or by expansion. In the coding down approach, designs are created using
factors that have numbers of levels equal to the largest number required in the design. Factors that
have fewer levels are created by recoding. For example, a five-level factor {1, 2, 3, 4, 5} can be recoded
into a three-level factor by duplicating levels {1, 1, 2, 2, 3}. The variables will still be orthogonal
because the indicator variables for the recoding are in a subspace of the original space. However,
recoding introduces imbalance and inefficiency. The second method is to expand a factor at k-levels
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into several variables at some fraction of k-levels. For example, a four-level variable can be expanded
into three orthogonal two-level variables. In many cases, both methods must be used to achieve the
required design.

These approaches are difficult for a simple main-effect design of resolution III and extremely difficult
when interactions between asymmetric factors must be considered. In practical applications, asym-
metry is the norm. Consider for example the form of an analgesic product. One brand may have
caplet and tablet varieties, another may have tablet, liquid, and chewable forms. In a discrete-choice
model, these two brand/forms must be modeled as asymmetric alternative-specific factors. If we fur-
thermore anticipated that the direct price elasticity might vary, depending on the form, we would need
to estimate the interaction of a quantitative price variable with the nominal-level form variable.

Computerized search methods are simpler to use by an order of magnitude. They provide asymmet-
ric designs that are usually nearly balanced, as well as providing easy specification for interactions,
polynomials and continuous by class effects.

Strategies for Many Variables. Consider generating a 3 design in 36 runs. There are 14,348,907
combinations in the full-factorial design, which is too many to use even for a candidate set. For
problems like this, the coordinate exchange algorithm (Meyer and Nachtsheim 1995)] works well. The
%MktEx macro which uses coordinate exchange with a partial orthogonal array initialization easily finds
design over 98.9% D-efficient. Even designs with over 100 variables can be created this way.

Examples

Choice of Consumer Food Products. Consider the problem of using a discrete choice model to study
the effect of introducing a retail food product. This may be useful, for example, to refine a marketing
plan or to optimize a product prior to test market. A typical brand team will have several concerns such
as knowing the potential market share for the product, examining the source of volume, and providing
guidance for pricing and promotions. The brand team may also want to know what brand attributes
have competitive clout and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen
entrees. The client has one nationally branded competitor, a regional competitor in each of three
regions, and a profusion of private label products at the grocery chain level. The product comes in two
different forms: stove-top or microwaveable. The client believes that the private labels are very likely
to mimic this line extension and to sell it at a lower price. The client suspects that this strategy on
the part of private labels may work for the stove-top version but not for the microwaveable, in which
they have the edge on perceived quality. They also want to test the effect of a shelf-talker that will
draw attention to their product.

This problem may be set up as a discrete choice model in which a respondent’s choice among brands,
given choice set C, of available brands, will correspond to the brand with the highest utility. For each
brand ¢, the utility U; is the sum of a systematic component V; and a random component e;. The
probability of choosing brand ¢ from choice set C, is therefore:

P(i|Cy) = P(U; > max(Uj)) = P(V;+e; >max(Vj +e;)) V (j#1) € C,
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Table 6
Factors and Levels

Alternative Factor Levels Brand Description

1 X1 4 Client 3 prices + absent

2 X2 4 Client Line Extension 3 prices + absent
X3 2 microwave /stove-top
X4 2 shelf-talker yes/no

3 X5 3 Regional 2 prices + absent

4 X6 3 Private Label 2 prices + absent
X7 2 microwave /stove-top

5 X8 3 Competitor 2 prices + absent

Assuming that the e; follow an extreme value type I distribution, the conditional probabilities P(i|Cy)
can be found using the MNL formulation of McFadden (1974)

P(ilCa) = exp(Vi)/ Ljec, exp(Vj)

One of the consequences of the MNL formulation is the property of independence of irrelevant alterna-
tives (ITA). Under the assumption of ITA, all cross-effects are assumed to be equal, so that if a brand
gains in utility, it draws share from all other brands in proportion to their current shares. Departures
from ITA exist when certain subsets of brands are in more direct competition and tend to draw a
disproportionate amount of share from each other than from other members in the category. One way
to capture departures from IIA is to use the mother logit formulation of McFadden (1974). In these
models, the utility for brand i is a function of both the attributes of brand i and the attributes of other
brands. The effect of one brand’s attributes on another is termed a cross-effect. In the case of designs
in which only subsets C, of the full shelf set C' appear, the effect of the presence or absence of one
brand on the utility of another is termed an availability cross-effect.

In the frozen entree example, there are five alternatives: the client, the client’s line extension, a national
branded competitor, a regional brand and a private label brand. Several regional and private labels
can be tested in each market, then aggregated for the final model. Note that the line extension is
treated as a separate alternative rather than as a “level” of the client brand. This enables us to model
the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand
is shown at either two or three price points. Additional price points are included so that quadratic
models of price elasticity can be tested. The indicator for the presence or absence of any brand in the
shelf set is coded using one level of the price variable. The layout of factors and levels is given in Table
6.

In addition to intercepts and main effects, we also require that all two-way interactions within alterna-
tives be estimable: X2*X3, X2*X4, X3*X4 for the line extension and X6*X7 for private labels. This
will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to



TS-722D — Efficient Experimental Design with Marketing Research Applications 113

see if the promotion works better combined with a low price or with different forms. Using a linear
model for X1-X8, the total number of parameters including the intercept, all main effects, and two-way
interactions with brand is 25. This assumes that price is treated as qualitative. The actual number
of parameters in the choice model is larger than this because of the inclusion of cross-effects. Using
indicator variables to code availability, the systematic component of utility for brand ¢ can be expressed
as:

Vi=ai + g (bir ¥ ir) + 2054 2i(dij + 3y(gij1 X 1))

where
a; = intercept for brand i
b;, = effect of attribute k for brand ¢, where k =1, .., K;
x;. = level of attribute k& for brand 4
d;; = availability cross-effect of brand j on brand i
o q s 1 ifjeC,

;= labil = '
Zj availability code 0 otherwise
giji = cross-effect of attribute [ for brand j on brand i, where [ =1,..,L;
xj; = level of attribute [ for brand j.

The x;;, and z; might be expanded to include interaction and polynomial terms. In an availability
cross-effects design, each brand is present in only a fraction of choice sets. The size of this fraction
or subdesign is a function of the number of levels of the alternative-specific variable that is used to
code availability (usually price). For example, if price has three valid levels and a fourth “zero” level
to indicate absence, then the brand will appear in only three out of four runs. Following Lazari and
Anderson (1994), the size of each subdesign determines how many model equations can be written for
each brand in the discrete choice model. If X; is the subdesign matrix corresponding to V;, then each
X; must be full rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full candidate set is generated consisting of 3456 runs. It is then reduced to 2776
runs that contain between two and four brands so that the respondent is never required to compare
more than four brands at a time. In the algorithm model specification, we designate all variables as
classification variables and require that all main effects and two-way interactions within brands be
estimable. The number of runs to use follows from a calculation of the number of parameters that
we wish to estimate in the various submatrices X; of X. Assuming that there is a category “None”
used as a reference cell, the numbers of parameters required for various alternatives are shown in the
Table 7 along with the size of submatrices (rounded down) for various numbers of runs. Parameters
for quadratic price models are given in parentheses. Note that the effect of private label being in a
microwaveable or stove-top form (stove/micro cross-effect) is an explicit parameter under the client
line extension.

The number of runs chosen was N=26. This number provides adequate degrees of freedom for the
linear price model and will also allow estimation of direct quadratic price effects. To estimate quadratic
cross-effects for price would require 32 runs at the very least. Although the technique of using two-way
interactions between nominal level variables will usually guarantee that all direct and cross-effects are
estimable, it is sometimes necessary and a good practice to check the ranks of the submatrices for more
complex models (Lazari and Anderson 1994). Creating designs for cross effects can be difficult, even
with the aid of a computer.
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Table 7
Parameters
Client Private
Effect Client  Line Extension Regional Label Competitor
intercept 1 1 1 1 1
availability cross-effects 4 4 4 4
direct price effect 1(2) 1(2) 1 1 1
price cross-effects 4 (8) 4 (8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross-effects - 1 - - -
shelf-talker - 1 - - -
price*stove/microwave - 1(2) - 1 -
price*shelf-talker - 1(2) - - -
stove/micro*shelf-talker - 1 - - -
Total 10 (15) 16 (23) 10 12 10
Subdesign size
22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

It took approximately 4.5 minutes to generate a design. The final (unrandomized) design in 26 runs is
in table A6.! The coded choice sets are presented in Table A7 and the level frequencies are presented
in Table A8. Note that the runs have been ordered by the presence/absence of the shelf-talker. This
ordering is done because it is unrealistic to think that once the respondent’s attention has been drawn
in by the promotion, it can just be “undrawn.” The two blocks that result may be shown to two groups
of people or to the same people sequentially. It would be extremely difficult and time consuming to
generate a design for this problem without a computerized algorithm.

Congjoint Analysis with Aggregate Interactions. This example illustrates creating a design for a
conjoint analysis study. The goal is to create a 3° design in 90 runs. The design consists of five blocks
of 18 runs each, so each subject will only have to rate 18 products. Within each block, main-effects
must be estimable. In the aggregate, all main-effects and two-way interactions must be estimable.
(The utilities from the main-effects models will be used to cluster subjects, then in the aggregate
analysis, clusters of subjects will be pooled across blocks and the blocking factor ignored.) Our goal
is to create a design that is simultaneously efficient in six ways. Each of the five blocks should be
an efficient design for a first-order (main-effects) model, and the aggregate design should be efficient
for the second-order (main-effects and two-way interactions) model. The main-effects models for the
five blocks have 5(1 + 6(3 — 1)) = 65 parameters. In addition, there are (6 x 5/2)(3 —1)(3 —1) = 60
parameters for interactions in the aggregate model. There are more parameters than runs, but not all

tThis is the design that was presented in the original 1994 paper, which due to differences in the random number
seeds, is not reproduced by today’s tools.
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parameters will be simultaneously estimated.

One approach to this problem is the Bayesian regression method of DuMouchell and Jones (1994).
Instead of optimizing |X'X|, we optimized |X'X + P|, where P is a diagonal matrix of prior precisions.
This is analogous to ridge regression, in which a diagonal matrix is added to a rank-deficient X’'X to
create a full-rank problem. We specified a model with a blocking variable, main effects for the six
factors, block-effect interactions for the six factors, and all two-way interactions. We constructed P to
contain zeros for the blocking variable, main effects, and block-effect interactions, and 45s (the number
of runs divided by 2) for the two-way interactions. Then we used the modified Fedorov algorithm to
search for good designs.

With an appropriate coding for X, the value of the prior precision for a parameter roughly reflects the
number of runs worth of prior information available for that parameter. The larger the prior precision
for a parameter, the less information about that parameter is in the final design. Specifying a nonzero
prior precision for a parameter reduces the contribution of that parameter to the overall efficiency. For
this problem, we wanted maximal efficiency for the within-subject main-effects models, so we gave a
nonzero prior precision to the aggregated two-way interactions.

Our best design had a D-efficiency for the second-order model of 63.9281 (with a D-efficiency for the
aggregate main-effects model of 99.4338) and D-efficiencies for the main-effects models within each
block of 100.0000, 100.0000, 100.0000, 99.0981, and 98.0854. The design is completely balanced within
all blocks. We could have specified other values in P and gotten better efficiency for the aggregate
design but less efficiency for the blocks. Choice of P depends in part on the primary goals of the
experiment. It may require some simulation work to determine a good choice of P.

All of the examples in this article so far have been straight-forward applications of computerized design
methodology. A set of factors, levels, and estimable effects was specified, and the computer looked for
an efficient design for that specification. Simple problems, such as those discussed previously, require
only a few minutes of computer time. This problem was much more difficult, so we let a work station
generate designs for about 72 hours. (We could have found less efficient but still acceptable designs in
much less time.) We were asking the computer to find a good design out of over 9.6 x 1016 possibilities.
This is like looking for a needle in a haystack, when the haystack is the size of the entire known universe.
With such problems, we may do better if we use our intuition to give the computer “hints,” forcing
certain structure into the design. To illustrate, we tried this problem again, this time using a different
approach.

We used the modified Fedorov algorithm to generate main-effects only 3% designs in 18 runs. We
stopped when we had ten designs all with 100% efficiency. We then wrote an ad hoc program that
randomly selected five of the ten designs, randomly permuted columns within each block, and randomly
permuted levels within each block. These operations do not affect the first-order efficiencies but do
affect the overall efficiency for the aggregate design. When an operation increased efficiency, the new
design was kept. We iterated over the entire design 20 times. We let the program run for about 16
hours, which generated 98 designs, and we found our best design in three hours. Our best design had
a D-efficiency for the second-order model of 68.0565 (versus 63.9281 previously), and all first-order
efficiencies of 100.

Many other variations on this approach could be tried. For example, columns and blocks could be
chosen at random, instead of systematically. We performed excursions of up to eight permutations
before we reverted to the previous design. This number could be varied. It seemed that permuting
the levels helped more than permuting the columns, though this was not thoroughly investigated.
Whatever is done, it is important to consider efficiency. For example, just randomly permuting levels
can create very inefficient designs.
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For this particular problem, the ad hoc algorithm generated better designs than the Bayesian method,
and it required less computer time. In fact, 91 out of the 98 ad hoc designs were better than the best
Bayesian design. However, the ad hoc method required much more programmer time. It is possible to
manually create a design for this situation, but it would be extremely difficult and time consuming to
find an efficient design without a computerized algorithm for all but the most sophisticated of human
designers. The best designs were found when used both our human design skills and a computerized
search. We have frequently found this to be the case.

Conclusions

Computer-generated experimental designs can provide both better and more general designs for discrete-
choice and preference-based conjoint studies. Classical designs, obtained from books or computerized
tables, can be good options when they exist, but they are not the only option. The time-consuming and
potentially error-prone process of finding and manually modifying an existing design can be avoided.
When the design is nonstandard and there are restrictions, a computer can generate a design, and it can
be done quickly. In most situations, a good design can be generated in a few minutes or hours, though
for certain difficult problems more time may be necessary. Furthermore, when the circumstances of
the project change, a new design can again be generated quickly.

We do not argue that computerized searches for D-efficient designs are uniformly superior to manually
generated designs. The human designer, using intuition, experience, and heuristics, can recognize
structure that an optimization algorithm cannot. On the other hand, the computerized search usually
does a good job, it is easy to use, and it can create a design faster than manual methods, especially
for the nonexpert. Computerized search methods and the use of efficiency criteria can benefit expert
designers as well. For example, the expert can manually generate a design and then use the computer
to evaluate and perhaps improve its efficiency.

In nonstandard situations, simultaneous balance and orthogonality may be unobtainable. Often, the
best that can be hoped for is optimal efficiency. Computerized algorithms help by searching for the most
efficient designs from a potentially very large set of possible designs. Computerized search algorithms
for D-efficient designs do not supplant traditional design-creation skills. Rather, they provide helpful
tools for finding good, efficient experimental designs.
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Chakravarti’s Lis, Factor Levels

Table Al

X1 X2 X3 X4 X5
-1 -1 -1 -1 -1
-1 -1 0 0 1
-1 -1 1 1 0
-1 1 -1 1 0
-1 1 0 -1 -1
-1 1 1 0 1
1 -1 -1 0 0
1 -1 -1 1 1
1 -1 0 -1 0
1 -1 0 1 -1
1 -1 1 -1 1
1 -1 1 0 -1
1 1 -1 -1 1
1 1 -1 0 -1
1 1 0 0 0
1 1 0 1 1
1 1 1 -1 0
1 1 1 1 -1
Table A2

Chakravarti’s Lis, Orthogonal Coding

= e e e e e e e e

X2

-1
-1
-1

-1
-1
-1
-1
-1
-1

= e e

X3

-1.225
0.000
1.225

-1.225
0.000
1.225

-1.225

-1.225
0.000
0.000
1.225
1.225

-1.225

-1.225
0.000
0.000
1.225
1.225

-0.707
1.414
-0.707
-0.707
1.414
-0.707
-0.707
-0.707
1.414
1.414
-0.707
-0.707
-0.707
-0.707
1.414
1.414
-0.707
-0.707

X4

-1.225
0.000
1.225
1.225

-1.225
0.000
0.000
1.225

-1.225
1.225

-1.225
0.000

-1.225
0.000
0.000
1.225

-1.225
1.225

-0.707
1.414
-0.707
-0.707
-0.707
1.414
1.414
-0.707
-0.707
-0.707
-0.707
1.414
-0.707
1.414
1.414
-0.707
-0.707
-0.707

X5

-1.225
1.225
0.000
0.000

-1.225
1.225
0.000
1.225
0.000

-1.225
1.225

-1.225
1.225

-1.225
0.000
1.225
0.000

-1.225

-0.707
-0.707
1.414
1.414
-0.707
-0.707
1.414
-0.707
1.414
-0.707
-0.707
-0.707
-0.707
-0.707
1.414
-0.707
1.414
-0.707
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Table A5
Information-Efficient

Table A4
Information-Efficient

Table A3
Green & Wind
Orthogonal Design

Design, Unrealistic
Combinations Excluded

Design,
Factor Levels

Example

X2 X3 X4 X5

X1

X2 X3 X4 X5

X1

X2 X3 X4 X5

X1

Table A6
Consumer Food Product (Raw) Design

X2 X3 X4 X5 X6 X7 X8

X1
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Table A7
Consumer Food Product Choice Set

Block 1: Shelf-Talker Absent For Client Line Extension

Choice Client Client Line  Regional Private National
Set Brand Extension Brand Label Competitor
1 $1.29  $1.39/stove  $1.99 $2.29/micro  N/A
2 $1.29 $1.89/stove  $2.49 N/A $2.39
3 %129 N/A $1.99 N/A N/A
4 $1.69  $1.89/micro N/A $2.29/micro  $1.99
5 $1.69  $2.39/stove  $2.49 $2.29/stove  N/A
6 $1.69 N/A N/A N/A $2.39
7 $2.09  $1.39/micro N/A $2.29/stove  $2.39
8 $2.09 $2.39/stove N/A $1.49/stove  $1.99
9 $2.09 N/A $2.49 $1.49/micro  $1.99
10 N/A $1.39/micro  $2.49 N/A $1.99
11 N/A $1.39/stove  N/A N/A $1.99
12 N/A $1.89/stove  $1.99 $2.29/stove  N/A
13 N/A $2.39/micro  $1.99 $1.49/micro  $2.39
Block 2: Shelf-Talker Present For Client Line Extension
Choice Client Client Line  Regional Private National
Set Brand Extension Brand Label Competitor
14 $1.29  $2.39/micro N/A $2.29/stove  $1.99
15  $1.29  $2.39/stove  N/A $1.49/micro N/A
16 $1.29 N/A $1.99 $1.49/stove  $1.99
17 $1.69 $1.39/micro  $1.99 N/A $1.99
18 $1.69  $1.89/stove N/A $2.29/micro  $1.99
19 $1.69  $2.39/micro  $2.49 $1.49/stove  N/A
20 $1.69 N/A N/A $1.49/micro  $2.39
21  $2.09  $1.39/stove  $2.49 N/A $2.39
22 $2.09  $1.89/micro  $1.99 N/A N/A
23 $2.09 N/A $2.49 N/A N/A
24 N/A $1.39/micro N/A $2.29/micro  N/A
25 N/A $1.89/micro  $2.49 $1.49/stove  $2.39
26 N/A $2.39/stove  $1.99 $2.29/micro  $2.39
Table A8

Consumer Food Product Design Level Frequencies

Level X1 X2

>~ W N
BN NN B

[o2BEN BRI |

X3

12
14

X4 X5 X6 X7 X8

13 8 8
13 8 9
10 9

14 9
12 8
9
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Table A9
Consumer Food Product Design Creation Code

Ymacro bad;
bad = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
Y%mend ;

Ymktex( 4 4 2 2 3 3 2 3, n=26, interact=x2+*x3 x2*x4 x3*x4 x6%*X7,
restrictions=bad, outr=sasuser.choicdes )

proc format;

value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;
run;

data key;
missing N;

input x1-x8;
format x1 x2 x5 x6 x8 dollarb5.2
x4 yn. x3 x7 micro.;
label x1 = ’Client Brand’
x2 = ’Client Line Extension’
x3 = ’Client Micro/Stove’
x4 = ’Shelf Talker’
x5 = ’Regional Brand’
x6 = ’Private Label’
x7 = ’Private Micro/Stove’
x8 = ’National Competitor’;
datalines;
1.291.39 11 1.99 1.49 1 1.99
1.69 1.89 2 2 2.49 2.29 2 2.39
2.09 2.39 . . N N . N
N N

Jmktlab(data=sasuser.choicdes, key=key)
proc sort out=sasuser.finchdes; by x4; run;

proc print label; id x4; by x4; run;
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Abstract

Researchers have traditionally built choice designs using extensions of concepts from the general linear
design literature. We show that a computerized search strategy can generate efficient choice designs
with standard personal computers. This approach holds three important advantages over previous
design strategies. First, it allows the incorporation of anticipated model parameters, thereby increasing
design efficiency and considerably reducing the number of required choices. Second, complex choice
designs can be easily generated, allowing researchers to conduct choice experiments that more closely
mirror actual market conditions. Finally, researchers can explore model and design modifications and
examine trade-offs between a design’s statistical benefits and its operational and behavioral costs.*

Introduction

Discrete choice experiments are becoming increasingly popular in marketing, economics, and trans-
portation. These experiments enable researchers to model choice in an explicit competitive context,
thus realistically emulating market decisions. A choice design consists of choice sets composed of sev-
eral alternatives, each defined as combinations of different attribute levels. A good choice design is
efficient, meaning that the parameters of the choice model are estimated with maximum precision.

A number of methods have been suggested for building choice designs (Anderson and Wiley 1992,
Bunch, Louviere, and Anderson 1996, Krieger and Green 1991, Kuhfeld 2005 (page 141), Lazari and
Anderson 1994, Louviere and Woodworth 1983). Most of the methods use extensions of standard
linear experimental designs (Addelman 1962b, Green 1974). However, the use of linear designs in
choice experiments may be nonoptimal due to two well-known differences between linear and choice

*Klaus Zwerina is a consultant at BASF AG, Ludwigshafen, Germany. Joel Huber is Professor of Marketing, Fuqua
School of Business, Duke University. Warren F. Kuhfeld is Manager, Multivariate Models R&D, Statistical Research and
Development, SAS Institute Inc. We would like to thank Jim Bettman and Richard Johnson for their helpful comments
on an earlier version of this chapter. Copies of this chapter (T'S-722E) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote_stat.html#market.
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models. First, probabilistic choice models are nonlinear in the parameters, implying that the statistical
efficiency of a choice design depends on an (unknown) parameter vector. This property implies the
need to bring anticipated parameter values in choice designs. Second, choice design efficiency depends
both on the creation of appropriate profiles and properly placing them into several choice sets. For
example, in a linear design, the order of the 16 profiles in a conjoint exercise does not affect its formal
efficiency, whereas the efficiency of the same 16 profiles broken into four choice sets depends critically on
the grouping. Despite its limitations, linear design theory has been used to produce satisfactory choice
designs for many years, drawing on readily available tables and processes. Such carefully selected linear
designs are reasonable, general-purpose choice designs, but are generally not optimal in a statistical
sense.

We present a general strategy for the computerized construction of efficient choice designs. This
contribution can be viewed as an extension of the work of Kuhfeld, Tobias, and Garratt (1994) and of
Huber and Zwerina (1996). Kuhfeld et al. recommended using a search algorithm to find efficient linear
designs. Huber and Zwerina show how to modify choice designs using anticipated model parameters in
order to improve design efficiency. We adapt the optimization procedure outlined in Kuhfeld et al. to
the principles of choice design efficiency described by Huber and Zwerina. Our approach holds several
important advantages over previous choice design strategies. It (1) optimizes the “correct” criterion of
minimizing estimation error rather than following linear design principles, (2) it can generate choice
designs that accommodate any anticipated parameter vector, (3) it can accommodate virtually any
level of model complexity, and finally (4) it can be built using widely available software. To illustrate,
we include a SAS/IML program that generates relatively simple choice designs. This program can be
easily generalized to handle far more complex problems.

The chapter begins with a review of criteria for efficient choice designs and illustrates how they can be
built with a computer. Then, beginning with simple designs, we illustrate how the algorithm works and
how our linear design intuition must be changed when coping with choice designs. Next, we generate
more complex choice designs and show how to evaluate the impact on efficiency of different design
and model modifications. We conclude with a discussion of the proposed choice design approach and
directions for future research.

Criteria For Choice Design Efficiency

Measure Of Choice Design Efficiency. First, we derive a measure of efficiency in choice designs
from the well-known multinomial logit model (McFadden 1974). This model assumes that consumers
make choices among alternatives that maximize their perceived utility, u, given by

u=x;0+e (1)

where x; is a row vector of attributes characterizing alternative ¢, 3 is a column vector of K weights
associated with these attributes, and e is an error term that captures unobserved variations in utility.
Suppose that there are IV choice sets, C),, indexed by n = 1,2,..., N, where each choice set is charac-
terized by a set of alternatives C,, = {x1,, K,z ,}. If the errors, e, are independently and identically
Gumbel distributed, then it can be shown that the probability of choosing an alternative ¢ from a
choice set C,, is
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(2)

where X, is a matrix that consists of .J,, row vectors, each describing the characteristics of the alter-
natives, x;,. The vertical concatenation of the X, matrices is called a choice design matrix X.

The task of the analyst is to find a parameter estimate for 3 in Equation (2) that maximizes the like-
lihood given the data. Under very general conditions, the maximum likelihood estimator is consistent
and asymptotically normal with covariance matrix

N Jn -1

Y= (Z/].:)Z)_1 = Z Zzgnpjnzjn (3)
n=1j=1

JIn,
where z;, = x;, — mePm .
=1

Equation (3) reveals some important properties of (nonlinear) choice models. In linear models, centering
occurs across all profiles whereas in choice models, centering occurs within choice sets. This shows that
in choice designs both the profile selection and the assignment of profiles to choice sets affects the
covariance matrix. Moreover, in linear models, the covariance matrix does not depend on the true
parameter vector, whereas in choice models the probabilities, P;,, are functions of 3 and hence the
covariance matrix. Assuming 3 = 0 simplifies the design problem, however Huber and Zwerina (1996)
recently demonstrated that this assumption may be costly. They showed that incorrectly assuming that
B = 0 may require from 10% to 50% more respondents than those built from reasonably anticipated
parameters.

The goal in choice designs is to define a group of choice sets, given the anticipated B, that minimizes
the “size” of the covariance matrix, 3, defined in Equation (3). There are various summary measures
of error size that can be derived from the covariance matrix (see, e.g., Raktoe, Hedayat, and Federer
1981). Perhaps the most intuitive summary measure is the average variance around the estimated
parameters of a model. This measure is referred to in the literature as A-efficiency or its inversely
related counterpart,

A — error = trace (X)/K (4)

where K is the number of parameters. Two problems with this measure limit its suitability as an overall
measure of design efficiency. First, relative A-error is not invariant under (nonsingular) recodings of
the design matrix, i.e., design efficiency depends on the type of coding. Second, it is computationally
expensive to update. A related measure,

D — error = | 2|V (5)

is based on the determinant as opposed to the trace of the covariance matrix. D-error is computationally
efficient to update, and the ratios of D-errors are invariant under different codings of the design matrix.
Since A-error is the arithmetic mean and D-error is the geometric mean of the eigenvalues of X, they
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are generally highly correlated. D-error thereby provides a reasonable way to find designs that are
“good” on alternative criteria. For example, if A-error is the ultimate criterion, we can first minimize
D-error and then select the design with minimum A-error rather than minimizing A-error directly. For
these reasons, D-error (or its inverse, D-efficiency or D-optimality) is the most common criterion for
evaluating linear designs and we advocate it as a criterion for choice designs.

Next, we discuss four principles of choice design efficiency defined by Huber and Zwerina (1996). Choice
designs that satisfy these principles are optimal, however, these principles are only satisfied for a few
special cases and under quite restrictive assumptions. The principles of orthogonality and balance that
figured so prominently in linear designs remain important in understanding what makes a good choice
design, but they will be less useful in generating one.

Four Principles Of Efficient Choice Designs. Huber and Zwerina (1996) identify four principles
which when jointly satisfied indicate that a design has minimal D-error. These principles are orthog-
onality, level balance, minimal overlap, and utility balance. Orthogonality is satisfied when the levels
of each attribute vary independently of one another. Level balance is satisfied when the levels of each
attribute appear with equal frequency. Minimal overlap is satisfied when the alternatives within each
choice set have nonoverlapping attribute levels. Utility balance is satisfied when the utilities of alterna-
tives within choice sets are the same, i.e., the design will be more efficient as the expected probabilities
within a choice set C),, among J,, alternatives approach 1/.J,,.

These principles are useful in understanding what makes a choice design efficient, and improving
any principle, holding the others constant, improves efficiency. However, for most combinations of
attributes, levels, alternatives, and assumed parameter vectors, it is impossible to create a design that
satisfies these principles. The proposed approach does not build choice designs from these formal
principles, but instead uses a computer to directly minimize D-error. As a result, these principles may
only be approximately satisfied in our designs, but they will generally be more efficient than those built
directly from the principles.

A General Method For Efficient Choice Designs

Figure 1 provides a flowchart of the proposed design approach. The critical aspect of this approach
involves an adaptation of Cook and Nachtsheim’s (1980) modification of the Fedorov (1972) algorithm
that has successfully been used to generate efficient linear designs (e.g., Cook and Nachtsheim 1980,
Kuhfeld et al. 1994). We will first describe the proposed choice design approach conceptually and then
define the details in a context of a particular search.

The process begins by building a candidate set, which is a list of potential alternatives. A random
selection of these alternatives is the starting design. The algorithm alters the starting design by
exchanging its alternatives with the candidate alternatives. The algorithm finds the best exchange
(if one exists) for the first alternative in the starting design. The first iteration is completed once
the algorithm has sequentially found the best exchanges for all of the alternatives in the starting
design. After that, the process moves back to the first alternative and continues until no substantial
efficiency improvement is possible. To avoid poor local optima, the whole process can be restarted with
different random starting designs and the most efficient design is selected. For example, if there are 300
alternatives in the candidate set and 50 alternatives in the choice design, then each iteration requires
testing 15,000 possible exchanges, which is a reasonable problem on today’s desktop computers and
workstations. While there is no guarantee that it will converge to an optimal design, our experience
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with relatively small problems suggests that the algorithm works very well.

To illustrate the process we first generate choice designs for simple models that reveal the characteristics
of efficient choice designs. In examining these simple designs, our focus is on the benefits and the
insights that derive from using this approach. Then, we apply the approach to more complex design
problems, such as alternative-specific designs and designs with constant alternatives. As we illustrate
more complex designs, we will focus on the use of the approach, per se. We provide illustrative computer
code in the appendix.

Choice Design Applications

Generic Models. The simplest choice models involve alternatives described by generic attributes.
The utility functions for these models consist of attribute parameters that are the same for all alterna-
tives, for example, a common price slope across all alternatives. Generic designs are appealing because
they are simple and analogous to main-effects conjoint experiments. Bunch et al. (1996) evaluate
ways to generate generic choice designs and show that shifted or cyclic designs generally have superior
efficiency compared with other strategies for generating main effects designs. These shifted designs use
an orthogonal fractional factorial to provide the “seed” alternatives for each choice set. Subsequent
alternatives within a choice set are cyclically generated. The attribute levels of the new alternatives add
one to the level of the previous alternative until it is at its highest level, at which point the assignment
re-cycles to the lowest level.

For certain families of plans and assuming that all coefficients are zero, these shifted designs satisfy all
four principles, and thus are optimal.! For example, consider a choice experiment with three attributes,
each at three levels, defining three alternatives in each of nine choice sets. The left-hand panel of Table
1 shows a plan using the Bunch et al. (1996) method.

In this special case, all four efficiency principles are perfectly satisfied. Level balance is satisfied since
each level occurs in precisely 1/3 of the cases, and orthogonality can be confirmed by noting the all
pairs of attribute levels occur in precisely 1/9 of the attributes (Addelman 1962b). There is perfect
minimal overlap since each level occurs exactly once in each choice set, and finally, utility balance is
trivially satisfied with the assumption that 3 = 0. More formally, it is useful to examine the covariance
matrix of the (effects-coded) parameters, reported in the first panel of Table 2. The equal variances
across attributes and the zero covariances across attributes both indicate optimality.

A simple design such as this could have been built from our algorithm, although using a standard
orthogonal array and cyclic permutations ensured optimality. Our next example, encompassing a
model with just one interaction term, illustrates the case when a computerized search is very useful in
finding a statistically efficient design.

Estimating an Ax B Interaction. For the previous example with nine choice sets, let us assume that
the researcher is confident that there are no AxC or BxC interactions, but the A xB interaction must
be estimated. The middle panel of Table 1 shows the best design we were able to find which includes
this one interaction. Note that in this design, the principle of minimal overlap on attributes A and B
is violated, in that attribute levels are frequently repeated within a set. In general, interactions require
overlap of attribute levels to produce the contrasts necessary to estimate the effects.

tWe were not able to analytically prove this, but after examining scores of designs, we have never found more efficient
designs than those that satisfy all four principles.
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Figure 1
Flowchart of Algorithm for Constructing Efficient Choice Designs

FLOWCHART OF ALGORITHM FOR CONSTRUCTING EFFICIENT CHOICE DESIGNS

INITIALIZATION
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- Define confrol parameters for algosithm.

v

BUILD SETS OF CANDIDATE ALTERNATIVES
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update formulas to re-evaluate determinant of corresponding
covanance matrix).

- Go to next alternative in the choice design.
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Table 1

Main Effects and A xB-Interaction Effects Choice Design

Bo-Efficient

Main-Effects Design
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By-Efficient
Interaction-Effects
(Bp,=000000000)

B,-Efficient
Interaction-Effects
(8;=-10-10-10000)

D-error(B,) = .192

A B C p(B1) A B C p(B1)
2 3 2 495 2 1 3 422
2 2 3 495 1 3 2 422
1 1 1 .009 3 1 1 155
3 1 1 155 3 2 2 422
2 2 2 422 2 1 3 155
1 2 3 422 3 3 1 422
1 1 2 .042 2 2 3 155
1 3 1 114 3 3 2 422
3 1 3 .844 2 3 3 422
2 1 2 .018 2 1 2 422
3 3 3 965 1 1 3 422
2 2 1 .018 1 2 1 155
1 3 3 245 3 1 2 422
3 3 2 .665 1 1 3 155
2 3 1 .090 3 2 1 422
2 1 3 468 1 3 3 422
1 2 1 .063 2 3 2 422
1 3 2 468 3 2 1 155
3 2 3 .665 1 2 1 212
3 3 1 .245 2 2 1 576
3 1 2 .090 1 1 2 212
1 2 2 .042 1 2 3 576
2 3 3 .844 1 3 1 212
3 2 1 114 3 1 1 212
1 1 3 114 2 2 2 212
2 1 1 .042 3 1 3 576
3 2 2 .844 2 3 1 212

avemaxp = .690
D-error(B,) = .306
D-error(3,) = .630

avemaxp = .474
D-error(8,) = .365
D-error(B,) = .399
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The covariance matrix of this design, depicted in the lower half of Table 2, highlights the effects
of incorporating the AxB interaction. Violating minimal overlap permits the estimation of the AxB
interaction by sacrificing efficiency on the main effects of attribute A and B, reflected in higher variances
of the main effects estimates (al, a2, bl, and b2). The D-error of the main effect estimates increases by
24%, from .192 to .239, and the covariances across attributes A and B are no longer zero. Note also that
the errors around attribute C are unchanged—they are unaffected by the A xB interaction, indicating
that the algorithm was able to find a design that allowed the AxB interaction to be uncorrelated with

C.
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Table 2
Covariance Matrix of Main Effects and A xB-Interaction
Effects Choice Design

By-Efficient Main Effects Design

al a2 bl b2 cl c2
al .222 -111 .000 .000 .000 .000
a2 -.111 .222  .000 .000 .000 .000
bl .000 .000 .222 -111 .000 .000
b2 .000 .000 -.111 .222 .000 .000
cl .000 .000 .000 .000 .222 -.111
cl .000 .000 .000 .000 -.111 .222
D-error(B8,)=.192

Bo-Efficient Interaction Effects Design
al a2 bl b2 cl c2 abll abl2 ab2l ab22

al 296 -.130 .019 -.019 .000 .000 | -.037 .000 .000 -.019
a2 -130 296 -.019 .019 .000 .000 | .037 .000 .000 .019
bl .019 -.019 .296 -.130 .000 .000 | .019 -.056 .000 .037
b2 -019 019 -130 .296 .000 .000 | -.019 .056 .000 -.037
cl .000 .000 .000 .000 .222 ~-111| .000 .000 .000  .000
c2 .000 .000 .000 .000 -.111 .222 | .000 .000 .000 .000

abll -.037 .037 .019 -.019 .000 .000 .630 -.333 -.333 .148
abl2 .000 .000 -.056 .056 .000 .000 -.333 .556 .167 -.278
ab21 .000 .000 .000 .000 .000 .000 -.333 .167 .667 -.333
ab22 -.019 .019 .037 -.037 .000 .000 .148 -.278 -.333 .630
D-error(B,) of main effects = .239
D-error(8,) of all effects = .306

There are several important lessons from this simple example. First, it illustrates that a design that is
“perfect” for one model may be far from optimal for a slightly different model. Adding one interaction
strongly altered the covariance matrix, so efficient designs generally violate the formal principles. Sec-
ond, the example shows that estimating new interactions is not without cost; being able to estimate
one interaction increased by 24% the error on the main effects. Finally, the trade-off of efficiency
with estimability demonstrates one of the primary benefits of this approach—it allows the analyst to
understand the efficiency implications of changes in the design structure and/or model specification.
This use of the approach will be illustrated again in the context of more complex choice designs.

The Impact Of Non-Zero Betas. The preceding discussion has assumed that the true parameters are
zero. This assumption is justified when there is very little information about the model parameters;
however, typically the analyst has some information on the relative importance of attributes or the
relative value of their levels (Huber and Zwerina 1996). To show the potential gain that can come
from nonzero parameters, assume that the anticipated partworths of the main effects for the three level
attributes discussed previously are not 0, 0, 0, but -1, 0, 1, while the A x B-interaction effect continues to
have zero parameters.t Calling the new parameter vector B3, to distinguish it from the zero parameter

#We assume for simplicity that the interaction has parameter values of zero. Note, this also produces minimal variance
of estimates around zero, implying greatest power of a test in the region of that null hypothesis.
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Table 3
Attributes/Levels for an Alternative-Specific Choice Experiment

Alternative-Specific Levels

Attributes Coke Pepsi RC Cola

Price per case $5.69 $5.39 $4.49
$6.89 $5.99 $5.39
$7.49 $6.59 $5.99

Container 12 oz cans 12 oz cans 12 oz cans

10 oz bottle 10 oz bottle 16 oz bottle
16 oz bottle 18 oz bottle 22 oz bottle

Flavor Regular Regular Regular
Cherry Coke Pepsi Lite Cherry
Diet Coke Diet Pepsi  Diet

vector, B, the third panel of Table 1 displays the efficient design using these parameters. This new
design has a D-error(8;) of 0.399. However, if instead we had used the design in the center panel, its
error given 3, is true would have been .630, implying that 37% (1 - .399/.630) fewer respondents are
needed for the “utility balanced” over the “utility neutral” design.

Comparing the last two panels in Table 1 reveals how the algorithm used the anticipated nonzero
parameters to produce a more efficient design. As an index of utility balance, we calculated the
average of the maximum within-choice-set choice probabilities (avemaxp). The smaller this index the
harder is the average choice task and the greater is “utility balance.” We can see, by using 3;, the
new design is more utility balanced than the previous design, which results in an average maximum
probability of .474 compared with one of .690. We also see that the increase in utility balance sacrifices
somewhat the three formal principles, reflected in an increase of D-error(8,) from .306 to .365. The
new design does not have perfect orthogonality, level balance, utility balance, or minimal overlap, but
it is more efficient than any design that is perfect on any of those criteria.

More Complex Choice Designs. The proposed algorithm is very general and can be applied to
virtually any level of design complexity. We will use it next to generate an alternative-specific choice
design, which has a separate set of parameters for each alternative. Suppose, the researcher is interested
in simulating the market behavior of three brands, Coke, Pepsi, and RC Cola, with the attribute
combinations shown in Table 3.

This kind of choice experiment, which we call a market emulation study, is quite different from the
generic choice design presented previously. In a market emulation study, emphasis is on predicting
the impact of brand, flavor, and container decisions in the context of a realistic market place offering.
What this kind of study gains in realism, it loses in the interpretability of its results. For example,
since each brand only occurs at specific prices, it is much harder to disentangle the independent effects
of brand and price. These designs are, however, useful in assessing the managerially critical question
of the impact of, say, a 60 cent drop in the price of Coke’s 16 ounce case in a realistic competitive
configuration.
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Since we assume that the impact of price depends on the brand to which it is attached, it is im-
portant that the impact of price be estimable within each brand.5 Further, let us assume that
the reaction to price additionally depends on the number of ounces, so that it is necessary to es-
timate the brandxpricexcontainer interaction. Using standard ANOVA-coding, these assumptions
require four main effects (brand, flavor, container, and price for 8 df), four two-way interactions
(brand x price, brand xflavor, brand x container, and pricexcontainer for 16 df), and one three-way in-
teraction (brand x pricexcontainer for 8 df), resulting in a total of 32 parameters.¥

Suppose we want to precisely estimate these effects with a choice design consisting of 27 choice sets
each composed of three alternatives.* The candidate set of alternatives comprises the 3* = 81 possible
alternatives, and the initial design is a random selection from these. The algorithm exchanges alterna-
tives between the candidate set and the starting design until the efficiency gain becomes negligible. In
the example with 27 choice sets and 32 parameters, D-error is .167. This statistic provides a baseline
for evaluating other related designs, which we will generate in the following section.

FEvaluating Design Modifications. The proposed approach can be used to evaluate design modi-
fications. Typically, efficiency is meaningful within a relatively narrow family of designs, limited to
a particular attribute structure, model specification, and number of alternatives per choice set. For
many applications, optimizing a design within such a narrow design family is too restrictive. Most
analysts are not tightly bound to a particular number of alternatives per choice set or even particular
attributes, but are interested in exploring the impact of changes in these specifications on the precision
of the parameter estimates. We will demonstrate how comparing designs across design families allows
a reasoned trade-off of design structure against estimation precision.

Consider the following questions an analyst might ask concerning the alternative-specific choice design
just presented.

1. How much does efficiency increase if 54 choice sets are used instead of two replications of 27
choice sets?

2. What is the efficiency loss if each of the brands (Coke, Pepsi, RC) must be present in a choice
set?

3. What is the gain in efficiency if a fourth alternative is added to each choice set?

4. What happens to efficiency if this fourth alternative is constant (e.g., “keep on shopping”)?

The first question assesses the benefit of building a design with 54 choice sets rather than using the
original 27 choice sets twice. As Table 4 shows, specifying twice as many choice sets produces a D-
error of .079 compared with .084 (=.167/2) for two independent runs of the 27 choice set design. This
relatively small 6% benefit in efficiency indicates that the original 27 choice set design, while highly
fractionated, appears to have suffered little due to this fact.

The second question evaluates the impact of constraints on the choice sets that respondents face. The
original design often paired the same brand against itself within a choice set. For example, a choice

$The assumption that price has a different impact depending on the brand is testable. The ability to make that test
is just one of the advantages of these choice designs.

YWe need the fourth two-way interaction, pricexcontainer, to be able to estimate the three-way interaction
brand x pricex container. Of course, there are many other ways of coding a design.

*The appendix contains a SAS/IML program that performs the search for this design. Focusing on the principles of
the algorithm, the program was deliberately kept simple, specific, and small. A general macro for searching for choice
designs, %ChoicEff, is documented in Kuhfeld (2005) starting on pages 597 and 600. See page 363 for an example.
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Table 4
Impact of Design Modifications on D-Error

Efficiency
Design Modification D-error per Choice Set Comments
27 sets, 3 alternatives per .167 100%  Original design.
set.
Double the number of sets. .079 106% Limited benefit from doubling the
number of sets.
Require each alternative to 175 95% Shows minor cost of constraining a
contain one of each brand. design.
Add a fourth alternative. 144 116% Diminishing returns from adding ad-
ditional alternatives.
Fourth alternative is con- 195 86% Design is less efficient because con-
stant. stant alternative is chosen 25% of the

time.

set with Coke in a 12 oz bottle for $5.69 per case might include Coke in a 16 oz bottle for $7.49 per
case. For managerial reasons it might be desirable to have each brand (Coke, Pepsi, RC) represented
in every set of three alternatives. To examine the cost of this constraint, Coke is assigned to the first
alternative, Pepsi to the second alternative, and RC to the third alternative within each of the 27
choice sets. With this constraint, the D-error is .175. This relatively moderate decrease in efficiency of
5% should be acceptable if there are managerially-based reasons to constrain the choice sets.

The third question investigates the benefits of adding a fourth alternative to each choice set. This
change increases by 25% the number of alternatives, although the marginal effect of an additional
alternative should not be as great. With this modification, D-error becomes .144, producing a 16%
efficiency gain over three alternatives per choice set. The decision whether to include a fourth alternative
now pits the analyst’s appraisal of the trade-off between the value of this 16% efficiency gain and the
cost in respondent time and reliability.

What happens if this fourth alternative is common and constrained to be constant in all choice sets?
With a constant alternative, respondents are not forced to make a choice among undesirable alterna-
tives. Moreover, a constant alternative permits an estimate of demand volume rather than just market
shares (Carson et al. 1994). A constant alternative can take many forms, ranging from the respondent’s
“current brand,” to an indication that “none are acceptable,” or simply “keep on shopping.” While
constant alternatives are often added to choice sets, little is known about the efficiency implications
of this practice. To create designs with a constant alternative, this alternative must be added to the
candidate set. Also, a model with a constant alternative has one more parameter. Comparing a design
with a constant alternative to one without, it is necessary to calculate D-error with respect to the
original 32 parameters using the corresponding submatrix of X.

Adding a constant alternative to the original design increases the D-error of the original 32 parameters
by 17% and is nearly 35% worse than allowing the fourth alternative to be variable. Some part of
this loss in efficiency is due to the one additional degree of freedom from the constant alternative. A
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larger part is due to the efficiency lost when respondents are assumed to select the constant alternative.
Every time it is chosen, one obtains less information about the values of the other parameters. In this
case, the assumption that 3 = 0 is not benign, as it assumes the constant alternative, along with all
others in the four-option choice sets, will be chosen 25% of the time. We can reduce the efficiency cost
to the other parameters by using a smaller 3 for the constant alternative, reflecting the assumption
that it will be chosen less often.

In summary, the analysis suggests that adding a constant alternative to a three-alternative choice set
can degrade the precision of estimates around the original parameters. Two caveats are important.
First, this result will not always occur. We have found some highly fractionated designs where a
constant alternative adds to the resolution of the original design. Second, there are studies where
a major goal is the estimation of the constant alternative; in that case “oversampling” the constant
ensures that its coefficient will be known with greater precision.

An important lesson across these four examples is that one cannot rely on heuristics to guide design
strategies, ignoring statistical efficiency. It is generally necessary to test specific design strategies, given
anticipated model parameters, to find a good choice design.

FEvaluating Model Modifications. The proposed approach can be used to assess modifications of the
model specification. This allows one, for example, to estimate the cost of “assumption insurance,” i.e.,
building a design that is robust to false assumptions. Often we assume that factors are independent;
for example, that the utility of price does not depend on brand or container. In many instances this
assumption would be better termed a “presumption” in that if it is wrong, the estimates are biased,
but there is no way to know given the design. Assessing the cost of assumption insurance involves four
steps:

1. Find the best design for the unrestricted model (possibly including interactions).
2. Find the best design for the restricted model.

3. Evaluate D-error for that unrestricted design under the restricted model.

W

. Evaluate D-error for the best design for the restricted model.

The cost of assumption insurance is the percent difference between steps 3 and 4, reflecting the loss of
efficiency of the core parameters for the two designs. We illustrate how to assess this cost for a design
that permits the price term to interact with brand and container versus one that assumes they are
independent. To simplify the example, we take the same case as before, but assume that price is a
linear rather than a categorical variable.

The first step involves finding an efficient design with all price interactions with brand and brand x con-
tainer estimable. This unrestricted model has 7 df for main effects (two for brand, two for con-
tainer, two for flavor, and one for price), 12 df for two-way interactions (brandxprice, brandxflavor,
brand X container, containerxprice), and 4 df for the three-way interaction (brandxcontainerx price).
An efficient design for this unrestricted model has a D-error of .148. If this design is used for a restricted
model in which price does not interact (7 df for main effects and 8 df for two-way interactions) then

fSubstituting a linear price term for a three-level categorical one has two immediate implications. First, any change
in coding results in quite different absolute values of D-error. Second, in optimizing a linear coding for price, the search
routine will try to eliminate alternatives with the middle level of price within brand. This focus on extremes is appropriate
given the linear assumption, but, may preclude estimation of quadratic effects.
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D-error drops to .118. The critical question is how much better still can one do by searching for the
best design in the 15-parameter restricted model. The best design we find has a D-error of .110. Thus,
assumption insurance in this case imposes a 6% (1 - .110/.118) efficiency loss, a reasonable cost given
that prices will often interact with brands and containers.

To summarize, the search routine allows estimates of the cost in efficiency of various design modifications
and even changes in the model specification. Again, the important lesson is not the generalizations
from the results of these particular examples, but rather an understanding of how these and similar
questions can be answered in the context of any research study.

How Good Are These Designs? The preceding discussion has shown that our adaptation of the
modified Fedorov algorithm can find estimable choice designs and answer a variety of useful questions.
We still need to discuss the question, how close to optimal are these designs? The search is nonexhaus-
tive, and there is no guarantee that the solutions are optimal or even nearly so. For some designs, such
as the alternative-specific one shown previously, we can never be completely certain that the search
process does not consistently find poor local optima. However, one can achieve some confidence from
the pattern of results based on different random restarts; similar efficiencies emerging from different
random starts indicate robustness of the resultant designs. An even stronger test is to assess efficien-
cies of the search process in cases where an optimal solution is known. While this cannot be done
generally, we can test the absolute efficiency of certain symmetric designs, where the optimal design
can be built using formal methods. We illustrated this kind of design in the three attribute, three level,
three alternative, nine choice set (33/3/9) design discussed earlier, and found that the search routine
was not able to find a better design. Now, we ask how good are our generated designs relative to three
optimal designs: the design mentioned previously and two corresponding, but bigger designs—4%/4/16
and a 5°/5/25 generic design.

For these types of designs we apply the proposed algorithm and compare our designs with the analyti-
cally generated ones. For each design, we used ten different random starts and three internal iterations.
Figure 2 displays the impact of efficiency on different starting points and different numbers of internal
iterations.

Figure 2 reveals important properties of the proposed algorithm. After the first iteration, the algorithm
finds a choice design with about 90% relative efficiency, after a few more iterations, relative efficiencies
approach 95%-99%. Further, this property appears to be independent of any initial starting design—the
process converges just as quickly from a random start as from a rational one. These encouraging
properties suggest important advantages for the practical use of the approach. First, in contrast
to Huber and Zwerina (1996), the process does not require a rational starting design (which may be
difficult to build). Second, since the process yields very efficient designs after only one or two iterations,
most practical problems involving even large choice designs can be accommodated.

Conclusions

We propose an adaptation of the modified Fedorov algorithm to construct statistically efficient choice
designs with standard personal computers. The algorithm generates efficient designs quickly and is
appropriate for all but the largest choice designs. The approach is illustrated with a SAS/IML program.
SAS has the advantage of a general model statement that facilitates the building of choice designs with
different model specifications. The cost of using SAS/IML software, however, is that the algorithm
generally runs slower than a program developed in, for example, PASCAL or C.
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Figure 2
Convergence Pattern From Different Random Starts
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There are three major advantages of using a computer to construct choice designs rather than deriving
them from formal principles. First, computers are the only way we know to build designs that allow one
to incorporate anticipated model parameters. Since the incorporation of this information can increase
efficiency by 10% to 50% (see Huber and Zwerina 1996), this benefit alone justifies the use of computer
search routines to find efficient choice designs.

The second advantage is that one is less restricted in design selection. Symmetric designs may not
reflect the typically asymmetric characteristics of the real market. The adaptability of computerized
searches is particularly important in choice studies that simulate consumer choice in a real market
(Carson et al. 1994). Moreover, the process we propose allows the analyst to generate choice designs
that account for any set of interactions, or alternative-specific effects of interest and critical tests of
these assumptions. We illustrated a market emulation design that permits brand to interact with
price, container, and flavor and can test the three-way interaction of brand by container by price. This
pattern of alternative-specific effects would be very hard to build with standard designs, but it is easy
to do with the computerized search routine by simply setting the model statement. The process can
handle even more complex models, such as availability and attribute cross effects models (Lazari and
Anderson 1994).

Finally, the ability to assess expected errors in parameters permits the researcher to examine the impact
of different modifications in a given design, such as adding more choice sets or dropping a level from
a factor. Most valuable, perhaps, is the ability to easily test designs for robustness. We provide one
example of assumption insurance, but others are straightforward to generate. What happens to the
efficiency of a design if there are interactions, but they are not included in the model statement? What
kind of model will do a good job given a linear representation of price, but will also permit a test of
curvature? What happens to the efficiency of the design if one’s estimate of 3 is wrong?
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There are several areas in which future research is needed. The first of these involves studies of
the search process per se. We chose the modified Fedorov algorithm because it is robust and runs fast
enough on today’s desktop computers. As computing power increases, more exhaustive searches should
be evaluated. For extremely large problems, faster and less reliable algorithms may be appropriate.
Furthermore, while the approach builds efficient choice designs for multinomial logit models, efficiency
issues with respect to other models, for example, nested logit and probit models, have yet to be explored.

A second area in which research would be fruitful involves the behavioral impact of different choice
designs. The evaluations of our designs all implicitly assumed that the error level is constant regardless
of the design. Many choice experiments use relatively small set sizes and few attributes reflecting an
implicit recognition that “better” information comes from making the choice less complex. However,
from a statistical perspective it is easy to show that smaller set sizes reduce statistical efficiency. In
one example, we demonstrated that increasing the number of alternatives per choice set from three
to four can increase efficiency by 16%. This gain depends on the assumption that respondent’s error
levels do not change. If they do increase, then that 16% percent gain might be lessened or even
reversed. Thus, there is a need for a series of studies measuring respondents’ error levels to tasks at
different levels of complexity. Also, it is important to measure the degree of correspondence between
the experimental tasks and the actual market behavior, choice experiments are intended to simulate.
Such information is critical for correct trade-offs between design efficiency, measured here, and survey
effectiveness, measured in the marketplace.

The purpose of this article is to demonstrate the important advantages of a flexible computerized search
in generating efficient choice designs. The proposed adaptation of the modified Fedorov algorithm solves
many of the practical problems involved in building choice designs, thus enabling more researchers to
conduct choice experiments. Nevertheless, we want to emphasize that it does not preclude traditional
design skills; they remain critical in determining the model specification and in assessing the choice
designs produced by the computerized search.
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Appendix

SAS/IML Code for the Proposed Choice Design Algorithm

The SAS code shows a simple implementation of the algorithm. In this example, the program finds
a design with 27 choice sets and three alternatives per set. There are four attributes (brand, price,
container, and flavor) each with three levels. A design is requested in which all main effects, the two-way
interactions between brand and the other attributes, the two-way interaction between container and
price, and the brand by price by container three-way interaction are estimable. Here, the parameters
are assumed to be zero, but could be easily changed by setting other values.

A computer that evaluated all possible (818!/3127! = 5 x 9 x 10'2%) designs would take numerous
billion years. Instead, we use the modified Fedorov algorithm, which uses the following heuristic: find
the best exchange for each design point given all of the other candidate points. With 81 candidate
alternatives, 27 choice sets, 3 alternatives per set, (say) 3 internal iterations, and 2 random starts,
81 x 27 x 3 x 3 x 2 = 39,366 exchanges must be evaluated. The algorithm tries to maximize |X'X]|
rather than minimizing |(X’X)~!| (note that |(X'X)™!| = |X’X]|™!). Each exchange requires then the
evaluation of a matrix determinant, |X'X|. Fortunately, we do not have to evaluate this determinant
from scratch for each exchange since |X'X + x'x| = |X'X||I + x(X'X)"!x/| (Mardia et al. 1979).
Each exchange evaluates a quadratic form, and in this example with three alternatives per choice set,
the determinant of a 3 x 3 matrix. It should also be noted that this algorithm can handle a rank-
deficient covariance matrix by operating on |X'X + I¢|, where € is a small number. This eliminates
zero determinants so that less-than-full-rank codings and singular starting designs are not a problem.
With these short cuts, one iteration required about 30 seconds on an ordinary 486 PC, implying that
the algorithm is reasonable for many marketing contexts.

This appendix is provided simply to show the algorithm for those who might wish to implement or better
understand it. If you want to use the algorithm, use the %ChoicEff autocall SAS macro documented
in Kuhfeld (2005) starting on pages 597 and 600. See page 363 for an example. The %ChoicEff is
much larger and more full-featured than the code shown in this appendix.
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[ K Initial Set Up——————————————————————————— */
%let beta =00000000 /* 8 main effects */
00000000 /* brand x price, brand x container,*/
0000 /* brand x flavor, */
0000 /* price x container interactions  */
000000O0O0O0; /* brand x price x container */
%let nalts = 3; /* Number of alternatives */
%let nsets = 27; /* Number of choice sets */
proc plan ordered; /* Create candidate alternatives */

factors brand=3 price=3 contain=3 flavor=3 / noprint;
output out=candidat;
run;

proc transreg design data=candidat; /* Code the candidate alternatives */
model class(brand price contain flavor brand*price brand*contain
brand*flavor contain*price brand*contain*price / effects);
output out=tmp_cand;
run;

proc contents p data=tmp_cand(keep=&_trgind); run;

[ K Begin Efficient Design Search---------———-———-——————- */
proc iml; file log;
use tmp_cand(keep=&_trgind) ; /* Identify candidate set for input */
read all into cand; /* Read candidate set into IML */
utils = exp(cand * {&betal}‘); /* exp(alternative utilities) */
np = 1 / ncol(cand); /* Exponent applied to determinant */
imat = i(&nalts); /* Identity matrix */
nobs = &nsets # &nalts; /* Total n of alts in choice design */
ncands = nrow(cand); /* Number of candidates */
fuzz = i(ncol(cand)) # 1le-8; /* X‘X ridge factor, avoid singular */
start center(x, exputil); /* Probability centering subroutine */
do i = 1 to nrow(x) / &nalts; /* Do for each choice set */
k = (i-1)#&nalts+1 : i#&nalts; /* Choice set index vector */
p = exputillk,]; p = p / sum(p); /* Probability of choice */
z = x[k,]; /* Get choice set */
xlk,] = (z - j(&nalts,1,1) =* /* Center choice set, absorb p’s */
p¢ * z) # sqrt(p);

end;

finish;
[H——mmm Create Designs With Different Random Starts--------------- */
do desnum = 1 to 2; /* Number of designs to create */
indvec = ceil(ncands * /* Random index vector (indvec) */
uniform(j (1, nobs, 0))); /* into candidates */
des = cand[indvec,]; /* Initial random design */
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run center(des, utils([indvec,]); /* Probability center */
currdet = det(des‘ * des); /* Initial determinants, eff’s */
maxdet = currdet; oldeff = currdet ## np; fineff = oldeff;

if fineff <= 0 then err = .; else err = 1 / fineff;

put /// +8 ’Design  Iteration D-Efficiency D-Error’ /

+8 1——

[ K mm Internal Iterations—--—----——--———-———————————- */
do iter = 1 to 8 until(converge); /* Iterate until convergence */
[ K== Consider Replacing Each Alternative in the Design--------- */
do desi = 1 to nobs; /* Process each alt in design */
ind = ceil(desi / &nalts); /* Choice set number */
ind = (ind - 1) # &nalts + 1 /* Choice set index vector */
ind # &nalts;
besttry = desl[ind,]; /* Store current choice set */
des[ind,] = 0; /* Remove current choice set */
do i =0 to 100 until(d ## np > 1e-8);
xpx = des‘*des + i#ixfuzz; /* X‘X, ridged if necessary */
d = det(xpx); /* Determinant, if O then X‘X will %/
end; /* be ridged to make it nonsingular */
xpxinv = inv(xpx); /* Inverse (all but current set) */
indcan = indvec[,ind]; /* Indvec for this choice set */
alt = mod(desi-1, &nalts) + 1;/% Alternative number */
[H—mmmm Loop Over All of the Candidates--—-------——---——-- */
do candi = 1 to ncands; /* Consider each candidate */
indcan[,alt] = candi; /* Update indvec for this candidate */
tryit = candl[indcan,]; /* Candidate choice set */
run center(tryit, /* Probability center */
utils[indcan,]);
currdet = d * /* Update determinant */
det(imat + tryit * xpxinv * tryit‘);
[H———mm Store Results When Efficiency Improves----------- */
if currdet > maxdet then do;
maxdet = currdet;/* Best determinant so far */
indvec[,desi] = candi; /* Indvec of best design so far */
besttry = tryit; /* Best choice set so far */
end;
end;
des[ind,] = besttry; /* Update design with new choice set*/
end;
[H=—mm Evaluate Efficiency/Convergence, Report Results-—--------- */
neweff = maxdet ## np; /* Newest efficiency */
converge = ((neweff - oldeff) / /* Less than 1/2 percent */
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max(oldeff,1e-8) < 0.005); /* improvement means convergence */
oldeff = neweff; /* Store for use in next iteration */
fineff = det(des‘ * des) ## np; /* Efficiency at end of iteration  */
if fineff <= 0 then err = .; else err = 1 / fineff;
put +12 iter 10. +6 fineff bestl2. +2 err bestl2.;
end;
/*-—--Store Efficiency, Index of Efficient Design, Covariance Matrix—----x*/
final = final // (shape(desnum || fineff, nobs, 2) || indvec‘);
cov = cov // (shape(desnum || fineff, ncol(des), 2) ||
sweep(des‘ * des, 1 : ncol(des)));
end;
[ Write Results to SAS Data Sets—————-———————————————- */
create cov var({design effic &_trgind}); append from cov;
create results var({design effic index }); append from final;
quit;
/K mm Store Actual Design Points, Using Indices from IML------------- */
data results; set results; i=index; n=_n_; set candidat point=i; run;
proc sort; by descending effic n; run; /* Put most eff design first */

proc print; run; /* Print designs, best to worst */
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Discrete Choice

Warren F. Kuhfeld

Abstract

Discrete choice modeling is a popular technique in marketing research, transportation, and other areas,
and is used for understanding people’s stated choice among alternatives. We will discuss designing
a choice experiment, preparing the questionnaire, inputting and processing the data, performing the
analysis, and interpreting the results.*

Introduction

This chapter shows you how to use the multinomial logit model (McFadden, 1974; Manski and McFad-
den, 1981; Louviere and Woodworth, 1983) to investigate consumer’s stated choices. The multinomial
logit model is an alternative to full-profile conjoint analysis and is extremely popular in marketing
research (Louviere, 1991; Carson et. al., 1994). Discrete choice, using the multinomial logit model,
is sometimes referred to as “choice-based conjoint.” However, discrete choice uses a different model
from full-profile conjoint analysis. Discrete choice applies a nonlinear model to aggregate choice data,
whereas full-profile conjoint analysis applies a linear model to individual-level rating or ranking data.

Several examples are discussed.” There is also a very basic introductory example starting on page 73
in the introduction to experimental design chapter, which starts on page 47. Be sure to read the design
chapter before proceeding to the examples in this chapter.

e The candy example (page 144) is a first, very simple example that discusses the multinomial logit
model, the input data, analysis, results, and computing probability of choice.

e The fabric softener example (page 156) is a small, somewhat more realistic example that dis-
cusses designing the choice experiment, randomization, generating the questionnaire, entering
and processing the data, analysis, results, probability of choice, and custom questionnaires.

e The first vacation example (page 184) is a larger, symmetric example that discusses designing the
choice experiment, blocks, randomization, generating the questionnaire, entering and processing
the data, coding, and alternative-specific effects.

*Copies of this chapter (TS-722F) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote_stat.html#market. This document would not be possible without the
help of Randy Tobias who contributed to the discussion of experimental design and Ying So who contributed to the
discussion of analysis. Randy Tobias wrote PROC FACTEX and PROC OPTEX. Ying So wrote PROC PHREG. Warren
F. Kuhfeld wrote PROC TRANSREG and the macros.

TAll of the example data sets are artificially generated.
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The second vacation example (page 229) is a larger, asymmetric example that discusses designing
the choice experiment, blocks, blocking an existing design, interactions, generating the question-
naire, generating artificial data, reading, processing, and analyzing the data, aggregating the data
to save time and memory.

The brand choice example (page 261) is a small example that discusses the processing of aggregate
data, the mother logit model, and the likelihood function.

The food product example (page 283) is a medium sized example that discusses asymmetry,
coding, checking the design to ensure that all effects are estimable, price cross effects, availability
cross effects, interactions, overnight design searches, modeling subject attributes, and designs
when balance is of primary importance.

The drug allocation example (page 345) is a small example that discusses data processing for
studies where respondents potentially make multiple choices.

The chair example (page 363) is a purely generic-attributes study, and it uses the %ChoicEff
macro to create experimental designs.

The next example section (page 383) shows how to improve an existing design and augmenting a
design with some choice sets are fixed in advance.

The last example section (page 397) discusses partial-profile designs and designs with restrictions.

Also see page 700 for an example of a choice design with a complicated set of restrictions.

chapter relies heavily on a number of macros and procedures.

We use the %MktRuns autocall macro to suggest design sizes. See page 740 for documentation.

We use the %MktEx autocall macro to generate most of our experimental designs. See page 667
for documentation.

We use the %MktEval autocall macro to evaluate our designs. See page 663 for documentation.

We use the %ChoicEff autocall macro to generate certain specialized choice designs. We also use
it to evaluate our choice designs before collecting data. See page 600 for documentation.

We use the autocall macros %MktKey, %MktRoll, %MktMerge, and %MktAllo to prepare the data
and design for analysis. See pages 710, 735, 723, and 632 for documentation.

We use PROC TRANSREG to do all of our design coding.

We use the %PhChoice autocall macro to customize our printed output. This macro uses PROC
TEMPLATE and ODS (Output Delivery System) to customize the output from PROC PHREG,
which fits the multinomial logit model. See page 748 for documentation.

The %MktBal macro can be used to make perfectly balanced designs. See page 635 for documen-
tation.

The %MktBlock macro can be used to block a linear or choice design. See page 638 for documen-
tation.

The %MktDups macro can be used to search for duplicate runs or choice sets. See page 655 for
documentation.
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e The /MktLab macro can be used to assign different variable names, labels and levels to experi-
mental designs and to add an intercept. See page 712 for documentation.

e The %MktOrth macro can be used to list orthogonal experimental designs that the %4MktEx macro
can produce. See page 725 for documentation.

e The %MktPPro macro can be used to make certain partial-profile choice designs. See page 731 for
documentation.

All of these macros are distributed with SAS 9.1 as autocall macros (see page 597 for more infor-
mation on autocall macros), however, you should get the latest versions of the macros from the web
http://support.sas.com/techsup/tnote/tnote_stat.html#market.

Experimental Design

Experimental design is a fundamental component of choice modeling. A discrete choice study uses
experimental design to create sets of products, and subjects choose a product from each set. Often, the
most challenging part of the entire study is making the design. There are many examples of making
choice designs in this chapter. Before you read them, be sure to read the design chapter beginning on
page 47. As you become more comfortable with the ideas in that chapter, you should also look at the
other two design chapters beginning on pages 99 and 121.

Customizing the Multinomial Logit Output

The multinomial logit model for discrete choice experiments is fit using the SAS/STAT procedure
PHREG (proportional hazards regression), with the ties=breslow option. The likelihood function of
the multinomial logit model has the same form as a survival analysis model fit by PROC PHREG.
The output from PROC PHREG is primarily designed for survival-analysis studies. Before we fit the
multinomial logit model with PROC PHREG, we can customize the output to make it more appropriate
for choice experiments. We will use the autocall macro %PhChoice macro. See page 597 for information
on autocall macros. You can run the following macro to customize PROC PHREG output.

%phchoice (on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from
PROC PHREG. Running this code edits the templates and stores copies in sasuser. These changes
will remain in effect until you delete them, so typically, you only have to run this macro once. Note
that these changes assume that each effect in the choice model has a variable label associated with
it, so there is no need to print variable names. If you are coding with PROC TRANSREG, this will
usually be the case. To return to the default output from PROC PHREG, run the following macro.

%phchoice (off)

See page 748 for more information on the %PhChoice macro.
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Candy Example

We begin with a very simple introductory example. In this example, we will discuss the multinomial
logit model, data input and processing, analysis, results, interpretation, and probability of choice. Many
aspects of this example, the experimental design in particular, are simpler than almost all realistic choice
studies. Still, it is useful to start with a simple choice study with no experimental design issues to
consider. In this example, each of ten subjects was presented with eight different chocolate candies
and asked to choose one. The eight candies consist of the 23 combinations of dark or milk chocolate,
soft or chewy center, and nuts or no nuts. Each subject saw all eight candies and made one choice.
Experimental choice data such as these are typically analyzed with a multinomial logit model.

The Multinomial Logit Model

The multinomial logit model assumes that the probability that an individual will choose one of the m
alternatives, ¢;, from choice set C' is

ep(U(e)
7 exp(U(c)))

exp(x;3)

p(ci|C) = ST exp(x;8)

where x; is a vector of alternative attributes and 3 is a vector of unknown parameters. U(¢;) = x;3
is the utility for alternative ¢;, which is a linear function of the attributes. The probability that an
individual will choose one of the m alternatives, c;, from choice set C' is the exponential of the utility
of the alternative divided by the sum of all of the exponentiated utilities.

There are m = 8 attribute vectors in this example, one for each alternative. Let x = (Dark/Milk,
Soft/Chewy, Nuts/No Nuts) where Dark/Milk = (1 = Dark, 0 = Milk), Soft/Chewy = (1 = Soft, 0 =
Chewy), Nuts/No Nuts = (1 = Nuts, 0 = No Nuts). The eight attribute vectors are

x1 =(000) (Milk, Chewy, No Nuts)
x2=(001) (Milk, Chewy, Nuts )
x3=(010) (Milk, Soft, No Nuts)
x4 =(011) (Milk, Soft, Nuts )

x5 =(100) (Dark, Chewy, No Nuts)
x6=(101) (Dark, Chewy, Nuts )
x7=(110) (Dark, Soft, No Nuts)
xg=(111) (Dark, Soft, Nuts )

Say, hypothetically that 3 = (4 —2 1). That is, the part-worth utility for dark chocolate is 4, the
part-worth utility for soft center is -2, and the part-worth utility for nuts is 1. The utility for each of
the combinations, x;3, would be as follows.

U(Milk, Chewy, No Nuts) = 0x4 + 0x-2 + 0x1 = 0

U(Milk, Chewy, Nuts ) = 0x4 + 0x-2 + 1x1 = 1
U(Milk, Soft, No Nuts) = 0x4 4+ 1x-2 + 0x1 = -2
U(Milk, Soft, Nuts ) = 0x4 + 1x-2 + Ix1 = -1
U(Dark, Chewy, No Nuts) I1x4 + 0x-2 4+ 0x1 = 4
U(Dark, Chewy, Nuts ) = 1x4 4+ 0x-2 4+ 1x1 = 5
U(Dark, Soft, No Nuts) = 1x4 4+ 1x-2 + 0x1 = 2
U(Dark, Soft, Nuts ) = 1x4 + 1x-2 4+ 1x1 = 3
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The denominator of the probability formula, 377" exp(x;3), is exp(0) +exp(1) +exp(—2) +exp(—1) +
exp(4) + exp(5) + exp(2) + exp(3) = 234.707. The probability that each alternative is chosen,
exp(xi3)/ 2 L1 exp(x;0), is

p(Milk, Chewy, No Nuts) = exp(0) / 234.707 = 0.004
p(Milk, Chewy, Nuts ) = exp(l) /234707 = 0.012
p(Milk, Soft, No Nuts) = exp(-2) / 234.707 = 0.001
p(Milk, Soft, Nuts ) = exp(-1) / 234.707 = 0.002
p(Dark, Chewy, No Nuts) = exp(4) / 234.707 = 0.233
p(Dark, Chewy, Nuts ) = exp(b) / 234.707 = 0.632
p(Dark, Soft, No Nuts) = exp(2) / 234.707 = 0.031
p(Dark, Soft, Nuts ) — exp(3) /234707 = 0.086

Note that even combinations with a negative or zero utility have a nonzero probability of choice.
Also note that adding a constant to the utilities will not change the probability of choice, however
multiplying by a constant will.

Probability of choice is a nonlinear and increasing function of utility. The following plot shows the
relationship between utility and probability of choice for this hypothetical situation.

data x;
dou=-2to 5 by 0.1;
p = exp(u) / 234.707;
output;
end;
run;
proc gplot;
title h=1 ’Probability of Choice as a Function of Utility’;
plot p * u;

symboll i=join;
run; quit;

Probability of Choice as a Function of Utility

06 —
05 —
03 —
02

0.1

0.0
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This plot shows the function exp(—2) to exp(5), scaled into the range zero to one, the range of prob-
ability values. For the small negative utilities, the probability of choice is essentially zero. As utility
increases beyond two, the function starts rapidly increasing.

In this example, the chosen alternatives are x5, Xg, X7, X5, X2, Xg, X2, Xg, X6, Xg. Alternative xo was
chosen 2 times, x5 was chosen 2 times, xg was chosen 5 times, and x7 was chosen 1 time. The choice
model likelihood for these data is the product of ten terms, one for each choice set for each subject.
Each term consists of the probability that the chosen alternative is chosen. For each choice set, the
utilities for all of the alternatives enter into the denominator, and the utility for the chosen alternative
enters into the numerator. The choice model likelihood for these data is

Lo — exp(xsB)  exp(xef)  exp(xsB)  exp(xsB)
Shien8)|  [SiiewtB)  [SiiewxB)] [T ewx;s)|
exp(x2f)  exp(xef)  exp(xef)  exp(xef)

Siiep(x8)]  |[SiewtgB)|  [Siiiep8)| [T ewx8)]
exp(x603) exp(x60)
)
exp((2x2 + 2x5 + 5x¢ + x7)3)
(3 exp(;8)]

The Input Data

The data set consists of one observation for each alternative of each choice set for each subject. (A
typical choice study has more than one choice set per person. This first example only has one choice
set to help keep it simple.) All of the chosen and unchosen alternatives must appear in the data set.
The data set must contain variables that identify the subject, the choice set, which alternative was
chosen, and the set of alternatives from which it was chosen. In this example, the data set contains
10 x 1 x 8 = 80 observations: 10 subjects each saw 1 choice set with 8 alternatives.

Typically, two variables are used to identify the choice sets, subject ID and choice set within subject.
In this simple case where each subject only made one choice, the choice set variable is not necessary.
However, we use it here to illustrate the general case. The variable Subj is the subject number, and Set
identifies the choice set within subject. The chosen alternative is indicated by c=1, which means first
choice. All second and subsequent choices are unobserved, so the unchosen alternatives are indicated
by c¢=2, which means that all we know is that they would have been chosen after the first choice.
Both the chosen and unchosen alternatives must appear in the input data set since both are needed to
construct the likelihood function. The c=2 observations enter into the denominator of the likelihood
function, and the c=1 observations enter into both the numerator and the denominator of the likelihood
function. In this input DATA step, the data for four alternatives appear on one line, and all of the
data for a choice set of eight alternatives appear on two lines. The DATA step shows data entry in
the way that requires the fewest programming statements. Each execution of the input statement
reads information about one alternative. The @@ in the input statement specifies that SAS should not
automatically go to a new input data set line when it reads the next row of data. This specification
is needed here because each line in the input data set contains the data for four output data set rows.
The data from the first two subjects is printed.
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title ’Choice of Chocolate Candies’;

data chocs;

input Subj ¢ Dark Soft Nuts QQ;

Set = 1;

datalines;
12000
11100
22000
22100
32000
32100
42000
41100
52000
52100
62000
62100
72000
72100
82000
82100
92000
92100
102000
102100

I

12011
12111
22011
22111
32011
32111
42011
42111
52011
52111
62011
62111
72011
72111
82011
82111
92011
92111
102011

12010

12001
12101
22001
21101
32001
32101
42001
42101

12110
22010

22110
32010
31110
42010
42110

52010

51001
52101
62001
61101
71001
72101
82001
81101
92001
91101
102001
101101

52110
62010

62110
72010
72110
82010
82110

92010

92110
102010

102111

102110

proc print data=chocs noobs;

2;
var subj set c dark soft nuts;

where subj <

run;

Choice of Chocolate Candies

Set C Dark Soft Nuts

Subj
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These next steps illustrate a more typical form of data entry. The experimental design is stored in a
separate data set from the choices and is merged with the choices as the data are read, which produces
the same results as the preceding steps. The process of merging the experimental design and the data
is explicitly illustrated with a DATA step program. In practice, and in all of the other examples, we
use the %MktMerge macro to do this.

title ’Choice of Chocolate Candies’;

* Alternative Form of Data Entry;

data combos; /* Read the design matrix. */
input Dark Soft Nuts;
datalines;
000
001
010
011
100
101
110
111
data chocs; /* Create the data set. */
input Choice @@; drop choice; /* Read the chosen combo num. */
Subj = _n_; Set = 1; /* Store subj, choice set num. */
do i =1 to 8; /* Loop over alternatives. */
c =2 - (i eq choice); /* Designate chosen alt. */
set combos point=i; /* Read design matrix. */
output; /* Output the results. */
end;
datalines;

5675262666

b

The variable Choice is the number of the chosen alternative. For each choice set, each of the eight
observations in the experimental design is read. The point= option on the set statement is used to
read the ith observation of the data set Combos. When i (the alternative index) equals Choice (the
number of the chosen alternative), the logical expression (i eq choice) equals 1; otherwise it is 0.
The statement ¢ = 2 - (i eq choice) sets ¢ to 1 (two minus one) when the alternative is chosen
and 2 (two minus zero) otherwise. All eight observations in the Combos data set are read 10 times, once
per subject. The resulting data set is the same as the one we created previously. As we mentioned
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previously, in all of the remaining examples, we will simplify this process by using the %MktMerge macro
to merge the design and data. The basic logic underlying this macro is shown in the preceding step.
The number of a chosen alternative is read, then each alternative of the choice set is read, the chosen
alternative is flagged (c = 1), and the unchosen alternatives are flagged (¢ = 2). One observation
per choice set per subject is read from the input data stream, and one observation per alternative per
choice set per subject is written.

Choice and Survival Models

In SAS, the multinomial logit model is fit with the SAS/STAT procedure PHREG (proportional hazards
regression), with the ties=breslow option. The likelihood function of the multinomial logit model has
the same form as a survival-analysis model fit by PROC PHREG.

In a discrete choice study, subjects are presented with sets of alternatives and asked to choose the most
preferred alternative. The data for one choice set consist of one alternative that was chosen and m — 1
alternatives that were not chosen. First choice was observed. Second and subsequent choices were not
observed; it is only known that the other alternatives would have been chosen after the first choice. In
survival analysis, subjects (rats, people, light bulbs, machines, and so on) are followed until a specific
event occurs (such as failure or death) or until the experiment ends. The data are event times. The
data for subjects who have not experienced the event (such as those who survive past the end of a
medical experiment) are censored. The exact event time is not known, but it is known to have occurred
after the censored time. In a discrete choice study, first choice occurs at time one, and all subsequent
choices (second choice, third choice, and so on) are unobserved or censored. The survival and choice
models are the same.

Fitting the Multinomial Logit Model

The data are now in the right form for analysis. To fit the multinomial logit model, use PROC PHREG
as follows.
proc phreg data=chocs outest=betas;

strata subj set;

model c*xc(2) = dark soft nuts / ties=breslow;

label dark = ’Dark Chocolate’ soft = ’Soft Center’

nuts = ’With Nuts’;
run;

The data= option specifies the input data set. The outest= option requests an output data set called
Betas with the parameter estimates. The strata statement specifies that each combination of the
variables Set and Subj forms a set from which a choice was made. Each term in the likelihood
function is a stratum. There is one term or stratum per choice set per subject, and each is composed
of information about the chosen and all the unchosen alternatives.

In the left side of the model statement, you specify the variables that indicate which alternatives were
chosen and not chosen. While this could be two different variables, we will use one variable c to
provide both pieces of information. The response variable ¢ has values 1 (chosen or first choice) and
2 (unchosen or subsequent choices). The first ¢ of the cxc(2) in the model statement specifies that
¢ indicates which alternative was chosen. The second c specifies that c¢ indicates which alternatives
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were not chosen, and (2) means that observations with values of 2 were not chosen. When c is set up
such that 1 indicates the chosen alternative and 2 indicates the unchosen alternatives, always specify
cxc(2) on the left of the equal sign in the model statement. The attribute variables are specified after
the equal sign. Specify ties=breslow after a slash to explicitly specify the likelihood function for the
multinomial logit model. (Do not specify any other ties= options; ties=breslow specifies the most
computationally efficient and always appropriate way to fit the multinomial logit model.) The label
statement is added since we are using a template that assumes each variable has a label.

Note that the cxc(n) syntax allows second choice (c=2) and subsequent choices (c=3, c=4, ...) to be
entered. Just enter in parentheses one plus the number of choices actually made. For example, with
first and second choice data specify cxc(3). Note however that some experts believe that second and
subsequent choice data are much less reliable than first choice data.

Multinomial Logit Model Results

The output is shown next. Recall that we used ¥%phchoice(on) on page 143 to customize the output
from PROC PHREG.

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK . CHOCS

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 80
Number of Observations Used 80

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

gD WwN -
g W
e
o 0 00 0 00
e e S
N NN NN
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Pr > ChiSq

0.0795
0.0371

6 6 1 8 1
7 7 1 8 1
8 8 1 8 1
9 9 1 8 1
10 10 1 8 1
Total 80 10
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square
Dark Chocolate 1 1.38629 0.79057 3.0749
Soft Center 1 -2.19722 1.05409 4.3450
With Nuts 1 0.84730 0.69007 1.5076

0.2195

The first table, Model Information, contains the input data set name, dependent variable name,
censoring information, and tie handling option.

The Summary of Subjects, Sets, and Chosen and Unchosen Alternatives table is printed by de-
fault and should be used to check the data entry. In general, there are as many strata as there are
combinations of the Subj and Set variables. In this case, there are ten strata. Each stratum must be
composed of m alternatives. In this case, there are eight alternatives. The number of chosen alterna-
tives should be 1, and the number of unchosen alternatives is m — 1 (in this case 7). Always check
the summary table to ensure that the data are arrayed correctly.
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The Convergence Status table shows that the iterative algorithm successfully converged. The next
tables, Model Fit Statistics and Testing Global Null Hypothesis: BETA=0 contain the overall
fit of the model. The -2 LOG L statistic under With Covariates is 28.727 and the Chi-Square statistic
is 12.8618 with 3 df (p=0.0049), which is used to test the null hypothesis that the attributes do not
influence choice. At common alpha levels such as 0.05 and 0.01, we would reject the null hypothesis of
no relationship between choice and the attributes. Note that 41.589 (-2 LOG L Without Covariates,
which is -2 LOG L for a model with no explanatory variables) minus 28.727 (-2 LOG L With Covariates,
which is -2 LOG L for a model with all explanatory variables) equals 12.8618 (Model Chi-Square, which
is used to test the effects of the explanatory variables).

Next is the Multinomial Logit Parameter Estimates’ table. For each effect, it contains the maximum
likelihood parameter estimate, its estimated standard error (the square root of the corresponding
diagonal element of the estimated variance matrix), the Wald Chi-Square statistic (the square of the
parameter estimate divided by its standard error), the df of the Wald Chi-Square statistic (1 unless the
corresponding parameter is redundant or infinite, in which case the value is 0), and the p-value of the
Chi-Squared statistic with respect to a chi-squared distribution with one df. The parameter estimate
with the smallest p-value is for soft center. Since the parameter estimate is negative, chewy is the more
preferred level. Dark is preferred over milk, and nuts over no nuts, however only the p-value for Soft is
less than 0.05.

Fitting the Multinomial Logit Model, All Levels

It is instructive to perform some manipulations on the data set and analyze it again. These steps will
perform the same analysis as before, only now, coefficients for both levels of the three attributes are
printed. Binary variables for the missing levels are created by subtracting the existing binary variables
from 1.
data chocs2;
set chocs;
Milk = 1 - dark; Chewy = 1 - Soft; NoNuts = 1 - nuts;

label dark = ’Dark Chocolate’ milk = ’Milk Chocolate’
soft = ’Soft Center’ chewy = ’Chewy Center’
nuts = ’With Nuts’ nonuts = ’No Nuts’;

run;

proc phreg data=chocs2;
strata subj set;
model c*c(2) = dark milk soft chewy nuts nonuts / ties=breslow;
run;

Choice of Chocolate Candies
The PHREG Procedure

Model Information

Data Set WORK . CHOCS2
Dependent Variable c
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Stratum
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Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 80
Number of Observations Used 80

Number of Chosen
Set Alternatives Alternatives
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Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089

Wald 8.9275 3 0.0303

153
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Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Milk Chocolate 0 0 . . .
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
Chewy Center 0 0 . . .
With Nuts 1 0.84730 0.69007 1.5076 0.2195
No Nuts 0 0

Now the zero coefficients for the reference levels, milk, chewy, and no nuts are printed. The part-worth
utility for Milk Chocolate is a structural zero, and the part-worth utility for Dark Chocolate is larger
at 1.38629. Similarly, the part-worth utility for Chewy Center is a structural zero, and the part-worth
utility for Soft Center is smaller at -2.19722. Finally, the part-worth utility for No Nuts is a structural
zero, and the part-worth utility for Nuts is larger at 0.84730.

Probability of Choice

The parameter estimates are used next to construct the estimated probability that each alternative
will be chosen. The DATA step program uses the following formula to create the choice probabilities.

i exp(xiB)
PO = S exp(oe )

* Estimate the probability that each alternative will be chosen;

data p;
retain sum O;
set combos end=eof;

* On the first pass through the DATA step (_n_ is the pass
number), get the regression coefficients in B1-B3.
Note that they are automatically retained so that they
can be used in all passes through the DATA step.;

if _n_ = 1 then
set betas(rename=(dark=bl soft=b2 nuts=b3));

keep dark soft nuts p;

array x[3] dark soft nuts;

array b[3] b1-b3;
* For each combination, create x * b;
p = 0;
do j =1 to 3;
p=p + x[jl * bljl;
end;



Candy Example 155

* Exponentiate x * b and sum them up;

p = exp(p);
sum = sum + p;

* Qutput sum exp(x * b) in the macro variable ’&sum’;
if eof then call symput(’sum’,put(sum,bestl12.));
run;

proc format;

value df 1 = ’Dark’ 0 = ’Milk’;
value sf 1 = ’Soft’ 0 = ’Chewy’;
value nf 1 = ’Nuts’ 0 = ’No Nuts’;

run;

* Divide each exp(x * b) by sum exp(x * b);
data p;

set p;

p=p / (&sum);

format dark df. soft sf. nuts nf.;

run;

proc sort;
by descending p;
run;

proc print;
run;

Choice of Chocolate Candies

Obs Dark Soft Nuts P

1 Dark Chewy Nuts 0.50400
2 Dark Chewy No Nuts 0.21600
3 Milk Chewy Nuts 0.12600
4 Dark Soft Nuts 0.05600
5 Milk Chewy No Nuts 0.05400
6 Dark Soft No Nuts 0.02400
7 Milk Soft Nuts 0.01400
8 Milk Soft No Nuts 0.00600

The three most preferred alternatives are Dark /Chewy/Nuts, Dark/Chewy /No Nuts, and Milk/Chewy /Nuts.
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Fabric Softener Example

In this example, subjects are asked to choose among fabric softeners. This example shows all of the
steps in a discrete choice study, including experimental design creation and evaluation, creating the
questionnaire, inputting the raw data, creating the data set for analysis, coding, fitting the discrete
choice model, interpretation, and probability of choice. In addition, custom questionnaires are dis-
cussed. We assume that the reader is familiar with the experimental design issues that are discussed
starting on page 47.

Set Up

The study involves four fictitious fabric softeners Sploosh, Plumbbob, Platter, and Moosey.* Each choice
set consists of each of these four brands and a constant alternative Another. Each of the brands is
available at three prices, $1.49, $1.99, and $2.49. Another is only offered at $1.99. There are 50
subjects, each of which will see the same choice sets. We can use the %MktRuns autocall macro to help
us choose the number of choice sets. All of the autocall macros used in this book are documented
starting on page 597. To use this macro, you specify the number of levels for each of the factors. With
four brands each with three prices, you specify four 3’s (or 3 ** 4).

title ’Choice of Fabric Softener’;

Y%mktruns( 3 3 3 3 )

The output first tells us that we specified a design with four factors, each with three levels. The next
table reports the size of the saturated design, which is the number of parameters in the linear model
based on this design, and suggests design sizes.

Choice of Fabric Softener

Design Summary

Number of
Levels Frequency
3 4

Choice of Fabric Softener

|
©

Saturated
Full Factorial

81

$Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
We picked these silly names so no one would confuse our artificial data with real data.



Fabric Softener Example 157

Some Reasonable Cannot Be
Design Sizes Violations Divided By

9 x 0

18 * 0

12 6 9

15 6 9

10 10 39

11 10 39

13 10 39

14 10 39

16 10 39

17 10 39

* — 100% Efficient Design can be made with the MktEx Macro.

Choice of Fabric Softener

n Design Reference

9 3 **x 4 Fractional-Factorial
18 2 %k 1 3 %k 7 Orthogonal Array

18 3 %% 6 6 *x 1 Orthogonal Array

The output from this macro tells us that the saturated design has nine runs and the full-factorial design
has 81 runs. It also tells us that 9 and 18 are optimal design sizes with zero violations. The macro tells
us that in nine runs, an orthogonal design with 4 three-level factors is available, and in 18 runs, two
orthogonal and balanced designs are available: one with a two-level factor and 7 three-level factors,
and one with 6 three-level factors and a six-level factor. There are zero violations with these designs
because these sizes can be divided by 3 and 3 x 3 = 9. Twelve and 15 are also reported as potential
design sizes, but each has 6 violations. Six times (the 4(4 — 1)/2 = 6 pairs of the four 3’s) 12 and 15
cannot be divided by 3 x 3 = 9. Ideally, we would like to have a manageable number of choice sets for
people to evaluate and a design that is both orthogonal and balanced. When violations are reported,
orthogonal and balanced designs are not possible. While orthogonality and balance are not required,
they are nice properties to have. With 4 three-level factors, the number of choice sets in all orthogonal
and balanced designs must be divisible by 3 x 3 = 9.

Nine choice sets is a bit small. Furthermore, there are no error df. We set the number of choice sets to
18 since it is small enough for each person to see all choice sets, large enough to have reasonable error
df, and an orthogonal and balanced design is available. It is important to understand however that the
concept of number of parameters and error df discussed here applies to the linear design and not to
the choice design. We could use the nine-run design for a discrete choice model and have error df in
the choice model. If we were to instead use this design for a full-profile conjoint (not recommended),
there would be no error df.

To make the code easier to modify for future use, the number of choice sets and alternatives are stored
in macro variables and the prices are put into a format. Our design, in raw form, will have values for
price of 1, 2, and 3. We will use a format to assign the actual prices: $1.49, $1.99, and $2.49. The

§See page 60 for an explanation of linear versus choice designs.



158 TS-722F — Discrete Choice

format also creates a price of $1.99 for missing, which will be used for the constant alternative.

%let n = 18; /* n choice sets x/
%let m = 5; /* m alternative including constant */
%let mml = %eval(&m - 1); /*m - 1 x/
proc format; /* create a format for the price */
value price 1 = ’$1.49° 2 = °$1.99’ 3 = °$2.49° . = ’$1.99°;
run;

Designing the Choice Experiment

In the next steps, an efficient experimental design is created. We will use an autocall macro %MktEx
to create most of our designs. (All of the autocall macros used in this book are documented starting
on page 597.) When you invoke the %MktEx macro for a simple problem, you only need to specify the
numbers of levels, and number of runs. The macro does the rest. Here is the %MktEx macro usage for
this example:

Ymktex(3 **x 4, n=&n)

The syntax 'n ** m’ means m factors each at n levels. This example has four factors, x1 through x4,

all with three levels. A design with 18 runs is requested. The n= option specifies the number of runs.
These are all the options that are needed for a simple problem such as this one. However, throughout
this book, random number seeds are explicitly specified with the seed= option so that the results will
be reproducible.¥ Here is the macro call with the random number seed specified:

%mktex (3 ** 4, n=&n, seed=17)

Here are the results.

Choice of Fabric Softener
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
Start 100.0000 100.0000 Tab
End 100.0000

By specifying a random number seed, results should be reproducible within a SAS release for a particular operating
system and for a particular version of the macro. However, due to machine and macro differences, some results may not
be exactly reproducible everywhere. For most orthogonal and balanced designs, the results should be reproducible. When
computerized searches are done, it is likely that you will not get the same design as the one in the book, although you
would expect the efficiency differences to be slight.
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Choice of Fabric Softener
The OPTEX Procedure
Class Level Information

Class Levels Values

x1 3 123
x2 3 123
x3 3 123
x4 3 123

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.7071

Here is the design.

proc print; run;

Choice of Fabric Softener

Obs x1 X2 x3 x4

1 1 1 1 1
2 1 1 2 2
3 1 2 1 3
4 1 2 3 1
5 1 3 2 3
6 1 3 3 2
7 2 1 1 3
8 2 1 3 1
9 2 2 2 2
10 2 2 3 3
11 2 3 1 2
12 2 3 2 1
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13 3 1 2 3
14 3 1 3 2
15 3 2 1 2
16 3 2 2 1
17 3 3 1 1
18 3 3 3 3

The macro found a perfect, orthogonal and balanced, 100% D-efficient design consisting of 4 three-level
factors, x1-x4. The levels are the integers 1 to 3. For this problem, the macro generated the design
directly. For other problems, the macro may have to use a computerized search. See page 191 for more
information on how the %MktEx macro works.

Examining the Design

You should run basic checks on all designs, even orthogonal designs such as this one. You can use the
%MktEval macro to display information about the design. The macro first prints a matrix of canonical
correlations between the factors. We hope to see an identity matrix (a matrix of ones on the diagonal
and zeros everywhere else) which means the design is orthogonal. Next, the macro prints all one-way
frequencies for all attributes, all two-way frequencies, and all n-way frequencies (in this case four-way
frequencies). We hope to see equal or at least nearly equal one-way and two-way frequencies, and we
want to see that each combination occurs only once.

Ymkteval;

Choice of Fabric Softener
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

x1 X2 x3 x4
x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 0 0 1

Choice of Fabric Softener
Summary of Frequencies
There are O Canonical Correlations Greater Than 0.316

Frequencies
x1 6 6 6
x2 6 6 6
x3 6 6 6
x4 6 6 6
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xl x2 222222222
x1l x3 222222222
xl x4 222222222
x2 x3 222222222
x2 x4 222222222
x3 x4 222222222
N-Way 111111111111 111111

A canonical correlation is the maximum correlation between linear combinations of the coded factors
(see page 70). All zeros off of the diagonal show that this design is orthogonal for main effects. If any
off-diagonal canonical correlations had been greater than 0.316 (r? > 0.1), the macro would have listed
them in a separate table. The last title line tells you that none of them was this large. For nonorthogonal
designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking
at the variance matrix (with examine=v, discussed on pages 196, 243, and 683). It just provides a quick
and more-compact picture of the correlations between the factors. The variance matrix is sensitive to
the actual model specified and the actual coding. The canonical-correlation matrix just tells you if
there is some correlation between the main effects. In this case, there are no correlations.

The equal one-way frequencies show you that this design is balanced. The equal two-way frequencies
show you that this design is orthogonal. The n-way frequencies, all equal to one, show there are no
duplicate profiles. This is a perfect design for a main-effects model.

You should always check the n-way frequencies to ensure that you do not have duplicates. For this
situation for example, a 100% D-efficient design exists where each run appears twice. It consists of two
copies of the fractional-factorial design 3% in 9 runs. When you get duplicates, specify options=nodups
in the %MktEx macro, or sometimes you can just change the random number seed. Most designs will
not have duplicates, so it is better to specify options=nodups only after you have found a design with
duplicates. The no-duplicates constraint greatly slows down the algorithm.

The %MktEval macro produces a very compact summary of the design, hence some information, for
example the levels to which the frequencies correspond, is not shown. You can use the print=freqs
option to get a less compact and more detailed display.

Jmkteval (data=design, print=freqs)

Here are some of the results.

Choice of Fabric Softener
Frequencies

Effects Frequency x1 x2 x3 x4

x1 6 1
6 2
6 3

x2 6 . 1
6
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The Randomized Design and Postprocessing

The design we just looked at and examined was in the default output data set, Design. The Design data
set is sorted, and often the first row consists entirely of ones. For these reasons, you should actually use
the randomized design. In the randomized design, the choice sets are presented in a random order and
the levels have been randomly reassigned. Neither of these operations affects the design D-efficiency,
balance, or orthogonality. The macro automatically randomizes the design and stores the results in a
data set called Randomized. The next steps assign formats and labels and store the results in a SAS
data set sasuser.Softener LinDes. It is important to store the design in a permanent SAS data set
or in some other permanent form so that it will be available for analysis after the data are collected.

Every SAS data set has a two-level name of the form libref.filename. You can always reference
a file with its two-level name. However, you can also use a one-level name, and then that data set
is stored in temporary SAS data library with a libref of Work. Temporary data sets are deleted at
the end of your SAS session, so any data that must be saved needs to be stored in a permanent SAS
data set. The libref called sasuser is automatically available for permanent storage in most SAS
installations. Furthermore, you can make your own libref using a libname statement. You may wish
to create a separate library for each project. The latter approach of using a libname statement is
usually preferable, but for our purposes, mainly to avoid discussing issues of host-specific paths and
file names, we will use sasuser. See your BASE SAS documentation and SAS Companion for your
operating system for more information on data libraries, libref, and libname.

data sasuser.Softener_LinDes;
set randomized;
format x1-x&mml price.;
label x1 = ’Sploosh’ x2 = ’Plumbbob’ x3 = ’Platter’ x4 = ’Moosey’;
run;
This is the final design.
proc print data=sasuser.Softener_LinDes label; /* print final design */

title2 ’Efficient Design’;
run;

Choice of Fabric Softener
Efficient Design

Obs Sploosh Plumbbob Platter Moosey

1 $1.99 $1.99 $1.99 $2.49
2 $2.49 $1.49 $1.49 $1.99
3 $1.49 $2.49 $2.49 $1.49
4 $2.49 $1.99 $2.49 $1.99
5 $1.49 $1.49 $1.49 $2.49
6 $1.49 $2.49 $1.99 $1.99
7 $2.49 $1.99 $1.99 $1.49
8 $2.49 $2.49 $1.49 $1.49
9 $1.99 $1.49 $2.49 $1.49
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10 $1.49 $1.49 $1.99 $1.49
11 $1.99 $2.49 $1.49 $2.49
12 $1.49 $1.99 $1.49 $1.99
13 $1.99 $1.99 $1.49 $1.49
14 $1.49 $1.99 $2.49 $2.49
15 $2.49 $1.49 $2.49 $2.49
16 $1.99 $2.49 $2.49 $1.99
17 $1.99 $1.49 $1.99 $1.99
18 $2.49 $2.49 $1.99 $2.49

From a Linear Design to a Choice Design

The randomized design is now in a useful form for making the questionnaire, which is discussed in the
next section. However, it is not in the final choice-design form that is needed for analysis and for the
last evaluation that we should perform before collecting data. In this section, we convert our linear
design to a choice design and evaluate its goodness for a choice model.

Our linear design, which we stored in a permanent SAS data set, sasuser.Softener_LinDes, is ar-
ranged with one row per choice set. For analysis, we need a choice design with one row for each
alternative of each choice set. We call the randomized design a linear design (see page 60) because we
used the %MktEx macro to create it optimizing D-efficiency for a linear model. We will use the macro
%MktRoll to “roll out” the linear design into the choice design, which is in the proper form for analysis.
First, we must create a data set that describes how the design will be processed. We call this data set
the design key.

In this example, we want a choice design with two factors, Brand and Price. Brand has levels Sploosh,
Plumbbob, Plaiter, Moosey, and Another. Price has levels $1.49, $1.99, and $2.49. Brand and Price
are created by different processes. The Price factor will be constructed from the factors of the linear
design matrix. In contrast, there is no Brand factor in the linear design. Each brand is a bin into which
its factors are collected. The variable Brand will be named on the alt= option of the %MktRoll macro
as the alternative variable, so its values will be read directly out of the Key data set. Price will not be
named on the alt= macro option, so its values in the Key data set are variable names from the linear
design data set. The values of Price in the final choice design will be read from the named variables in
the linear design data set. The Price factor in the choice design is created from the four linear design
factors (x1 for Sploosh, x2 for Plumbbob, x3 for Platter, x4 for Moosey, and no attribute for Another,
the constant alternative). Here is how the Key data set is created. The Brand factor levels and the
Price linear design factors are stored in the Key data set.

title2 ’Key Data Set’;

data key;
input Brand $ Price $;
datalines;

Sploosh  x1

Plumbbob x2

Platter x3

Moosey x4

Another

3

proc print; run;
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Choice of Fabric Softener
Key Data Set

Obs Brand Price
1 Sploosh x1

2 Plumbbob x2

3 Platter x3
4 Moosey x4

5 Another

Note that the value of Price for alternative Another in the Key data set is blank (character missing).
The period in the in-stream data set is simply a place holder, used with list input to read both character
and numeric missing data. A period is not stored with the data. Next, we use the %MktRoll macro to
process the design.

Jmktroll (design=sasuser.Softener_LinDes, key=key, alt=brand,
out=sasuser.Softener_ChDes)

The %MktRoll step processes the design=sasuser.Softener LinDes linear design data set using the
rules specified in the key=key data set, naming the alt=brand variable as the alternative name variable,
and creating an output SAS data set called out=sasuser.Softener_ChDes, which contains the choice
design. The input design=sasuser.Softener_LinDes data set has 18 observations, one per choice
set, and the output out=sasuser.Softener_ChDes data set has 5 x 18 = 90 observations, one for each
alternative of each choice set. Here are the first three observations of the linear design data set.

title2 ’Linear Design (First 3 Sets)’;

proc print data=sasuser.Softener_LinDes(obs=3); run;

Choice of Fabric Softener
Linear Design (First 3 Sets)

Obs x1 X2 x3 x4
1 $1.99 $1.99 $1.99 $2.49

2 $2.49 $1.49 $1.49 $1.99
3 $1.49 $2.49 $2.49 $1.49

These observations define the first three choice sets. Here are those same observations, arrayed for
analysis in the choice design data set.

title2 ’Choice Design (First 3 Sets)’;

proc print data=sasuser.Softener_ChDes(obs=15);
format price price.;
id set; by set;
run;
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Choice of Fabric Softener
Choice Design (First 3 Sets)

Set Brand Price
1 Sploosh $1.99
Plumbbob $1.99
Platter $1.99
Moosey $2.49
Another $1.99

2 Sploosh $2.49
Plumbbob $1.49
Platter $1.49
Moosey $1.99
Another $1.99

3 Sploosh $1.49
Plumbbob $2.49
Platter $2.49
Moosey $1.49
Another $1.99

The choice design data set has a choice set variable Set, an alternative name variable Brand, and a
price variable Price. The prices come from the linear design, and the price for Another is a constant
$1.99. Recall that the prices are assigned by the following format.

proc format; /* create a format for the price */
value price 1 = ’$1.49° 2 = °$1.99’ 3 = ’$2.49° . = ’$1.99°;
run;

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%hchoiceff (data=sasuser.Softener_ChDes, init=sasuser.Softener_ChDes (keep=set),
nsets=&n, nalts=&m, beta=zero, intiter=0,
model=class(brand price / zero=’Another’ ’$1.99’)
/ lprefix=0 cprefix=0%str(;)
format price price.)

The %ChoicEff macro has two uses. You can use it to search for an efficient choice design, or you can
use it to evaluate a choice design including designs that were generated using other methods such as
the %MktEx macro. It is this latter use that is illustrated here.

The way you check a design like this is to first name it on the data= option. This will be the candidate
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set that contains all of the choice sets that we will consider. In addition, the same design is named
on the init= option. The full specification is init=sasuser.Softener_ChDes (keep=set). Just the
variable Set is kept. It will be used to bring in just the indicated choice sets from the data= design,
which in this case is all of them. The option nsets=&n specifies that there are &n=18 choice sets,
and nalts=&m specifies that there are &m=>5 alternatives. The option beta=zero specifies that we are
assuming for design evaluation purposes the null hypothesis that all of the betas or part-worth utilities
are zero. You can evaluate the design for other parameter vectors by specifying a list of numbers after
beta=. This will change the variances and standard errors. We also specify intiter=0 which specifies
zero internal iterations. We use zero internal iterations when we want to evaluate an initial design, but
not attempt to improve it. The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Some of these options will be familiar from the previous example. The
specification class(brand price / zero=’Another’ ’$1.99’) names the brand and price variable
as a classification variables and asks for coded variables for every level except > Another’ for brand and
’$1.99’ for price. The levels ’Another’ and ’$1.99° are the reference levels for the two attributes.
In a p-level factor, there are at most p — 1 nonzero parameters.

The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters of
the original variable name should be used as a prefix. This means that the labels are created only from
the level values. For example, Sploosh’ and ’Plumbbob’ are created as labels not ’Brand Sploosh’
and ’Brand Plumbbob’. The cprefix=0 option specifies that when names are created for the binary
variables, zero characters of the original variable name should be used as a prefix. This means that the
names are created only from the level values. The c in cprefix stands for class.

The code following the cprefix= specification is a bit of a trick. The %ChoicEff macro generates a
model statement for PROC TRANSREG using the specified value like this:

model &model;

By adding a semicolon, enclosed in %str( ) and a format statement, we can send a format statement
to the PROC TRANSREG coding step. The semicolon must be in the %str( ) macro function so
that it is passed into the macro and is not treated as the end of the macro specification. The model
specification adds these two statements to PROC TRANSREG in the %ChoicEff macro.

model class(brand price / zero=’Another’ ’$1.99’) / lprefix=0 cprefix=0;
format price price.;

Alternatively, we could have just created a separate data set and added the format statement that way.

Here are the results from this step.

Choice of Fabric Softener
Evaluate the Choice Design

n Name Beta Label

1 Moosey 0 Moosey

2 Platter 0 Platter
3 Plumbbob 0 Plumbbob
4 Sploosh 0 Sploosh
5 _1_49 0 $1.49

6 _2_49 0 $2.49
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Choice of Fabric Softener
Evaluate the Choice Design

Design Iteration D-Efficiency D-Error

1 0 2.342234 0.426943

Choice of Fabric Softener
Evaluate the Choice Design

Final Results

Design 1
Choice Sets 18
Alternatives 5
D-Efficiency 2.342234
D-Error 0.426943

Choice of Fabric Softener
Evaluate the Choice Design

Variable Standard
n Name Label Variance DF Error
1 Moosey Moosey 0.72917 1 0.85391
2 Platter Platter 0.72917 1 0.85391
3 Plumbbob Plumbbob 0.72917 1 0.85391
4 Sploosh Sploosh 0.72917 1 0.85391
5 _1_49 $1.49 0.52083 1 0.72169
6 _2_49 $2.49 0.52083 1 0.72169

6

The first table provides the name, specified value, and label for each parameter. The second table is the
iteration history. There is just one line in the table since zero internal iterations were requested. The
third table summarizes the design. The first design has 18 choice sets, 5 alternatives, a D-efficiency of
2.34 and a D-error of 0.43. D-error = 1 / D-efficiency. Note that D-efficiency and D-error are computed
on a scale with an unknown maximum, so unlike the values that come out of the %MktEx macro, are
not on a percentage or zero to 100 scale. When the 9.2 release of SAS is available, there will be new
options for orthogonal coding in TRANSREG, and this will no longer always be the case. For now,
the D-efficiency is not what really interests us. We are most interested in the final table. It shows the
names and labels for the parameters as well as their variances, standard errors, and df. We see that
the parameters for all four brands have the same standard errors. Similarly, the standard errors for the
two prices are the same. They are different for the two attributes since both have a different number of
levels. In both sets, however, they are all approximately the same order of magnitude. Sometimes you
will see wildly varying parameters. This is usually a sign of a problematic design, perhaps one with
too few choice sets for the number of parameters. This design looks good.

It is a really good idea to perform this step before designing the questionnaire and collecting data. Data
collection is expensive, so it is good to make sure that the design can be used for the most complicated
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model that you intend to fit. Much more will be said on evaluating the standard errors in the later
and more complicated examples.

Generating the Questionnaire

A questionnaire based on the design is printed using the DATA step. The statement array brands [&m]
$ _temporary_ (’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’ ’Another’) creates a constant array
so that brands[1] accesses the string ’Sploosh’, brands[2] accesses the string ’Plumbbob’, and so
on. The _temporary_ specification means that no output data set variables are created for this array.
The 1linesleft= specification in the file statement creates the variable 11, which contains the number
of lines left on a page. This ensures that each choice set is not split over two pages.

options 1s=80 ps=60 nonumber nodate;
title;

data _null_; /* print questionnaire */
array brands[&m] $ _temporary_ (’Sploosh’ ’Plumbbob’ ’Platter’
’Moosey’ ’Another’);
array x[&m] x1-x&m;
file print linesleft=11;
set sasuser.Softener_LinDes;

x&m = 2; /* constant alternative */
format x&m price.;

if _n_ =1 or 11 < 12 then do;

put _page_;
put @0 ’Subject: _________ > //;
end;

put _n_ 2. ’) Circle your choice of °’
’one of the following fabric softeners:’ /;
do brnds = 1 to &m;
put ’ > brnds 1. ’) ’ brands[brnds] ’brand at °’
x[brnds] +(-1) ’.’ /;
end;
run;

In the interest of space, only the first two choice sets are printed. The questionnaire is printed, copied,
and the data are collected.
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Subject:

1) Circle your choice of one of the following fabric softeners:
1) Sploosh brand at $1.99.
2) Plumbbob brand at $1.99.
3) Platter brand at $1.99.
4) Moosey brand at $2.49.

5) Another brand at $1.99.

2) Circle your choice of one of the following fabric softeners:
1) Sploosh brand at $2.49.
2) Plumbbob brand at $1.49.
3) Platter brand at $1.49.
4) Moosey brand at $1.99.

5) Another brand at $1.99.

In practice, data collection will typically be much more elaborate than this. It may involve art work
or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.
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Entering the Data

The data consist of a subject number followed by 18 integers in the range 1 to 5. These are the
alternatives that were chosen for each choice set. For example, the first subject chose alternative 3
(Platter brand at $1.99) in the first choice set, alternative 3 (Platter brand at $1.49) in the second
choice set, and so on. In the interest of space, data from three subjects appear on one line.

title ’Choice of Fabric Softener’;

dat

1

a results;

datalines;
334533434233312433

4 334431444434412453

10
13
16
19
22
25
28
31
34
37
40
43
46
49

The next step merges the choice data with the choice design using the %MktMerge macro.

pro

334433434433322433
325233435233332433
534333334333312323
334433435333315333
334333335433313433
334333452233312523
354333434433312333
334333332333332333
354333334333312433
334433434433312433
334431434433512423
324433334433412323
334434454433332423
434431435433512423
334533434133312433

c format;

value price 1
run;

/* read choice
input Subj (choosel-choose&n) (1.) @Q;

334213442433333325
335431434233512423
334433434433412423
334233434433313333
134421444433412423
534333432453312423
331431434233315533
334333332333312433
334435545233312323
334433534335352423
354331332233332423
334551444453412325
354333334433352523
334433444433412443
334433434233312423
524434534433412433
334433332333312423

O o W

12
15
18
21
24
27
30
33
36
39
42
45
48

data set */

333333333333313333
334433434433312433
334433332353312433
334331334433312353
334333435433312335
334435544433412543
334353534433512323
525221444233322423
334353534233352323
334453434533313433
334424432353312325
334234534433312433
334351334333312533
334433434433312423
334451544433412424
335453334433322453

Processing the Data

’$1.49° 2 = ’$1.99° 3 = ’$2.49°

’$1.997;

Jmktmerge (design=sasuser.Softener_ChDes, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

This step reads the design=sasuser.Softener_ChDes choice design and the data=results data set
and creates the out=res2 output data set. The data are from an experiment with nsets=&n choice
sets, nalts=&m alternatives, with variables setvars=choosel-choose&n containing the numbers of the
chosen alternatives. Here are the first 15 observations.
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title2 ’Choice Design and Data (First 3 Sets)’;
proc print data=res2(obs=15);

id subj set; by subj set;
run;

Choice of Fabric Softener
Choice Design and Data (First 3 Sets)

Subj Set Brand Price C
1 1 Sploosh 2 2
Plumbbob 2 2

Platter 2 1

Moosey 3 2

Another 2

1 2 Sploosh 3 2
Plumbbob 1 2

Platter 1 1

Moosey 2 2

Another 2

1 3 Sploosh 1 2
Plumbbob 3 2

Platter 3 2

Moosey 1 1

Another 2

The data set contains the subject ID variable Subj from the data=results data set, the Set, Brand,
and Price variables from the design=sasuser.Softener_ChDes data set, and the variable c, which
indicates which alternative was chosen. The variable ¢ contains: 1 for first choice and 2 for second or
subsequent choice. This subject chose the third alternative, Platter in the first choice set, Platter in
the second, and Moosey in the third. This data set has 4500 observations: 50 subjects times 18 choice
sets times 5 alternatives.

Since we did not specify a format, we see in the design the raw design values for Price: 1, 2, 3 and
missing for the constant alternative. If we were going to treat Price as a categorical variable for
analysis, this would be fine. We would simply assign our price format to Price and designate it as a
class variable. However, in this analysis we are going to treat price as quantitative and use the actual
prices in the analysis. Hence, we must convert our design values from 1, 2, 3, and . to 1.49, 1.99, 2.49,
and 1.99. We cannot do this by simply assigning a format. Formats create character strings that are
printed in place of the original value. We need to convert a numeric variable from one set of numeric
values to another. We could use if and assignment statements. We could also use the %MktLab macro,
which is used in later examples. However, instead we will use the put function to write the formatted
value into a character string, then we read it back using a dollar format and the input function. For
example, the expression put(price, price.) converts a number, say 2, into a string (in this case
’$1.99’), then the input function reads the string and converts it to a numeric 1.99. This step also
assigns a label to the variable Price.
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data res3; /* Create a numeric actual price */
set res2;
price = input(put(price, price.), dollar5.);
label price = ’Price’;
run;

Binary Coding

One more thing must be done to these data before they can be analyzed. The factors must be coded.
In this example, we use a binary or zero-one coding for the brand effect. This can be done with PROC
TRANSREG.
proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(brand / zero=none order=data)
identity(price) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);

id subj set c;

run;

The design option specifies that no model is fit; the procedure is just being used to code a design.
When design is specified, dependent variables are not required. Optionally, design can be followed by
“=n” where n is the number of observations to process at one time. By default, PROC TRANSREG
codes all observations in one big group. For very large data sets, this can consume large amounts
of memory and time. Processing blocks of smaller numbers of observations is more computationally
efficient. The option design=5000 processes observations in blocks of 5000. For smaller computers,
try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example, but they are
included here, because sometimes they are very helpful in coding choice models. The nozeroconstant
option specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant
option should always be specified when you specify design=n because the last group of observations
may be small and may contain constant variables. The nozeroconstant option is also important if
you do something like coding by subj set because sometimes an attribute is constant within a choice
set. The norestoremissing option specifies that missing values should not be restored when the out=
data set is created. By default, the coded class variable contains a row of missing values for observa-
tions in which the class variable is missing. When you specify the norestoremissing option, these
observations contain a row of zeros instead. This option is useful when there is a constant alternative
indicated by missing values. Both of these options, like almost all options in PROC TRANSREG, can
be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they should
be coded. The specification class(brand / ...) specifies that the variable Brand is a classification
variable and requests a binary coding. The zero=none option creates binary variables for all categories.
In contrast, by default, a binary variable is not created for the last category—the parameter for the
last category is a structural zero. The zero=none option is used when there are no structural zeros
or when you want to see the structural zeros in the multinomial logit parameter estimates table.
The order=data option sorts the levels into the order that they were first encountered in the data
set. Alternatively, the levels could be sorted based on the formatted or unformatted values. The
specification identity(price) specifies that Price is a quantitative factor that should be analyzed as
is (not expanded into indicator variables).



174 TS-722F — Discrete Choice

The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters

of the original variable name should be used as a prefix.

An output statement names the output data set and drops variables that are not needed. These
variables do not have to be dropped. However, since they are variable names that are often found in
special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables
prevents the warnings. Finally, the id statement names the additional variables that we want copied

from the input to the output data set. The next steps print the first three coded choice sets.

proc print data=coded(obs=15) label;
title2 ’First 15 Observations of Analysis Data Set’;
id subj set c;
by subj set;
run;

Choice of Fabric Softener
First 15 Observations of Analysis Data Set

Subj Set ¢ Sploosh Plumbbob Platter Moosey Another Price

1 1 2 1 0 0 0 0 1.99
2 0 1 0 0 0 1.99
1 0 0 1 0 0 1.99
2 0 0 0 1 0 2.49
2 0 0 0 0 1 1.99
1 2 2 1 0 0 0 0 2.49
2 0 1 0 0 0 1.49
1 0 0 1 0 0 1.49
2 0 0 0 1 0 1.99
2 0 0 0 0 1 1.99
1 3 2 1 0 0 0 0 1.49
2 0 1 0 0 0 2.49
2 0 0 1 0 0 2.49
1 0 0 0 1 0 1.49
2 0 0 0 0 1 1.99

Brand

Sploosh
Plumbbob
Platter
Moosey
Another

Sploosh
Plumbbob
Platter
Moosey
Another

Sploosh
Plumbbob
Platter
Moosey
Another

Fitting the Multinomial Logit Model

The next step fits the discrete choice, multinomial logit model.

proc phreg data=coded outest=betas brief;
title2 ’Discrete Choice Model’;
model c*xc(2) = &_trgind / ties=breslow;
strata subj set;
run;
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The brief option requests a brief summary for the strata. As with the candy example, c*xc(2)
designates the chosen and unchosen alternatives in the model statement. We specify the &_trgind
macro variable for the model statement independent variable list. PROC TRANSREG automatically
creates this macro variable. It contains the list of coded independent variables generated by the
procedure. This is so you do not have to figure out what names TRANSREG created and specify
them. In this case, PROC TRANSREG sets & trgind to contain the following list.

BrandSploosh BrandPlumbbob BrandPlatter BrandMoosey BrandAnother Price

The ties=breslow option specifies a PROC PHREG model that has the same likelihood as the multi-
nomial logit model for discrete choice. The strata statement specifies that the combinations of Set
and Subj indicate the choice sets. This data set has 4500 observations consisting of 18 x 50 = 900
strata and five observations per stratum.

Each subject rated 18 choice sets, but the multinomial logit model assumes each stratum is independent.
That is, the multinomial logit model assumes each person makes only one choice. The option of
collecting only one datum from each subject is too expensive to consider for many problems, so multiple
choices are collected from each subject, and the repeated measures aspect of the problem is ignored.
This practice is typical, and it usually works well.

Multinomial Logit Model Results

The output is shown next. (Recall that we used %phchoice(on) on page 143 to customize the output
from PROC PHREG.)

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 4500
Number of Observations Used 4500

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 900 5 1 4
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Test

Likelihood Ratio
Score
Wald

Sploosh
Plumbbob
Platter
Moosey
Another
Price

TS-722F — Discrete Choice

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

DF

O R B B

Criterion

-2 LOG L

Model Fit Statistics

Without With
Covariates Covariates
2896.988 1439.457
2896.988 1449.457
2896.988 1473.469

Testing Global Null Hypothesis: BETA=0

Chi-Square DF Pr > ChiSq
1457.5310 5 <.0001
1299.7889 5 <.0001

635.9093 5 <.0001

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard

Estimate Error Chi-Square Pr > ChiSq
-1.30565 0.21097 38.3017 <.0001
-0.49090 0.18035 7.4091 0.0065
2.08485 0.14592 204.1402 <.0001
0.62183 0.15503 16.0884 <.0001

0 . . .

-4.60150 0.21608 453.5054 <.0001

The procedure output begins with information about the data set, variables, options, and number
of observations read. This is followed by information about the 900 strata. Since the brief option
was specified, this table contains one row for each stratum pattern. In contrast, the default table
would have 900 rows, one for each choice set and subject combination. Each subject and choice set
combination consists of a total of five observations, one that was chosen and four that were not chosen.
This pattern was observed 900 times. This table provides a check on data entry. Unless we have an
availability or allocation study (page 334) or a nonconstant number of alternatives in different choice
sets, we would expect to see one pattern of results where one of the m alternatives was chosen for each
choice set. If you do not observe this for a study like this, there was probably a mistake in the data

entry or processing.
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The most to least preferred brands are: Platter, Moosey, Another, Plumbbob, and Sploosh. Increases in
price have a negative utility. For example, the predicted utility of Platter brand at $1.99 is x;3 which is
(001 0 0 $1.99) (—1.31 —0.49 208 0.62 0 —4.60) = 2.08+ 1.99 x —4.60 = —7.07
Since Price was analyzed as a quantitative factor, we can see for example that the utility of Platter at
$1.89, which was not in any choice set, is 2.08 + 1.89 x —4.60 = —6.61, which is a $0.10 x 4.60 = 0.46

increase in utility.

Probability of Choice

These next steps compute the expected probability that each alternative is chosen within each choice
set. This code could easily be modified to compute expected market share for hypothetical marketplaces
that do not directly correspond to the choice sets. Note however, that a term like “expected market
share,” while widely used, is a misnomer. Without purchase volume data, it is unlikely that these
numbers would mirror true market share.

First, PROC SCORE is used to compute the predicted utility for each alternative.

proc score data=coded(where=(subj=1) drop=c)
score=betas type=parms out=p;
var &_trgind;
run;

The data set to be scored is named with the data= option, and the coefficients are specified in the option
score=beta. Note that we only need to read all of the choice sets once, since the parameter estimates
were computed in an aggregate analysis. This is why we specified where=(subj=1). We do not need
X; B for each of the different subjects. We dropped the variable ¢ from the Coded data set since this
name will be used by PROC SCORE for the results (Xj,é). The option type=parms specifies that the
score= data set contains the parameters in _TYPE_ = >PARMS’ observations. The output data set with
the predicted utilities is named P. Scoring is based on the coded variables from PROC TRANSREG,
whose names are contained in the macro variable &_trgind. The next step exponentiates x; B

data p2;
set p;
p = exp(c);
run;

Next, exp(x]-B) is summed for each choice set.
proc means data=p2 noprint;
output out=s sum(p) = sp;
by set;

run;

Finally, each Xj,B is divided by 377", x; B.

data p;
merge p2 s(keep=set sp);
by set;
P =p/ sp;

keep brand set price p;
run;
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Here are the results for the first three choice sets.

proc print data=p(obs=15);
title2 ’Choice Probabilities for the First 3 Choice Sets’;
run;

Choice of Fabric Softener
Choice Probabilities for the First 3 Choice Sets

Obs Price Brand Set P
1 1.99 Sploosh 1 0.02680
2 1.99 Plumbbob 1 0.06052
3 1.99 Platter 1 0.79535
4 2.49 Moosey 1 0.01845
5 1.99 Another 1 0.09888
6 2.49 Sploosh 2 0.00030
7 1.49 Plumbbob 2 0.06843
8 1.49 Platter 2 0.89921
9 1.99 Moosey 2 0.02086
10 1.99 Another 2 0.01120
11 1.49 Sploosh 3 0.11679
12 2.49 Plumbbob 3 0.00265
13 2.49 Platter 3 0.03479
14 1.49 Moosey 3 0.80260
15 1.99 Another 3 0.04318

Custom Questionnaires

In this part of the example, a custom questionnaire is printed for each person. Previously, each subject
saw the same questionnaire, with the same choice sets, each containing the same alternatives, with
everything in the same order. In this example, the order of the choice sets and all alternatives within
choice sets are randomized for each subject. Randomizing avoids any systematic effects due to the
order of the alternatives and choice sets. The constant alternative is always printed last. If you have
no interest in custom questionnaires, you can skip ahead to page 184.

First, the macro variable &forms is created. It contains the number of separate questionnaires (or
forms or subjects, in this case 50). We can use the %MktEx macro to create a data set with one
observation for each alternative of each choice set for each person. The specification %mktex (&forms
&n &mml, n=&forms * &n * &mml) is %mktex(50 18 4, n=50 * 18 * 4) and creates a 50 x 18 x 4
full-factorial design. Note that the n= specification allows expressions. The macro %MktLab is then
used to assign the variable names Form, Set, and Alt instead of the default x1 - x3. The data set is
sorted by Form. Within Form, the choice sets are sorted into a random order, and within choice set, the
alternatives are sorted into a random order. The 72 observations for each choice set contain 18 blocks
of 4 observations—one block per choice set in a random order and the 4 alternatives within each choice
set, again in a random order. Note that we store these in a permanent SAS data set so they will be
available after the data are collected. See page 163 for more information on permanent SAS data sets.
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%let forms = 50;
title2 ’Create 50 Custom Questionnaires’;

*---Make the design-—-;
Ymktex(&forms &n &mml, n=&forms * &n * &mml)

*---Assign Factor Names---;
Jmktlab(data=design, vars=Form Set Alt)

*---Set up for Random Ordering---;
data sasuser.orders;

set final;

by form set;

retain ri;

if first.set then rl = uniform(17);

r2 = uniform(17);

run;

*—--Random Sort---;
proc sort out=sasuser.orders(drop=r:); by form rl r2; run;

proc print data=sasuser.orders(obs=16); run;

The first 16 observations in this data set are shown next.

Choice of Fabric Softener
Create 50 Custom Questionnaires

Obs Form Set Alt

1 1 4 3
2 1 4 1
3 1 4 2
4 1 4 4
5 1 8 2
6 1 8 3
7 1 8 1
8 1 8 4
9 1 16 1
10 1 16 2
11 1 16 3
12 1 16 4
13 1 1 3
14 1 1 1
15 1 1 4
16 1 1 2
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The data set is transposed, so the resulting data set contains 50 x 18 = 900 observations, one per
subject per choice set. The alternatives are in the variables Col1-Col4. The first 18 observations,
which contain the ordering of the choice sets for the first subject, are shown next.

proc transpose data=sasuser.orders out=sasuser.orders(drop=_name_);
by form notsorted set;
run;

proc print data=sasuser.orders(obs=18);
run;

Choice of Fabric Softener
Create 50 Custom Questionnaires

Obs Form Set COL1 COL2 COL3 COL4

1 1 4 3 1 2 4
2 1 8 2 3 1 4
3 1 16 1 2 3 4
4 1 1 3 1 4 2
5 1 6 2 4 1 3
6 1 7 4 1 3 2
7 1 12 3 2 1 4
8 1 2 2 4 1 3
9 1 17 3 4 1 2
10 1 15 4 2 3 1
11 1 14 1 2 3 4
12 1 10 2 4 3 1
13 1 5 1 4 2 3
14 1 9 2 4 1 3
15 1 13 3 2 1 4
16 1 3 3 4 2 1
17 1 18 4 2 1 3
18 1 11 3 1 4 2

The following DATA step prints the 50 custom questionnaires.

options 1s=80 ps=60 nodate nonumber;
title;

data _null_;
array brands[&mm1] $ _temporary_
(’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’);
array x[&mm1] x1-x&mmi;
array c[&mml] coll-col&mml;
format x1-x&mml price.;

file print linesleft=11;
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do frms = 1 to &forms;
do choice = 1 to &n;
if choice = 1 or 11 < 12 then do;

put _page_;
put @60 ’Subject: ’ frms //;
end;

put choice 2. ’) Circle your choice of ’
’one of the following fabric softeners:’ /;
set sasuser.orders;
set sasuser.Softener_LinDes point=set;
do brnds = 1 to &mmi;

put °’ > brnds 1. ’) ’ brands[c[brnds]] ’brand at °’
x[clbrnds]] +(-1) >.” /;
end;
put ’ 5) Another brand at $1.99.° /;
end;
end;
stop;
run;

The loop do frms = 1 to &forms creates the 50 questionnaires. The loop do choice = 1 to &n
creates the alternatives within each choice set. On the first choice set and when there is not enough
room for the next choice set, we skip to a new page (put _page_) and print the subject (forms)
number. The data set sasuser.Orders is read and the Set variable is used to read the relevant
observation from sasuser.Softener LinDes using the point= option in the set statement. The or-
der of the alternatives is in the ¢ array and variables coll-col&mml from the sasuser.Orders data
set. In the first observation of sasuser.Orders, Set=4, Col1=3, Col2=1, Col3=2, and Col4=4. The
first brand, is c[brnds] = c[1] = coll = 3, so brands[c[brnds]] = brands[c[1]] = brands[3]
= ’Platter’, and the price, from observation Set=4 of sasuser.Softener_LinDes, is x [c[brnds]]
x[3] = $2.49. The second brand, is c[brnds] = c[2] = col2 = 1, so brands[c[brnds]]
brands[c[2]] = brands[1] = ’Sploosh’, and the price, from observation Set=4 of
sasuser.Softener_LinDes, is x[c[brnds]] = x[1] = $2.49.

In the interest of space, only the first two choice sets are printed. Note that the subject number is
printed on the form. This information is needed to restore all data to the original order.

Subject: 1

1) Circle your choice of one of the following fabric softeners:
1) Platter brand at $2.49.
2) Sploosh brand at $2.49.
3) Plumbbob brand at $1.99.
4) Moosey brand at $1.99.

5) Another brand at $1.99.
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2) Circle your choice of one of the following fabric softeners:
1) Plumbbob brand at $2.49.
2) Platter brand at $1.49.
3) Sploosh brand at $2.49.
4) Moosey brand at $1.49.

5) Another brand at $1.99.

Processing the Data for Custom Questionnaires

Here are the data. (Actually, these are the data that would have been collected if the same people
as in the previous situation made the same choices, without error and uninfluenced by order effects.)
Before these data are analyzed, the original order must be restored.

title ’Choice of Fabric Softener’;

data results; /* read choice data set */
input Subj (choosel-choose&n) (1.) @Q;
datalines;
1 524141141211421241 2 532234223321321311 3 223413221434144231
4 424413322222544331 5 123324312534444533 6 233114423441143321
7 123243224422433312 8 312432241121112412 9 315432222144111124

10 511432445343442414 11 331244123342421432 12 323234114312123245
13 312313434224435334 14 143433332142334114 15 234423133531441145
16 425441421454434414 17 234431535341441432 18 235224352241523311
19 134331342432542243 20 335331253334232433 21 513453254214134224
22 212241213544214125 23 133444341431414432 24 453424142151142322
25 324424431252444221 26 244145452131443415 27 553254131423323121
28 233423242432231424 29 322454324541433543 30 323433433135133542
31 412422434342513222 32 243144343352123213 33 441113141133454445
34 131114113312342312 35 325222444355122522 36 342133254432124342
37 511322324114234222 38 522153113442344541 39 211542232314512412
40 244432222212213211 41 241411341323123213 42 314334342111232114
43 422351321313343332 44 124243444234124432 45 141251113314352121
46 414215225442424413 47 333452434454311222 48 334325341342552344
49 335124122444243112 50 244412331342433332
The data set is transposed, and the original order is restored.

proc transpose data=results /* create one obs per choice set */
out=res2(rename=(coll=choose) drop=_name_);
by subj;
run;
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data res3(keep=subj set choose);
array cl[&mml] coll-col&mmi;
merge sasuser.orders res2;

if choose < 5 then choose

run;

proc sort; by subj set; run;

= c[choose] ;
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The actual choice number, stored in Choose, indexes the alternative numbers from sasuser.0Orders to
restore the original alternative orders. For example, for the first subject, the first choice was 5, which
is the Another constant alternative. Since the first subject saw the fourth choice set first, the fourth
data value for the first subject in the processed data set will have a value of 5. The choice in the second
choice set for the first subject was 2, and the second alternative the subject saw was Platter. The data
set sasuser.Orders shows in the second observation that this choice of 2 corresponds to the third
(original) alternative (in the second column variable, Col2 = 3) of choice set Set= 8. In the original
ordering, Platter is the third alternative. Hence the eighth data value in the processed data set will
have a value of 3. This DATA step writes out the data after the original order has been restored. It
matches the data on page 171.

data

_null_;

set res3;
by subj;

if first.subj then do;

if mod(subj, 3) eq 1 then put;

put subj 4. +1 QO;
end;

put choose 1. @Q;

run;

~N s e

10
13
16
19
22
25
28
31
34
37
40
43
46
49

334533434233312433
334431444434412453
334433434433322433
325233435233332433
534333334333312323
334433435333315333
334333335433313433
334333452233312523
354333434433312333
334333332333332333
354333334333312433
334433434433312433
334431434433512423
324433334433412323
334434454433332423
434431435433512423
334533434133312433

o« o1 N

11
14
17
20
23
26
29
32
35
38
41
44
47
50

334213442433333325
335431434233512423
334433434433412423
334233434433313333
134421444433412423
534333432453312423
331431434233315533
334333332333312433
334435545233312323
334433534335352423
354331332233332423
334551444453412325
354333334433352523
334433444433412443
334433434233312423
524434534433412433
334433332333312423

© O W

12
15
18
21
24
27
30
33
36
39
42
45
48

333333333333313333
334433434433312433
334433332353312433
334331334433312353
334333435433312335
334435544433412543
334353534433512323
525221444233322423
334353534233352323
334453434533313433
334424432353312325
334234534433312433
334351334333312533
334433434433312423
334451544433412424
335453334433322453

The data can be combined with the design and analyzed as in the previous example.
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This example illustrates the design and analysis for a larger choice experiment. We will discuss designing
a choice experiment, evaluating the design, generating the questionnaire, processing the data, binary
coding, generic attributes, quantitative price effects, quadratic price effects, effects coding, alternative-
specific effects, analysis, and interpretation of the results. In this example, a researcher is interested in
studying choice of vacation destinations. There are five destinations (alternatives) of interest: Hawaii,
Alaska, Mexico, California, and Maine. Here are two summaries of the design, one with factors first

TS-722F — Discrete Choice

Vacation Example

grouped by attribute and one grouped by destination.

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X6 Hawaii Scenery Mountains, Lake, Beach

X7 Alaska Scenery Mountains, Lake, Beach

X8 Mexico Scenery Mountains, Lake, Beach

X9 California Scenery Mountains, Lake, Beach

X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $999, $1249, $1499

X12 Alaska Price $999, $1249, $1499

X13 Mexico Price $999, $1249, $1499

X14 California  Price $999, $1249, $1499

X15 Maine Price $999, $1249, $1499

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach

X11 Price $999, $1249, $1499

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach

X12 Price $999, $1249, $1499

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach

X13 Price $999, $1249, $1499

X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach

X14 Price $999, $1249, $1499

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach

X15 Price $999, $1249, $1499
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Each alternative is composed of three factors: package cost ($999, $1,249, $1,499), scenery (mountains,
lake, beach), and accommodations (cabin, bed & breakfast, and hotel). There are five destinations,
each with three attributes, for a total of 15 factors. This problem requires a design with 15 three-level
factors, denoted 3'°. Each row of the design matrix contains the description of the five alternatives in
one choice set. Note that the levels do not have to be the same for all destinations. For example, the
cost for Hawaii and Alaska could be different from the other destinations. However, for this example,
each destination will have the same attributes.

Set Up

We can use the %MktRuns autocall macro to suggest design sizes. (All of the autocall macros used in
this book are documented starting on page 597.) To use this macro, you specify the number of levels
for each of the factors. With 15 attributes each with three prices, you specify fifteen 3’s (3 3 3 3 3 3
3 333333 3 3),or you can use the more compact syntax of 3 ** 15.

title ’Vacation Example’;

Ymktruns( 3 **x 15 )

The output tells us the size of the saturated design, which is the number of parameters in the linear
design, and suggests design sizes.

Vacation Example
Design Summary

Number of

Levels Frequency

3 15

Vacation Example

Saturated = 31
Full Factorial = 14,348,907
Some Reasonable Cannot Be
Design Sizes Violations Divided By
36 0
45 0
54 * 0
63 0
72 * 0
33 105 9
39 105 9
42 105 9
48 105 9
51 105 9

* - 100% Efficient Design can be made with the MktEx Macro.
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n Design Reference

54 2 x% 3 x*x 25 Orthogonal Array
54 2 k% 3 %% 21 9 *x 1] Orthogonal Array
54 3 %k 24 6 *xx 1 Orthogonal Array
54 3 %% 20 6 *x 1 9 *x 1 Orthogonal Array
54 3 %% 18 18 *x 1 Orthogonal Array
72 2 %% 23 3 *x 24 Orthogonal Array
72 2 %% 22 3 %k 20 6 **x 1 Orthogonal Array
72 2 %% 21 3 *x 16 6 *x 2 Orthogonal Array
72 2 %% 20 3 %k 24 4 *xx 1 Orthogonal Array
72 2 %% 19 3 *x 20 4 *xx 1 6 **x 1 Orthogonal Array
72 2 %% 18 3 *x 16 4 *x 1 6 *x 2 Orthogonal Array
72 2 *xx 16 3 **x 25 Orthogonal Array
72 2 %xx 156 3 *x 21 6 **x 1 Orthogonal Array
72 2 xx 14 3 %k 24 6 **x 1 Orthogonal Array
72 2 %% 14 3 *x 17 6 *x 2 Orthogonal Array
72 2 %% 13 3 %k 25 4 *x 1 Orthogonal Array
72 2 %% 13 3 *x 20 6 *x 2 Orthogonal Array
72 2 %% 12 3 %k 24 12 %% 1 Orthogonal Array
72 2 %% 12 3 *x 21 4 *xx 1 6 **x 1 Orthogonal Array
72 2 %xx 12 3 *kx 16 6 **x 3 Orthogonal Array
72 2 %% 11 3 *x 24 4 *xx 1 6 **x 1 Orthogonal Array
72 2 %xx 11 3 *x 20 6 *x 1 12 *xx 1 Orthogonal Array
72 2 %% 11 3 *x 17 4 %k 1 6 **x 2 Orthogonal Array
72 2 %xx 10 3 *x 20 4 *xx 1 6 *x 2 Orthogonal Array
72 2 %% 10 3 *x 16 6 *xx 2 12 **x 1 Orthogonal Array
72 2 %k 9 3 %k 16 4 *xx 1 6 *x 3 Orthogonal Array
72 3 *x 256 8 *x 1 Orthogonal Array
72 3 *xx 24 24 *xx 1 Orthogonal Array

In this design, there are 15 x (3 — 1) + 1 = 31 parameters, so at least 31 choice sets must be created.
With all three-level factors, the number of choice sets in all orthogonal and balanced designs must
be divisible by 3 x 3 = 9. Hence, optimal designs for this problem have at least 36 choice sets (the
smallest number > 31 and divisible by 9). Note however, that zero violations does not guarantee that
a 100% D-efficient design exists. It just means that 100% D-efficiency is not precluded by unequal cell
frequencies. In fact, the %MktEx orthogonal design catalog does not include orthogonal designs for this
problem in 36, 45, and 63 runs (because they do not exist).

Thirty-six would be a good design size (2 blocks of size 18) as would 54 (3 blocks of size 18). Fifty-four
would probably be the best choice, and that is what we would recommend for this study. However,
we will instead create a D-efficient experimental design with 36 choice sets using the %MktEx macro.
In practice, with more difficult designs, an orthogonal design is not available, and using 36 choice sets
will allow us to see an example of using the %Mkt family of macros to get a nonorthogonal design.
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We can see what orthogonal designs with three-level factors are available in 36 runs as follows. The
%MktOrth macro creates a data set with information about the orthogonal designs that the %MktEx
macro knows how to make. This macro produces a data set called MktDesLev that contains variables
n, the number of runs; Design, a description of the design; and Reference, which contains the type of
the design. In addition, there are variables: x1, the number of 1-level factors (which is always zero); x2,
the number of 2-level factors; x3, the number of 3-level factors; and so on. We specify that %MktOrth
only output n=36 run designs and sort this list so that designs with the most three-level factors are
printed first.

Jmktorth (range=n=36)

proc sort data=mktdeslev out=list(drop=x:);
by descending x3;
where x3;
run;

proc print; run;

Vacation Example

Obs n Design Reference
1 36 2 *xx 4 3 **x 13 Orthogonal Array
2 36 3 *xx 13 4 *xx 1 Orthogonal Array
3 36 2 %% 11 3 **x 12 Orthogonal Array
4 36 2 k% 3 %% 12 6 *x 1 Orthogonal Array
5 36 3 kx 12 12 *x 1 Orthogonal Array
6 36 2 %% 3 3 *xx 9 6 kkx 1 Orthogonal Array
7 36 2 % 10 3 % 8 6 *x 1 Orthogonal Array
8 36 2%k 1 3 %k 8 6 %k 2 Orthogonal Array
9 36 3 %k 7 6 %k 3 Orthogonal Array
10 36 2 xx 2 3 %k b 6 *x 2 Orthogonal Array
11 36 2 xx 16 3 *x 4 Orthogonal Array
12 36 2 xx 3 xx 4 6 xx 2 Orthogonal Array
13 36 2 %% 1 3 *xx 3 6 %k 3 Orthogonal Array
14 36 2 %% 20 3 *xx 2 Orthogonal Array
15 36 2 %% 11 3 *x 2 6 **x 1 Orthogonal Array
16 36 2 xx 3 3 xx 2 6 *x 3 Orthogonal Array
17 36 2 %% 27 3 k% 1 Orthogonal Array
18 36 2 %% 18 3 %k 1 6 *x 1 Orthogonal Array
19 36 2 %% 10 3 *x 1 6 *xx 2 Orthogonal Array
20 36 2 %x 4 3 %k 1 6 %k 3 Orthogonal Array

There are 13 two-level factors available in 36 runs, and we need 15, only two more, so we would expect
to make a pretty good nonorthogonal design.
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Designing the Choice Experiment

The following code creates a design.

%let m = 6; /* m alts including constant x/
%let mml = %eval(&m - 1); /*m - 1 */
%let n = 18; /* number of choice sets per person */
%let blocks = 2; /* number of blocks */

%mktex(3 **x 15 2, n=&n * &blocks, seed=151)

The specification 3 ** 15 requests a design with 15 factors, x1—x15, each with three levels. This
specification also requests a two-level factor (the 2 following the 3 ** 15). This is because 36 choice
sets may be too many for one person to rate, so we may want to block the design into two blocks, and
we can use a two-level factor to do this. A design with 18 x 2 = 36 runs is requested, which will mean
36 choice sets. A random number seed is explicitly specified so we will be able to reproduce these exact
results.*

Here are some of the log messages.

NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 81 candidates, full-factorial=28,697,814.
NOTE: Generating the orthogonal array design, n=36.

The macro searches a fractional-factorial candidate set of 81 runs, and it also generates a tabled design
in 36 runs to try as part of the design. This will be explained in more detail on page 191.

Here are some of the results from the %MktEx macro.

Vacation Example
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
1 Start 82.2544 82.2544 Can
1 End 82.2544

*By specifying a random number seed, results should be reproducible within a SAS release for a particular operating
system and for a particular version of the macro. However, due to machine and macro differences, some results may not
be exactly reproducible everywhere. For most orthogonal and balanced designs, the results should be reproducible. When
computerized searches are done, it is likely that you will not get the same design as the one in the book, although you
would expect the efficiency differences to be slight.
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87
87
87

146
146
146

200
200

Start
4 15
End

Start
19 15
End

Start
End

Design Refinement History

4.
98.
98.

78.
98.
98.

84.
98.

7014
9438
9438

3794
9438
9438

1995
6368

Vacation Example

Current
Row,Col D-Efficiency D-Efficiency

98.

98.
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9438

Best
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is possible.
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Vacation Example
The OPTEX Procedure
Class Level Information

Class Levels Values

x1 3 123
x2 3 123
x3 3 123
x4 3 123
x5 3 123
x6 3 123
x7 3 123
x8 3 123
x9 3 123
x10 3 123
x11 3 123
x12 3 123
x13 3 123
x14 3 123
x15 3 123
x16 2 12

Vacation Example

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 98.9437 97.9592 98.9743 0.9428

The %MktEx macro used 30 seconds and found a design that is almost 99% D-efficient. (Differences in
the fourth decimal place between the iteration history and the final table, in this case 98.9438 versus
98.9437, are due to rounding error and differences in ridging strategies between the macro code the
generates the design and PROC OPTEX, which evaluates the design, and are nothing to worry about.)

The %MktEx Macro Algorithm

The %MktEx macro creates D-efficient linear experimental designs using several approaches. The macro
will try to create a tabled design, it will search a set of candidate runs (rows of the design), and it
will use a coordinate-exchange algorithm using both random initial designs and also a partial tabled
design initialization. The macro stops if at any time it finds a perfect, 100% D-efficient, orthogonal
and balanced design. This first phase is the algorithm search phase. In it, the macro tries a number of
methods for this problem. At the end of this phase, the macro chooses the method that has produced
the best design and performs another set of iterations using exclusively the chosen approach. Finally,
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the macro performs a third set of iterations, where it takes the best design it found so far and tries to
improve it.

The %MktEx macro can directly generate, without iterations, well over one-hundred thousand different
100% D-efficient, orthogonal and balanced, tabled designs. It does this using its design catalog and
many different general and ad hoc algorithms. The closest design that the macro knows how to make
for this problem is 2!3'3 in 36 runs.

The candidate-set search has two parts. First, either PROC PLAN is run to create a full-factorial
design for small problems, or PROC FACTEX is run to create a fractional-factorial design for large
problems. Either way, this larger design is a candidate set that in the second part is searched by PROC
OPTEX using the modified Fedorov algorithm. A design is built from a selection of the rows of the
candidate set (Fedorov, 1972; Cook and Nachtsheim, 1980). The modified Fedorov algorithm considers
each run in the design and each candidate run. Candidate runs are swapped in and design runs are
swapped out if the swap improves D-efficiency. In this case, since the full-factorial design is large (over
14 million runs), the candidate-set search step calls PROC FACTEX to make the candidate set and
then PROC OPTEX to do the search. The Can line of the iteration history shows that this step found
a design that was 82.2544% D-efficient.

Next, the %MktEx macro uses the coordinate-exchange algorithm, based on Meyer and Nachtsheim
(1995). The coordinate-exchange algorithm considers each level of each factor, and considers the effect
on D-efficiency of changing a level (1 — 2, or1 — 3,0or2 — 1,0or2 — 3,0or 3 — 1, or 3 — 2, and so
on). Exchanges that increase D-efficiency are performed. In this step, the macro first tries to initialize
the design with a tabled design (Tab) and a random design (Ran) both. In this case, 14 of the 16
factors can be initialized with the 13 three-level factors and one two-level factor of 24313, and the other
two factors are randomly initialized. Levels that are not orthogonally initialized may be exchanged for
other levels if the exchange increases D-efficiency. The algorithm search and design search iteration
histories for this example show that the macro exchanged levels in factor 14 and 15 only, the ones that
were randomly initialized.

The initialization may be more complicated in other problems. Say you asked for the design 4'5'34
in 18 runs. The macro would use the tabled design 36! in 18 runs to initialize the three-level factors
orthogonally, and the five-level factor with the six-level factor coded down to five levels (and hence
unbalanced). The four-level factor would be randomly initialized. The macro would also try the same
initialization but with a random rather than unbalanced initialization of the five-level factor, as a
minor variation on the first initialization. In the next initialization variation, the macro would use a
fully-random initialization. If the number of runs requested were smaller than the number or runs in
the initial tabled design, the macro would initialize the design with just the first n rows of the tabled
design. Similarly, if the number of runs requested were larger than the number or runs in the initial
tabled design, the macro would initialize part of the design with the orthogonal tabled design and the
remaining rows and columns randomly. The coordinate-exchange algorithm considers each level of each
factor that is not orthogonally initialized, and it exchanges a level if the exchange improves D-efficiency.
When the number or runs in the tabled design does not match the number of runs desired, none of the
design is initialized orthogonally.

The coordinate-exchange algorithm is not restricted by having a candidate set and hence can poten-
tially consider any possible design. In practice, however, both the candidate-set-based and coordinate-
exchange algorithms consider only a tiny fraction of the possible designs. When the number of runs
in the full-factorial design is very small (say 100 or 200 runs), the modified Fedorov algorithm and
coordinate-exchange algorithms usually work equally well. When the number of runs in the full-factorial
design is small (up to several thousand), the modified Fedorov algorithm is sometimes superior to co-
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ordinate exchange, particularly for models with interactions. When the full-factorial design is larger,
coordinate exchange is usually the superior approach. However, heuristics like these are sometimes
wrong, which is why the macro tries both methods to see which one is really best for each problem.

In the first attempt at coordinate exchange (Design 2), the macro found a design that is 98.8567%
D-efficient (Design 2, End). In design 3 and subsequent designs, the macro uses this same approach,
but different random initializations of the remaining two factors. In design 8, the %MktEx macro finds
a design that is 98.9438% D-efficient. Designs 12 through 21 use a purely random initialization and
simulated annealing and are not as good as previous designs. During these iterations, the macro is
considering exchanging every level of every factor with every other level, one one row and one factor
at a time. At this point, the %MktEx macro determines that the combination of tabled and random
initialization is working best and tries more iterations using that approach. It starts by printing the
initial (Ini) best D-efficiency of 98.9438. In designs 78, 87, 146, and 197 the macro finds a design that
is 98.9438% D-efficient.

Next, the %MktEx macro tries to improve the best design it found previously. Using the previous
best design as an initialization (Pre), and random mutations of the initialization (Mut) and simulated
annealing (Ann), the macro uses the coordinate-exchange algorithm to try to find a better design. This
step is important because the best design that the macro found may be an intermediate design, and
it may not be the final design at the end of an iteration. Sometimes the iterations deliberately make
the designs less D-efficient, and sometimes, the macro never finds a design as efficient or more efficient
again. Hence it is worthwhile to see if the best design found so far can be improved. In this case, the
macro fails to improve the design. After iteration 6, the macro stops since it keeps finding the same
design over and over. This does not necessarily mean the macro found the optimal design; it means it
found a very attractive (perhaps local) optimum, and it is unlikely it will do better using this approach.
At the end, PROC OPTEX is called to print the levels of each factor and the final D-efficiency.

Random mutations add random noise to the initial design before the iterations start (levels are randomly
changed). This may eliminate the perfect balance that will often be in the initial design. By default,
random mutations are used with designs with fully-random initializations and in the design refinement
step; orthogonal initial designs are not mutated.

Simulated annealing allows the design to get worse occasionally but with decreasing probability as
the number of exchanges increases. For design 1, for the first level of the first factor, by default, the
macro may execute an exchange (say change a 2 to a 1), that makes the design worse, with probability
0.05. As more and more exchanges occur, this probability decreases so at the end of the processing of
design 1, exchanges that decrease D-efficiency are hardly ever done. For design 2, this same process is
repeated, again starting by default with an annealing probability of 0.05. This often helps the algorithm
overcome local efficiency maxima. To envision this, imagine that you are standing on a molehill next
to a mountain. The only way you can start going up the mountain is to first step down off the molehill.
Once you are on the mountain, you may occasionally hit a dead end, where all you can do is step down
and look for a better place to continue going up. Other analogies include cleaning a garage and painting
a room. Both have steps where you make things look worse so that in the end they may look better.
The solitaire game “Spider,” which is available on many PCs, is another example. Sometimes, you
need to break apart those suits that you so carefully put together in order to make progress. Simulated
annealing, by occasionally stepping down the efficiency function, often allows the macro to go farther
up it than it would otherwise. The simulated annealing is why you will sometimes see designs getting
worse in the iteration history. However, the macro keeps track of the best design, not the final design
in each step. By default, annealing is used with designs with fully-random initializations and in the
design refinement step; simulated annealing is not used with orthogonal initial designs.
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For this example, the %MktEx macro ran in around 30 seconds. If an orthogonal design had been
available, run time would have been a few seconds. If the fully-random initialization method had
been the best method, run time might have been on the order of 10 to 45 minutes. Since the tabled
initialization worked best, run time was much shorter. While it is possible to construct huge problems
that will take much longer, for any design that most marketing researchers are likely to encounter, run
time should be less than one hour. One of the macro options, maxtime=, typically ensures this.

Examining the Design

Before you use a design, you should always look at its characteristics. We will use the %MktEval macro.
Y%mkteval;

Here are some of the results.
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Vacation Example
Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
* — Indicates Unequal Frequencies

Frequencies
x1 12 12 12
x2 12 12 12
x3 12 12 12
x4 12 12 12
x5 12 12 12
x6 12 12 12

x7 12 12 12



Vacation Example 195

x8 12 12 12
x9 12 12 12
x10 12 12 12
x11 12 12 12
x12 12 12 12
x13 12 12 12
x14 12 12 12
x15 12 12 12
x16 18 18
xl x2 444444444
x1 x3 44444414144
xl x4 444444444
x1l x5 44444414144
x1l x6 4444444144
x1 x7 4 44444444
x1l x8 444444444
x1 x9 4 44444444
x1 x10 444444444
x1 x11 444444444
x1 x12 4444441444
x1 x13 444444444
x1l x14 4444441444
x1 x14 444444444
x1 x15 4444441444
x1 x16 66 6666
x13 x14 363633336
x13 x15 336363633
x13 x16 6 66666

* x14 x15 363336633
x14 x16 6 66666
x15 x16 66 6666
N-Way 111111 111111111111

111111 1111111111

This design looks great! The factors x1-x13 form an orthogonal design, x14 and x15 are slightly
correlated with each other and with x13. The blocking factor x16 is orthogonal to all the other factors.
All of the factors are perfectly balanced. The N-Way frequencies show that each choice set appears
once.

What if there had been some larger canonical correlations? Would this be a problem? That depends.
You have to decide this for yourself based on your particular study. You do not want large correlations
between your most important factors. If you have high correlations between the wrong factors, you
can swap them with other factors with the same number of levels, or try to make a new design with
a different seed, or change the number of choice sets, and so on. While this design looks great, we
should make one minor adjustment based on these results. Since our correlations are in the factors we
originally planned to make price factors, we should change our plans slightly and use those factors for



196 TS-722F — Discrete Choice

less important attributes like scenery.

You can run the %MktEx macro to provide additional information about a design, for example asking to
examine the information matrix (I) and its inverse (V), which is the variance matrix of the parameter
estimates. You hope to see that all of the off-diagonal elements of the variance matrix, the covariances,
are small relative to the variances on the diagonal. When options=check is specified, the macro
evaluates an initial design instead of generating a design. The option init=randomized names the
design to evaluate, and the examine= option displays the information and variance matrices. The
blocking variable was dropped.

Jmktex(3 ** 15, n=&n * &blocks, init=randomized(drop=x16),
options=check, examine=i v)

Here is a small part of the output.

Vacation Example

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 98.9099 97.8947 98.9418 0.9280
Vacation Example
Information Matrix
Intercept x11 x12 x21 x22 x31 x32 x41
Intercept 36.000 0 0 0 0 0 0 0
x11 0 36.000 O 0 0 0 0 0
x12 0 0 36.000 O 0 0 0 0
x21 0 0 0 36.000 O 0 0 0
x22 0 0 0 0 36.000 O 0 0
x31 0 0 0 0 0 36.000 O 0
x32 0 0 0 0 0 0 36.000 O
x41 0 0 0 0 0 0 0 36.000
x122 36.000 0 0 0 0 0 0
x131 0 36.000 0 9.000 0 -4.500 =7.794
x132 0 0 36.000 0 9.000 -7.794 4.500
x141 0 9.000 0 36.000 0 -4.500 =7.794
x142 0 0 9.000 0 36.000 =7.794 4.500
x151 0 -4.500 =7.794 -4.500 =7.794 36.000 0
x1562 0 -7.794 4.500 -7.794 4.500 0 36.000
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Vacation Example
Variance Matrix

Intercept x11 x12 x21 x22 x31 x32 x41
Intercept 0.028 0 0 0 0 0 0 0
x11 0 0.028 0 0 0 0 0 0
x12 0 0 0.028 O 0 0 0 0
x21 0 0 0 0.028 0 0 0 0
x22 0 0 0 0 0.028 0 0 0
x31 0 0 0 0 0 0.028 0 0
x32 0 0 0 0 0 0 0.028 0
x41 0 0 0 0 0 0 0 0.028
x122 0.028 0 0 0 0 0 0
x131 0 0.031 0 -0.006 0 0.003 0.005
x132 0 0 0.031 0 -0.006 0.005 -0.003
x141 0 -0.006 0 0.031 0 0.003 0.005
x142 0 0 -0.006 0 0.031 0.005 -0.003
x151 0 0.003 0.005 0.003 0.005 0.031 0
x152 0 0.005 -0.003 0.005 -0.003 0 0.031

This design still looks good. The D-efficiency for the design excluding the blocking factor is 98.9099%.
We can see that the nonorthogonality between x13-x15 makes their variances larger than the other
factors (0.031 versus 0.028).

These next steps use the %MktLab macro to reassign the variable names, store the design in a permanent
SAS data set, sasuser.Vacation_LinDesBlckd, and then use the %MktEx macro to check the results.
See page 163 for more information on permanent SAS data sets. We need to make the correlated
variables correspond to the least important attributes in different alternatives (in this case the scenery
factors for Alaska, Mexico, and Maine). The vars= option provides the new variable names: the first
variable (originally x1) becomes x1 (still), ..., the fifth variable (originally x5) becomes x5 (still), the
sixth variable (originally x6) becomes x11, ... the tenth variable (originally x10) becomes x15, the
eleventh through fifteenth original variables become x6, x9, x7, x8, x10, and finally the last variable
becomes Block. The PROC SORT step sorts the design into blocks.

%mktlab(data=randomized, vars=x1-x5 x11-x15 x6 x9 x7 x8 x10 Block,
out=sasuser.Vacation_LinDesBlckd)

proc sort data=sasuser.Vacation_LinDesBlckd; by block; run;

Y%mkteval (blocks=block)

Here is the output from the %MktLab macro, which shows the correspondence between the original and
new variable names.
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Variable Mapping:

:x1
T x2
: x3
: x4
: x5
¢ x11
: x12
: x13
: x14
: x15
: x6
: x9
T X7
: x8
: x10

x1

x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16

: Block

Here is some of the output from the %MktEval macro.

Vacation Example
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

x10

x8

x11 x12 x13 x14 x15 x6 x9 X7

x2 x3 x4 xb

Block x1

0

Block 1
x1
X2
x3
x4
x5

x11
x12
x13
x14
x15
x6
x9
X7
x8

0.25 0.25

1

0.25

0.25 1

0
0

0.256 0.26 1

x10
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Block
x1
X2
x3

x4
x5

x11
x12
x13
x14

x15
x6

x9

x7

x8
x10
Block
Block
Block
Block

Block
Block

Block
Block
Block

Block
Block

Block
Block
Block
Block
x1 x2
x1 x3
x1 x4
x1 x5

x1
x2

x4

x5
x11

x12
x13
x14

x15
x6

x7
x8
x10

Summary of Frequencies
There are O Canonical Correlations Greater Than 0.316
* — Indicates Unequal Frequencies

Vacation Example

Frequencies
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12
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x7 x8 6 33363336

x7 x10 336363633

x8 x10 336363633

N-Way 1111111111111 111111
1111111111111 1111

From a Linear Design to a Choice Design

These next steps prepare the design for analysis and further evaluation. We need to covert our linear
design into a choice design.” We need to create a data set Key that describes how the factors in our
linear design will be used to make the choice design for analysis. The Key data set will contain all of
the factor names, x1, x2, x3, ... x15. We can run the %MktKey macro to get these names, for cutting
and pasting into the program without typing them. This requests 5 rows, 3 columns and the results
transposed so names progress down each column instead of across each row.

Jmktkey (5 3 t)

The %MktKey macro produced the following data set.

x1 x2 x3
x1 x6 x11
X2 X7 x12
x3 x8 x13
x4 x9 x14

x5 x10 x15

This code makes the Key data set and processes the design.

title ’Vacation Example’;

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11

Alaska x2 x7 x12

Mexico x3 x8 x13

California x4 x9 x14

Maine x5 x10 x15

Home

J

Jmktroll (design=sasuser.Vacation_LinDesBlckd, key=key, alt=place,
out=sasuser.Vacation_ChDes)

fSee page 60 for an explanation of linear versus choice designs.
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For analysis, the design will have four factors as shown by the variables in the data set Key. Place is
the alternative name; its values are directly read from the Key in-stream data. Lodge is an attribute
whose values will be constructed from the sasuser.Vacation LinDesBlckd data set. Lodge is created
from x1 for Hawaii, x2 for Alaska, ..., x5 for Maine, and no attribute for Home. Similarly, Scene is
created from x6-x10, and Price is created from x11-x15. The macro %MktRoll is used to create the
data set sasuser.Vacation ChDes from sasuser.Vacation LinDesBlckd using the mapping in Key
and using the variable Place as the alternative ID variable.

The macro warns us:
WARNING: The variable BLOCK is in the DESIGN= data set but not
the KEY= data set.

While this message could indicate a problem, in this case it does not. The variable Block in the
design=sasuser.Vacation LinDesBlckd data set will not appear in the final design. The purpose
of the variable Block (sorting the design into blocks) has already been achieved. You can specify
options=nowarn if you want to suppress this warning

These next steps show the results for the first two choice sets. The data set is converted from a design
matrix with one row per choice set to a design matrix with one row per alternative per choice set.

proc print data=sasuser.Vacation_LinDesBlckd(obs=2);
id Block;
var x1-x15;
run;

proc print data=sasuser.Vacation_ChDes(obs=12);
id set; by set;
run;

Vacation Example

Block x1 x2 x3 x4 xb x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Vacation Example

Set Place Lodge Scene Price
1 Hawaii 1 3 1
Alaska 3 1 1
Mexico 3 3 2
California 1 2 2
Maine 1 1 2

Home
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2 Hawaii 1 3 1
Alaska 2 2 3
Mexico 1 2 1
California 2 1 1
Maine 3 3 2
Home

The next steps assign formats, convert the variable Price to contain actual prices, and recode the
constant alternative.

proc format;

value price 1 =’ 999’ 2 = 21249’
3 = 71499’ 0= 0’
value scene 1 = ’Mountains’ 2 = ’Lake’
3 = ’Beach’ 0 = ’Home’;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’
3 = ’Hotel’ 0 = ’Home’;
run;
data sasuser.Vacation_ChDes;
set sasuser.Vacation_ChDes;
if place = ’Home’ then do; lodge = O; scene = 0; price = 0; end;

price = input(put(price, price.), 5.);
format scene scene. lodge lodge.;
run;

proc print data=sasuser.Vacation_ChDes(obs=12);
id set; by set;
run;

Vacation Example

Set Place Lodge Scene Price
1 Hawaii Cabin Beach 999
Alaska Hotel Mountains 999
Mexico Hotel Beach 1249
California Cabin Lake 1249

Maine Cabin Mountains 1249

Home Home Home 0

2 Hawaii Cabin Beach 999
Alaska Bed & Breakfast Lake 1499
Mexico Cabin Lake 999
California Bed & Breakfast Mountains 999

Maine Hotel Beach 1249

Home Home Home 0
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It is not necessary to recode the missing values for the constant alternative. In practice, we usually will
not do this step. However, for this first analysis, we will want all nonmissing values of the attributes so
we can see all levels in the final printed output. We also recode Price so that for a later analysis, we can
analyze Price as a quantitative effect. For example, the expression put (price, price.) converts a
number, say 2, into a string (in this case ’1249’), then the input function reads the string and converts
it to a numeric 1249.

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%hchoiceff (data=sasuser.Vacation_ChDes, init=sasuser.Vacation_ChDes (keep=set),
nsets=36, nalts=6, beta=zero, intiter=0,
model=class(place / zero=none order=data)
class(place * price place * scene place * lodge /
zero=’Home’ ’0’ ’Home’ ’Home’ order=formatted) /
lprefix=0 cprefix=0 separators=’ ’ ’, ’)

The %ChoicEff macro has two uses. You can use it to search for an efficient choice design, or you can
use it to evaluate a choice design including designs that were generated using other methods such as
the %MktEx macro. It is this latter use that is illustrated here.

The way you check a design like this is to first name it on the data= option. This will be the candidate
set that contains all of the choice sets that we will consider. In addition, the same design is named
on the init= option. Just the variable Set is kept. It will be used to bring in just the indicated
choice sets from the data= design, which in this case is all of them. The option nsets= specifies that
there are 36 choice sets, and nalts= specifies that there are 6 alternatives. The option beta=zero
specifies that we are assuming for design evaluation purposes the null hypothesis that all of the betas
or part-worth utilities are zero. You can evaluate the design for other parameter vectors by specifying
a list of numbers after beta=. This will change the variances and standard errors. We also specify
intiter=0 which specifies zero internal iterations. We use zero internal iterations when we want to
evaluate an initial design, but not attempt to improve it. The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Some of these options will be familiar from the previous example. The
specification class(place / zero=none order=data) names the place variable as a classification
variables and asks for coded variables for every level including the constant, stay-at-home alterna-
tive. The specification class(place * price place * scene place * lodge / zero=’Home’ ’0’
’Home’ ’Home’ order=formatted) asks for alternative-specific effects for price, lodging, and scenery.
The alternative-specific effects allow the part-worth utilities to be different for each of the destinations.
This is accomplished by requesting interactions between the destination and the attributes. Class levels
are sorted by their formatted values, and for all factors, the reference level is the stay-at-home level.
The factors, ignoring second and subsequent appearances in the class specification, are place price
scene lodge and the values in the zero= option apply to the factors in order: place with >Home’,
price with ’0’, scene with *Home’, and lodge with ’Home"’.
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The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters
of the original variable name should be used as a prefix. The cprefix=0 option specifies that when
names are created for the binary variables, zero characters of the original variable name should be used
as a prefix. The separators=’’ ’, ’ option provides two strings (one null and the other a comma
followed by a blank) that allow you to specify label component separators for the main effect and
interaction terms. By specifying a comma and a blank for the second value, we request labels for the
side trip effects like *Alaska, 999’ instead of the default >Alaska * 999°. This option is explained
in more detail on page 265.

Here is the last table from the %ChoicEff macro, which is the one in which we are most interested.

Vacation Example
Evaluate the Choice Design

Standard
n Variable Name Label Variance DF Error
1 Hawaii Hawaii 1.53333 1 1.23828
2 Alaska Alaska 1.63645 1 1.23913
3 Mexico Mexico 1.53545 1 1.23913
4 California California 1.563333 1 1.23828
5 Maine Maine 1.53545 1 1.23913
6 Home Home . 0 .
7 Alaska_999 Alaska, 999 1.20000 1 1.09545
8 Alaska_1249 Alaska, 1249 1.20000 1 1.09545
9 Alaska_1499 Alaska, 1499 . 0 .
10 California_999 California, 999 1.20000 1 1.09545
11 California_1249 California, 1249 1.20000 1 1.09545
12 California_1499 California, 1499 . 0 .
13 Hawaii_999 Hawaii, 999 1.20000 1 1.09545
14 Hawaii_1249 Hawaii, 1249 1.20000 1 1.09545
15 Hawaii_1499 Hawaii, 1499 . 0 .
16 Maine_999 Maine, 999 1.20000 1 1.09545
17 Maine_1249 Maine, 1249 1.20000 1 1.09545
18 Maine_1499 Maine, 1499 . 0 .
19 Mexico_999 Mexico, 999 1.20000 1 1.09545
20 Mexico_1249 Mexico, 1249 1.20000 1 1.09545
21 Mexico_1499 Mexico, 1499 . 0 .
22 AlaskaBeach Alaska, Beach 1.20635 1 1.09834
23 Alaskalake Alaska, Lake 1.20635 1 1.09834
24 AlaskaMountains Alaska, Mountains . 0 .
25 CaliforniaBeach California, Beach 1.20000 1 1.09545
26 Californial.ake California, Lake 1.20000 1 1.09545
27 CaliforniaMountains California, Mountains . 0 .
28 HawaiiBeach Hawaii, Beach 1.20000 1 1.09545
29 HawaiilLake Hawaii, Lake 1.20000 1 1.09545
30 HawaiiMountains Hawaii, Mountains 0
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31 MaineBeach Maine, Beach 1.20635 1 1.09834
32 MaineLlake Maine, Lake 1.20635 1 1.09834
33 MaineMountains Maine, Mountains . 0 .

34 MexicoBeach Mexico, Beach 1.20635 1 1.09834
35 MexicoLake Mexico, Lake 1.20635 1 1.09834
36 MexicoMountains Mexico, Mountains . 0 .

37 AlaskaBed___Breakfast Alaska, Bed & Breakfast 1.20000 1 1.09545
38 AlaskaCabin Alaska, Cabin 1.20000 1 1.09545
39 AlaskaHotel Alaska, Hotel . 0 .

40 CaliforniaBed___Breakfast California, Bed & Breakfast 1.20000 1 1.09545
41 CaliforniaCabin California, Cabin 1.20000 1 1.09545
42 CaliforniaHotel California, Hotel . 0 .

43 HawaiiBed___Breakfast Hawaii, Bed & Breakfast 1.20000 1 1.09545
44 HawaiiCabin Hawaii, Cabin 1.20000 1 1.09545
45 HawaiiHotel Hawaii, Hotel . 0 .

46 MaineBed___Breakfast Maine, Bed & Breakfast 1.20000 1 1.09545
47 MaineCabin Maine, Cabin 1.20000 1 1.09545
48 MaineHotel Maine, Hotel . 0 .

49 MexicoBed___Breakfast Mexico, Bed & Breakfast 1.20000 1 1.09545
50 MexicoCabin Mexico, Cabin 1.20000 1 1.09545
51 MexicoHotel Mexico, Hotel 0

w
(2]

We see estimable parameters for the five destinations, but not for the stay at home alternative. For
each destination/attribute combination, which are the alternative-specific effects, we see two estimable
parameters. In some sense, each class variable in a choice model with a constant alternative has two
reference levels or two levels that will always have a zero coefficient: the level corresponding to the
constant alternative (mostly not shown here) and the level corresponding to the last level. More will
be said on this throughout the analysis. The standard errors for most of the alternative-specific effects
are 1.09545, but a few are a bit higher. They correspond scenery attributes for Alaska, Maine, and
Mexico, which are our nonorthogonal factors. This design looks quite good. Everything that should
be estimable in an alternative-specific effects model is estimable, and all of the standard errors are of
a similar magnitude.
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Generating the Questionnaire
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This next DATA step prints the questionnaires. They are then copied and the data are collected.

title;
proc sort data=sasuser.Vacation_LinDesBlckd; by block; run;

options 1s=80 ps=60 nodate nonumber;

data _null_;
array dests[&mm1] $ 10 _temporary_ (’Hawaii’ ’Alaska’

’Mexico’

’California’ ’Maine’);
array prices[3] $ 5 _temporary_ (’$999° ’$1249° >$1499°);

array scenes[3] $ 13 _temporary_

(’the Mountains’ ’a Lake’ ’the Beach’);

array lodging[3] $ 15 _temporary_

(’Cabin’ ’Bed & Breakfast’ ’Hotel’);

array x[15];
file print linesleft=11;

set sasuser.Vacation_LinDesBlckd;
by block;

if first.block then do;
choice = 0;

put _page_;
put @50 ’Form: ’ block ’ Subject: ________ > /7
end;
choice + 1;
if 11 < 19 then put _page_;
put choice 2. ’) Circle your choice of ’
’vacation destinations:’ /;
do dest = 1 to &mmi;
put ’ > dest 1. ’) ’ dests[dest]
+(-1) ’, staying in a ’ lodging[x[dest]]
‘near ’ scenes[x[&mml + dest]] +(-1) ’,’ /

’ with a package cost of ’
prices[x[2 * &mml + dest]] +(-1) ’.’ /;
end;
put " &m) Stay at home this year." /;
run;

In this design, there are five destinations, and each destination has three attributes. Each destination
name is accessed from the array dests. Note that destination is not a factor in the design; it is a
bin into which the attributes are grouped. The factors in the design are named in the statement
array x[15], which is a short-hand notation for array x[15] x1-x15. The first five factors are used
for the lodging attribute of the five destinations. The actual descriptions of lodging are accessed by
lodging[x[dest]]. The variable Dest varies from 1 to 5 destinations, so x [dest] extracts the levels
for the Dest destination. Similarly for scenery, scenes[x[&mm1 + dest]] extracts the descriptions of
the scenery. The index &mm1 + dest accesses factors 6 through 10, and x[&mm1 + dest] indexes the
scenes array. For prices, prices[x[2 * &mml + dest]], the index 2 * &mml + dest accesses the
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factors 11 through 15. Here are the first two choice sets.

207

Vacation Example
Form: 1

1) Circle your choice of vacation destinations:

2)

1

2)

3)

4)

5)

6)

Hawaii, staying in a Cabin near the Beach,
with a package cost of $999.

Alaska, staying in a Hotel near the Mountains,
with a package cost of $999.

Mexico, staying in a Hotel near the Beach,
with a package cost of $1249.

California, staying in a Cabin near a Lake,
with a package cost of $1249.

Maine, staying in a Cabin near the Mountains,
with a package cost of $1249.

Stay at home this year.

Circle your choice of vacation destinations:

1

2)

3)

4)

5)

6)

Hawaii, staying in a Cabin near the Beach,
with a package cost of $999.

Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1499.

Mexico, staying in a Cabin near a Lake,
with a package cost of $999.

California, staying in a Bed & Breakfast near the Mountains,

with a package cost of $999.

Maine, staying in a Hotel near the Beach,
with a package cost of $1249.

Stay at home this year.

Subject:

In practice, data collection will typically be much more elaborate than this. It may involve art work
or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.



208 TS-722F — Discrete Choice

Entering and Processing the Data

Here are some of the input data. Data from a total of 200 subjects were collected, 100 per form.

1 1 111353313351554151 2 2 344113155513111413 3 1 132353331151534151
4 2 341133131523331143 5 1 142153111151334143 6 2 344114111543131151
7 1 141343111311154154 8 2 344113111343121111 9 1 141124131151342155
10 2 344113131523131141 11 1 311423131353524144 12 2 332123151413331151
13 1 311244331352134155 14 2 341114111543131153 15 1 141253111351344151
16 2 344135131323331143 17 1 142123313154132141 18 2 542113151323131141
19 1 145314111311144111 20 2 344111131313431143 21 1 133343131313432145

Next, we use the macro %MktMerge to combine the data and design and create the variable c, indicating
whether each alternative was a first choice or a subsequent choice.

Jmktmerge (design=sasuser.Vacation_ChDes, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2(obs=12);
id subj form set; by subj form set;
run;

This macro takes the design=sasuser.Vacation ChDes experimental design, merges it with the data=
result data set, creating the out=res2 output data set. The Results data set contains the variable
Form that contains the block number. Since there are two blocks, this variable must have values of 1
and 2. This variable must be specified in the blocks= option. The experiment has nsets=&n choice
sets, nalts=6 alternatives, and the variables setvars=choosel-choose&n contain the numbers of the
chosen alternatives. The output data set Res2 has 21,600 observations (200 subjects who each saw 18
choice sets with 6 alternatives). Here are the first two choice sets.

Vacation Example

Subj Form Set Place Lodge Scene Price c
1 1 1 Hawaii Cabin Beach 999 1
Alaska Hotel Mountains 999 2

Mexico Hotel Beach 1249 2

California Cabin Lake 1249 2

Maine Cabin Mountains 1249 2

Home Home Home 0 2

1 1 2 Hawaii Cabin Beach 999 1
Alaska Bed & Breakfast Lake 1499 2

Mexico Cabin Lake 999 2

California Bed & Breakfast Mountains 999 2

Maine Hotel Beach 1249 2

Home Home Home 0 2
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Binary Coding

One more thing must be done to these data before they can be analyzed. The binary design matrix is
coded for each effect. This can be done with PROC TRANSREG.
proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)
class(price scene lodge / zero=none order=formatted) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design.
When design is specified, dependent variables are not required. Optionally, design can be followed by
“=n” where n is the number of observations to process at one time. By default, PROC TRANSREG
codes all observations in one big group. For very large data sets, this can consume large amounts
of memory and time. Processing blocks of smaller numbers of observations is more computationally
efficient. The option design=5000 processes observations in blocks of 5000. For smaller computers,
try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example but are in-
cluded here because sometimes they are very helpful in coding choice models. The nozeroconstant op-
tion specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant
option should always be specified when you specify design=n because the last group of observations
may be small and may contain constant variables. The nozeroconstant option is also important if you
do something like coding by subj set because sometimes an attribute is constant within a choice set.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. By default, the coded class variable contains a row of missing values for observations in
which the class variable is missing. With the norestoremissing option, these observations contain
a row of zeros instead. This option is useful when there is a constant alternative indicated by missing
values. Both of these options, like almost all options in PROC TRANSREG, can be abbreviated to
three characters (noz and nor).

The model statement names the variables to code and provides information about how they should
be coded. The specification class(place / ...) specifies that the variable Place is a classification
variable and requests a binary coding. The zero=none option creates binary variables for all categories.
The order=data option sorts the levels into the order they were first encountered in the data set.
It is specified so Home’ will be the last destination in the analysis, as it is in the data set. The
class(price scene lodge / ...) specification names the variables Price, Scene, and Lodge as
categorical variables and creates binary variables for all of the levels of all of the variables. The levels
are sorted into order based on their formatted values. The lprefix=0 option specifies that when
labels are created for the binary variables, zero characters of the original variable name should be
used as a prefix. This means that the labels are created only from the level values. For example,
’Mountains’ and ’Bed & Breakfast’ are created as labels not >Scene Mountains’ and ’Lodge Bed
& Breakfast’.

An output statement names the output data set and drops variables that are not needed. These
variables do not have to be dropped. However, since they are variable names that are often found in
special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables
prevents the warnings. Finally, the id statement names the additional variables that we want copied
from the input to the output data set. The next steps print the first coded choice set.
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proc print data=coded(obs=6) ;
id place;
var subj set form c price scene lodge;
run;

proc print data=coded(obs=6) label;
var pl:;
run;

proc print data=coded(obs=6) label;
id place;
var sc:;
run;

proc print data=coded(obs=6) label;

id place;
var lo: pr:;
run;
Vacation Example
Place Subj Set Form c Price Scene Lodge
Hawaii 1 1 1 1 999 Beach Cabin
Alaska 1 1 1 2 999 Mountains Hotel
Mexico 1 1 1 2 1249 Beach Hotel
California 1 1 1 2 1249 Lake Cabin
Maine 1 1 1 2 1249 Mountains Cabin
Home 1 1 1 2 0 Home Home
Vacation Example
Obs Hawaii Alaska Mexico California Maine Home Place
1 1 0 0 0 0 0 Hawaii
2 0 1 0 0 0 0 Alaska
3 0 0 1 0 0 0 Mexico
4 0 0 0 1 0 0 California
5 0 0 0 0 1 0 Maine
6 0 0 0 0 0 1 Home
Vacation Example
Place Beach Home Lake Mountains Scene
Hawaii 1 0 0 0 Beach
Alaska 0 0 0 1 Mountains
Mexico 1 0 0 0 Beach
California 0 0 1 0 Lake
Maine 0 0 0 1 Mountains
Home 0 1 0 0 Home
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Vacation Example

Bed &
Place Breakfast Cabin Home Hotel Lodge 0 999 1249 1499 Price
Hawaii 0 1 0 0 Cabin 0 1 0 0 999
Alaska 0 0 0 1 Hotel 0 1 0 0 999
Mexico 0 0 0 1 Hotel 0 0 1 0 1249
California 0 1 0 0 Cabin 0 0 1 0 1249
Maine 0 1 0 0 Cabin 0 0 1 0 1249
Home 0 0 1 0 Home 1 0 0 0 0

The coded design consists of binary variables for destinations Hawaii — Home, scenery Beach — Moun-
tains, lodging Bed & Breakfast — Hotel, and price 0 — 1499. For example, in the last printed panel of
the first choice set, the Cabin column has a 1 for Hawaii since Hawaii has Cabin lodging in this choice
set. The Cabin column has a 0 for Alaska since Alaska does not have Cabin lodging in this choice set.
These binary variables will form the independent variables in the analysis.

Note that we are fitting a model with generic attributes. Generic attributes are assumed to be the same
for all alternatives. For example, our model is structured so that the part-worth utility for being on a
lake will be the same for Hawaii, Alaska, and all of the other destinations. Similarly, the part-worth
utilities for the different prices will not depend on the destinations. In contrast, on page 222, using the
same data, we will code alternative-specific effects where the part-worth utilities are allowed by the
model to be different for each of the destinations.

PROC PHREG is run in the usual way to fit the choice model.

proc phreg data=coded brief;
model cxc(2) = &_trgind / ties=breslow;
strata subj set;
run;

We specify the &_trgind macro variable for the model statement independent variable list. PROC
TRANSREG automatically creates this macro variable. It contains the list of coded independent
variables generated by the procedure. This is so you do not have to figure out what names TRANSREG
created and specify them. In this case, PROC TRANSREG sets &_trgind to contain the following list.

PlaceHawaii PlaceAlaska PlaceMexico PlaceCalifornia PlaceMaine PlaceHome
PriceO Price999 Pricel249 Pricel499 SceneBeach SceneHome Scenelake
SceneMountains LodgeBed___Breakfast LodgeCabin LodgeHome LodgeHotel

The analysis is stratified by subject and choice set. Each stratum consists of a set of alternatives from
which a subject made one choice. In this example, each stratum consists of six alternatives, one of
which was chosen and five of which were not chosen. (Recall that we used %phchoice(on) on page
143 to customize the output from PROC PHREG.) The full table of the strata would be quite large
with one line for each of the 3600 strata, so the brief option was specified on the PROC PHREG
statement. This option produces a brief summary of the strata. In this case, we see there were 3600
choice sets that all fit one response pattern. Each consisted of 6 alternatives, 1 of which was chosen
and 5 of which were not chosen. There should be one pattern for all choice sets in an example like this
one—the number of alternatives, number of chosen alternatives, and the number not chosen should be
constant.
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Vacation Example

The PHREG Procedure

Model Information

Data Set

Dependent Variable
Censoring Variable
Censoring Value(s)
Ties Handling

Number of Observations Read
Number of Observations Used

WORK . CODED
C

c

2

BRESLOW

21600
21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 3600 6 1 5
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Hawaii 1 3.50429 0.45819 58.4934 <.0001
Alaska 1 0.62029 0.46624 1.7699 0.1834
Mexico 1 2.81487 0.45955 37.5193 <.0001
California 1 2.13549 0.46027 21.5263 <.0001
Maine 1 1.53470 0.46220 11.0253 0.0009
Home 0 0

0 0 0 . . .

999 1 3.56656 0.08849 1624.2978 <.0001
1249 1 1.40145 0.08293 285.6189 <.0001
1499 0 0 . . .
Beach 1 1.34191 0.06410 438.2880 <.0001
Home 0 0 . . .
Lake 1 0.67993 0.06981 94.8542 <.0001
Mountains 0 0 . . .

Bed & Breakfast 1 0.64972 0.05363 146.7874 <.0001
Cabin 1 -1.41463 0.07581 348.1654 <.0001
Home 0 0
Hotel 0 0

The destinations, from most preferred to least preferred, are Hawaii, Mexico, California, Maine, Alaska,
and then stay at home. The utility for lower price is greater than the utility for higher price. The
beach is preferred over a lake, which is preferred over the mountains. A bed & breakfast is preferred
over a hotel, which is preferred over a cabin. Notice that the coefficients for the constant alternative
(home and zero price) are all zero. Also notice that for each factor, destination, price, scenery and
accommodations, the coefficient for the last level is always zero. This will always occur when we code
with zero=none. The last level of each factor is a reference level, and the other coefficients will have
values relative to this zero. For example, all of the coefficients for the destination are positive relative
to the zero for staying at home. For scenery, all of the coefficients are positive relative to the zero for
the mountains. For accommodations, the coefficient for cabin is less than the zero for hotel, which is
less than the coefficient for bed & breakfast. In some sense, each class variable in a choice model with
a constant alternative has two reference levels or two levels that will always have a zero coefficient: the
level corresponding to the constant alternative and the level corresponding to the last level. At first,
it is reassuring to run the model with all levels represented to see that all the right levels get zeroed.
Later, we will see ways to eliminate these levels from the output.

Quantitative Price Effect

These data can also be analyzed in a different way. The Price variable can be specified directly as a
quantitative variable, instead of with indicator variables for a qualitative price effect. You could print
the independent variable list and copy and edit it, removing the Price indicator variables and adding
Price.
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%put &_trgind;

Alternatively, you could run PROC TRANSREG again with the new coding. We use this latter
approach, because it is easier, and it will allow us to illustrate other options. In the previous analysis,
there were a number of structural-zeros in the parameter estimate results due to the usage of the
zero=none option in the PROC TRANSREG coding. This is a good thing, particularly for a first
attempt at the analysis. It is good to specify zero=none and check the results and make sure you have
the right pattern of zeros and nonzeros. Later, you can run again excluding some of the structural zeros.
This time, we will explicitly specify the Home’ level in the zero= option as the reference level so it will
be omitted from the & _trgind variable list. The first class specification specifies zero=’Home’ since
there is one variable. The second class specification specifies zero=’Home’ ’Home’ specifying the
reference level for each of the two variables. The variable Price is designated as an identity variable.
The identity transformation is the no-transformation option, which is used for variables that need
to enter the model with no further manipulations. The identity variables are simply copied into the
output data set and added to the & trgind variable list. The statement label price = ’Price’ is
specified to explicitly set a label for the identity variable price. This is because we explicitly modified
PROC PHREG output using %phchoice(on) so that the rows of the parameter estimate table would
be labeled only with variable labels not variable names. A label for Price must be explicitly specified
in order for the output to contain a label for the price effect.

proc transreg design data=res2 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data) identity(price)
class(scene lodge / zero=’Home’ ’Home’ order=formatted) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set form c;
run;
proc phreg data=coded brief;
model cxc(2) = &_trgind / ties=breslow;
strata subj set;
run;

Here are the results.

Vacation Example
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 21600

Number of Observations Used 21600
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives
Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 3600 6 1 5
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6295.152
AIC 12900.668 6315.152
SBC 12900.668 6377.039
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6605.5164 10 <.0001
Score 5750.9220 10 <.0001
Wald 2483.9241 10 <.0001
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq
Hawaii 1 14.27118 0.50198 808.2623 <.0001
Alaska 1 11.44532 0.49063 544.1855 <.0001
Mexico 1 13.56216 0.49955 737.0457 <.0001
California 1 12.94025 0.49430 685.3359 <.0001
Maine 1 12.36405 0.49553 622.5618 <.0001
Price 1 -0.00740 0.0001770 1747.2333 <.0001
Beach 1 1.33978 0.06458 430.4561 <.0001
Lake 1 0.71161 0.07131 99.5777 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.66233 0.05319 155.0604 <.0001
Cabin 1 -1.33467 0.07353 329.4356 <.0001
Hotel 0 0

215
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The results of the two different analyses are similar. The coefficients for the destinations all increase
by a nonconstant amount (approximately 10.8) but the pattern is the same. There is still a negative
effect for price. Also, the fit of this model is slightly worse, Chi-Square = 6605.5164, compared to the
previous value of 6642.9164 (bigger values mean better fit), because price has one fewer parameter.

Quadratic Price Effect

Previously, we saw price treated as a qualitative factor with two parameters and two df, then we saw
price treated as a quantitative factor with one parameter and one df. Alternatively, we could treat price
as quantitative and add a quadratic price effect (price squared). Like treating price as a qualitative
factor, there are two parameters and two df for price. First, we create PriceL, the linear price term by
centering the original price and dividing by the price increment (250). This maps (999, 1249, 1499) to
(-1, 0, 1). Next, we run PROC TRANSREG and PROC PHREG with the new price variables.

data res3;
set res2;
Pricel = price;
if price then pricel = (price - 1249) / 250;
run;

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data)
pspline(pricel / degree=2)
class(scene lodge / zero=’Home’ ’Home’ order=formatted) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;
The pspline or polynomial spline expansion with the degree=2 option replaces the variable PriceL
with two coded variables, PriceL_1 (which is the same as the original Pricel) and PriceL_2 (which
is PriceL squared). A degree=2 spline with no knots (neither knots= nor nknots= were specified)
simply expands the variable into a quadratic polynomial.
proc phreg data=coded brief;
model cxc(2) = &_trgind / ties=breslow;
strata subj set;

run;

This step produced the following results.
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Vacation Example
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 3600 6 1 5
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Hawaii 1 4.90574 0.45379 116.8713 <.0001
Alaska 1 2.02174 0.46010 19.3081 <.0001
Mexico 1 4.21633 0.45427 86.1476 <.0001
California 1 3.53695 0.45507 60.4085 <.0001
Maine 1 2.93615 0.45761 41.1683 <.0001
Price 1 1 -1.78328 0.04425 1624.2978 <.0001
Price 2 1 0.38183 0.06263 37.1732 <.0001
Beach 1 1.34191 0.06410 438.2880 <.0001
Lake 1 0.67993 0.06981 94.8542 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.64972 0.05363 146.7874 <.0001
Cabin 1 -1.41463 0.07581 348.1654 <.0001
Hotel 0 0

The fit is exactly the same as when price was treated as qualitative, Chi-Square = 6642.9164. This is
because both models are the same except for the different but equivalent 2 df codings of price. The
coefficients for the destinations in the two models differ by a constant 1.40145. The coefficients for the
factors after price are unchanged. The part-worth utility for $999 is —1.78328 x (999 — 1249)/250 +
0.38183 x ((999 — 1249)/250)2 = 2.16511, the part-worth utility for $1249 is —1.78328 x (1249 —
1249)/250 + 0.38183 x ((1249 — 1249)/250)? = 0, and the part-worth utility for $1499 is —1.78328 x
(1499 — 1249) /2504 0.38183 x ((1499 — 1249)/250)? = —1.40145, which differ from the coefficients when
price was treated as qualitative, by a constant -1.40145.

Effects Coding

In the previous analyses, binary (1, 0) codings were used for the variables. The next analysis illustrates
effects (1, 0, -1) coding. The two codings differ in how the final reference level is coded. In binary
coding, the reference level is coded with zeros. In effects coding, the reference level is coded with minus
ones.

Binary Coding

Effects Coding

Levels | One Two One Two
1 1 0 1 0
2 0 1 0 1
3 0 0 -1 -1

In this example, we will use a binary coding for the destinations and effects codings for the attributes.

PROC TRANSREG can be used for effects coding. The effects option used inside the parentheses
after class asks for a (0, 1, -1) coding. The zero= option specifies the levels that receive the -1’s.
PROC PHREG is run with almost the same variable list as before, except now the variables for the
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reference levels, those whose parameters are structural zeros are omitted. Refer back to the parameter
estimates table on page 212, a few select lines of which are reproduced next:

(Some Lines in the)
Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq
Home 0 0
0 0 0
1499 0 0
Home 0 0
Mountains 0 0
Home 0 0
Hotel 0 0

Notice that the coefficients for the constant alternative (home and zero price) are all zero. Also notice
that for each factor, destination, price, scenery and accommodations, the coefficient for the last level
is always zero. In some sense, each class variable in a choice model with a constant alternative has
two reference levels or two levels that will always have a zero coefficient: the level corresponding to the
constant alternative and the level corresponding to the last level. In some of the preceding examples,
we eliminated the Home’ levels by specifying zero=Home. Now we will see how to eliminate all of the
structural zeros from the parameter estimate table.

First, for each classification variable, we change the level for the constant alternative to missing. (Recall
that they were originally missing and we only made them nonmissing to deliberately produce the zero
coefficients.) This will cause PROC TRANSREG to ignore those levels when constructing indicator
variables. When you use this strategy, you must specify the norestoremissing option in the PROC
TRANSREG statement. During the first stage of design matrix creation, PROC TRANSREG puts
zeros in the indicator variables for observations with missing class levels. At the end, it replaces the
zeros with missings, “restoring the missing values.” When the norestoremissing option is specified,
missing values are not restored and we get zeros in the indicator variables for missing class levels,
which is usually what we want. The DATA step if statements recode the constant levels to missing.
Next, in PROC TRANSREG, the reference levels ’Mountains’ and ’Hotel’ are listed in the zero=
option in the class specification.

data res4;
set res3;
if scene = 0 then scene .
if lodge = O then lodge .3
run;
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proc transreg design=5000 data=res4 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data)
pspline(pricel / degree=2)
class(scene lodge /
effects zero=’Mountains’ ’Hotel’ order=formatted) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;

Next, the coded data and design matrix are printed for the first choice set. The coded design matrix
begins with five binary columns for the destinations, ’Hawaii’ through ’Maine’. There is not a column
for the stay-at-home destination and the row for stay at home has all zeros in the coded variables. Next
is the linear price effect, ’Price 1’, consisting of 0, 1, and -1. It is followed by the quadratic price
effect, ’Price 2’, which is ’Price 1’ squared. Next are the scenery terms, effects coded. ’Beach’
and ’Lake’ have values of 0 and 1; -1’s in the fourth row for the reference level, >Mountains’; and zeros
in the last row for the stay-at-home alternative. Next are the lodging terms, effects coded. ’Bed &
Breakfast’ and ’Cabin’ have values of 0 and 1; -1’s in the first, third and fourth row for the reference
level, ’Hotel’; and zeros in the last row for the stay-at-home alternative.

proc print data=coded(obs=6) label; run;

Vacation Example

Price Price Bed &

Obs Hawaii Alaska Mexico California Maine 1 2 Beach Lake Breakfast Cabin
1 1 0 0 0 0 -1 1 1 0 0 1
2 0 1 0 0 0 -1 1 -1 -1 -1 -1
3 0 0 1 0 0 0 0 1 0 -1 -1
4 0 0 0 1 0 0 0 1 0 1
5 0 0 0 0 1 0 0 -1 -1 0 1
6 0 0 0 0 0 0 0 0 0 0 0

Obs Place Price Scene Lodge Subj Set Form c
1 Hawaii -1 Beach Cabin 1 1 1 1
2 Alaska -1 Mountains Hotel 1 1 1 2
3 Mexico 0 Beach Hotel 1 1 1 2
4 Califormnia 0 Lake Cabin 1 1 1 2
5 Maine 0 Mountains Cabin 1 1 1 2
6 Home 0 1 1 1 2

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;
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Vacation Example
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 3600 6 1 5
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Hawaii 1 5.32472 0.44985 140.1076 <.0001
Alaska 1 2.44072 0.45690 28.5360 <.0001
Mexico 1 4.63531 0.45052 105.8613 <.0001
California 1 3.95593 0.45176 76.6803 <.0001
Maine 1 3.35513 0.45381 54.6610 <.0001
Price 1 1 -1.78328 0.04425 1624.2978 <.0001
Price 2 1 0.38183 0.06263 37.1732 <.0001
Beach 1 0.66796 0.03582 347.7320 <.0001
Lake 1 0.00599 0.03922 0.0233 0.8787
Bed & Breakfast 1 0.90469 0.03471 679.2342 <.0001
Cabin 1 -1.15966 0.04650 621.9367 <.0001

It is instructive to compare the results of this analysis to the previous analysis on page 217. First, the
model fit and chi-square statistics are the same indicating the models are equivalent. The coefficients for
the destinations differ by a constant -0.41898, the price coefficients are the same, the scenery coefficients
differ by a constant 0.67395, and the lodging coefficients differ by a constant -0.25497. Notice that
—0.41898 + 0+ 0.67395 4+ —0.25497 = 0, so the utility for each alternative is unchanged by the different
but equivalent codings.

Alternative-Specific Effects

In all of the analyses presented so far in this example, we have assumed that the effects for price,
scenery, and accommodations are generic or constant across the different destinations. Equivalently,
we assumed that destination does not interact with the attributes. Next, we show a model with
alternative-specific effects that does not make this assumption. The alternative-specific model allows
for different price, scenery and lodging effects for each destination. The coding can be done with PROC
TRANSREG using its syntax for interactions. Before we do the coding, let’s go back to the design
preparation stage and redo it in a more normal fashion so reference levels will be omitted from the
analysis.

We start by creating the data set Key. This step differs from the one we saw on page 200 only in that
now we have a missing value for Place for the constant alternative.

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11

Alaska x2 X7 x12

Mexico x3 x8 x13

California x4 x9 x14
Maine x5 x10 x15
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Next, we use the %MktRoll macro to process the design and the %MktMerge macro to merge the design
and data.

Jmktroll (design=sasuser.Vacation_LinDesBlckd, key=key, alt=place,
out=sasuser.Vacation_ChDes)

Jmktmerge (design=sasuser.Vacation_ChDes, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choosel-chooseé&n,
stmts=Ystr(price = input(put(price, price.), 5.);
format scene scene. lodge lodge.;))

proc print data=res2(obs=12); run;

The usage of the %MktRoll macro is exactly the same as we saw on page 200. The %MktMerge macro
usage differs from page 208 in that instead of assigning labels and recoding price in a separate DATA
step, we now do it directly in the macro. The stmts= option is used to add a price = assignment
statement and format statement to the DATA step that merges the two data sets. The statements
were included in a %str( ) macro since they contain semicolons. Here are the first two choice sets.

Vacation Example

Obs  Subj Form Set  Place Lodge Scene Price ¢
1 1 1 1 Hawaii Cabin Beach 999 1
2 1 1 1 Alaska Hotel Mountains 999 2
3 1 1 1 Mexico Hotel Beach 1249 2
4 1 1 1 California Cabin Lake 1249 2
5 1 1 1 Maine Cabin Mountains 1249 2
6 1 1 1 . . . 2
7 1 1 2 Hawaii Cabin Beach 999 1
8 1 1 2 Alaska Bed & Breakfast Lake 1499 2
9 1 1 2 Mexico Cabin Lake 999 2

10 1 1 2 California Bed & Breakfast Mountains 999 2
11 1 1 2 Maine Hotel Beach 1249 2
12 1 1 2 2

Notice that the attributes for the constant alternative are all missing. Next, we code with PROC
TRANSREG. Since we are using missing values for the constant alternative, we must specify the
norestoremissing option in the PROC TRANSREG statement. With the norestoremissing option,
the indicator variables created for missing class variable values contain all zeros instead of all missings.
First, we specify the variable Place as a class variable. Next, we interact Place with all of the
attributes, Price, Scene, and Lodge, to create the alternative-specific effects.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)
class(place * price place * scene place * lodge /
zero=none order=formatted) / lprefix=0 sep=’ ’ ’, ’;
output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;
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proc print data=coded(obs=6) label noobs; run;

The coded design matrix consists of:

five binary columns, Hawaii’ through ’Maine’, for the five destinations,

fifteen binary columns (5 destinations times 3 prices), Alaska, 999’ through ’Mexico, 1499°,
for the alternative-specific price effects,

e fifteen binary columns (5 destinations times 3 sceneries), >Alaska, Beach’ through ’Mexico,
Mountains’, for the alternative-specific scenery effects,

fifteen binary columns (5 destinations times 3 lodgings), Alaska, Bed & Breakfast’ through
’Mexico, Hotel’, for the alternative-specific lodging effects.

The entire sixth row of the coded design matrix, the stay-at-home alternative, consists of zeros.

Vacation Example

Alaska, Alaska, Alaska,

Hawaii Alaska Mexico California Maine 999 1249 1499
1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

California, California, California, Hawaii, Hawaii, Hawaii,

999 1249 1499 999 1249 1499
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Maine, Maine, Maine, Mexico, Mexico, Mexico, Alaska, Alaska, Alaska,
999 1249 1499 999 1249 1499 Beach Lake Mountains
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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California, California, California, Hawaii, Hawaii, Hawaii,

Beach Lake Mountains Beach Lake Mountains
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Alaska,
Maine, Maine, Maine, Mexico, Mexico, Mexico, Bed & Alaska, Alaska,
Beach Lake Mountains Beach Lake Mountains Breakfast Cabin Hotel
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
California, Hawaii,
Bed & California, California, Bed & Hawaii, Hawaii,
Breakfast Cabin Hotel Breakfast Cabin Hotel
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Maine, Mexico,
Bed & Maine, Maine, Bed & Mexico, Mexico,

Breakfast Cabin Hotel Breakfast Cabin Hotel Place

0 0 0 0 0 0 Hawaii

0 0 0 0 0 0 Alaska

0 0 0 0 0 1 Mexico

0 0 0 0 0 0 California
0] 1 0 0 0 0 Maine

0 0 0 0 0 0
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Price Scene Lodge Subj Set Form C
999 Beach Cabin 1 1 1 1
999 Mountains Hotel 1 1 1 2

1249 Beach Hotel 1 1 1 2
1249 Lake Cabin 1 1 1 2
1249 Mountains Cabin 1 1 1 2
1 1 1 2
Analysis proceeds by running PROC PHREG as before.
proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;
Vacation Example
The PHREG Procedure
Model Information
Data Set WORK . CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW
Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 12900.668 6239.870
AIC 12900.668 6309.870
SBC 12900.668 6526.474
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Testing Global Null Hypothesis: BETA=0

Test

Likelihood Ratio

Score
Wald

Hawaii

Alaska

Mexico

California

Maine

Alaska, 999
Alaska, 1249
Alaska, 1499
California, 999
California, 1249
California, 1499
Hawaii, 999
Hawaii, 1249
Hawaii, 1499
Maine, 999
Maine, 1249
Maine, 1499
Mexico, 999
Mexico, 1249
Mexico, 1499
Alaska, Beach
Alaska, Lake
Alaska, Mountains
California, Beach
California, Lake
California, Mountains
Hawaii, Beach
Hawaii, Lake
Hawaii, Mountains
Maine, Beach
Maine, Lake
Maine, Mountains
Mexico, Beach
Mexico, Lake
Mexico, Mountains

w)
o

O, P, OFRr P, OFRr P, OFRRFP OFRPRF, OFRLRKFR, ORRP ORFRPRFEFL OFPRR ORRPRRERRPRPERR

Chi-Square

6660.7982
6601.7928
2448.1475

Parameter

Estimate

=D = DN O W

w

.49208
.17527
.93013
.17915
.27770
.02423
.81200

0

.38438
.22372

0

3.61016

.45415

0

3.80918

.53370

0

3.45924

.41406

0

.01542

0.48168

0

.47681

0.84358

0

.29573

0.61301

0

.59739

0.64984

0

.26780

0.67632

0

DF

35
35
35

Standard

O O O O O O o

o

Error

L47222
.67139
.47932
.49725
. 54587
.46534
.49473

.19965
.22445

.14157
.13050

.26060
.27050

.15495
.15693

.21881
.22639

.15636
.16138

.12493
.12299

.20874
.20203

.13744
.135689

Pr > ChiSq

<.
<.
<.

Multinomial Logit Parameter Estimates

0001
0001
0001

Chi-Square

54.

0.
37.
19.

5.
4.
13.

287.
29.

650.
124.

213.
32.

498.
81.

21.
.5269

90.
27.

107.
24.

58.
10.

85.
24.

6856
0682
3706
2058
4787
7858
4147

3498
7251

2879
1725

6577
1475

4209
1907

5355

3528
3244

5692
8444

5584
3468

0857
7716
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Pr > ChiSq

O AN O AN AN O A

N

.0001
.7940
.0001
.0001
.0192
.0001
.0002

.0001
.0001

.0001
.0001

.0001
.0001

.0001
.0001

.0001
.0334

.0001
.0001

<.0001
<.0001

.0001
.0013

.0001
.0001
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Alaska, Bed & Breakfast 1 1.00195 0.18862 28.2169 <.0001
Alaska, Cabin 1 -1.33747 0.31958 17.5146 <.0001
Alaska, Hotel 0 0 . . .
California, Bed & Breakfast 1 0.67004 0.13195 25.7875 <.0001
California, Cabin 1 -1.50239 0.16734 80.6060 <.0001
California, Hotel 0 0 . . .
Hawaii, Bed & Breakfast 1 0.63585 0.11523 30.4508 <.0001
Hawaii, Cabin 1 -1.41004 0.13462 109.7155 <.0001
Hawaii, Hotel 0 0 . . .
Maine, Bed & Breakfast 1 0.58532 0.15999 13.3848 0.0003
Maine, Cabin 1 -1.50967 0.22377 45.5166 <.0001
Maine, Hotel 0 0 . . .
Mexico, Bed & Breakfast 1 0.54835 0.11802 21.5891 <.0001
Mexico, Cabin 1 -1.40762 0.15033 87.6707 <.0001
Mexico, Hotel 0 0

There are zero coefficients for the reference level. Do we need this more complicated model instead
of the simpler model? To answer this, first look at the coefficients. Are they similar across different
destinations? In this case, they seem to be. This suggests that the simpler model may be sufficient.

More formally, the two models can be statistically compared. You can test the null hypothesis that the
two models are not significantly different by comparing their likelihoods. The difference between two
—2log(L¢)’s (the number reported under "With Covariates’ in the output) has a chi-square distribution.
We can get the df for the test by subtracting the two df for the two likelihoods. The difference
6257.752 — 6239.870 = 17.882 is distributed x? with 35 — 11 = 24 df (p < 0.80869). This more
complicated model does not account for significantly more variance than the simpler model.
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Vacation Example
with Alternative-Specific Attributes

This example discusses choosing the number of choice sets, designing the choice experiment, ensuring
that certain key interactions are estimable, examining the design, blocking an existing design, evaluating
the design, generating the questionnaire, generating artificial data, reading, processing, and analyzing
the data, binary coding, generic attributes, alternative-specific effects, aggregating the data, analysis,
and interpretation of the results. In this example, a researcher is interested in studying choice of
vacation destinations. This page and the next page contain two summaries of the design, one with
factors grouped by attribute and one grouped by destination.

This example is a modification of the previous example. Now, all alternatives do not have the same
factors, and all factors do not have the same numbers of levels. There are still five destinations of
interest: Hawaii, Alaska, Mexico, California, and Maine. Each alternative is composed of three factors
like before: package cost, scenery, and accommodations, only now they do not all have the same levels,
and the Hawaii and Mexico alternatives are composed of one additional attribute. For Hawaii and
Alaska, the costs are $1,249, $1,499, and $1,749; for California, the prices are $999, $1,249, $1,499, and
$1,749; and for Mexico and Maine, the prices are $999, $1,249, and $1,499. Scenery (mountains, lake,
beach) and accommodations (cabin, bed & breakfast, and hotel) are the same as before. The Mexico
trip now has the option of a side trip to sites of archaeological significance, via bus, for an additional
cost of $100. The Hawaii trip has the option of a side trip to an active volcano, via helicopter, for an
additional cost of $200. This is typical of the problems that marketing researchers face. We have lots
of factors and asymmetry—each alternative is not composed of the same factors, and the factors do not
all have the same numbers of levels.

Factor Destination Attribute Levels

X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X6 Hawaii Scenery Mountains, Lake, Beach

X7 Alaska Scenery Mountains, Lake, Beach

X8 Mexico Scenery Mountains, Lake, Beach

X9 California Scenery Mountains, Lake, Beach

X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $1249, $1499, $1749

X12 Alaska Price $1249, $1499, $1749

X13 Mexico Price $999, $1249, $1499

X14 California  Price $999, $1249, $1499, $1749

X15 Maine Price $999, $1249, $1499

X16 Hawaii Side Trip Yes, No

X17 Mexico Side Trip Yes, No
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Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach
X11 Price $1249, $1499, $1749
X16 Side Trip Yes, No
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach
X12 Price $1249, $1499, $1749
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach
X13 Price $999, $1249, $1499
X17 Side Trip Yes, No
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach
X14 Price $999, $1249, $1499, $1749
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach
X15 Price $999, $1249, $1499

Choosing the Number of Choice Sets

We can use the %MktRuns autocall macro to suggest experimental design sizes. (All of the autocall
macros used in this book are documented starting on page 597.) As before, we specify a list containing
the number of levels of each factor.

title ’Vacation Example with Asymmetry’;

Ymktruns( 3 **x 14 4 2 2 )

The output tells us the size of the saturated design, which is the number of parameters in the linear
design, and suggests design sizes.

Vacation Example with Asymmetry
Design Summary

Number of

Levels Frequency
2 2
3 14

4 1
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Vacation Example with Asymmetry

Saturated

Full Factorial =

Some Reasonable
Design Sizes

72 *
144 *

36
108
54
90
126
45
63
81

34
76,527,504

Violations

N N O O

18
18
18
48
48
48

Cannot Be
Divided By

12
12
12
8 12
8 12
8 12

N NN D D> D> 0
D

AR D 00 00 00
(0))

(@)

* — 100% Efficient Design can be made with the MktEx Macro.

72
72
72
72
72
72
72
72
72
144
144
144
144
144
144
144
144
144

Vacation Example with Asymmetry

**x 20
** 19
**x 18
**x 13
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**x 11
** 10
**x 9
*x 92
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**x 81
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Orthogonal
Orthogonal
Orthogonal
Orthogonal
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Orthogonal
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Orthogonal
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Orthogonal
Orthogonal
Orthogonal
Orthogonal
Orthogonal
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Array
Array
Array
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We need at least 34 choice sets, as shown by (Saturated=34) in the listing. Any size that is a multiple
of 72 would be optimal. We would recommend 72 choice sets, four blocks of size 18. However, like the
previous vacation example, we will use fewer choice sets so that we can illustrate getting an efficient
but nonorthogonal design. A design with 36 choice sets is pretty good. Thirty-six is not divisible by
8 = 2 x 4, so we cannot have equal frequencies in the California price and Mexico and Hawaii side trip
combinations. This should not pose any problem. This leaves only 2 error df for the linear model, but
in the choice model, we will have adequate error df.

Designing the Choice Experiment

This problem requires a design with 1 four-level factor for price and 4 three-level factors for price. There
are 10 three-level factors for scenery and accommodations as before. Also, we need 2 two-level factors
for the two side trips. Note that we do not need a factor for the price or mode of transportation of the
side trips since they are constant within each trip. With the %MktEx macro, making an asymmetric
design is no more difficult than making a symmetric design.}

Y%mktex(3 **x 13 4 3 2 2, n=36, seed=205)
Y%mkteval;

Here is the last part of the results.

Vacation Example with Asymmetry
The OPTEX Procedure
Class Level Information
Class Levels Values

x1
x2
x3

x4
x5

x6
X7

x8
x9

x10
x11

x12
x13

x14
x15
x16
x17

NN WP OWOWWWWwWwwwwwwww
e e e e e e e S S e S N e S T
N NDNDNDNDNDDNDDNDDNDNDDNDDNDNDDNDDNDDNDNDN

W W WWwWwwwwwwowwwwow

#Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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Vacation Example with Asymmetry

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 98.8874 97.5943 97.4925 0.9718

Vacation Example with Asymmetry
Canonical Correlations Between the Factors
There are 2 Canonical Correlations Greater Than 0.316

»
[N
»
N

x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17
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x2
x3
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.33 0.33

.25

O O O O O O OO OO OO0 OoOOoO o=
O O O O O OO OO OO OO OO =—=oOo
O O O O O O OO OO0 O0OOoOoO oo
O O O O O O OO O0OOOOO O OoOOo
O O O O O OO OO OO0OOOH+H OO OoOOo
O O O O OO OO O0OOOEHrH OO O OoOOo
O O O O O OO OO OkrrH OO OO OoOOo
O O O O OO OO OKFHrH OO OO OoOOoOOo
O O O OO OO0 HrH OO OO OO OoOOo
O O O O O OO FHrH OO OO0 OoOOoOOoOOo
O O O O OO Fr OO OO OO O o oo
O O O OO HrH OO O OO0 O OO OoOOo
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The macro found a very nice, almost orthogonal and almost 99% D-efficient design in 40 seconds.
However, we will not use this design. Instead, we will make a larger design with interactions.

Ensuring that Certain Key Interactions are Estimable

Next, we will ensure that certain key interactions are estimable. Specifically, it would be good if in
the aggregate, the interactions between price and accommodations were estimable for each destination.
We would like the following interactions to be estimable: x1*x11 x2*x12 x3*x13 x4*x15 x5*x15. We
will again use the %MktEx macro.

%mktex(3 ** 13 4 3 2 2, n=36,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5%*x15,
seed=205)
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We immediately get this message.

ERROR: More parameters than runs.
If you really want to do this, specify RIDGE=.
There are 36 runs with 56 parameters.

ERROR: The MKTEX macro ended abnormally.

If we want interactions to be estimable, we will need more choice sets. The number of parameters is
1 for the intercept, 14 x (3 —1) 4+ (4 — 1) + 2 x (2 — 1) = 33 for main effects, and 4 x (3 — 1) x (3 —
1)+ (4 —1) x (3 —1) = 22 for interactions for a total of 1 + 33 4+ 22 = 56 parameters. This means we
need at least 56 choice sets, and ideally for this design with 2, 3, and 4 level factors, we would like the
number of sets to be divisible by 2 x 2, 2 x 3, 2 x 4, 3 x 3, and 3 x 4. Sixty is divisible by 2, 3, 4, 6, and
12 so is a reasonable design size. Sixty choice sets could be divided into three blocks of size 20, four
blocks of size 15, or five blocks of size 12. Seventy-two choice sets would be better, since unlike 60, 72
can be divided by 9. Unfortunately, 72 would require one more block.

We can use the %MktRuns macro to help us choose the number of choice sets. We also specified a
keyword option max= to consider only the 45 design sizes from the minimum of 56 up to 100.

title ’Vacation Example with Asymmetry’;
fmktruns(3 ** 13 4 3 2 2, interact=xl*x11 x2*x12 x3*x13 x4*x14 x5*x15, max=45)

Vacation Example with Asymmetry

Design Summary

Number of

Levels Frequency
2 2
3 14
4 1

Vacation Example with Asymmetry

Saturated = 56
Full Factorial = 76,527,504
Some Reasonable Cannot Be

Design Sizes  Violations  Divided By

72 58 27 81 108

81 79 2 4 6 8 12 18 24 36 108

90 95 4 8 12 24 27 36 81 108

63 133 2 4 6 8 12 18 24 27 36 81 108
99 133 2 4 6 8 12 18 24 27 36 81 108
96 174 9 18 27 36 81 108

60 178 8 9 18 24 27 36 81 108

84 178 8 9 18 24 27 36 81 108

66 194 4 8 9 12 18 24 27 36 81 108

78 194 4 8 9 12 18 24 27 36 81 108
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We see that 72 cannot be divided by 27 = 9 x 3 so for example the Maine accommodation/price
combinations cannot occur with equal frequency with each of the three-level factors. We see that 72
cannot be divided by 81 = 9 x 9 so for example the Mexico accommodation/price combinations cannot
occur with equal frequency with each of the Hawaii accommodation/price combinations. We see that
72 cannot be divided by 108 = 9 x 12 so for example the California accommodation/price combinations
cannot occur with equal frequency with each of the Maine accommodation/price combinations. With
interactions, there are many higher-order opportunities for nonorthogonality. However, usually we
will not be overly concerned about potential unequal cell frequencies on combinations of attributes in
different alternatives.

The smallest number of runs in the table is 60. While 72 is better in that it can be divided by more
numbers, either 72 or 60 should work fine. We will pick the larger number and run the %MktEx macro
again with n=72 specified.
/mktex (3 **x 13 4 3 2 2, n=72, seed=368,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)
Here is the final D-efficiency table.

Vacation Example with Asymmetry

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 89.8309 79.7751 94.4393 0.8819

Sometimes, particularly in models with two-way interactions, we can do better by having %MktEx do
pair-wise exchanges in the coordinate-exchange algorithm instead of working on a single column at a
time. You can always specify exchange=2 and order=sequential to get all possible pairs, but this
can be very time consuming. Alternatively, you can use the order=matrix=SAS-data-set option and
tell %MktEx exactly which pairs of columns to work on. That approach is illustrated in the next steps.

data mat;

do a=1 to 17;
b= .;
output;
end;

do a =1 to 5;
b =10 + a;
output;
end;

run;

proc print; run;

%mktex(3 ** 13 4 3 2 2, n=72, seed=368, order=matrix=mat,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)

Here is the data set Mat.
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Vacation Example with Asymmetry

Obs a b
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17 .
18 1 11
19 2 12
20 3 13
21 4 14
22 5 15

It has two columns. The values in the data set indicate the pairs of columns that %MktEx should work
on together. Missing values are replaced by a random column number for every row and for every
pass through the design. This data set instructs %MktEx to sequentially go through every column each
time paired with some other random column, then work through all of the interaction pairs, x1*x11,
x2xx12, and so on. This performs 22 pair-wise exchanges in every row, which is many fewer exchanges
than the 17 x 16/2 = 136 that would be required with exchange=2 and order=sequential. There are
many other combinations that you might consider. Here are a few examples.
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One Two Three Four Five
1 1 11} 1 1| 1 11| 1

2 2 12 2 2 2 12 2

3 3 13| 3 3] 3 13| 3

4 4 14| 4 4| 4 14| 4

5 5 15| 5 5| 5 15| 5

6 6 6 6| 6 6| 6

7 7 ToT| T T 7

8 8 8 8| 8 8| 8

9 9 9 9] 9 9| 9
10 10 10 10|10 10| 10
11 11 11 11
12 12 12 12
13 13 13 13
14 14 14 14
15 15 15 15
16 16 16 16
17 . 17 17 17 .
1 11 1 11 1 11
2 12 2 12 2 12
3 13 3 13 3 13
4 14 4 14 4 14
5 15 5 15 5 15

Set one is the set we just used. Each column is paired with a random column and every interaction pair
is mentioned. Set two is like set one except it consists of only 10 pairs and the interaction columns are
only paired with the other columns in its interaction term. Set three names each factor twice and then
has the usual pairs for interactions. This requests 17 single-column exchanges followed by 5 pair-wise
exchanges. When a column is repeated, all but the first instance is ignored. %MktEx does not consider
all pairs of a factor with itself. Set four is similar to set 3 but the interaction columns are only paired
with the other columns in its interaction term. Set five is like set one except three-way exchanges are
performed and a random column is added to each exchange. There are many other possibilities. It
is impossible to know what will work best, but often, expending some effort to consider exchanges in
pairs for two-way interactions or in triples for three-way interactions is rewarded with a small gain in
D-efficiency.

The macro printed these notes to the log.

NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 243 candidates, full-factorial=76,527,504.
NOTE: Generating the orthogonal array design, n=72.

The candidate-set search is using a fractional-factorial candidate set with 3% = 243 candidates. The
two-level factors in the candidate set are made from three-level factors by coding down. Coding down
replaces an m-level factor with a factor with fewer than m levels, for example a two-level factor could be
created from a three-level factor: ((123) = (12 1)). The four-level factor in the candidate set is made
from 2 three-level factors and coding down. ((123)x(123)=(123456789)=(123412341)).
The tabled design used for the partial initialization in the coordinate-exchange steps has 72 runs. Here
are some of the results.
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TN NN -

11

12
12
12
12
12

12
12

17

Vacation Example with Asymmetry

Algorithm Search History

Tab

Tab

Ran,Mut,Ann

Ran,Mut, Ann

Current Best
Row,Col D-Efficiency D-Efficiency
Start 84.8774 84.8774
End 84.8774
Start 41.1012
8 5 84.9292 84.9292
16 2 84.9450 84.9450
17 15 85.0008 85.0008
18 3 85.0423 85.0423
42 14 87.3823 87.3823
66 5 87.4076 87.4076
2 13 87.4113 87.4113
End 87.4113
Start 41.1012
End 87.2914
Start 55.7719
53 16 87.4195 87.4195
48 9 87.4355 87.4355
49 6 87.4688 87.4688
50 1 87.4688 87.4688
9 4 90.3157 90.3157
End 90.3157
Start 58.3436
End 90.5685

17

NOTE: Quitting the algorithm search step after 10.03 minutes and 17 designs.
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Design Search History

Current
Row,Col D-Efficiency

Best
D-Efficiency

14
14

Initial

Start
End

Start
End

58
90

NOTE: Quitting the design search step

.8515
. 3433

after 20.17 minutes

90.7877

Vacation Example with Asymmetry

Design Refinement History

Current
Row,Col D-Efficiency D-Efficiency

Best

Ran,Mut,Ann

Ran,Mut,Ann

and 14 designs.

Initial

Start
End

Start
64 4
End

Start
End

87.
90.
90.

89
90

L3771
.5049

90.7877

90.7886

Pre,Mut,Ann

Pre,Mut,Ann

Pre,Mut,Ann

NOTE: Quitting the refinement step after 5.60 minutes and 5 designs.
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Vacation Example with Asymmetry
The OPTEX Procedure
Class Level Information
Class Levels Values

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
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Average

Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 90.7886 81.5474 93.3553 0.8819

The macro ran in approximately 36 minutes. The algorithm search history shows that the candidate-
set approach (Can) used in design 1 found a design that was 84.8774% D-efficient. The macro makes
no attempt to improve on this design, unless there are restriction on the design, until the end in the
design refinement step, and only if it is the best design found.

Designs 2 through 11 used the coordinate-exchange algorithm with a tabled design initialization (Tab).
For this problem, the tabled design initialization initializes all 72 rows; For other problems, when the
number of runs in the design is greater than the number of runs in the nearest tabled design, the
remaining rows would be randomly initialized. The tabled design initialization usually works very well
when all but at most a very few rows and columns are left uninitialized and there are no interactions or
restrictions. That is not the case in this problem, and when the algorithm switches to a fully-random
initialization in design 12, it immediately does better.

The algorithm search phase picked the coordinate-exchange algorithm with a random initialization,
random mutations, and simulated annealing as the algorithm to use in the next step, the design search
step. The design search history is initialized with the best design ( D-efficiency = 90.7877) found so far.
The design search phase starts out with the initial design (Ini) found in the algorithm search phase.
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The macro finds a design with D-efficiency = 90.3433.

The final set of iterations tries to improve the best design found so far. Random mutations (Ran),
simulated annealing (Ann), and level exchanges are used on the previous best (Pre) design. The
random mutations are responsible for making the D-efficiency of the starting design worse than the
previous best D-efficiency. In this case, the design refinement step found a very slight improvement on
the best design found by the design search step.

Each stage ended before the maximum number of iterations and printed a note. All three notes appear
next.

NOTE: Quitting the algorithm search step after 10.03 minutes and 17 designs.

NOTE: Quitting the design search step after 20.17 minutes and 14 designs.

NOTE: Quitting the refinement step after 5.60 minutes and 5 designs.

The default values for maxtime=10 20 5 constrain the three steps to run in an approximate maximum
time of 10, 20, and 5 minutes. Fewer iterations are performed with order=matrix than with the
default single-column exchanges because each pair of exchanges takes longer than a single exchange.
For example, with two three-level factors, a pair-wise exchange considers 3 x 3 = 9 exchanges, whereas
a single exchange considers 3 exchanges. However, a single design with a random initialization and
annealing, would have been faster and better than the full %MktEx run with a single-column exchange.
This could be requested as follows.

data mat;

do a=1 to 17;
b= .;
output;
end;

do a =1 to 5;
b =10 + a;
output;
end;

run;

proc print; run;

%mktex(3 **x 13 4 3 2 2, n=72, seed=368, order=matrix=mat,
optiter=0, tabiter=0, maxdesigns=1,
interact=x1*x11 x2*x12 x3*x13 x4%*x14 x5%*x15)

These steps were not run, and we will use the design created with the previous steps.
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Examining the Design

We can use the %MktEval macro to evaluate the goodness of this design.
Jmkteval (data=design) ;

Here are some of the results.

Vacation Example with Asymmetry
Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 X7 x8 x9

x1 1 0.11 0.09 0.17 0.14 0.03 0.09 0.11 0.09
x2 0.11 1 0.18 0.13 0.09 0.14 0.09 0.07 0.15
x3 0.09 0.18 1 0.20 0.11 0.09 0.09 0.13 0.09
x4 0.17 0.13 0.20 1 0.13 0.11 0.07 0.09 0.15
x5 0.14 0.09 0.11 0.13 1 0.03 0.12 0.05 0.13
x6 0.03 0.14 0.09 0.11 0.03 1 0.10 0.04 0.11
x7 0.09 0.09 0.09 0.07 0.12 0.10 1 0.08 0.09
x8 0.11 0.07 0.13 0.09 0.05 0.04 0.08 1 0.07
x9 0.09 0.15 0.09 0.15 0.13 0.11 0.09 0.07 1

Vacation Example with Asymmetry
Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
* — Indicates Unequal Frequencies

Frequencies
x1 25 24 23
* x2 24 25 23
x3 24 24 24
* x4 25 24 23
* x5 25 23 24
* x6 26 22 24
* x7 22 26 24
* x8 23 26 23
* x9 23 27 22
* x10 24 26 22
* x11 23 24 25
* x12 23 25 24
* x13 25 23 24
* x14 19 17 19 17
x15 24 24 24
x16 36 36

* x17 37 35
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* xl x2 799888986

* x1 x3 997789878

* x1 x4 7991176788

* x1l x5 88910867729

* x1 x6 988978878

* x1l x7 81076 99878

* x1 x8 9888886 107

* x1 x9 799897896

* x1 x10 98881067 88

* x1 x11 889789887

* x1 x12 7810987797

* x1 x13 997789968

* x1l x14 767574675765

* x1 x15 107 88886 9 8

* x1 x16 12 13 12 12 12 11

* x1 x17 12 13 14 10 11 12

* x12 x13 6 981069987

* x12 x14 556786656675

* x12 x15 797979888

* x12 x16 12 11 13 12 11 13

* x12 x17 12 11 13 12 12 12

N-Way 111111111111 1111111

111111111111 1111111
111111111111 1111111
111111111111111

We can use the %MktEx macro to check the design and print the information matrix and variance
matrix.

Jmktex(3 ** 13 4 3 2 2, n=72, examine=i v, options=check, init=randomized,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5%*x15)

Here is a small part of the results.
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Vacation Example with Asymmetry
Information Matrix

Intercept x11 x12 x21 x22 x31 x32 x41
Intercept 72.000 2.121 -1.225 2.121 1.225 O 0 2.121
x11 2.121 73.500 0.866 1.500 -6.062 -6.000 O -7.500
x12 -1.225 0.866 70.500 0.866 4.500 -1.732 -3.000 -9.526
x21 2.121 1.500 0.866 73.500 -0.866 -6.000 O -3.000
x22 1.226 -6.062 4.500 -0.866 70.500 -3.464 -12.000 1.732
x31 0 -6.000 -1.732 -6.000 -3.464 72.000 O -1.500
x32 0 0 -3.000 O -12.000 O 72.000 2.598
x41 2.121 -7.500 -9.526 -3.000 1.732 -1.500 2.598 73.500

Vacation Example with Asymmetry
Variance Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 0.015 -0.001 0.000 -0.001 -0.001 -0.000 -0.000 -0.001

x11 -0.001 0.017 -0.001 0.001 0.002 0.001 0.001 0.002
x12 0.000 -0.001 0.017 -0.001 -0.001 0.001 0.000 0.002
x21 -0.001 0.001 -0.001 0.017 0.000 0.002 0.000 0.001
x22 -0.001 0.002 -0.001 0.000 0.018 0.001 0.003 0.000
x31 -0.000 0.001 0.001 0.002 0.001 0.016 0.000 -0.000
x32 -0.000 0.001 0.000 0.000 0.003 0.000 0.018 -0.001
x41 -0.001 0.002 0.002 0.001 0.000 -0.000 -0.001 0.017

Blocking an Existing Design

An existing design is blocked using the %MktBlock macro. The macro takes the observations in an
existing design and optimally sorts them into blocks. Here, we are seeing how to block the linear
version of the choice design, but the macro can also be used directly on the choice design.

Jmktblock(data=randomized, nblocks=4, out=sasuser.AsymVac_LinDesBlckd, seed=114)

This step took 2 seconds. Here are some of the results including the one-way frequencies within blocks.
They should be examined to ensure that each level is well represented in each block. The design is
nearly balanced in most of the factors and blocks.
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Vacation Example with Asymmetry
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316
Block x1 x2 x3 x4 x5 x6 x7 x8
Block 1 0.08 0.06 0.10 0.06 0.08 0.08 0.08 0.06
x1 0.08 1 0.11 0.09 0.17 0.14 0.03 0.09 0.11
X2 0.06 0.11 1 0.18 0.13 0.09 0.14 0.09 0.07
x3 0.10 0.09 0.18 1 0.20 0.11 0.09 0.09 0.13
x4 0.06 0.17 0.13 0.20 1 0.13 0.11 0.07 0.09
x5 0.08 0.14 0.09 0.11 0.13 1 0.03 0.12 0.05
x6 0.08 0.03 0.14 0.09 0.11 0.03 1 0.10 0.04
x7 0.08 0.09 0.09 0.09 0.07 0.12 0.10 1 0.08
x8 0.06 0.11 0.07 0.13 0.09 0.05 0.04 0.08 1
Vacation Example with Asymmetry
Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

* - Indicates Unequal Frequencies

Frequencies
Block 18 18 18 18
x1 25 23 24
* x2 25 24 23
x3 24 24 24
* x4 25 24 23
* x5 25 24 23
* x6 22 26 24
* x7 24 26 22
* x8 26 23 23
* x9 23 22 27
* x10 24 26 22
* x11 23 24 25
* x12 24 23 25
* x13 24 23 25
* x14 17 19 19 17
x15 24 24 24
x16 36 36

* x17 37 35
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Block x1
Block x2
Block x3
Block x4
Block x5
Block x6
Block x7
Block x8
Block x9
Block x10
Block x11
Block x12
Block x13
Block x14
Block x15
Block x16
* Block x17
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Collecting data is time consuming and expensive. Before collecting data, it is a good practice to convert
your linear design into a choice design and evaluate it in the context of a choice model. We start by
creating some formats for the factor levels and the key to converting the linear design into a choice
design.$

proc format;

value price 1 =’ 999’ 2 = 1249’ 3 = 21499’ 4 = ’1749° . = ?;
value scene 1 = ’Mountains’ 2 = ’Lake’ 3 = ’Beach’ . =7 ?;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’ 3 = ’Hotel’ . =’ ’;
value side 1 = ’Side Trip’ 2 = ’No’ L=
run;

data key;
input Place $ 1-10 (Lodge Scene Price Side) ($);
datalines;

Hawaii x1 x6 x11 x16

Alaska x2 x7 x12 .

Mexico x3 x8 x13 x17

California x4 x9 x14

Maine x5 x10 x15

I

§See page 60 for an explanation of linear versus choice designs.
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For analysis, the design will have five attributes. Place is the alternative name. Lodge, Scene, Price
and Side are created from the design using the indicated factors. See page 200 for more information
on creating the design key. Notice that Side only applies to some of the alternatives and hence has
missing values for the others. Processing the design and merging it with the data are similar to what
was done on pages 200 and 208. One difference is now there are asymmetries in Price. For Hawaii’s
price, x11, we need to change 1, 2, and 3 to $1249, $1499, and $1749. For Alaska’s price, x12, we need
to change 1, 2, and 3 to $1249, $1499, and $1749. For Mexico’s price, x13, we need to change 1, 2,
and 3 to $999, $1249, and $1499. For California’s price, x14, we need to change 1, 2, 3, and 4 to $999,
$1249, $1499, and $1749. For Maine’s price, x11, we need to change 1, 2, and 3 to $999, $1249, and
$1499. We can simplify the problem by adding 1 to x11 and x12, which are the factors that start at
$1249 instead of $999. This will allow us to use a common format to set the price. See pages 311 and
622 for examples of handling more complicated asymmetries.

data temp;
set sasuser.AsymVac_LinDesBlckd(rename=(block=Form));
x11 + 1;
x12 + 1;
run;

Jmktroll (design=temp, key=key, alt=place, out=sasuser.AsymVac_ChDes,
options=nowarn, keep=form)

data sasuser.AsymVac_ChDes;
set sasuser.AsymVac_ChDes;
format scene scene. lodge lodge. side side. price price.;
run;

proc print data=sasuser.AsymVac_ChDes(obs=12);
by form set; id form set;
run;

Here are the first two choice sets. Notice that each has six alternatives, one of which is printing in this
format as all blank.

Vacation Example with Asymmetry

Form Set Place Lodge Scene Price Side
1 1 Hawaii Bed & Breakfast Lake 1499 No
Alaska Bed & Breakfast Mountains 1249
Mexico Cabin Lake 999 No
California Cabin Lake 1249

Maine Hotel Beach 1249



248 TS-722F — Discrete Choice

1 2 Hawaii Hotel Lake 1749 Side Trip
Alaska Hotel Lake 1499
Mexico Hotel Beach 1249 No
California Cabin Beach 999
Maine Cabin Lake 1249

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%choiceff (data=sasuser.AsymVac_ChDes, init=sasuser.AsymVac_ChDes(keep=set),
nsets=72, nalts=6, beta=zero, intiter=0,
model=class(place / zero=none order=data)
class(place * price place * scene place * lodge /
zero=none order=formatted separators=’’ ’> ’)
class(place * side / zero=’ ’ ’No’ separators=’’ > ’) /
lprefix=0 cprefix=0)

We use the %ChoicEff macro to evaluate our choice design. Normally, you would use this macro to
search a candidate set for an efficient choice design. You can also use it to evaluate a design created by
other means. The way you check a design like this is to first name it on the data= option. This will be
the candidate set that contains all of the choice sets that we will consider. In addition, the same design
is named on the init= option. The full specification is init=sasuser.AsymVac_ChDes (keep=set).
Just the variable Set is kept. It will be used to bring in just the indicated choice sets from the data=
design, which in this case is all of them. The option nsets=72 specifies the number of choice sets, and
nalts=6 specifies the number of alternatives. The option beta=zero specifies that we are assuming for
design evaluation purpose that all of the betas or part-worth utilities are zero. You can evaluate the
design for other parameter vectors by specifying a list of numbers after beta=. This will change the
variances and standard errors. We also specify intiter=0 which specifies zero internal iterations. We
use zero internal iterations when we want to evaluate an initial design, but not attempt to improve it.
The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Many of these options should be familiar from previous examples. The
specification class(place / zero=none order=data) names the place variable as a classification
variable and asks for coded variables for every nonmissing level (zero=none). The order of the levels
on output matches the order that the levels are first encountered in the input data set. This specification
creates the alternative effects or alternative-specific intercepts.

The next specification, class(place * price place * scene place * lodge / zero=none order=
formatted separators=’’ ’ ’) requests alternative-specific effects for all of the attributes except the
side trip. The alternative-specific effects are requested by interacting the alternative-specific intercepts,
in this case the destination, with the attributes. The zero=none option creates binary variables for
all categories. In contrast, by default, a variable is not created for the last category—the parameter
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for the last category is a structural zero. The zero=none option is used when you want to see the
structural zeros in the results. The separators=’’ > ’ option (separators= quote quote space quote
space quote, which provides two strings (one null and the other blank), allows you to specify two label
component separators for the main effect and interaction terms, respectively. By specifying a blank
for the second value, we request labels for the side trip effects like ’Mexico Side Trip’ instead of the
default ’Mexico * Side Trip’. This option is explained in more detail on page 265.

The last part of the model specification consists of class(place * side / zero=’ ’ ’No’ separators
=22 > ) and creates the alternative-specific side trip effects with all levels for place and *No’ as the
reference level for the side trip factor. The last part of the model specification is followed by a slash
and some options: / lprefix=0 cprefix=0). The cprefix=0 option specifies that when names are
created for the binary variables, zero characters of the original variable name should be used as a prefix.
This means that the names are created only from the level values. The 1prefix=0 option specifies that
when labels are created for the binary variables, zero characters of the original variable name should
be used as a prefix. This means that the labels are created only from the level values.

Here is the last part of the output.

Vacation Example with Asymmetry
Evaluate the Choice Design

Standard
n Variable Name Label Variance DF Error
1 Hawaii Hawaii 0.91061 1 0.95426
2 Alaska Alaska 0.70276 1 0.83831
3 Mexico Mexico 0.79649 1 0.89246
4 California California 0.89577 1 0.94645
5 Maine Maine 0.82172 1 0.90649
6 Alaska_999 Alaska 999 . 0 .
7 Alaska_1249 Alaska 1249 0.59635 1 0.77223
8 Alaska_1499 Alaska 1499 0.60551 1 0.77814
9 Alaska_1749 Alaska 1749 . 0 .
10 California_999 California 999 0.85492 1 0.92462
11 California_1249 California 1249 0.81130 1 0.90072
12 California_1499 California 1499 0.82552 1 0.90858
13 California_1749 California 1749 0
14 Hawaii_999 Hawaii 999 . 0 .
15 Hawaii_1249 Hawaii 1249 0.60792 1 0.77969
16 Hawaii_1499 Hawaii 1499 0.59679 1 0.77252
17 Hawaii_1749 Hawaii 1749 . 0 .
18 Maine_999 Maine 999 0.60676 1 0.77894
19 Maine_1249 Maine 1249 0.61109 1 0.78172
20 Maine_1499 Maine 1499 0
21 Maine_1749 Maine 1749 . 0 .
22 Mexico_999 Mexico 999 0.59178 1 0.76927
23 Mexico_1249 Mexico 1249 0.60604 1 0.77849
24 Mexico_1499 Mexico 1499 0
25 Mexico_1749 Mexico 1749 0
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AlaskaBeach
Alaskalake

AlaskaMountains
CaliforniaBeach

Californial.ake

CaliforniaMountains
HawaiiBeach

HawaiilLake

HawaiiMountains
MaineBeach

MainelLake

MaineMountains
MexicoBeach

MexicoLake

MexicoMountains
AlaskaBed___Breakfast

AlaskaCabin
AlaskaHotel

CaliforniaBed___Breakfast

CaliforniaCabin

CaliforniaHotel
HawaiiBed___Breakfast

HawaiiCabin

HawaiiHotel
MaineBed___Breakfast

MaineCabin

MaineHotel
MexicoBed___Breakfast

MexicoCabin

MexicoHotel
AlaskaSide_Trip

CaliforniaSide_Trip
HawaiiSide_Trip
MaineSide_Trip
MexicoSide_Trip

Alaska Beach
Alaska Lake

Alaska Mountains
California Beach

California Lake

California Mountains
Hawaii Beach

Hawaii Lake

Hawaii Mountains
Maine Beach

Maine Lake

Maine Mountains
Mexico Beach

Mexico Lake

Mexico Mountains
Alaska Bed & Breakfast

Alaska Cabin
Alaska Hotel

California Bed & Breakfast

California Cabin

California Hotel
Hawaii Bed & Breakfast

Hawaii Cabin

Hawaii Hotel
Maine Bed & Breakfast

Maine Cabin

Maine Hotel
Mexico Bed & Breakfast

Mexico Cabin

Mexico Hotel
Alaska Side Trip

California Side Trip
Hawaii Side Trip
Maine Side Trip
Mexico Side Trip

TS-722F — Discrete Choice

0.63778 1 0.79861
0.58330 1 0.76374
. 0 .
0.59453 1 0.77106
0.67196 1 0.81973
. 0 .
0.63923 1 0.79952
0.61115 1 0.78176
. 0 .
0.63688 1 0.79805
0.58479 1 0.76471
. 0 .
0.59462 1 0.77111
0.59710 1 0.77272
. 0 .
0.62130 1 0.78823
0.61012 1 0.78110
. 0 .
0.62122 1 0.78817
0.60866 1 0.78016
. 0 .
0.61876 1 0.78661
0.59145 1 0.76906
. 0 .
0.61592 1 0.78480
0.60681 1 0.77898
. 0 .
0.61050 1 0.78134
0.61670 1 0.78530
0
0
. 0 .
0.40413 1 0.63572
0

0.40622 1 0.63735

It consists of a table with the name and label for each parameter along with its variance, df, and
standard error. It needs to be carefully evaluated to see if the zeros and nonzeros are in all of the
right places. We see one parameter for five of the six destinations, with the constant stay-at-home
alternative in all cases excluded from the table. This is followed by four terms for the Alaska price
effect. The Alaska at $999 parameter is zero since $999 does not apply to Alaska. The Alaska at $1749
parameter is the reference level and hence is zero. The other two Alaska price parameters are nonzero.
Similary, each of the alternative-specific price effects have two or three parameters (the number of
applicable prices minus one). For the scenery and accomodations attributes, each alternative has two
nonzero parameters and a reference level. There are two nonzero parameters for the side trips for the
two applicable destinations. The pattern of zeros and nonzeros looks perfect. There are 38 parameters
in the alternative-specific model.
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You should also note that the variances and standard errors. They are all apprioximately the same
order of magnitude. Sometimes you will see wildly varying parameters. This is usually a sign of a
problematic design, perhaps one with too few choice sets for the number of parameters. This design
looks good. Note one difference between these results and the results that we see in the previous
example on page 204. Here, our standard errors are not constant within an attribute, although they
are similar. This is because none of our factors are orthogonal, although they are close.

Generating the Questionnaire

These next steps print the questionnaire.

%let m = 6; /* m alts including constant */
%let mml = %eval(&m - 1); /*m - 1 */
%let n = 18; /* number of choice sets */
%let blocks = 4; /* number of blocks */
title;

options 1s=80 ps=60 nonumber nodate;

data _null_;
array dests[&mml] $ 10 _temporary_ (’Hawaii’ ’Alaska’ ’Mexico’
’California’ ’Maine’);
array scenes[3] $ 13 _temporary_
(’the Mountains’ ’a Lake’ ’the Beach’);
array lodging[3] $ 15 _temporary_
(’Cabin’ ’Bed & Breakfast’ ’Hotel’);
array x[15];
array pl&mm1];
length price $ 6;
file print linesleft=11;

set sasuser.AsymVac_LinDesBlckd;
by block;

pl = 1499 + (x[11] - 2) * 250;
p2 = 1499 + (x[12] - 2) * 250;
p3 = 1249 + (x[13] - 2) * 250;
p4 = 1374 + (x[14] - 2.5) * 250;
p5 = 1249 + (x[15] - 2) * 250;

if first.block then do;
choice = 0;

put _page_;
put @50 ’Form: ’ block ’ Subject: ________ >/
end;

choice + 1;

if 11 < (19 + (x16 = 1) + (x17 = 1)) then put _page_;
put choice 2. ’) Circle your choice of ’
’vacation destinations:’ /;
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do dest = 1 to &mmi;
price = left(put(pldest], dollar6.));

put ’ > dest 1. ’) ’ dests[dest]
+(-1) ’, staying in a ’ lodgingl[x[dest]]
‘near ’ scenes[x[&mml + dest]] +(-1) °,’ /

+7 ’with a package cost of ’ price +(-1) @Q@;
if dest = 3 and x16 = 1 then
put ’, and an optional visit’ / +7
’to archaeological sites for an additiomal $100’ @Q;
else if dest = 1 and x17 = 1 then
put ’, and an optional helicopter’ / +7
’flight to an active volcano for an additional $200’ @Q;
put ’.’ /;
end;
put " &m) Stay at home this year." /;
run;

Here are the first two choice sets for the first subject.

Form: 1 Subject:

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,499.

2) Alaska, staying in a Bed & Breakfast near the Mountains,
with a package cost of $1,249.

3) Mexico, staying in a Cabin near a Lake,
with a package cost of $999.

4) California, staying in a Cabin near a Lake,
with a package cost of $1,249.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1,249.

6) Stay at home this year.
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2) Circle your choice of vacation destinations:

1)

2)

3)

4)

5)

6)

Hawaii, staying in a Hotel near a Lake,
with a package cost of $1,749.

Alaska, staying in a Hotel near a Lake,
with a package cost of $1,499.

Mexico, staying in a Hotel near the Beach,
with a package cost of $1,249, and an optional visit

to archaeological sites for an additional $100.

California, staying in a Cabin near the Beach,
with a package cost of $999.

Maine, staying in a Cabin near a Lake,
with a package cost of $1,249.

Stay at home this year.

In practice,

data collection will typically be much more elaborate than this. It may involve art work

or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.

Generating Artificial Data

This next step generates an artificial set of data. Collecting data is time consuming and expensive.

Generating

some artificial data before the data are collected to test your code and make sure the

analysis will run is a good idea. It helps avoid the “How am I going to analyze this?” question from
occurring after the data have already been collected. This step generates data for 400 subjects, 100

per block.

data _
arr
arr
arr
arr
arr

do

null_;

ay dests[&mml1] _temporary_ (5 -1 4 3 2);
ay scenes[3] _temporary_ (-1 0 1);

ay lodging[3] _temporary_ (0 3 2);

ay ul&m];

ay x[15];

rep = 1 to 100;
n=20
do i 1 to &blocks;

k + 1;

if mod(k,3) = 1 then put;

put k 3. +1 1 1. +2 Q@;
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do j=1to &n; n + 1;
set sasuser.AsymVac_LinDesBlckd point=n;
do dest = 1 to &mmi;
u[dest] = dests[dest] + lodging[x[dest]] +
scenes [x[&mm1 + dest]] -
x[2 * &mml + dest] +
2 * normal(17);

end;
ul1] = ul1] + (x16 = 1);
ul3] = ul3] + (x17 = 1);

u&m = -3 + 3 * normal(17);
m = max(of ul-u&m);
if abs(ul - m) < le-4 then ¢ = 1;
else if abs(u2 - m) < le-4 then c = 2;
else if abs(u3 - m) < 1le-4 then c = 3;
else if abs(u4 - m) < le-4 then c = 4;
else if abs(ub - m) < le-4 then c = 5;
else c = 6;
put +(-1) c @G;
end;
end;
end;
stop;

run;

The dests, scenes, and lodging arrays are initialized with part-worth utilities for each level. The
utilities for each of the destinations are computed and stored in the array u in the statement u[dest]
= ..., which includes an error term 2 * normal(17). The utilities for the side trips are added in sep-
arately with u[1] = ul[1] + (x16 = 1) and u[3] = u[3] + (x17 = 1). The utility for the stay-at-
home alternative is -3 + 3 * normal(17). The maximum utility is computed, m = max(of ul-u&m)
and the alternative with the maximum utility is chosen. The put statement writes out the results to
the log.

Reading, Processing, and Analyzing the Data

The results from the previous step are pasted into a DATA step and run to mimic reading real input
data.

title ’Vacation Example with Asymmetry’;

data results;
input Subj Form (choosel-choose&n) (1.) @G;
datalines;
11 413414111315351335 2 2 115311141441134121 3 3 331451344433513341
4 4 113111143133311314 5 1 113413531545431313 6 2 145131111414331511
7 3 313413113111313331 8 4 415143311133541321 9 1 133314111133431113
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The analysis proceeds in a fashion similar to before as in the simpler vacation example on page 208.
Jmktmerge (design=sasuser.AsymVac_ChDes, data=results, out=res2, blocks=form,

nsets=&n, nalts=&m, setvars=choosel-choose&n,
stmts=Ystr(price = input(put(price, price.), 5.);
format scene scene. lodge lodge. side side.;))

proc print data=res2(obs=18);
id form subj set; by form subj set;
run;

Here are the first three choice sets for the first subject.

Vacation Example with Asymmetry

Form Subj Set Place Lodge Scene Price Side c
1 1 1 Hawaii Bed & Breakfast Lake 1499 No 2
Alaska Bed & Breakfast Mountains 1249 2

Mexico Cabin Lake 999 No 2

California Cabin Lake 1249 1

Maine Hotel Beach 1249 2

2

1 1 2 Hawaii Hotel Lake 1749  Side Trip 1
Alaska Hotel Lake 1499 2

Mexico Hotel Beach 1249 No 2

California Cabin Beach 999 2

Maine Cabin Lake 1249 2

2

1 1 3 Hawaii Hotel Mountains 1749 Side Trip 2
Alaska Hotel Mountains 1749 2

Mexico Bed & Breakfast Beach 1249  Side Trip 1

California Cabin Lake 1249 2

Maine Bed & Breakfast Mountains 999 2

2

Indicator variables and labels are created using PROC TRANSREG like before.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;

model class(place / zero=none order=data)
class(price scene lodge / zero=none order=formatted)
class(place * side / zero=’ ’ ’No’ separators=’’ > ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);

id subj set form c;

run;

proc print data=coded(obs=6) label;
run;

The design=5000 option specifies that no model is fit; the procedure is just being used to code a design
in blocks of 5000 observations at a time. The nozeroconstant option specifies that if the coding creates
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a constant variable, it should not be zeroed. The norestoremissing option specifies that missing values
should not be restored when the out= data set is created. The model statement names the variables
to code and provides information about how they should be coded. The specification class(place /
...) specifies that the variable Place is a classification variable and requests a binary coding. The
zero=none option creates binary variables for all categories. The order=data option sorts the levels
into the order they were first encountered in the data set. Similarly, the variables Price, Scene, and
Lodge are classification variables. The specification class(place * side / ...) creates alternative-
specific side trip effects. The option zero=> > ’No’ specifies that indicator variables should be created
for all levels of Place except blank, and all levels of Side except ’No’. The specification zero=’ ’
is almost the same as zero=none. The zero=’ ’ specification names a missing level as the reference
level creating indicator variables for all nonmissing levels of the class variables, just like zero=none.
The difference is zero=none applies to all of the variables named in the class specification. When you

want zero=none to apply to only some variables, then you must use zero=’ ’, as in zero=’ ’> ’No’
instead. In this case, zero=none applies to the first variable and zero=’No’ applies to the second.
With zero=’ ’, TRANSREG prints the following warning, which can be safely ignored.

WARNING: Reference level ZERO=’’ was not found for variable Place.

The separators=’’ ’ ’ option (separators= quote quote space quote space quote) allows you to
specify two label component separators for the main effect and interaction terms, respectively. By
specifying a blank for the second value, we request labels for the side trip effects like *Mexico Side
Trip’ instead of the default ’Mexico * Side Trip’. This option is explained in more detail on page
265.

The 1prefix=0 option specifies that when labels are created for the binary variables, zero characters
of the original variable name should be used as a prefix. This means that the labels are created only
from the level values. An output statement names the output data set and drops variables that are
not needed. Finally, the id statement names the additional variables that we want copied from the
input to the output data set.

Vacation Example with Asymmetry

Obs Hawaii Alaska Mexico California Maine 999 1249 1499 1749 Beach Lake

1 1 0 0 0 0 0 0 1 0 0 1
2 0 1 0 0 0 0 1 0 0 0 0
3 0 0 1 0 0 1 0 0 0 0 1
4 0 0 0 1 0 0 1 0 0 0 1
5 0 0 0 0 1 0 1 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0

Alaska Hawaii Maine Mexico

Bed & Side California Side Side Side

Obs Mountains Breakfast Cabin Hotel Trip Side Trip Trip Trip Trip

D O WN -
O O O O = O
O O O O -
OO, Kk OO
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Obs Place Price Scene Lodge Side Subj Set Form c
1 Hawaii 1499 Lake Bed & Breakfast No 1 1 1 2
2 Alaska 1249 Mountains Bed & Breakfast 1 1 1 2
3 Mexico 999 Lake Cabin No 1 1 1 2
4 California 1249 Lake Cabin 1 1 1 1
5 Maine 1249 Beach Hotel 1 1 1 2
6 1 1 1 2

The PROC PHREG specification is the same as we have used before. (Recall that we used %phchoice (on)
on page 143 to customize the output from PROC PHREG.)
proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;

run;

Here are the results.

Vacation Example with Asymmetry
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 43200
Number of Observations Used 43200

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 7200 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 25801.336 12603.247
AIC 25801.336 12631.247
SBC 25801.336 12727 .593

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 13198.0891 14 <.0001
Score 12223.0125 14 <.0001
Wald 5081.3295 14 <.0001
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq
Hawaii 1 3.61141 0.22224 264.0701 <.0001
Alaska 1 -0.94997 0.26364 12.9836 0.0003
Mexico 1 2.26877 0.22776 99.2247 <.0001
California 1 1.54548 0.22760 46.1102 <.0001
Maine 1 0.74153 0.23210 10.2074 0.0014
999 1 2.10214 0.07298 829.7619 <.0001
1249 1 1.44298 0.06078 563.6949 <.0001
1499 1 0.72311 0.05936 148.4188 <.0001
1749 0 0 . . .
Beach 1 1.42021 0.04635 938.8384 <.0001
Lake 1 0.72019 0.04472 259.3676 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.65045 0.04079 254.3369 <.0001
Cabin 1 -1.42317 0.04809 875.8795 <.0001
Hotel 0 0
Alaska Side Trip 0 0
California Side Trip 0 0 . . .
Hawaii Side Trip 1 0.71850 0.05753 155.9801 <.0001
Maine Side Trip 0 0 . . .
Mexico Side Trip 1 0.65550 0.06293 108.4863 <.0001

You would not expect the part-worth utilities to match

those that were used to generate the data,

but you would expect a similar ordering within each factor, and in fact that does occur. These data
can also be analyzed with quantitative price effects and destination by attribute interactions, as in the

previous vacation example.
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Aggregating the Data

This data set is rather large with 43,200 observations. You can make the analysis run faster and with
less memory by aggregating. Instead of stratifying on each choice set and subject combination, you
can stratify just on choice set and specify the number of times each alternative was chosen and the
number of times it was not chosen. First, use PROC SUMMARY to count the number of times each
observation occurs. Specify all the analysis variables, and in this example, also specify Form. The
variable Form was added to the list because Set designates choice set within form. It is the Form and
Set combinations that identify the choice sets. (In the previous PROC PHREG step, since the Subj *
Set combinations uniquely identified each stratum, Form was not needed.) PROC SUMMARY stores
the number of times each unique observation appears in the variable _freq.. PROC PHREG is then
run with a freq statement. Now, instead of analyzing a data set with 43,200 observations and 7200
strata, we analyze a data set with at most 2 x 6 x 72 = 864 observations and 72 strata. For each of
the 6 alternatives and 72 choice sets, there are typically 2 observations in the aggregate data set: one
that contains the number of times it was chosen and one that contains the number of times it was not
chosen. When one of those counts is zero, there will be one observation. In this case, the aggregate
data set has 724 observations.
proc summary data=coded nway;

class form set c &_trgind;

output out=agg(drop=_type_);

run;

proc phreg data=agg;
model cxc(2) = &_trgind / ties=breslow;
freq _freq_;
strata form set;
run;

PROC SUMMARY ran in three seconds, and PROC PHREG ran in less than one second. The
parameter estimates and Chi-Square statistics (not shown) are the same as before. The summary table
shows the results of the aggregation, 100 out of 600 alternatives were chosen in each stratum. The
log likelihood statistics are different, but that does not matter since the Chi-Square statistics are the
same. Page 282 provides more information about this.

Vacation Example with Asymmetry
The PHREG Procedure

Model Information

Data Set WORK. AGG
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable _FREQ_

Ties Handling BRESLOW
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Number of Observations Read
Number of Observations Used
Sum of Frequencies Read
Sum of Frequencies Used

Summary of Subjects, Sets, and Chosen and

Stratum

W N -

Form

N e

Number of
Set Alternatives

600
600
600
600

S W N -

TS-722F — Discrete Choice

724
724
43200
43200

Unchosen Alternatives

Chosen Not
Alternatives Chosen
100 500

100 500

100 500

100 500

100 500

100 500

7200 36000
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Brand Choice Example with Aggregate Data

In this next example, subjects were presented with brands of a product at different prices. There
were four brands and a constant alternative, eight choice sets, and 100 subjects. This example shows
how to handle data that come to you already aggregated. It also illustrates comparing the fits of two
competing models, the mother logit model, cross effects, IIA, and techniques for handling large data
sets. The choice sets, with the price of each alternative and the number of times it was chosen, are
shown next.

Set | Brand 1 Brand 2 Brand 3 Brand 4 Other

$3.99 4 1%$599 29 |$3.99 16| $5.99 42| %499 9
$5.99 12 | $599 19| $5.99 22| $599 33| $4.99 14
$5.99 34 | $5.99 26 | $3.99 $3.99 27| %499 5
$5.99 13 |$3.99 37| $599 15| $3.99 27| $4.99 8
$5.99 49 | $3.99 1| $3.99 $5.99 37| $4.99 4
$3.99 31| $5.99 12| $5.99 $3.99 18| $4.99 33
$3.99 37| $3.99 10 | $5.99 $5.99 35| $4.99 13
$3.99 16 | $3.99 14 | $3.99 $3.99 51| $4.99 14

The first choice set consists of Brand 1 at $3.99, Brand 2 at $5.99, Brand 3 at $3.99, Brand 4 at $5.99,
and Other at $4.99. From this choice set, Brand 1 was chosen 4 times, Brand 2 was chosen 29 times,
Brand 3 was chosen 16 times, Brand 4 was chosen 42 times, and Other was chosen 9 times.

O 3O T~ W N+
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Processing the Data

As in the previous examples, we will process the data to create a data set with one stratum for each
choice set within each subject and m alternatives per stratum. This example will have 100 people
times 5 alternatives times 8 choice sets equals 4000 observations. The first five observations are for the
first subject and the first choice set, the next five observations are for the second subject and the first
choice set, ..., the next five observations are for the one-hundredth subject and the first choice set, the
next five observations are for the first subject and the second choice set, and so on. Subject 1 in the
first choice set is almost certainly not the same as subject 1 in subsequent choice sets since we were
given aggregate data. However, that is not important. What is important is that we have a subject
and choice set variable whose unique combinations identify each choice set within each subject. In
previous examples, we specified strata Subj Set with PROC PHREG, and our data were sorted by
choice set within subject. We can still use the same specification even though our data are now sorted
by subject within choice set. This next step reads and prepares the data.

%let m = 5; /*x Number of Brands in Each Choice Set */
/* (including Other) */

title ’Brand Choice Example, Multinomial Logit Model’;
proc format;

value brand 1
4

’Brand 1’ 2
’Brand 4’ 5

’Brand 2’ 3 = ’Brand 3’
’Other’;

run;
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data price;

array pl&m] pl-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice  */

input pl-p&m f1-f&m;

keep subj set brand price c pl-pém;

* Store choice set and subject number to stratify;
Set = _n_; Subj = 0;

do i =1 to &m; /* Loop over the &m frequencies */
do ci =1 to f[i]; /* Loop frequency of choice times */
subj + 1; /* Subject within choice set */

do Brand = 1 to &m; /* Alternatives within choice set */

Price = p[brand];
* Output first choice: c=1, unchosen: c=2;
c =2 - (i eq brand); output;
end;
end;
end;

format brand brand.;

[

proc print data=price(obs=15);
var subj set c price brand;

run;

datalines;

3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14

The inner loop do Brand = 1 to &m creates all of the observations for the m alternatives within a
person/choice set combination. Within a choice set (row of input data), the outer two loops, do i =

1 to &m and do ci

1 to f[i] execute the code inside 100 times, the variable Subj goes from 1 to

100. In the first choice set, they first create the data for the four subjects that chose Brand 1, then the
data for the 29 subjects that chose Brand 2, and so on. Here are the first 15 observations of the data

set.
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Brand Choice Example, Multinomial Logit Model

Obs Subj Set c
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Note that the data set also contains the variables p1-p5 which contain the prices of each of the
alternatives. These variables, which are used in constructing the cross effects, will be discussed in more

detail on page 268.

proc print data=price(obs=5)

; run;

Brand Choice Example, Multinomial Logit Model

Obs pl p2 p3
1 3.99 5.99 3.99
2 3.99 5.99 3.99
3 3.99 5.99 3.99
4 3.99 5.99 3.99
5 3.99 5.99 3.99

p4 p5
5.99 4.99
5.99 4.99
5.99 4.99
5.99 4.99
5.99 4.99

Se

e e

t

Subj

e

Brand

Brand 1
Brand 2
Brand 3
Brand 4
Other

Price

N NDNN -

Simple Price Effects

The data are coded using PROC TRANSREG.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;

output out=coded(drop=_type_ _name_ intercept);

label price = ’Price’;
id subj set c;
run;
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The design option specifies that no model is fit; the procedure is just being used to code a design. The
nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. The model statement names the variables to code and provides information about how
they should be coded. The specification class(brand / zero=none) specifies that the variable Brand
is a classification variable and requests a binary coding. The zero=none option creates binary variables
for all categories. The specification identity(price) specifies that the variable Price is quantitative
and hence should directly enter the model without coding. The 1prefix=0 option specifies that when
labels are created for the binary variables, zero characters of the original variable name should be used
as a prefix. This means that the labels are created only from the level values. An output statement
names the output data set and drops variables that are not needed. Finally, the id statement names
the additional variables that we want copied from the input to the output data set.

proc phreg data=coded brief;
title2 ’Discrete Choice with Common Price Effect’;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Here are the results. (Recall that we used %phchoice(on) on page 143 to customize the output from
PROC PHREG.)

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2425.214
AIC 2575.101 2435.214
SBC 2575.101 2458.637

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF
Likelihood Ratio 149.8868 5
Score 153.2328 5
Wald 142.9002 5

Pr > ChiSq

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square
Brand 1 1 0.66727 0.12305 29.4065
Brand 2 1 0.38503 0.12962 8.8235
Brand 3 1 -0.15955 0.14725 1.1740
Brand 4 1 0.98964 0.11720 71.2993
Other 0 0 . .
Price 1 0.14966 0.04406 11.5379

<.0001
<.0001
<.0001

Pr > ChiSq

AN O O A

o

.0001
.0030
.2786
.0001

.0007
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Alternative-Specific Price Effects

In the next step, the data are coded for fitting a multinomial logit model with brand by price effects.

proc transreg design data=price nozeroconstant norestoremissing;

model class(brand / zero=none separators=’’ ’ ’) |
identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);

label price = ’Price’;
id subj set c;
run;
The PROC TRANSREG model statement has a vertical bar, “|”, between the class specification and

the identity specification. Since the zero=none option is specified with class, the vertical bar creates
two sets of variables: five indicator variables for the brand effects and five more variables for the brand
by price interactions. The separators= option allows you to specify two label component separators
as quoted strings. The specification separators=’’ ’> ’ (separators= quote quote space quote space
quote) specifies a null string (quote quote) and a blank (quote space quote). The separators=’’ > ’
option in the class specification specifies the separators that are used to construct the labels for the
main effect and interaction terms, respectively. By default, the alternative-specific price effects—the
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brand by price interactions—would have labels like >Brand 1 * Price’ since the default second value
for separators=is’ * ’ (a quoted space asterisk space). Specifying > ’ (a quoted space) as the second
value creates labels of the form ’Brand 1 Price’. Since lprefix=0, the main-effects separator, which
is the first separators= value, ’’ (quote quote), is ignored. Zero name or input variable label characters
are used to construct the label. The label is simply the formatted value of the class variable. The
next steps print the first two coded choice sets and perform the analysis.

proc print data=coded(obs=10) label;
title2 ’Discrete Choice with Brand by Price Effects’;
var subj set c brand price &_trgind;
run;
proc phreg data=coded brief;
model cxc(2) = &_trgind / ties=breslow;
strata subj set;
run;

title2;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

Brand Brand Brand Brand
Obs Subj Set c Brand Price 1 2 3 4
1 1 1 1 Brand 1 3.99 1 0 0 0
2 1 1 2 Brand 2 5.99 0 1 0 0
3 1 1 2 Brand 3 3.99 0 0 1 0
4 1 1 2 Brand 4 5.99 0 0 0 1
5 1 1 2 Other 4.99 0 0 0 0
6 2 1 1 Brand 1 3.99 1 0 0 0
7 2 1 2 Brand 2 5.99 0 1 0 0
8 2 1 2 Brand 3 3.99 0 0 1 0
9 2 1 2 Brand 4 5.99 0 0 0 1
10 2 1 2 Other 4.99 0 0 0 0
Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs Other Price Price Price Price Price
1 0 3.99 0.00 0.00 0.00 0.00
2 0 0.00 5.99 0.00 0.00 0.00
3 0 0.00 0.00 3.99 0.00 0.00
4 0 0.00 0.00 0.00 5.99 0.00
5 1 0.00 0.00 0.00 0.00 4.99
6 0 3.99 0.00 0.00 0.00 0.00
7 0 0.00 5.99 0.00 0.00 0.00
8 0 0.00 0.00 3.99 0.00 0.00
9 0 0.00 0.00 0.00 5.99 0.00
10 1 0.00 0.00 0.00 0.00 4.99
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Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2424 .812
AIC 2575.101 2440.812
SBC 2575.101 2478.288

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 150.2891 8 <.0001
Score 154 .2563 8 <.0001

Wald 143.1425 8 <.0001

267
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Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0

The likelihood for this model is essentially the same as for the simpler, common-price-slope model fit
previously, —2log(L¢) = 2425.214 compared to 2424.812. You can test the null hypothesis that the
two models are not significantly different by comparing their likelihoods. The difference between two
—2log(L¢)’s (the number reported under "With Covariates’ in the output) has a chi-square distribution.
We can get the df for the test by subtracting the two df for the two likelihoods. The difference
2425.214 — 2424.812 = 0.402 is distributed x? with 8 —5 = 3 df and is not statistically significant.

Mother Logit Model

This next step fits the so-called “mother logit” model. This step creates the full design matrix, including
the brand, price, and cross effects. A cross effect represents the effect of one alternative on the utility
of another alternative. First, let’s look at the input data set for the first choice set.

proc print data=price(obs=5) label;

run;
Brand Choice Example, Multinomial Logit Model

Obs pl p2 p3 p4 p5 Set  Subj Brand Price ¢
1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1

2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2

3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2

4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2

5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

The input consists of Set, Subj, Brand, Price, and a choice time variable c. In addition, it contains five
variables p1 through p5. The first observation of the Price variable shows us that the first alternative
costs $3.99; p1 contains the cost of alternative 1, $3.99, which is the same for all alternatives. It does
not matter which alternative you are looking at, p1 shows that alternative 1 costs $3.99. Similarly, the
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second observation of the Price variable shows us that the second alternative costs $5.99; p2 contains
the cost of alternative 2, $5.99, which is the same for all alternatives. There is one price variable, p1
through p5, for each of the five alternatives.

In all of the previous examples, we have used models that were coded so that the utility of an alternative
only depended on the attributes of that alternative. For example, the utility of Brand 1 would only
depend on the Brand 1 name and its price. In contrast, pl1-p5 contain information about each of
the other alternatives’ attributes. We will construct cross effects using the interaction of p1-p5 and
the Brand variable. In a model with cross effects, the utility for an alternative depends on both that
alternative’s attributes and the other alternatives’ attributes. The ITA (independence from irrelevant
alternatives) property states that utility only depends on an alternative’s own attributes. Cross effects
add other alternative’s attributes to the model, so they can be used to test for violations of ITA. (See
pages 275, 283, 476, and 480 for other discussions of ITA.) Here is the PROC TRANSREG code for
the cross-effects model.
proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) | identity(price)
identity(pl-p&m) *
class(brand / zero=none lprefix=0 separators=’’ ’ on ’) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’
pl = ’Brand 1’ p2

’Brand 2’ p3 = ’Brand 3’

p4 = ’Brand 4’ p5 = ’0Other’;
id subj set c;
run;
The class(brand / ...) | identity(price) specification in the model statement is the same as

the previous analysis. The additional terms, identity(pl-p&m) * class(brand / ...) create the
cross effects. The second value of the separators= option, > on’ is used to create labels like ’Brand
1 on Brand 2’ instead of the default ’Brand 1 * Brand 2’. It is important to note that you must
specify the cross effect by specifying identity with the price factors, followed by the asterisk, followed
by class and the brand effect, in that order. The order of the specification determines the order in
which brand names are added to the labels. Do not specify the brand variable first; doing so will create
incorrect labels.

With m alternatives, there are m x m cross effects, but as we will see, many of them are zero. The
first coded choice set is printed with the following PROC PRINT steps. Multiple steps are used to
facilitate explaining the coding.

title2 ’Discrete Choice with Cross Effects, Mother Logit’;

proc format; value zer 0 =’ 0’ 1 ="’ 1’; run;

proc print data=coded(obs=5) label; var subj set c brand price; run;

proc print data=coded(obs=5) label; var Brand:;
format brand: zer5.2 brand brand.; run;

proc print data=coded(obs=5) label; var plB:; format

proc print data=coded(obs=5) label; var p2B:; format

proc print data=coded(obs=5) label; var p3B:; format zer5.2; id brand; run;

proc print data=coded(obs=5) label; var p4B:; format zer5.2; id brand; run;

proc print data=coded(obs=5) label; var p5B:; format p: zer5.2; id brand; run;

zer5.2; id brand; run;
zer5.2; id brand; run;

hellsoRRio N o]

The coded data set contains the strata variable Subj and Set, choice time variable ¢, and Brand and
Price. Brand and Price were used to create the coded independent variables but they are not used
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in the analysis with PROC PHREG.
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Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Obs

a > W N -

Subj

N

Set c Brand Price
1 1 Brand 1 3.99
1 2 Brand 2 5.99
1 2 Brand 3 3.99
1 2 Brand 4 5.99
1 2 Other 4.99

The effects >Brand 1’ through ’0Other’ in the next output are the binary brand effect variables. They
indicate the brand for each alternative. The effects >Brand 1 Price’ through ’Other Price’ are
alternative-specific price effects. They indicate the price for each alternative. All ten of these variables
are independent variables in the analysis, and their names are part of the &_trgind macro variable list,
as are all of the cross effects that are described next.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

Obs 1

g s N -
O O O O+

2

O O O~ O

3

O O » OO

4

O = O O O

Brand 1 Brand 2 Brand 3 Brand 4 Other

Other Price Price Price Price Price Brand

= O O O O

3.99 0 0 0 0O Brand 1
0 5.99 0 0 0 Brand 2
0 0 3.99 0 0 Brand 3
0 0 0 5.99 0 Brand 4
0 0 0 0 4.99 Other

The effects ’Brand 1 on Brand 1’ through ’Brand 1 on Other’ in the next output are the first five

cross effects.

Bran

Brand 1
Brand 2
Brand 3
Brand 4

Other

d

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

1 on

Brand

Brand 1

3.99

0
0
0
0

Brand Brand Brand
1 on 1 on 1 on Brand 1
Brand 2 Brand 3 Brand 4 on Other
0 0 0 0
3.99 0 0 0
0 3.99 0 0
0] 0 3.99 0
0 0 0 3.99
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They represent the effect of Brand 1 at its price on the utility of each alternative. The label ’Brand
n on Brand m’ is read as 'the effect of Brand n at its price on the utility of Brand m.” For the first
choice set, these first five cross effects consist entirely of zeros and $3.99’s, where $3.99 is the price of
Brand 1 in this choice set. The nonzero value is constant across all of the alternatives in each choice
set since Brand 1 has only one price in each choice set. Notice the ’Brand 1 on Brand 1’ term, which
is the effect of Brand 1 at its price on the utility of Brand 1. Also notice the *Brand 1 Price’ effect,
which is shown in the previous output. The description “the effect of Brand 1 at its price on the utility
of Brand 1” is just a convoluted way of describing the Brand 1 price effect. The ’Brand 1 on Brand
1’ cross effect is the same as the Brand 1 price effect, hence when we do the analysis, we will see that
the coefficient for the *Brand 1 on Brand 1’ cross effect is zero.

The effects ’Brand 2 on Brand 1’ through ’Brand 2 on Other’ in the next output are the next five
cross effects.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

2 on 2 on 2 on 2 on Brand 2
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 5.99 0 0 0 0
Brand 2 0 5.99 0 0 0
Brand 3 0 0 5.99 0 0
Brand 4 0 0 0 5.99 0
Other 0 0 0 0 5.99

They represent the effect of Brand 2 at its price on the utility of each alternative. For the first choice
set, these five cross effects consist entirely of zeros and $5.99’s, where $5.99 is the price of Brand 2
in this choice set. The nonzero value is constant across all of the alternatives in each choice set since
Brand 2 has only one price in each choice set. Notice the ’Brand 2 on Brand 2’ term, which is the
effect of Brand 2 at its price on the utility of Brand 2. The description “the effect of Brand 2 at its
price on the utility of Brand 2” is just a convoluted way of describing the Brand 2 price effect. The
’Brand 2 on Brand 2’ cross effect is the same as the Brand 2 price effect, hence when we do the
analysis, we will see that the coefficient for the ’Brand 2 on Brand 2’ cross effect is zero.

The effects ’Brand 3 on Brand 1’ through ’Brand 3 on Other’ in the next output are the next five
cross effects.
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Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

3 on 3 on 3 on 3 on Brand 3
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 3.99 0 0 0] 0
Brand 2 0 3.99 0 0 0
Brand 3 0 0 3.99 0 0
Brand 4 0 0 0 3.99 0
Other 0 0 0 0 3.99

They represent the effect of Brand 3 at its price on the utility of each alternative. For the first choice
set, these five cross effects consist entirely of zeros and $3.99’s, where $3.99 is the price of Brand 3 in
this choice set. Notice that the ’Brand 3 on Brand 3’ term is the same as the Brand 3 price effect,
hence when we do the analysis, we will see that the coefficient for the ’Brand 3 on Brand 3’ cross
effect is zero.

Here are the remaining cross effects. They follow the same pattern that was described for the previous
cross effects.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand

4 on 4 on 4 on 4 on Brand 4
Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other
Brand 1 5.99 0 0 0 0
Brand 2 0 5.99 0 0 0
Brand 3 0 0 5.99 0 0
Brand 4 0 0 0 5.99 0
Other 0 0 0 0 5.99

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Other on Other on Other on Other on Other on

Brand Brand 1 Brand 2 Brand 3 Brand 4 Other
Brand 1 4.99 0 0 0 0
Brand 2 0 4.99 0 0 0
Brand 3 0 0 4.99 0 0
Brand 4 0 0 0 4.99 0
Other 0 0 0 0 4.99
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We have been describing variables by their labels. While it is not necessary to look at it, the &_trgind

macro variable name list that PROC TRANSREG creates for this problem is as follows:

%iput &_trgind;

BrandBrand_1 BrandBrand_2 BrandBrand_3 BrandBrand_4 BrandOther
BrandBrand_1Price BrandBrand_2Price BrandBrand_3Price BrandBrand_4Price

BrandOtherPrice plBrandBrand_1 plBrandBrand_2 plBrandBrand_3 plBrandBrand_4

plBrandOther
p2BrandOther
p3BrandOther
p4BrandOther

p2BrandBrand_1 p2BrandBrand_2 p2BrandBrand_3 p2BrandBrand_4
p3BrandBrand_1 p3BrandBrand_2 p3BrandBrand_3 p3BrandBrand_4
p4BrandBrand_1 p4BrandBrand_2 p4BrandBrand_3 p4BrandBrand_4
p5BrandBrand_1 p5BrandBrand_2 pS5BrandBrand_3 p5BrandBrand_4

p5BrandOther

The analysis proceeds in exactly the same manner as before.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Brand
Brand
Brand
Brand
Other
Brand
Brand
Brand
Brand
Other
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand

TS-722F — Discrete Choice

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 2575.101 2349.325
AIC 2575.101 2389.325
SBC 2575.101 2483.018

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 225.7752 20 <.0001
Score 218.4500 20 <.0001
Wald 190.0257 20 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square
1 1 1.24963 1.31259 0.9064
2 1 -0.16269 1.38579 0.0138
3 1 -3.90179 1.56511 6.2150
4 1 2.49435 1.25637 3.9480
0 0 . .
1 Price 1 0.51056 0.13178 15.0096
2 Price 1 -0.04920 0.13411 0.1346
3 Price 1 -0.27594 0.15517 3.1623
4 Price 1 0.28951 0.12192 5.6389
Price 0 0
1 on Brand 1 0 0 . .
1 on Brand 2 1 0.51651 0.13675 14.2653
1 on Brand 3 1 0.66122 0.15655 17.8397
1 on Brand 4 1 0.32806 0.12664 6.7105
1 on Other 0 0 . .
2 on Brand 1 1 -0.39876 0.12832 9.6561
2 on Brand 2 0 0 . .
2 on Brand 3 1 -0.01755 0.15349 0.0131
2 on Brand 4 1 -0.33802 0.12220 7.6512
2 on Other 0 0 . .
3 on Brand 1 1 -0.43868 0.13119 11.1823
3 on Brand 2 1 -0.31541 0.13655 5.3356
3 on Brand 3 0 0 . .
3 on Brand 4 1 -0.54854 0.12528 19.1723
3 on Other 0 0

Pr > ChiSq

O O O O

N O

O O O O

.3411
.9065
.0127
. 0469

.0001
L7137
.0754
.0176

.0002
.0001
.0096
.0019

.9090
.0057

.0008
.0209

.0001
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Brand
Brand
Brand
Brand
Brand
Other
Other
Other
Other
Other

NGNS

on
on
on
on
on

on Brand 1
on Brand 2
on Brand 3
on Brand 4
on Other
Brand 1
Brand 2
Brand 3
Brand 4
Other

O O OO O O O - = =

0.24398
-0.01214
0.40500

O O O O O O o
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0.12781 3.6443 0.0563
0.13416 0.0082 0.9279
0.15285 7.0211 0.0081

The results consist of:

e four nonzero brand effects and a zero for the constant alternative

e four nonzero alternative-specific price effects and a zero for the constant alternative

e 5 x 5 =25 cross effects, the number of alternatives squared, but only (5 — 1) x (5 —2) = 12 of
them are nonzero (four brands not counting Other affecting each of the remaining three brands).

e There are three cross effects for the effect of Brand 1 on Brands 2, 3, and 4.

e There are three cross effects for the effect of Brand 2 on Brands 1, 3, and 4.

e There are three cross effects for the effect of Brand 3 on Brands 1, 2, and 4.

e There are three cross effects for the effect of Brand 4 on Brands 1, 2, and 3.

All coefficients for the constant (other) alternative are zero as are the cross effects of a brand on itself.

The mother logit model is used to test for violations of ITA (independence from irrelevant alternatives).
ITA means the odds of choosing alternative ¢; over ¢; do not depend on the other alternatives in the
choice set. Ideally, this more general model will not significantly explain more variation in choice than
the restricted models. Also, if ITA is satisfied, few if any of the cross-effect terms should be significantly
different from zero. (See pages 269, 283, 476, and 480 for other discussions of IIA.) In this case, it
appears that ITA is not satisfied (the data are artificial), so the more general mother logit model is
needed. The chi-square statistic is 2424.812 — 2349.325 = 75.487 with 20 — 8 = 12 df (p < 0.0001).

You could eliminate some of the zero parameters by changing zero=none to zero=’0ther’ and elimi-
nating p5 (p&m) from the model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’0Other’ separators=’’ ’ ’) | identity(price)
identity(pl-p4) * class(brand / zero=’0ther’ separators=’’ ’ on ’) /

lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’
pl = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;
id subj set c;
run;
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You could also eliminate the brand by price effects and instead capture brand by price effects as the
cross effect of a variable on itself.
proc transreg design data=price nozeroconstant norestoremissing;

model class(brand / zero=’0Other’ separators=’’ ’ ’)
identity(pl-p4) * class(brand / zero=’0ther’ separators=’’ ’ on ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’
pl = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;
id subj set c;
run;

In both cases, the analysis (not shown) would be run in the usual manner. Except for the elimination
of zero terms, and in the second case, the change to capture the price effects in the cross effects, the
results are identical.

Aggregating the Data

In all examples so far (except the last part of the last vacation example), the data set has been created
for analysis with one stratum for each choice set and subject combination. Such data sets can be large.
The data can also be arrayed with a frequency variable and each choice set forming a separate stratum.
This example illustrates how.

title ’Brand Choice Example, Multinomial Logit Model’;
title2 ’Aggregate Data’;

%let m = 5; /* Number of Brands in Each Choice Set */
/* (including Other) */

proc format;
value brand 1
4

’Brand 1’ 2
’Brand 4’ 5

’Brand 2’ 3 = ’Brand 3’
’Other’;

run;

data price2;
array pl&m] pl-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice  */
input pl-p&m fl1-f&m;
keep set price brand freq c pl-pém;

* Store choice set number to stratify;
Set = _n_;
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do Brand

1 to &m;

Price = p[brand];

* Output first choice: c=1, unchosen: c=2;
Freq = f(lbrand]; c = 1; output;

* Output number of times brand was not chosen.;
freq = sum(of fi-f&m) - freq; c = 2; output;

end;

format brand brand.;

datalines;

3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14

proc print data=price2(obs=10);
var set c freq price brand;
run;
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Brand Choice Example, Multinomial Logit Model

Aggregate Data

Obs Set c Freq Price
1 1 1 4 3.99
2 1 2 96 3.99
3 1 1 29 5.99
4 1 2 71 5.99
5 1 1 16 3.99
6 1 2 84 3.99
7 1 1 42 5.99
8 1 2 58 5.99
9 1 1 9 4.99

10 1 2 91 4.99

Brand

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Other
Other

P W WD R e

This data set has 5 brands times 2 observations times 8 choice sets for a total of 80 observations,
compared to 100 x 5 x 8 = 4000 using the standard method. Two observations are created for each
alternative within each choice set. The first contains the number of people who chose the alternative,

and the second contains the number of people who did not choose the alternative.
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To analyze the data, specify strata Set and freq Freq.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Common Price Effect, Aggregate Data’;
model c*xc(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

These steps produced the following results.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Frequency Variable Freq

Ties Handling BRESLOW
Number of Observations Read 80
Number of Observations Used 80
Sum of Frequencies Read 4000
Sum of Frequencies Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 500 100 400

2 2 500 100 400

3 3 500 100 400

4 4 500 100 400
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5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400
Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 9943.373 9793.486
AIC 9943.373 9803.486
SBC 9943.373 9826.909

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Other 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

The summary table is small with eight rows, one row per choice set. Each row represents 100 chosen
alternatives and 400 unchosen. The ’Analysis of Maximum Likelihood Estimates’ table exactly matches
the one produced by the standard analysis. The -2 LOG L statistics are different than before: 9793.486
now compared to 2425.214 previously. This is because the data are arrayed in this example so that
the partial likelihood of the proportional hazards model fit by PROC PHREG with the ties=breslow
option is now proportional to—not identical to—the likelihood for the choice model. However, the Model
Chi-Square statistics, df, and p-values are the same as before. The two corresponding pairs of -2 LOG
L’s differ by a constant 9943.373 — 2575.101 = 9793.486 — 2425.214 = 7368.272 = 2 x 800 x log(100).
Since the x2 is the -2 LOG L without covariates minus -2 LOG L with covariates, the constants cancel
and the y? test is correct for both methods.
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The technique of aggregating the data and using a frequency variable can be used for other models as
well, for example with brand by price effects.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ 7) |
identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Brand by Price Effects, Aggregate Data’;
model cxc(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results. The only thing that changes from the analysis with one
stratum for each subject and choice set combination is the likelihood.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Frequency Variable Freq

Ties Handling BRESLOW
Number of Observations Read 80
Number of Observations Used 80
Sum of Frequencies Read 4000
Sum of Frequencies Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 500 100 400

2 2 500 100 400

3 3 500 100 400

4 4 500 100 400
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5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400
Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 9943.373 9793.084
AIC 9943.373 9809.084
SBC 9943.373 9846.561

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 150.2891 8 <.0001
Score 154.2562 8 <.0001
Wald 143.1425 8 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0

Previously, with one stratum per choice set within subject, we compared these models as follows: “The
difference 2425.214 — 2424.812 = 0.402 is distributed x? with 8 — 5 = 3 df and is not statistically
significant.” The difference between two —2log(L¢)’s equals the difference between two —2log(Lpg)’s,
since the constant terms (800 x log(100)) cancel, 9793.486 — 9793.084 = 2425.214 — 2424.812 = 0.402.
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Choice and Breslow Likelihood Comparison

This section explains why the -2 LOG L values differ by a constant with aggregate data versus individual
data. It may be skipped by all but the most dedicated readers.

Consider the choice model with a common price slope. Let xg represent the price of the brand. Let
x1, T2, x3, and x4 be indicator variables representing the choice of brands. Let x = (z¢ 21 x2 3 x4)
be the vector of alternative attributes. (A sixth element for ’Other’ is omitted, since its parameter is
always zero given the other brands.)

Consider the first choice set. There are five distinct vectors of alternative attributes
x1=(3991000) x2=(5.990100) x3=(3.990010) x4 =1(5990001)
x5 =(4.990000)

The vector xg, for example, represents choice of Brand 2, and x5 represents the choice of Other. One
hundred individuals were asked to choose one of the m = 5 brands from each of the eight sets. Let fi,
fo2, f3, f1, and f5 be the number of times each brand was chosen. For the first choice set, f1 = 4, fo = 29,
fs =16, f41 = 42, and f5 = 9. Let N be the total frequency for each choice set, N = Z?:l f; = 100.
The likelihood L{ for the first choice set data is

po_ o (1 1) )

N { ?Zlexp(xjﬂ)]N

The joint likelihood for all eight choice sets is the product of the likelihoods
8
Lo = H Lg
k=1

The Breslow likelihood for this example, LE , for the kth choice set, is the same as the likelihood for
the choice model, except for a multiplicative constant.

LY = NVLP =100"Ly
Therefore, the Breslow likelihood for all eight choice sets is
8
Lp=[]LP =N"*"Lo=100""Le
k=1

The two likelihoods are not exactly the same, because each choice set is designated as a separate
stratum, instead of each choice set within each subject.

The log likelihood for the choice model is

log(Le) = 800 x log(100) + log(Lp),
log(Lc) = 800 x log(100) + (—0.5) x 9793.486,
log(Le) = —1212.607

and —2log(L¢) = 2425.214, which matches the earlier output. However, it is usually not necessary to
obtain this value.
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Food Product Example with Asymmetry and
Availability Cross Effects

This example is based on the the choice example from page 111. This example discusses the multinomial
logit model, number of parameters, choosing the number of choice sets, designing the choice experiment,
long design searches, examining the design, examining the subdesigns, examining the aliasing structure,
blocking the design, testing the design before data collection, generating artificial data, processing the
data, coding, cross effects, availability, multinomial logit model results, modeling subject attributes,
results, and interpretation.

Consider the problem of using a discrete choice model to study the effect of introducing a retail food
product. This may be useful, for instance, to refine a marketing plan or to optimize a product prior to
test market. A typical brand team will have several concerns such as knowing the potential market share
for the product, examining the source of volume, and providing guidance for pricing and promotions.
The brand team may also want to know what brand attributes have competitive clout and want to
identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen
entrées. The client has one nationally branded competitor, a regional competitor in each of three
regions, and a profusion of private label products at the grocery chain level. The product may come
in two different forms: stove-top or microwaveable. The client believes that the private labels are very
likely to mimic this line extension and to sell it at a lower price. The client suspects that this strategy
on the part of private labels may work for the stove-top version but not for the microwaveable, where
they have the edge on perceived quality. They also want to test the effect of a shelf talker that will
draw attention to their product.

The Multinomial Logit Model

This problem can be set up as a discrete choice model in which a respondent’s choice among brands,
given choice set C, of available brands, will correspond to the brand with the highest utility. For each
brand i, the utility U; is the sum of a systematic component V; and a random component e;. The
probability of choosing brand i from choice set C, is therefore:

P(i|Cy) = P(U; > max(Uj)) = P(V;+e; >max(Vj +e5)) V (j#1) € C,

Assuming that the e; follow an extreme value type I distribution, the conditional probabilities P(i|Cy,)
can be found using the multinomial logit (MNL) formulation of McFadden (1974).

P(i|Ca) = exp(Vi)/ Ljec, exp(Vj)

One of the consequences of the MNL formulation is the property of independence from irrelevant
alternatives (ITA). Under the assumption of ITA, all cross effects are assumed to be equal, so that if
a brand gains in utility, it draws share from all other brands in proportion to their current shares.
Departures from ITA exist when certain subsets of brands are in more direct competition and tend to
draw a disproportionate amount of share from each other than from other members in the category.
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IIA is frequently described using a transportation example. Say you have three alternatives for getting
to work: bicycle, car, or a blue bus. If a fourth alternative became available, a red bus, then according
to ITA the red bus should draw riders from the other alternatives in proportion to their current usage.
However, in this case, IIA would be violated, and instead the red bus would draw more riders from the
blue bus than from car drivers and bicycle riders.

The mother logit formulation of McFadden (1974) can be used to capture departures from IIA. In
a mother logit model, the utility for brand ¢ is a function of both the attributes of brand ¢ and the
attributes of other brands. The effect of one brand’s attributes on another is termed a cross effect. In the
case of designs in which only subsets C, of the full shelf set C' appear, the effect of the presence/absence
of one brand on the utility of another is termed an availability cross effect. (See pages 269, 275, 476,
and 480 for other discussions of ITA.)

Set Up

In the frozen entrée example, there are five alternatives: the client’s brand, the client’s line extension, a
national branded competitor, a regional brand and a private label brand. Several regional and private
labels can be tested in each market, then aggregated for the final model. Note that the line extension
is treated as a separate alternative rather than as a level of the client brand. This enables us to model
the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand
is shown at either two or three price points. Additional price points are included so that quadratic
models of price elasticity can be tested. The indicator for the presence or absence of a brand in the
shelf set is coded using one level of the Price variable. The layout of factors and levels is given in the
following table.

Factors and Levels

Alternative Factor Levels Brand Description
1 X1 4 Client 1.29, 1.69, 2.09 + absent
2 X2 4 Client Line Extension 1.39, 1.89, 2.39, + absent
X3 2 microwave/stove-top
X4 2 shelf talker yes/no
3 X5 3 Regional 1.99, 2.49 + absent
4 X6 3 Private Label 1.49, 2.29 absent
X7 2 microwave/stove-top
) X8 3 National 1.99 + 2.39 + absent

In addition to intercepts and main effects, we also require that all two-way interactions within alter-
natives be estimable: x2*x3, x2+*x4, x3+*x4 for the line extension and x6*x7 for private labels. This
will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to
see if the promotion works better combined with a low price or with different forms. Using a linear
model for x1-x8, the total number of parameters including the intercept, all main effects, and two-way
interactions with brand is 25. This assumes that price is treated as qualitative. The actual number
of parameters in the choice model is larger than this because of the inclusion of cross effects. Using
indicator variables to code availability, the systematic component of utility for brand 7 can be expressed
as:
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Vi=a; + 25 (bir X i) + 202 2 (dig + 221 (9it X 1))

where
a; = intercept for brand i
b;. = effect of attribute k for brand i, where k =1, .., K;
z;. = level of attribute & for brand 4
d;; = availability cross effect of brand j on brand i
T )1 ity ey,
zj = availability code = 0 otherwise
giji = cross effect of attribute [ for brand j on brand i, where [ =1, .., L;
xj; = level of attribute [ for brand j.

The x;, and xj could be expanded to include interaction and polynomial terms. In an availability
design, each brand is present in only a fraction of the choice sets. The size of this fraction or subdesign
is a function of the number of levels of the alternative-specific variable that is used to code availability
(usually price). For instance, if price has three valid levels and a fourth zero level to indicate absence,
then the brand will appear in only three out of four runs. Following Lazari and Anderson (1994), the
size of each subdesign determines how many model equations can be written for each brand in the
discrete choice model. If X; is the subdesign matrix corresponding to V;, then each X; must be full
rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full-factorial candidate set is generated consisting of 3456 runs. It is then reduced
to 2776 runs that contain between two and four brands so that the respondent is never required to
compare more than four brands at a time. In the model specification, we designate all variables as
classification variables and require that all main effects and two-way interactions within brands be
estimable. The number of runs calculations are based on the number of parameters that we wish
to estimate in the various subdesigns X; of X. Assuming that there is a None alternative used as
a reference level, the numbers of parameters required for various alternatives are shown in the next
table along with the sizes of the subdesigns (rounded down) for various numbers of runs. Parameters
for quadratic price models are given in parentheses. Note that the effect of private label being in a
microwaveable or stove-top form (stove/micro cross effect) is an explicit parameter under the client
line extension.

The subdesign sizes are computed by taking the floor of the number of runs from the marginal times
the expected proportion of runs in which the alternative will appear. For example, for the client brand
which has three prices and not available and 22 runs, floor(22 x 3/4) = 16; for the competitor and
32 runs, floor(32 x 2/3) = 21. The number of runs chosen was n=26. This number provides adequate
degrees of freedom for the linear price model and will also allow estimation of direct quadratic price
effects. To estimate quadratic cross effects for price would require 32 runs at the very least. Although
the technique of using two-way interactions between nominal level variables will usually guarantee that
all direct and cross effects are estimable, it is sometimes necessary and good practice to check the ranks
of the subdesigns for more complex models (Lazari and Anderson 1994).
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Parameters

Client Private
Effect Client  Line Extension Regional Label Competitor
intercept 1 1 1 1 1
availability cross effects 4 4 4 4 4
direct price effect 1(2) 1(2) 1 1 1
price cross effects 4 (8) 4 (8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross effects - 1 - - -
shelf talker - 1 - - -
price*stove/microwave - 1(2) - 1 -
price*shelf talker - 1(2) - - -
stove/micro*shelf talker - 1 - - -
Total 10 (15) 16 (23) 10 12 10
Subdesign size
22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

Designing the Choice Experiment

This example originated with Kuhfeld, Tobias, and Garratt (1994), long before the %MktRuns macro
existed. At least for now, we will skip the customary step of running the %MktRuns macro to suggest
a design size and instead use the original size of 26 choice sets.

We will use the %MktEx autocall macro to create the design. (All of the autocall macros used in this
book are documented starting on page 597.) To recap, we want to make the design 233342 in 26 runs,
and we want the following interactions to be estimable: x2*x3 x2%x4 x3*x4 x6%*x7. Furthermore,
there are restrictions on the design. Each of the price variables, x1, x2, x5, x6, and x8, has one
level—the maximum level—that indicates the alternative is not available in the choice set. We use this
to create choice sets with 2, 3, or 4 alternatives available. If (x1 < 4) then the first alternative is
available, if (x2 < 4) then the second alternative is available, if (x5 < 3) then the third alternative
is available, and so on. A Boolean term such as (x1 < 4) is one when true and zero otherwise. Hence,

((x1 <4) + (x2<4) + (xb<3) + (x6<3) + (x8< 3))

is the number of available alternatives. It is simply the sum of some 1’s if available and 0’s if not
available.

We impose restrictions with the %MktEx macro by writing a macro, with IML statements, that quantifies
the badness of each run (or in this case, each choice set). We do this so bad = 0 is good and values
larger than zero are increasingly worse. We write our restrictions using an IML row vector x that
contains the levels (integers beginning with 1) of each of the factors in the ith choice set, the one the
macro is currently seeking to improve. The jth factor is x[j], or we may also use the factor names (for
example, x1, x2). (See pages 403 and 700 for other examples of restrictions.)
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We must use IML logical operators, which do not have all of the same syntax alternatives as DATA
step operators:

Do Not
Specify For Specify
= equals EQ
A =or == not equals NE
< less than LT
<= less than or equal to LE
> greater than GT
>= greater than or equal to GE
& and AND
] or OR
A or — not NOT

To restrict the design, we must specify restrictions=macro-name, in this case restrictions=resmac,
that names the macro that quantifies badness. The first statement counts up the number of available
alternatives. The next two set the actual badness value. Note that the else bad = 0 statement is not
necessary sincebad is automatically initialized to zero by the %MktEx macro. If the number available
is less than two or greater than 4, then bad gets set to the absolute difference between the number
available and 3. Hence, zero available corresponds to bad = 3, one available corresponds to bad = 2,
two through four available corresponds to bad = 0, and five available corresponds to bad = 2. Do not
just set bad to zero when everything is fine and one otherwise, but the macro needs to know that when
it switches from zero available to one available, it is going in the right direction. For simple restrictions
like this, it does not matter very much. However, for complicated sets of restrictions, it is critical that
the bad variable is set to a count of the number of current restriction violations. Here is the code.¥

title ’Consumer Food Product Example’;

Ymacro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad 0;
Ymend ;

Ymktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 xX6*x7,
restrictions=resmac, seed=377, outr=sasuser.Entree_LinDesl )

Here are the initial messages the macro prints.

NOTE: Generating the fractional-factorial design, n=27.
NOTE: Generating the candidate set.
NOTE: Performing 60 searches of 2,776 candidates, full-factorial=3,456.

The tabled design initialization part of the coordinate-exchange algorithm iterations will be initialized
with the first 26 rows of a 27 run fractional-factorial design. This design has 13 three-level factors,
ten of which are used to make 233242, The initial design will be unbalanced and one row short of
orthogonal, so we would expect that other methods would be better for this problem. The macro also
tells us that it is performing 60 PROC OPTEX searches of 2776 candidates, and that the full-factorial

YDue to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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design has 3456 runs. The macro is searching the full-factorial design minus the excluded choice sets.
Since the full-factorial design is not too large (less than 5000), and since there is no tabled design that
is very good for this problem, this is the kind of problem where we would expect the PROC OPTEX
modified Fedorov algorithm (Fedorov, 1972; Cook and Nachtsheim, 1980) algorithm to work best. The
macro chose 60 OPTEX iterations. In the fabric softener example, the macro did not try any OPTEX
iterations, because it knew it could directly make a 100% D-efficient design. In the vacation examples,
it ran the default minimum of 20 OPTEX iterations because the macro’s heuristics concluded that
OPTEX would probably not be the best approach for those problems. In this example, the macro’s
heuristics tried more iterations, since this is the kind of example where OPTEX works best.

Here is some of the output.

Consumer Food Product Example
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes

1 Start 84.3176 Can

1 2 1 84.3176 84.3176 Conforms

1 End 84.3176

2 Start 27 .8626 Tab,Unb,Ran
2 1 1 76.5332 Conforms

2 End 80.4628

11 Start 24 .5507 Tab,Ran

11 26 1 78.6100 Conforms

11 End 81.8604

12 Start 26.3898 Ran,Mut,Ann
12 1 1 67.0450 Conforms

12 End 83.0114
21 Start 45.9310 Ran,Mut,Ann
21 15 1 67.1046 Conforms
21 End 82.1657

NOTE: Performing 600 searches of 2,776 candidates.
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Consumer Food Product Example

Current
Design Row,Col D-Efficiency

Design Search History

Best

D-Efficiency

0 Initial

Start
2 1
End

84.

84.
84.
84.

3176

7548
7548
7548

84.

84.

3176

7548

Consumer Food Product Example

Design Refinement History

Current
Design Row,Col D-Efficiency D-Efficiency

Best

Can
Conforms

0 Initial

1 Start
1 2 1
1 14 1
1 End
8 Start
8 2 1
8 14 1
8 21 2
8 12 3
8 12 6
8 18 1
8 2 2
8 End

84.
84.
84.
84.
84.
84.
84.
84.
84.

7548
7548
7548
7548
7548
7548
7548
7548
7548

84.

84.

84.
84.
84.
84.
84.
84.
84.

NOTE: Stopping since it appears that no improvement

7548

7548

7548
7548
7548
7548
7548
7548
7548

Pre,Mut,Ann
Conforms

Pre,Mut,Ann
Conforms

is possible.
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Consumer Food Product Example
The OPTEX Procedure

Class Level Information

Class Levels -Values-
x1 4 1234
x2 4 1234
x3 2 12
x4 2 12
x5 3 123
x6 3 123
x7 2 12

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 84.7548 71.1686 98.0583 0.9806

Design 1 (Can), which was created by the candidate-set search (using PROC OPTEX), had D-efficiency
or 84.3176, and the macro confirms that the design conforms to our restrictions. The tabled, unbal-
anced, and random initializations do not work as well. For each design, the macro iteration history
states the D-efficiency for the initial design (27.8626 in design 2), the D-efficiency when the restrictions
are met (76.5332, Conforms), and the D-efficiency for the final design (80.4628). The fully-random
initialization tends to work a little better than the tabled initialization for this problem, but not as
well as PROC OPTEX. At the end of the algorithm search phase, the macro decides to use PROC
OPTEX and performs 600 more searches, and it finds a design with 84.7548% D-efficiency. The design
refinement step fails to improve on the best design. This step took 3.5 minutes.
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When You Have a Long Time to Search for an Efficient Design

With a moderate sized candidate set such as this one (2000 to 6000 runs), we might be able to do
better with more iterations. To test this, PROC OPTEX was run 10,000 times over the winter holiday
vacation, from December 22 through January 2, creating a total of 200,000 designs, 20 designs on each
try. (This was many years ago on computers that were much slower than the ones we have today.)
Here is a summary of the results.

PROC

OPTEX Percent
Run | D-Efficiency | Improvement

1 83.8959
83.9890 0.11%
3 84.3763 0.46%
6 84.7548 0.45%
84 85.1561 0.47%
1535 85.3298 0.20%
9576 85.3985 0.08%

This example is interesting, because it shows the diminishing value of increasing the number of it-
erations. Six minutes into the search, in the first six passes through PROC OPTEX (6 x 20 = 120
total iterations), we found a design with reasonably good D-efficiency==84.7548. Over an hour into
the search, with (84 — 6) x 20 = 1560 more iterations, we get a small 0.47% increase in D-efficiency
to 85.1561. About one day into the search, with (1535 — 84) x 20 = 29,020 more iterations, we get
another small 0.20% increase in D-efficiency, 85.3298. Finally, almost a week into the search, with
(9576 — 1535) x 20 = 160, 820 more iterations, we get another small 0.08% increase in D-efficiency to
85.3985. Our overall improvement over the best design found in 120 iterations was 0.75952%, about
three-quarters of a percent. These numbers will change with other problems and other seeds. However,
as these results show, usually the first few iterations will give you a good, efficient design, and usually,
subsequent iterations will give you slight improvements but with a cost of much greater run times.
Next, we will construct a plot of this table.

data; input n e; datalines;

1 83.8959
2 83.9890
3 84.3763
6 84.7548
84 85.1561

1635 85.3298
9576 85.3985
proc gplot;
title h=1 ’Consumer Food Product Example’;
title2 h=1 ’Maximum D-Efficiency Found Over Time’;
plot e * n / vaxis=axisli;
symbol i=join;
axisl order=(0 to 90 by 10);
run; quit;
The plot of maximum D-efficiency as a function of PROC OPTEX run number clearly shows that the
gain in D-efficiency that comes from a large number of iterations is very slight.



292 TS-722F — Discrete Choice

Consumer Food Product Example
Maximum D —Efficiency Found Over Time
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If you have a lot of time to search for a good design, you can specify some of the time and maximum
number of iteration parameters. Sometimes you will get lucky and find a better design. In this next
example, maxtime=300 300 60 was specified. This gives the macro up to 300 minutes for the algorithm
search step, 300 minutes for the design search step, and 60 minutes for the refinement step. The option
maxiter= increases the number iterations to 10000 for each of the three steps (or the maximum time).
With this specification, you would expect the macro to run overnight. See the macro documentation
(starting on page 667) for more iteration options. Note that you must increase the number of iterations
and the maximum amount of time if you want the macro to run longer. With this specification, the
macro performs 1800 OPTEX iterations initially (compared to 60 by default).

title ’Consumer Food Product Example’;

%macro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad = 0;
Ymend ;

%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 xX6*x7,
restrictions=resmac, seed=151,
maxtime=300 300 60, maxiter=10000 )

The results from this step are not shown.

Examining the Design

We can use the %MktEval macro to start to evaluate the design.

Y%mkteval (data=sasuser.Entree_LinDesl1);
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Here are the results.
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Some of the canonical correlations are bigger than we would like. They all involve attributes in
different alternatives, so they should not pose huge problems. Still, they are large enough to make
some researchers uncomfortable. The frequencies are pretty close to balanced. Perfect balance is not
possible with 26 choice sets and this design. If we were willing to consider blocking the design, we
might do better with more choice sets.

Designing the Choice Experiment, More Choice Sets

Let’s run the %MktRuns macro to see what design size looks good. For now, we will ignore the interac-

tions.

Ymktruns( 4 4 2 2 3 3 2 3)
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The smallest suggestion larger than 26 is 36. With this mix of factor levels, we would have to have
144 runs to get an orthogonal design (ignoring interactions), so we will definitely want to stick with a
nonorthogonal design. Balance will be possible in 36 runs, but 36 cannot be divided by 2 x 4 = 8 and
4 x 4 = 16. With 36 runs, a blocking factor will be required (2 blocks of 18 or 3 blocks of 12). We
would like the shelf talker to appear in half of the choice sets within block, so with two blocks, we will
want the number of choice sets to be divisible by 2 x 2 = 4, and 36 can be divided by 4. Now let’s
specify the interactions.

fmktruns( 4 4 2 2 3 3 2 3, interact=x2*x3 x2*x4 x3*x4 x6*x7 )

Here is the output.

Consumer Food Product Example

Design Summary

Number of

Levels Frequency
2 3
3 3
4 2

Consumer Food Product Example

Saturated = 25
Full Factorial = 3,456

Some Reasonable Cannot Be
Design Sizes Violations Divided By
144 2 32
96 5 9 18
192 5 9 18
48 7 9 18 32
72 9 16 32 48
216 9 16 32 48
120 14 9 16 18 32 48
168 14 9 16 18 32 48
36 25 8 16 24 32 48
108 25 8 16 24 32 48

Thirty-six runs is still in our list of possibilities, but now we see that not only can it not be divided by
8 and 16, it also cannot be divided by 24, 32, 48. We will try making a design in 36 runs, and see how
it looks.

In the previous try in 26 runs, the PROC OPTEX modified Fedorov algorithm worked best. There
are two reasons why this probably happened. First, the full-factorial design was small enough to use
as a candidate set. After imposing restrictions, the candidate set had 2,776 runs, and any size under
5000 or 10,000 is very manageable. Second, the design has interactions. The coordinate exchange
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algorithm by default considers only a single factor at a time, which is just one part of an interaction
term. Modified Fedorov in contrast, considers exchanges involving all of the factors. For this problem,
Modified Fedorov is invariably superior to the default coordinate-exchange algorithm. However, we can
make coordinate exchange better, by having it perform multiple-column exchanges taking into account
the interactions, just as we did in the vacation example on page 235. We will use order=matrix=S5A45-
data-set approach to looping over the columns of the design with the coordinate-exchange algorithm.
In this case, coordinate exchange will pair columns 1, 5, and 8 with a randomly chosen column, it will
consider every possible triple in columns 2, 3, and 4, and it will pair columns 6 and 7 with a randomly
chosen column.
title ’Consumer Food Product Example’;

%macro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad = 0;
Ymend ;

data mat;
input a b c;
datalines;

4

Q0 o O N =
0 N oW =

%mktex( 4 4 2 2 3 3 2 3, n=36, order=matrix=mat,
interact=x2*x3 x2*x4 x3*x4 x6%*X7,
restrictions=resmac, seed=377, outr=sasuser.Entree_LinDes?2 )

%mkteval;

Here is a small part of the output from the %MktEx macro.

Consumer Food Product Example 1
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
1 Start 94.0517 Can
1 2 1 94.0517 94.0517 Conforms
End 94.0517
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12 Start 71.6955 Ran,Mut,Ann
12 1 1 78.5418 Conforms

12 30 5 94.1433 94.1433

12 33 5 94.1507 94.1507

12 31 1 94.1532 94.1532

12 23 6 94.1553 94.1553

12 End 94.1553

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes

0 Initial 94.1553 94.1553 1Ini

3 Start 68.5288 Ran,Mut,Ann
3 29 1 75.9029 Conforms

3 22 5 94.1682 94.1682

3 34 5 94.1683 94.1683

3 35 6 94.2926 94.2926

3 16 8 94.3718 94.3718

3 24 6 94.3718 94.3718

3 9 1 94 .4572 94 .4572

3 End 94 .2846

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 94.4571 88.7104 94.0740 0.8333

The order=matrix= option apparently helped. The coordinate exchange algorithm was in fact chosen
over the modified Fedorov algorithm.

D-efficiency at 94.46% looks good. Here is part of the %MktEval results.



Food Product Example with Asymmetry and Availability Cross Effects 299

Consumer Food Product Example
Canonical Correlations Between the Factors
There is 1 Canonical Correlation Greater Than 0.316

x1 x2 x3 x4 x5 x6 X7 x8

x1 1 0.13 0.10 0.11 0.11 0.17 0.10 0.12
x2 0.13 1 0.12 0.08 0.23 0.39 0.06 0.18
x3 0.10 0.12 1 0.06 0.10 0.04 0.00 0.10
x4 0.11 0.08 0.06 1 0.07 0.07 0.06 0.18
x5 0.11 0.23 0.10 0.07 1 0.13 0.04 0.15
x6 0.17 0.39 0.04 0.07 0.13 1 0.04 0.13
x7 0.10 0.06 0.00 0.06 0.04 0.04 1 0.04
x8 0.12 0.18 0.10 0.18 0.15 0.13 0.04 1

Consumer Food Product Example
Canonical Correlations > 0.316 Between the Factors
There is 1 Canonical Correlation Greater Than 0.316

r r Square

x2 x6 0.39 0.15

Consumer Food Product Example
Summary of Frequencies
There is 1 Canonical Correlation Greater Than 0.316
* — Indicates Unequal Frequencies

Frequencies
x1 9999
x2 8 9109
* x3 19 17
x4 18 18
* x5 11 11 14
* x6 12 13 11
* x7 17 19
* x8 11 12 13

The correlations are better, although one is still not as good as we would like. The balance looks
pretty good, however it would be nice if the balance, for example, in x5 were better. It is often the
case that improving balance requires some sacrifice of D-efficiency. We can run the macro again, this
time specifying balance=2, which forces better balance. The specification of 2 allows the maximum
frequency for a level in a factor to be no more than two greater than the minimum frequency. You
should always specify mintry= with balance=. This allows %MktEx to at first increase D-efficiency
while ignoring the balance restrictions. Then, after mintry=m rows have been processed, the balance
restrictions are considered. Typically you will specify an expression that is a function of the number of
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rows for mintry=, for example, mintry=5 * n. The balance= option works best when its restrictions
are imposed on a reasonably efficient design not an inefficient initial design.

This example also uses a somewhat more involved order=matrix data set. To understand why, you
need to understand how the balance= option works. Here is some of the code that %MktEx uses to
impose balance.

__bbad = 1;
if try > &balancetry & jl1 then do;
acol = xmat[,j1];
acolli,] = x[,j1];
acol = design(acol) [+,];
__bbad = max(0, max(acol) - min(acol) - &balance);
end;

It checks the balance restrictions based on the first column index, j1. If we are doing multiple exchanges,
the exchanges in the second or subsequent columns could degrade the balance without it registering
as a violation in the code above. For example, in the order=matrix=mat data set used previously, the
last line is: 8 8 .. The column index j3 could change any of the columns and it would not register in
the balance-checking code, because it is only looking at column 8. For this reason, we add eight more
lines so the last thing the restrictions macro does in each row is check every column for the balance
constraints.
data mat;
input a b c;
datalines;

4

00 NO O WNHF 00O 0N -
00 NO O WNHFH 00N W

0 ~NO O WN = -

Jmktex( 4 4 2 2 3 3 2 3, n=36, order=matrix=mat,
interact=x2*x3 x2*x4 x3*x4 x6%*X7,
restrictions=resmac, seed=368, outr=sasuser.Entree_LinDes3,
balance=2, mintry=5 * n )

Here is the last part of the output from the %MktEx macro.
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Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 93.9552 87.8357 92.9627 0.8333

The D-efficiency looks good. It is a little lower than before, but not much. Next, we will look at the
canonical correlations and frequencies.

Y%mkteval;

Here is the first part of the output from the %MktEval macro.

Consumer Food Product Example
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 X7 x8

x1 1 0.17 0.08 0.08 0.16 0.12 0.18 0.16
x2 0.17 1 0.08 0.08 0.16 0.31 0.27 0.16
x3 0.08 0.08 1 0.11 0.12 0.07 0 0.12
x4 0.08 0.08 0.11 1 0.12 0.07 0 0.07
x5 0.16 0.16 0.12 0.12 1 0.13 0.07 0.10
x6 0.12 0.31 0.07 0.07 0.13 1 0.07 0.19
x7 0.18 0.27 0 0 0.07 0.07 1 0.12
x8 0.16 0.16 0.12 0.07 0.10 0.19 0.12 1

The canonical correlations look good. Here is the last part of the output from the %MktEval macro.
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Consumer Food Product Example

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
* — Indicates Unequal Frequencies
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This design looks much better. It is possible to get designs with better balance by specifying balance=1,
however, since this gives %MktEx much less freedom, the balance=1 option may cause D-efficiency to
go down. Because balance=1 is a tough restriction, we will try this without order=matrix.

Jmktex( 4 4 2 2 3 3 2 3, n=36,
interact=x2*x3 x2*x4 x3*x4 x6*X7,
restrictions=resmac, seed=472, outr=sasuser.Entree_LinDes4,
balance=1, mintry=5 * n )

%mkteval;

Here is the D-efficiency, which is a lower than we saw previously.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 90.4983 79.9621 87.0176 0.8333

More troubling is the fact that the balance restrictions have increased the correlations between factors.

Consumer Food Product Example
Canonical Correlations Between the Factors
There are 2 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8
x1 1 0.22 0.11 0.11 0.19 0.33 0.11 0.30
x2 0.22 1 0.11 0.11 0.44 0.29 0.11 0
x3 0.11 0.11 1 0 0.14 0 0 0.14
x4 0.11 0.11 0 1 0.14 0 0.11 0.14
x5 0.19 0.44 0.14 0.14 1 0.14 0 0.17
x6 0.33 0.29 0 0 0.14 1 0.14 0
x7 0.11 0.11 0 0.11 0 0.14 1 0.14
x8 0.30 0 0.14 0.14 0.17 0 0.14 1
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Consumer Food Product Example
Canonical Correlations > 0.316 Between the Factors
There are 2 Canonical Correlations Greater Than 0.316

r r Square
x2 xb 0.44 0.20
x1 x6 0.33 0.11

The balance, however, is perfect.

Consumer Food Product Example
Summary of Frequencies
There are 2 Canonical Correlations Greater Than 0.316
* — Indicates Unequal Frequencies

Frequencies
x1 99909
x2 9999
x3 18 18
x4 18 18
x5 12 12 12
x6 12 12 12
x7 18 18
x8 12 12 12

Having balance in all of the factors is nice, but for this design, we only need to ensure that x4, the
shelf-talker factor is balanced, since we will be dividing the design into two parts depending on whether
the shelf talker is there or not. All things considered, it looks like the design that was created with
balance=2 is the best design for our situation. It is balanced in x4, it is either balanced or reasonably
close to balanced in the other factors, and it has good D-efficiency and is reasonably close to orthogonal.
If our design had not been balanced in x4, we could have tried again with a different seed, or we could
have tried again with different values for mintry=. If the interactions had not been requested, we also
could have switched it with another two-level factor, or added it after the fact by blocking (running
the %MktBlock macro as if we were adding a blocking factor), or we could have used the init= option
to constrain the factor to be balanced.

The balance= option in the %MktEx macro works by adding restrictions to the design. The approach
it uses often works quite well, but sometimes it does not. Forcing balance gives the macro much less
freedom in its search, and makes it easy for the macro to get stuck in suboptimal designs. If perfect
balance is critical and there are no interactions or restrictions, you can also try the %MktBal macro.
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Examining the Subdesigns

As we mentioned previously, “it is sometimes necessary and good practice to check the ranks of the
subdesigns for more complex models (Lazari and Anderson 1994).” Here is a way to do that with PROC
OPTEX. This is the only usage of PROC OPTEX in this book that is too specialized to be run from
one of the %Mkt macros (because not all variables are designated as class variables). For convenience,
we call PROC OPTEX from an ad hoc macro, since it must be run five times, once per alternative, with
only a change in the where statement. We need to evaluate the design when the client’s alternative
is available (x1 ne 4), when the client line extension alternative is available (x2 ne 4), when the
regional competitor is available (x5 ne 3), when the private label competitor is available (x6 ne 3),
and when the national competitor is available (x8 ne 3). We need to use a model statement that lists
all of the main effects and interactions. We do not designate all of the variables on the class statement
because we only have enough runs to consider linear price effects within each availability group. The
statement generate method=sequential initdesign=desv specifies that we will be evaluating the
initial design desv, using the sequential algorithm, which ensures no swaps between the candidate set
and the initial design. The other option of note here appears on the class statement, and that is
param=orthref. This specifies an orthogonal parameterization of the effects that gives us a nice 0 to
100 scale for the D-efficiencies.

Ymacro evaleff (where);
data desv / view=desv; set sasuser.Entree_LinDes3(where=(&where)); run;

proc optex data=desv;
class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 xX6%XT7;
generate method=sequential initdesign=desv;
run; quit;

Y%mkteval (data=desv)
Y%mend ;

%hevaleff (x1 ne 4)
hevaleff (x2 ne 4)
%hevaleff (x5 ne 3)
hevaleff (x6 ne 3)
%hevaleff (x8 ne 3)

Each step took just over two seconds. We hope to not see any efficiencies of zero, and we hope to not get
the message WARNING: Can’t estimate model parameters in the final design. Here are some
of the results.

Consumer Food Product Example

The OPTEX Procedure

Average

Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error

1 69.7007 61.6709 80.8872 0.7071
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Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 72.7841 64.9939 87.5576 0.6939
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 66.1876 50.8651 81.2554 0.7518
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 71.8655 59.8208 86.6281 0.7518
Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 65.2313 50.1059 84.1610 0.7518

Examining the Aliasing Structure

It is also good to look at the aliasing structure of the design. We use PROC GLM to do this, so we must
create a dependent variable. We will use a constant y=1. The first PROC GLM step just checks the
model to make sure none of the specified effects are aliased with each other. This step is not necessary
since our D-efficiency value greater than zero already guarantees this.

data temp;
set sasuser.Entree_LinDes3;
y=1;
run;
proc glm data=temp;
model y = x1-x8 x2%x3 x2*x4 x3*x4 x6%x7 / e aliasing;
run; quit;
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Here are the results, ignoring the ANOVA and regression tables, which are not of interest. Each of
these lines is a linear combination that is estimable. It is simply a list of the effects.

Intercept
x1

X2

x3

x4

x5

x6

x7

x8
x2%x3
x2*xx4
x3*x4
X6*xX7

Contrast this with a specification that includes all simple effects and two-way and three-way interac-
tions. We specify the model of interest first, x1-x8 x2*x3 x2*x4 x3*x4 x6*x7, so all of those terms
will be listed first, then we specify all main effects and two-way and three-way interactions using the
notation x1 | x2 | x3 | x4 | x6 | x6 | x7 | x8@3. It is not a problem that some of the terms
were both explicitly specified and also generated by thex1 | x2 | x3 | x4 | x5 | x6 | x7 | x8@3
list since PROC GLM automatically eliminates duplicate terms.

proc glm data=temp;
model y = x1-x8 x2*x3 x2%x4 x3*x4 x6*x7
x1|x2|x3|x4|x5|x6|x7|x803 / e aliasing;
run; quit;

Intercept - 20.008*x4*x6 - 9.8483*x1*x4*x6 - 42.279*x2*x4*x6 — 9.0597*x3*x4*x6 +
B7.417xxb5xx6 + 151.23*x1*x5*x6 + 186.61*x2*x5%x6 + 80.158*x3*x5*x6 +
90.545%x4*x5%x6 50.89*x1*x7 + 4.2117*x2*x7 - 159.53*x1*x2*x7 + 12.566*%x3*x7 -
52.475%x1*x3%x7 43.269%x2*x3%x7 + 0.3801*x4*x7 — 71.5%x1*x4*x7 +
36.725%x2*x4*X7 24 . 297*x3*xx4*xx7 + 21.563%x5%x7 — 27.16%x1*x5*x7 +
75.528*%x2*x5*x7 62.984*%x3*x5*%x7 + 39.224*%x4*x5*%x7 — 85.333*%x1*x6*xX7 -
10.566*x2*xx6%x7 15.818%x3*x6*x7 — 31.415*%x4*x6%x7 + 123.51*x5*x6*x7 -

24 .144%xx1*x8 + 6.6197*x2*%x8 — 12.153*%x1*x2*x8 - 38.1*x3*x8 - 133.06*x1*x3*x8 -
135.02*x2*x3%x8 + 39.148*x4*x8 + 101.08*x1*x4*x8 + 149.27*x2*x4*x8 -
15.467*x3*x4*x8 - 30.981%xb5*xx8 — 157.71*x1*x5*xx8 — 130.69*x2*x5*x8 -

107 .69%x3*x5%x8 + 19.478*x4*xb5*xx8 - 40.116*x6%x8 - 116.84*x1*x6*x8 -
61.852%xx2*x6%x8 97 .721%x3*x6%x8 — 23.772*%xx4*x6%x8 + 44.985*x5*x6%x8 -
5.0186*%x7*x8 - 171.5%x1*x7*x8 + 12.071*x2*x7*x8 — 2.9687*x3*x7*x8 +

44 ,468*x4*x7*x8 + 8.5765*x5xx7*x8 - 52.648*x6%*x7*x8

+
+
+
+
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x1 + 9.1371%x4*x6 + 7.8312*%x1*x4*x6 + 17.618*x2*x4*x6 + 9.7563*x3*x4*x6 -
21.745%x5%x6 - 69

25.304*x4*xx5%x6
26.888*%x1*x3*x7
35.377*x2*xx4*xX7
43.808%x2*x5*x7
6 .8554%x2*xx6%x7

1.133%x1*x8 + 7.

39.854*%x2*x3%x8
T.6916*%xx3*x4%*x8
16.519%x3*x5%x8
29.443%x2*xx6%x8

+

.803*x1*x5%x6 — 73.705*x2*%x5*x6 - 39.359%x3*x5%x6 -
22.962*%x1*x7 - 2.9296%x2*xX7 + T71.792*%x1*x2*%x7 — 4.9586%x3%x7 +
12.562%x2*xx3*x7 — 7.8969%x4*x7 + 11.379*%x1*x4*xX7 -
21.468*%x3*xx4*xx7 - 12.723%x5*x7 + 10.604*%x1*x5*x7 -
32.655*%x3*xxb*xx7 - 32.497*x4*x5%x7 + 31.754*%x1*xx6*%x7 +
4.0467*x3*%x6%xX7 + 1.6149%x4*x6*x7 — 46.784*x5*xX6%xX7 -

38568*x2*x8 + 2.0638*x1*x2*x8 + 4.336*x3*x8 + 3.3233*%x1*x3*x8 +

+
+
+

5.8152*xx7*x8 + 65
15.536*x4*xx7*x8 — 6.816%x5*x7*x8 + 18.202%x6%x7*x8

5.3094*%x4*%xx8 - 28.994%x1*x4*x8 — 5.5b582*x2*x4*x8 +
6.3495%xx5*x8 + 15.979%x1*x5*x8 + 58.815*x2*x5*x8 +
11.175%x4%x5%x8 + 7.3054*x6%x8 + 13.278%x1*x6%x8 +
14.09*%x3*xx6*x8 + 18.767*x4*x6*x8 — 34.202*%xx5*xx6*x8 +
.231%x1*x7*x8 + 14.788*x2*%x7*x8 - 3.885*%x3*x7*x8 -

Again, we have a list of linear combinations that are estimable. This shows that the Intercept cannot
be estimated independently of the x4*x6 interaction and a bunch of others including four-way though
eight-way interactions which were not specified and hence not shown. Similarly, x1 is confounded with
a bunch of interactions, and so on. This is why we want to be estimable the two-way interactions
between factors that are combined to create an alternative. We did not want something like x2*x3, the
client-line extension’s price and microwave/stove top interaction to be confounded with say another

brand’s price.

Blocking the Design

At 36 choice sets, this design is a bit large, so we will block it into two blocks of 18 choice sets. Within
each block we will want the shelf talker to be on half the time.

Y%mktblock (data=sasuser.Entree_LinDes3, out=sasuser.Entree_LinDes,
nblocks=2, seed=448)

The first attempt (not shown) produced a design where x4, the shelf talker did not occur equally often
within each block. Changing the seed took care of the problem. Here are the canonical correlations.
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Consumer Food Product Example
Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316
Block x1 x2 x3 x4 x5 x6 X7 x8
Block 1 0.08 0.08 0 0 0.07 0.07 0 0.07
x1 0.08 1 0.17 0.08 0.08 0.16 0.12 0.18 0.16
x2 0.08 0.17 1 0.08 0.08 0.16 0.31 0.27 0.16
x3 0 0.08 0.08 1 0.11 0.12 0.07 0 0.12
x4 0 0.08 0.08 0.11 1 0.12 0.07 0 0.07
x5 0.07 0.16 0.16 0.12 0.12 1 0.13 0.07 0.10
x6 0.07 0.12 0.31 0.07 0.07 0.13 1 0.07 0.19
x7 0 0.18 0.27 0 0 0.07 0.07 1 0.12
x8 0.07 0.16 0.16 0.12 0.07 0.10 0.19 0.12 1

The blocking variable is not highly correlated with any of the factors. Here are some of the frequencies.

* %X ¥ *

*

Block
x1
x2
x3
x4
x5
x6
x7

x8
Block

Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block

Consumer Food Product Example

x1
x2
x3
x4
x1
x2
x3
x4
x5
x6
x7
x8

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies
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The blocking variable is perfectly balanced, as it is guaranteed to be if the number of blocks divides the
number of runs. Balance within blocks, that is the cross-tabulations of the factors with the blocking
variable, looks good. The macro also prints canonical correlations within blocking variables. These
can sometimes be quite high, even 1.0, but that is not a problem.!l Here is the design, as it is printed
by the %MktBlock macro.

Consumer Food Product Example

Block Run x1 x2 x3 x4 x5 x6 x7 x8
1 1 1 3 1 1 1 3 1 1
2 3 1 2 2 1 3 2 1

3 2 4 2 2 3 1 1 3

4 4 3 1 2 2 2 1 1

5 1 2 2 1 3 3 2 3

6 4 3 1 1 3 2 2 3

7 2 3 1 2 1 1 1 3

8 1 1 2 1 2 2 2 3

9 4 2 1 2 1 3 2 3

10 3 1 1 1 1 1 2 3

11 4 4 2 1 3 2 1 1

12 4 3 2 2 3 3 1 2

13 1 4 1 1 2 1 1 2

14 2 2 1 1 2 3 1 1

15 1 4 2 2 2 1 2 2

16 3 4 2 1 1 2 2 2

17 2 1 1 2 3 2 2 2

18 3 2 2 2 2 3 1 2

ITdeally, each subject would only make one choice, since the choice model is based on this assumption (which is almost
always ignored). As the number of blocks increases, the correlations will mostly go to one, and ultimately be undefined
when there is only one choice set per block.
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Consumer Food Product Example

Block Run x1 x2 x3 x4 x5 x6 x7 x8
2 1 4 2 2 1 1 1 2 2
2 1 3 2 2 3 2 2 1

3 1 2 1 2 3 1 2 1

4 4 1 1 1 2 3 2 1

5 3 4 1 2 2 3 1 3

6 2 4 1 1 3 1 2 3

7 2 2 2 2 1 2 1 3

8 2 1 2 1 3 3 1 2

9 3 2 1 1 3 2 1 2

10 1 4 1 2 1 2 1 2

11 1 1 1 2 1 3 1 3

12 3 2 2 1 3 1 1 1

13 4 3 2 1 1 1 1 2

14 3 3 2 1 2 2 1 3

15 4 4 1 2 1 2 2 1

16 2 3 2 1 2 3 2 1

17 4 1 2 2 2 1 2 3

18 3 3 1 2 3 3 2 2

The Final Design

The next steps create the final choice design, stored in sasuser.Entree_ChDes, sorted by the blocking
and shelf-talker variable. We will use the %MktLab macro to assign values, formats, and labels to
the design. Previously, we have used the %MktLab macro to reassign factor names when we wanted
something more descriptive than the default, x1, x2, and so on, and when we wanted to reassign the
names of two m-level factors to minimize the problems associated with correlated factors. This time,
we will use the %MktLab macro primarily to deal with the asymmetry in the price factors. Recall our
factor levels.

Factors and Levels

Alternative Factor Levels Brand Description

1 X1 4 Client 1.29, 1.69, 2.09, absent

2 X2 4 Client Line Extension 1.39, 1.89, 2.39, absent
X3 2 microwave/stove-top
X4 2 shelf-talker yes/no

3 X5 3 Regional 1.99, 2.49, absent

4 X6 3 Private Label 1.49, 2.29, absent
X7 2 microwave/stove-top

5 X8 3 National 1.99 + 2.39, absent




312 TS-722F — Discrete Choice

The choice design will need a quantitative price factor, made from all five of the linear price factors,
that contains the prices of each of the alternatives. At this point, our factor x1 contains 1, 2, 3, 4, and
not 1.29, 1.69, 2.09, and absent, which is different from x2 and from all of the other factors. A 1 in x1
will need to become a price of 1.29 in the choice design, a 1 in x2 will need to become a price of 1.39 in
the choice design, a 1 in x3 will need to become a price of 1.99 in the choice design, and so on. Before
we use the %MktRoll macro to turn the linear design into a choice design, we need to use the %MktLab
macro to assign the actual prices to the price factors.

The %MktLab macro is like the %MktRoll macro in the sense that it can use as input a key= data set
that contains the rules for customizing a design for our particular usage. In the %MktRoll macro, the
key= data set provides the rules for turning a linear design into a choice design. In contrast, in the
%MktLab macro, the key= data set contains the rules for turning a linear design into another linear
design, changing one or more of the following: factor names, factor levels, factor types (numeric to
character), level formats, and factor labels.

We could use the %MktLab macro to change the names of the variables and their types, but we will not
do that for this example. Ultimately, we will use the %MktRoll macro to assign all of the price factors
to a variable called Price and similarly provide meaningful names for all of the factors in the choice
design, just as we have in previous examples. We could also change a variable like x3 with values of
1 and 2 to something like Stove with values ’Stove’ and ’Micro’. We will not do that because we
want to make a design with a simple list of numeric factors, with simple names like x1-x8 that we can
run through the %MktRoll macro to get the final choice design. We will assign formats and labels, so
we can print the design in a meaningful way, but ultimately, our only goal at this step is to handle the
price asymmetries by assigning the actual price values to the factors.

The key= data set contains the rules for customizing our design. The data set has as many rows as
the maximum number of levels, in this case four. Each variable is one of the factors in the design, and
the values are the factor levels that we want in the final design. The first factor, x1, is the price factor
for the client brand. Its levels are 1.29, 1.69, and 2.09. In addition, one level is 'not available’, which
is flagged by the SAS special missing value .N. In order to read special missing values in an input data
set, you must use the missing statement and name the expected missing values. The factor x2 has
the same structure as x1, but with different levels. The factor x3 has two levels, hence the key= data
set has missing values in the third and fourth row. Since the design has only 1’s and 2’s for x3, this
missing values will never be used. Notice that we are keeping x3 as a numeric variable with values 1
and 2 using a format to supply the character levels 'micro’ and ’stove’. The other factors are created
in a similar fashion. By default, ordinary missing values .’ are not permitted as levels. By default,
you may only use ordinary missing values as place holders for factors that have fewer levels than the
maximum. If you want missing values in the levels, you must use one of the special missing values . A,
.B, ..., .Z, and ._** or the cfill= or nfill= options.

The %MktLab macro specification names the input SAS data set with the design and the key data set.
By default, it creates an output SAS data set called Final. The data set is sorted by block and shelf
talker and printed.

proc format;

value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;
run;
**Note that the > .’ in ?.N’ is not typed in the data, nor is it typed in the missing statement. Furthermore, it

does not appear in the printed output. However, you need to type it if you ever refer to a special missing value in code:

if x1 eq .N then ....
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data key;

missing N;
input x1-x8;

format x1 x2 x5 x6 x8 dollar5.2
x4 yn. x3 x7 micro.;

label

datali

x1
X2 =
x3 =
x4 =

x5 =
x6 =
X7 =
x8 =

nes;

’Client Brand’

’Client Line Extension’
’Client Micro/Stove’
’Shelf Talker’

’Regional Brand’
’Private Label’
’Private Micro/Stove’
’National Competitor’;

.29 1.39111.99 1.49 1 1.99
.69 1.89 2 2 2.49 2.29 2 2.39
. N N . N

1
1
2.09 2.39
N N

Jmktlab(data=sasuser.Entree_LinDes, key=key)

proc sort out=sasuser.Entree_LinDesLab(drop=run); by block x4; run;

proc print label; id block x4; by block x4; run;
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The %MktLab macro prints the variable mapping that it uses, old names followed by new names. In this
case, none of the names change, but it is good to make sure that you have the expected correspondence.

Variable Mapping:

x1

X2 :
x3
x4
x5 :

x6

X7
x8 :

: x1
X2
x3
x4
x5
: x6
x7
x8

Here is the design.
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Consumer Food Product Example

Client Client Private
Shelf Client Line Micro/ Regional Private Micro/ National
Block Talker Brand Extension Stove Brand Label Stove  Competitor
1 No $1.29 $2.39 Micro $1.99 N Micro $1.99
$1.29 $1.89 Stove N N Stove N
N $2.39 Micro N $2.29 Stove N
$1.29 $1.39 Stove $2.49 $2.29 Stove N
$2.09 $1.39 Micro $1.99 $1.49 Stove N
N N Stove N $2.29 Micro $1.99
$1.29 N Micro $2.49 $1.49 Micro $2.39
$1.69 $1.89 Micro $2.49 N Micro $1.99
$2.09 N Stove $1.99 $2.29 Stove $2.39
1 Talker $2.09 $1.39 Stove $1.99 N Stove $1.99
$1.69 N Stove N $1.49 Micro N
N $2.39 Micro $2.49 $2.29 Micro $1.99
$1.69 $2.39 Micro $1.99 $1.49 Micro N
N $1.89 Micro $1.99 N Stove N
N $2.39 Stove N N Micro $2.39
$1.29 N Stove $2.49 $1.49 Stove $2.39
$1.69 $1.39 Micro N $2.29 Stove $2.39
$2.09 $1.89 Stove $2.49 N Micro $2.39
2 No N $1.89 Stove $1.99 $1.49 Stove $2.39
N $1.39 Micro $2.49 N Stove $1.99
$1.69 N Micro N $1.49 Stove N
$1.69 $1.39 Stove N N Micro $2.39
$2.09 $1.89 Micro N $2.29 Micro $2.39
$2.09 $1.89 Stove N $1.49 Micro $1.99
N $2.39 Stove $1.99 $1.49 Micro $2.39
$2.09 $2.39 Stove $2.49 $2.29 Micro N
$1.69 $2.39 Stove $2.49 N Stove $1.99
2 Talker $1.29 $2.39 Stove N $2.29 Stove $1.99
$1.29 $1.89 Micro N $1.49 Stove $1.99
$2.09 N Micro $2.49 N Micro N
$1.69 $1.89 Stove $1.99 $2.29 Micro N
$1.29 N Micro $1.99 $2.29 Micro $2.39
$1.29 $1.39 Micro $1.99 N Micro N
N N Micro $1.99 $2.29 Stove $1.99
N $1.39 Stove $2.49 $1.49 Stove N

$2.09 $2.39 Micro N N Stove $2.39
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In contrast, here are the actual values without formats and labels.

proc print data=sasuser.Entree_LinDeslLab; format _numeric_; run;
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Obs

00 N O O W N -

x1

1.29
1.29

1.29
2.09

1.29
1.69

2.09
2.09

1.69

1.29
1.69
2.09

1.69
1.69
2.09
2.09

=

.09

.69
.29

.29
.09
.69
.29
.29

= =, P, NP R, N

==

2.09

x2

2.39
1.89
2.39
1.39
1.39

=

1.89

1.39

2.39
2.39
1.89
2.39

1.39

1.89
1.89

1.39

.39
.89
.89
.39
.39

.39
.39

.89

F NN NN R = =

1.89

1.39

1.39
2.39
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x3

P NP, P PN PRPDNDNDNNDMNNDMNNENDNEREPRPDNDNNDNENNMNNNMNRRRPRPRPRPNDNMDNNEREARARNNDNARERDNDERDNDR

x4

NNNMNNMNNMNNNMNNNNMNNRE, PP RPRRPRRPRPRPRPRPRRERPNNNMNMNMNNNMNNMNNMNDMNNRERRR PP P PR

x5

1.99
N
N
2.49
1.99

2.49
2.49

1.99
1.99

2.49
1.99
1.99

2.49

2.49
1.99

2.49

==2=2=

1.99
2.49
2.49

.49
.99
.99
.99
.99
.49

N B =B e N

x6

2.29
2.29
1.49
2.29
1.49

2.29

1.49
2.29
1.49

1.49
2.29

»
~

NNNEFE, P PPN, PP PP NDNMDNNMNEDNDMNDMEEDNNMNERPRPRPRPRPRNDDNNERERRPRRPRDNDDNDNDDNDR-

x8

1.99

==2=2=

1.99
2.39
1.99

2.39
1.99

1.99

.39
.39
.39

.39
.39

.99

= NN DNDNDDN

2.39
2.39
1.99
2.39

1.99
1.99

1.99

2.39

1.99

2.39

Block
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One issue remains to be resolved regarding this design, and that concerns the role of the shelf talker
when the client line extension is not available. The second part of each block of the design consists of
choice sets in which the shelf talker is present and calls attention to the client line extension. However,
in some of those choice sets, the client line extension is unavailable. This problem can be handled in
several ways. Here are a few:

e Rerun the design creation and evaluation programs excluding all choice sets with shelf talker
present and client line extension unavailable. However, this requires changing the model because
the excluded cell will make inestimable the interaction between client-line-extension price and
shelf talker. Furthermore, the shelf-talker variable will almost certainly no longer be balanced.

e Move the choice sets with client line extension unavailable to the no-shelf-talker block and reran-
domize. The shelf talker is then on for all of the last nine choice sets.

e Let the shelf talker go on and off as needed.

e Let the shelf talker call attention to a brand that happens to be out of stock. It is easy to imagine
this happening in a real store.

Other options are available as well. No one approach is obviously superior to the alternatives. For this
example, we will take the latter approach and allow the shelf talker to be on even when the client line
extension is not available. Note that if the shelf talker is turned off when the client line extension is
not available then the design must be manually modified to reflect this fact.

Testing the Design Before Data Collection

This is a complicated design that will be used to fit a complicated model with alternative-specific effects,
price cross effects, and availability cross effects. Collecting data is time consuming and expensive. It is
always good practice, and particularly when there are cross effects, to make sure that the design will
work with the most complicated model that we anticipate fitting. Before we collect any data, we will
convert the linear design to a choice design® and use the %ChoicEff macro to evaluate its efficiency for
a multinomial logit model with both price and availability cross effects.

For analysis, the design will have four factors, Brand, Price, Micro, Shelf. We will use the %MktRoll
macro and a key= data set (although not the same one as before) to make the choice design. Brand is the
alternative name; its values are directly read from the key=Key in-stream data. Price is an attribute
whose values will be constructed from the factors x1, x2, x5, x6, and x8 in sasuser.Entree_LinDesLab
data set. Micro, the microwave factor, is constructed from x3 for the client line extension and x7 for
the private label. Shelf, the shelf-talker factor, is created from x4 for the extension. The keep= option
on the %MktRoll macro is used to keep the original price factors in the design, since we will need them
for the price cross effects. Normally, they would be dropped.

*See page 60 for an explanation of linear versus choice designs.
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data key;
input Brand $ 1-10 (Price Micro Shelf) ($);
datalines;

Client x1

Extension x2 x3 x4

Regional xb .

Private x6 X7 .
National x8 .
None

’

Jmktroll (design=sasuser.Entree_LinDesLab, key=key, alt=brand, out=rolled,
keep=x1 x2 x5 x6 x8)

proc print data=sasuser.Entree_LinDesLab(obs=2); run;

proc print data=rolled(obs=12);
format price dollar5.2 shelf yn. micro micro.;
id set; by set;
run;

Consider the first two choice sets in the linear design.

Consumer Food Product Example

Obs x1 x2 x3 x4 x5 x6 x7 x8 Block
1 $1.29 $2.39 Micro No $1.99 N Micro  $1.99
2 $1.29 $1.89 Stove No N N Stove N

Here they are in the rolled out choice design.

Consumer Food Product Example

Set Brand Price Micro Shelf x1 x2 x5 x6 x8
1 Client $1.29 . . $1.29 $2.39 $1.99 N $1.99
Extension $2.39 Micro No $1.29 $2.39 $1.99 N $1.99
Regional $1.99 . . $1.29 $2.39 $1.99 N $1.99
Private N Micro . $1.29 $2.39 $1.99 N $1.99
National $1.99 . . $1.29 $2.39 $1.99 N $1.99

None . . . $1.29 $2.39 $1.99 N $1.99
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2 Client $1.29 . . $1.29 $1.89 N N N
Extension $1.89 Stove No $1.29 $1.89 N N N
Regional N . . $1.29 $1.89 N N N
Private N Stove . $1.29 $1.89 N N N
National N . . $1.29 $1.89 N N N
None . . . $1.29 $1.89 N N N
Set 1, Alternative 1

Brand = ’Client’ the brand for this alternative

Price = x1 = $1.29 the price of this alternative

Micro = . does not apply to this brand

Shelf = . does not apply to this brand

x1 = $1.29 the price of the client brand in this choice set

x2 = $2.39 the price of the extension in this choice set

x5 = $1.99 the price of the regional competitor in this choice set

x6 = N the private label unavailable in this choice set

x8 = $1.99 national competitor unavailable in this choice set

Set 1, Alternative 2

Brand = ’Extension’ the brand for this alternative

Price = x2 = $2.39 the price of this alternative

Micro = Micro Microwave version

Shelf = No Shelf Talker, No

x1 = $1.29 the price of the client brand in this choice set

x2 = $2.39 the price of the extension in this choice set

x5 = $1.99 the price of the regional competitor in this choice set

x6 = N the private label unavailable in this choice set

x8 = $1.99 national competitor unavailable in this choice set

The factors x1 through x8 will be used to make the price cross effects. Notice that x1 through x8 are
constant within each choice set. The variable x1 is the price of alternative one, which is the same no
matter which alternative it is stored with. The factors x1 through x8 will also be used to make five
other factors that will be used to make the availability cross effects. Here is how the prices will be
recoded for those factors.

x1 — ail x2 — a2 x6 — ab x6 — ab x8 — a8
1.29 1 1.39 1 1.99 1 1.49 1 1.99 1
1.69 1 1.89 1 2.49 1 2.29 1 2.39 1
2.09 1 2.39 1 N -2 N -2 N -2
N -3 N -3

This is a contrast coding. Within each factor, the coding sums to zero. Each availability factor
has a coding that contrasts unavailable with the remaining available prices. When an alternative is
unavailable, the a variable is set to minus the number of available price points. The coding for available
alternatives is 1. A -3 is used for the first two alternatives that have three prices, and a -2 is used for
the remaining alternatives that have two prices.
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We need to do a few more things to this design before we are ready to use it. We need to convert the
missings for when Micro and Shelf do not apply to 2 for 'Stove’ and 1 for 'No’. We need to do the
contrast coding for making the availability cross effects. More will be said about this after the code is
shown. Since we will be treating all of the price factors as a quantitative (not as class variables), we
need to convert the missing prices to zero. Eventually, we will also need to output just the alternatives
that are available (those with a nonzero price and also the none alternative). For now, we will just
make a variable w that flags the available alternatives (w = 1). We can do this using a weight or flag
variable: w = 1 means available and w = 0 means not available. We also need to assign labels and
formats.

data sasuser.Entree_ChDes(drop=i);

set rolled;

array x[6] price x1 -- x8;

array al[b5] al a2 ab a6 a8;

if nmiss(micro) then micro = 2; /* stove if not a factor in alt */

if nmiss(shelf) then shelf = 1; /* not talker if not a factor in alt */

al = -3 * nmiss(x1) + n(x1); /* altl: -3 - not avail, 1 - avail */
a2 = -3 * nmiss(x2) + n(x2); /* alt2: -3 - not avail, 1 - avail */
ab = -2 * nmiss(x5) + n(x5); /* alt3: -2 - not avail, 1 - avail */
a6 = -2 * nmiss(x6) + n(x6); /* altd4: -2 - not avail, 1 - avail */
a8 = -2 * nmiss(x8) + n(x8); /* altb: -2 - not avail, 1 - avail */
i =mod(_n_ -1, 6) + 1; /* alternative number */
if i le 5 then al[i] = 0; /* 0 effect of an alt on itself */
do i =1 to 6; if nmiss(x[i]) then x[i] = 0; end; /* missing price -> 0 */
w = brand eq ’None’ or price ne O; /* 1 - avail, O not availx*/
format price dollar5.2 shelf yn. micro micro.;
label x1 = ’CE, Client’ al = ’AE, Client’
x2 = ’CE, Extension’ a2 = ’AE, Extension’
x5 = ’CE, Regional’ ab = ’AE, Regional’
x6 = ’CE, Private’ a6 = ’AE, Private’
x8 = ’CE, National’ a8 = ’AE, National’;
run;

proc print data=sasuser.Entree_ChDes(obs=18); by set; id set; run;

The statements in the middle of the data step, from al = ... through if i ... create the variables
that will be used to make the availability effects. When alternative 1 is unavailable (x1 is missing), al
is set to -3, otherwise a1l is set to 1; when alternative 2 is unavailable (x2 is missing), a2 is set to -3,
otherwise a2 is set to 1; when alternative 3 is unavailable (x5 is missing), a5 is set to -3, otherwise a5
is set to 1; and so on. Each of these statements could have been written in if else form. Here for
example is the first assignment statement rewritten: if nmiss(x1) then al = -3; else al = 1;.
The variables x1, x2, x5, x6, and x8 are the five price factors, and the “a” factors use the same
numbering scheme, although this is not a requirement. The if i and i = statements then set the
variable to zero when the variable will be used to construct the effect of an alternative on itself. For
example, the first alternative is the client brand, so al in the first alternative is set to zero. Here are
the first three choice sets.
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Consumer Food Product Example

Set Brand Price Micro Shelf x1 x2 x5 x6 x8 al a2 ab a6 a8 w
1 Client $1.29 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 0 1 1 -2 11
Extension $2.39 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 11
Regional $1.99 Stove No  $1.29 $2.39 $1.99 $0.00 $1.99 1 1 0 -2 11
Private $0.00 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 0 10
National $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 01
None $0.00 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 11

2 Client $1.29 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 0 1 -2 -2 -2 1
Extension $1.89 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 0 -2 -2 -2 1
Regional $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 0 -2 -2 0
Private $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 0 -2 0
National $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 0 O
None $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 -2 1

3 Client $0.00 Stove No  $0.00 $2.39 $0.00 $2.29 $0.00 0 1 -2 1 -20
Extension $2.39 Micro No $0.00 $2.39 $0.00 $2.29 $0.00 -3 0 -2 1 -2 1
Regional $0.00 Stove No  $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 0 1 -2 0
Private $2.29 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 0 -2 1
National $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 1 0O
None $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 1 -2 1

In the first choice set, for example, since alternative 1 is available, al is 1, for all alternatives except
the first, where a1 is 0. Also in the first choice set, since alternative 4 is not available and there are
two price levels, a6 is -2 for all alternatives except the fourth, where a6 is 0. In the third choice set,
since alternative 1 is not available and there are three price levels, al is -3, for all alternatives except
the first, where a2 is 0. In general, the coding stores a zero in the ith effect for the ith alternative,
otherwise a 1 if the alternative is available, otherwise -(the number of price levels) if the alternative is
unavailable.

Now our choice design is done except for the final coding for the analysis. We can now use the
%ChoicEff macro to evaluate our choice design. Here is some sample code, omitting for now the
details of the model (indicated by model= ...). The complicated part of this is the model due to the
alternative-specific price effects and the cross effects. For now, let’s concentrate on everything else.

%choiceff (data=sasuser.Entree_ChDes,

model= ..., /* model specification skipped for now */

nsets=36, nalts=6, weight=w,

beta=zero, init=sasuser.Entree_ChDes(keep=set),

intiter=0)
The way you check the efficiency of a design like this is to first name it on the data= option. This will be
the candidate set that contains all of the choice sets that we will consider. In addition, the same design
is named on the init= option. The full specification is init=sasuser.Entree_ChDes (keep=set). Just
the variable Set is kept. It will be used to bring in just the indicated choice sets from the data= design,
which in this case is all of them. The option nsets=36 specifies the number of choice sets, and nalts=6
specifies the number of alternatives. This macro requires a constant number of alternatives in each
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choice set for ease of data management. However, not all of the alternatives have to be used. In this
case, we have an availability study. We need to keep the unavailable alternatives in the design for
this step, but we do not want them to contribute to the analysis, so we specify a weight variable with
weight=w and flag the available alternatives with w=1 and the unavailable alternatives with w=0. The
option beta=zero specifies that we are assuming for design evaluation purpose all zero betas. We can
specify other values and get other results for the variances and standard errors. Finally, we specify
intiter=0 which specifies zero internal iterations. We use zero internal iterations when we want to
evaluate an initial design, but not attempt to improve it. Here is the actual specification we will use,
complete with the model specification.

%choiceff (data=sasuser.Entree_ChDes,
model=class(brand / zero=’None’)
class(brand / zero=’None’ separators=’’ ’> ’) x*
identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’)
identity(xl x2 x5 x6 x8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’)
identity(al a2 a5 a6 a8) *
class(brand / zero=’None’ separators=’ ’ ’> on ’) /
lprefix=0 order=data,
nsets=36, nalts=6, weight=w,
beta=zero, init=sasuser.Entree_ChDes(keep=set),
intiter=0)
The specification class(brand / zero=’None’) specifies the brand effects. This specification will
create indicator variables for brand with the constant alternative being the reference brand. The option
zero=’None’ ensures that the reference level will be *None’ instead of the default last sorted level
(’Regional’). Indicator variables will be created for the brands Client, Extension, Regional, Private,
and National, but not None. The zero=’None’ option, like zero=’"Home’ and other zero="literal-string’
options we have used in previous examples, names the actual formatted value of the class variable
that should be excluded from the coded variables because the coefficient will be zero. Do not confuse
zero=none and zero=’None’. The zero=none option specifies that you want all indicator variables to
be created, even including one for the last level. In contrast, the option zero=’None’ (or zero= any
quoted string) names a specific formatted value, in this case ’None’, for which indicator variables are
not to be created.

The specification class(brand / ...) * identity(price) creates the alternative-specific price ef-
fects. They are specified as an interaction between a categorical variable Brand and a quantitative
factor Price. The separators=’’ ’> ’ option in the class specification specifies the separators that
are used to construct the labels for the main effect and interaction terms. The main-effects separator,
which is the first separators= value, ’’, is ignored since lprefix=0. Specifying > ’ as the second
value creates labels of the form brand-blank-price instead of the default brand-blank-asterisk-blank-price.

The specification class(shelf micro / ...) names the shelf-talker and microwave variables as cat-
egorical variables and creates indicator variables for the *Talker’ category, not the *No’ category and
the *Micro’ category not the >Stove’ category. In zero=’No’ ’Stove’, the ’No’ applies to the first
variable, Shelf and the second value, ’>Stove’, applies to second variable, Micro.

The specification identity(xl x2 x5 x6 x8) * class(brand / ...) creates the linear price cross
effects. The separators= option is specified with a second value of > on ’ to create cross effect
labels like Client on Extension’. The specification identity(al a2 ab a6 a8) * class(brand
/ ...) creates the availability cross effects. Note that the order of the transformation specification is



322 TS-722F — Discrete Choice

important. Make sure you specify identity followed by class in order to get the right labels. More
will be said on the cross effects when we look at the actual coded values in the next few pages.

Note that PROC TRANSREG produces the following warning.

WARNING: This usage of * sets one group’s slope to zero. Specify |
to allow all slopes and intercepts to vary. Alternatively,
specify CLASS(vars) * identity(vars) identity(vars) for
separate within group functions and a common intercept.

This is a change from Version 6.

This is because class was interacted with identity using the asterisk instead of the vertical bar. In
a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero="constant-alternative-level’, you can safely ignore
it. Still, it is always good to print out one or more coded choice sets to check the coding as we will do
later. Here is the last part of the output from the %ChoicEff macro.

Consumer Food Product Example

Standard
n Variable Name Label Variance DF Error
1 BrandClient Client 69.807 1 8.3551
2 BrandExtension Extension 75.688 1 8.6999
3  BrandRegional Regional 121.147 1 11.0067
4 BrandPrivate Private 104.058 1 10.2009
5 BrandNational National 110.456 1 10.5098
6 BrandClientPrice Client Price 3.255 1 1.8042
7 BrandExtensionPrice Extension Price 2.233 1 1.4942
8 BrandRegionalPrice Regional Price 6.599 1 2.5688
9 BrandPrivatePrice Private Price 2.604 1 1.6138
10 BrandNationalPrice National Price 11.071 1 3.3273
11 ShelfTalker Shelf Talker 0.928 1 0.9636
12 MicroMicro Micro 0.562 1 0.7493
13 x1BrandClient CE, Client on Client . 0
14 x1BrandExtension CE, Client on Extension 4.689 1 2.1655
15  x1BrandRegional CE, Client on Regional 4.462 1 2.1124
16 x1BrandPrivate CE, Client on Private 5.627 1 2.3720
17 x1BrandNational CE, Client on Natiomnal 5.374 1 2.3182
18 x2BrandClient CE, Extension on Client 3.040 1 1.7435
19 x2BrandExtension CE, Extension on Extension . 0
20  x2BrandRegional CE, Extension on Regional 3.038 1 1.7431
21 x2BrandPrivate CE, Extension on Private 3.666 1 1.9146
22 x2BrandNational CE, Extension on Natiomnal 3.130 1 1.7691
23  xbBrandClient CE, Regional on Client 8.961 1 2.9935
24  x5BrandExtension CE, Regional on Extension 9.824 1 3.1343
25  xbBrandRegional CE, Regional on Regional . 0
26  x5BrandPrivate CE, Regional on Private 10.496 1 3.2398
27  xbBrandNational CE, Regional on National 10.360 1 3.2188
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28
29
30
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x6BrandClient
x6BrandExtension
x6BrandRegional
x6BrandPrivate
x6BrandNational

x8BrandClient
x8BrandExtension
x8BrandRegional
x8BrandPrivate
x8BrandNational

alBrandClient
alBrandExtension
alBrandRegional
alBrandPrivate
alBrandNational
a2BrandClient
a2BrandExtension
a2BrandRegional
a2BrandPrivate
a2BrandNational
abBrandClient
abBrandExtension
abBrandRegional
abBrandPrivate
abBrandNational
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a6bBrandExtension
a6BrandRegional
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.1046

.1102
.2541
.0387
. 7299
.2745

.9904
.9447
.0347
.0155

.8755

.9381
.99562
.9995
.2644
.3516

.4208
.4263

.3402
.3577
.4547

.4015
.1836
.9529
.4671
.1919

First we see estimable brand effects for each of the five brands, excluding the constant alternative
’None’. Next, we see quantitative alternative-specific price effects for each of the brands. The next
two effects that are single df effects for the shelf-talker and the microwave option. Then we see five sets
of linear price cross effects (those whose label begins with “CE”), each consisting of four effects of a
brand on another brand, plus one more zero df cross effect of a brand on itself. The zero df and missing
variances and standard errors are correct since the cross effect of an alternative on itself is perfectly
aliased with its alternative-specific price effect. After that we see five sets of availability cross effects
(those whose label begins with “AE”), each consisting of four effects of a brand on another brand, plus
one more zero df cross effect of a brand on itself. The zero df and missing variances and standard errors
are correct since the cross effect of an alternative on itself is zero. These results look fine. Everything
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that should be estimable is estimable, and everything that should not be estimable is not.

Next, we will run some further checks by looking at the coded design. Before we look at the coded
design, recall that the design for the first five choice sets is as follows.

Consumer Food Product Example

Client Client Private
Shelf Client Line Micro/ Regional Private Micro/ National
Block Talker Brand Extension Stove Brand Label Stove  Competitor
1 No $1.29 $2.39 Micro $1.99 N Micro $1.99
$1.29 $1.89 Stove N N Stove N
N $2.39 Micro N $2.29 Stove N
$1.29 $1.39 Stove $2.49 $2.29 Stove N
$2.09 $1.39 Micro $1.99 $1.49 Stove N

The coded design that the %ChoicEff macro creates is called TMP_CAND. We will look at the coded
data set in several ways. First, here are the Brand, Price, microwave and shelf-talker factors, for just
the available alternatives for the first five choice sets.
proc print data=tmp_cand(obs=24) label;
var Brand Price Shelf Micro;
where w;
run;

Consumer Food Product Example

Obs Brand Price Shelf Micro
1 Client $1.29 No Stove
2 Extension $2.39 No Micro
3 Regional $1.99 No Stove
5 National $1.99 No Stove
6 None $0.00 No Stove
7 Client $1.29 No Stove
8 Extension $1.89 No Stove

12 None $0.00 No Stove
14 Extension $2.39 No Micro
16 Private $2.29 No Stove
18 None $0.00 No Stove
19 Client $1.29 No Stove
20 Extension $1.39 No Stove
21 Regional $2.49 No Stove
22 Private $2.29 No Stove

24 None $0.00 No Stove
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25 Client $2.09 No Stove
26 Extension $1.39 No Micro
27 Regional $1.99 No Stove
28 Private $1.49 No Stove
30 None $0.00 No Stove
34 Private $2.29 No Micro
35 National $1.99 No Stove
36 None $0.00 No Stove

Unlike all previous examples, the number of alternatives is not the same in all of the choice sets due
to differing subsets of brands being unavailable in each choice set.

Here are the coded factors for the brand effects and alternative-specific price effects for the first choice
set.

proc print data=tmp_cand(obs=5) label;

id Brand;
var BrandClient -- BrandNational;
where w;
run;
proc format; value zer O = > O0’; run;

proc print data=tmp_cand(obs=5) label;
id Brand Price;

var BrandClientPrice —-- BrandNationalPrice;

format BrandClientPrice -- BrandNationalPrice zerb5.2;
where w;

run;

Consumer Food Product Example

Brand Client Extension Regional Private National
Client 1 0 0 0 0
Extension 0 1 0 0 0
Regional 0 0 1 0 0
National 0 0 0 0 1
None 0 0 0 0 0
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Consumer Food Product Example

Client Extension Regional Private National
Brand Price Price Price Price Price Price
Client $1.29 1.29 0 0 0 0
Extension $2.39 0 2.39 0 0 0
Regional $1.99 0] 0 1.99 0 0
National $1.99 0 0 0 0 1.99
None $0.00 0 0 0 0] 0

The brand effects and alternative-specific price effect codings are similar to those we have used previ-
ously. The difference is the presence of all zero columns for unavailable alternatives, in this case the
private label and national brands. Note that Brand Price are just ID variables and do not enter into
the analysis.

Here are the shelf-talker and microwave coded factors (along with the Brand, Price, Shelf, and Micro
factors).

proc print data=tmp_cand(obs=5) label;
id Brand Price Shelf Micro;
var shelftalker micromicro;
where w;
run;

Consumer Food Product Example

Shelf
Brand Price Shelf Micro Talker Micro
Client $1.29 No Stove 0 0
Extension $2.39 No Micro 0 1
Regional $1.99 No Stove 0 0
National $1.99 No Stove 0 0
None $0.00 No Stove 0 0

The following code prints the price cross effects along with Brand and Price for the first choice set.

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x1Brand:; format x1Brand: zerb5.2;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x2Brand:; format x2Brand: zerb5.2;
where w;
run;
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proc print data=tmp_cand(obs=4) label;

id Brand Price;

var xbBrand:; format xbBrand: zerb5.2;

where w;

run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x6Brand:; format x6Brand: zerb5.2;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x8Brand:; format x8Brand: zerb5.2;
where w;
run;

The cross effects are printed in panels. This first panel shows the terms that capture the effect of the
client brand on the utility of the other brands. The second panel shows the terms that capture the
effect of the line extension on the other alternatives, and so on. An unavailable brand has no effect on
any other brand’s utility in that choice set.

Consumer Food Product Example

CE, Client CE, Client CE, Client
CE, Client on on CE, Client on
Brand Price on Client Extension Regional on Private National
Client $1.29 1.29 0 0 0 0
Extension $2.39 0 1.29 0 0 0
Regional $1.99 0 0 1.29 0 0
National $1.99 0 0 0 0 1.29
CE, CE, CE,
CE, Extension Extension CE, Extension
Extension on on Extension on
Brand Price on Client Extension Regional on Private National
Client $1.29 2.39 0 0 0 0
Extension  $2.39 0 2.39 0 0 0
Regional $1.99 0 0 2.39 0 0
National $1.99 0 0 0 0 2.39
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CE, CE, CE,
CE, Regional Regional CE, Regional
Regional on on Regional on
Brand Price on Client Extension  Regional on Private National
Client $1.29 1.99 0 0 0 0
Extension  $2.39 0 1.99 0 0 0
Regional $1.99 0 0 1.99 0 0
National $1.99 0 0 0 0 1.99
CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on
Brand Price Client Extension Regional Private National
Client $1.29 0 0 0 0 0
Extension $2.39 0 0 0 0 0
Regional  $1.99 0 0 0 0 0
National  $1.99 0 0 0 0 0
CE, CE, CE,
CE, National National CE, National
National on on National on
Brand Price on Client Extension  Regional on Private National
Client $1.29 1.99 0 0 0 0
Extension  $2.39 0 1.99 0 0 0
Regional $1.99 0 0 1.99 0 0
National $1.99 0 0 0 0 1.99

A column like ’CE, Client on Extension’ in the first panel, for example, captures the effect of the
client brand at $1.29 on the utility of the extension. In the next panel, °CE, Extension on Client’
captures the effect of the extension at $2.39 on the utility of the client brand.

The following steps prints the availability cross effects along with Brand and Price for the first choice
set.

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var alBrand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a2Brand:;
where w;
run;
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proc print data=tmp_cand(obs=4) label;
id Brand Price;
var abBrand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a6Brand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a8Brand:;
where w;
run;

The availability cross effects are printed in panels. The first panel shows the terms that capture the
effect of the client brand which on the other available alternatives, and so on. Panels with 1’s in
them show the effects of the available brands and panels with negative numbers show the effects of the
unavailable brands.

Consumer Food Product Example

AE, Client AE, Client AE, Client
AE, Client on on AE, Client on
Brand Price on Client Extension  Regional on Private National
Client $1.29 0 0 0 0 0
Extension $2.39 0 1 0 0 0
Regional  $1.99 0 0 1 0 0
National  $1.99 0 0 0 0 1
AE, AE, AE,
AE, Extension Extension AE, Extension
Extension on on Extension on
Brand Price on Client Extension Regional on Private National
Client $1.29 1 0 0 0 0
Extension  $2.39 0 0 0 0 0
Regional $1.99 0 0 1 0 0
National $1.99 0 0 0 0 1
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AE, AE, AE,
AE, Regional Regional AE, Regional
Regional on on Regional on
Brand Price on Client Extension  Regional on Private National
Client $1.29 1 0 0 0 0
Extension  $2.39 0 1 0 0 0
Regional $1.99 0 0 0 0 0
National $1.99 0 0 0 0 1
AE, AE, AE, AE, AE,
Private on Private on Private on Private on Private on
Brand Price Client Extension  Regional Private National
Client $1.29 -2 0 0 0 0
Extension $2.39 0 -2 0 0 0
Regional  $1.99 0 0 -2 0 0
National  $1.99 0 0 0 0 -2
AE, AE, AE,
AE, National National AE, National
National on on National on
Brand Price on Client Extension  Regional on Private National
Client $1.29 1 0 0 0 0
Extension $2.39 0 1 0 0 0
Regional $1.99 0 0 1 0 0
National $1.99 0 0 0 0 0

The design looks good, it has reasonably good balance and correlations, it can be used to estimate all
of the effects of interest, and we have shown that we know how to code all of the factors for a model
with cross effects and availability cross effects. We are ready to collect data.

Generating Artificial Data

We will not illustrate questionnaire generation for this example since we have done it several times
before in previous examples. Instead we will go straight to data processing and analysis. This DATA
step generates some artificial data. Creating artificial data and trying the analysis before collecting
real data is another way to test the design before going to the expense of data collection.

%let m = 6;

%let mml = %eval(&m - 1);

%let n = 36;

proc format;
value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;

run;
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data _null_;
array brands[&m] _temporary_ (5 7 1 2 3 -2);
array ul&m];
array x[&mml] x1 x2 x5 x6 x8;
do rep = 1 to 300;
if mod(rep, 2) then put;
put rep 3. +2 @Q;
do j =1 to &n;
set sasuser.Entree_LinDesLab point=j;
do brand = 1 to &m; ulbrand] = brands[brand] + 2 * normal(17); end;
do brand = 1 to &mmi;
if n(x[brand]) then ul[brand] + -x[brand]; else u[brand] = .;
end;
if n(u2) and x4 = 2 then u2 + 1; /* shelf talker */
if n(u2) and x3 = 1 then u2 + 1; /* microwave */
if n(u4) and x7 = 1 then u4 + 1; /* microwave */
* Choose the most preferred alternative.;
m = max(of ul-u&m);
do brand = 1 to &m;
if n(ul[brand]) then if abs(ul[brand] - m) < le-4 then c¢ = brand;
end;
put +(-1) c @Q;
end;
end;
stop;

run;
This DATA step reads the data.

data results;
input Subj (choosel-choose&n) (1.) @Q;
datalines;
1 222224155212222522221221222221212522 2 222225421242222122221212222221211322
3 212224521545222122221222221121112522 4 212125121212222122221222421221212522
5 222225125212222122521212222221212422 6 222125523112222122224221212111242522

297 222225521212222422224222522121151622 298 222224121242122422221222512221212522
299 112225121212122121521222212211212622 300 122225123242122122221211222123212322

3

Processing the Data

The analysis proceeds in a fashion similar to before. We have already made the choice design, so we just
have to merge it with the data. The data and design are merged in the usual way using the %MktMerge
macro. Notice at this point that the unavailable alternatives are still in the design. The %MktMerge
macro has an nalts= option and expects a constant number of alternatives in each choice set.
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Jmktmerge (design=sasuser.Entree_ChDes, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2(obs=12); id subj set; by subj set; run;

Here are the data and design for the first two choice sets for the first subject, including the unavailable
alternatives.

Consumer Food Product Example

B P M S

S r r i h

usS a i c e

ben C r 1 X X X XxXaa a a a

jtd e o f 1 2 5 6 812 5 6 8wec

1 1 Client $1.29 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 01 1 -2 11 2
Extension $2.39 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 111
Regional $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 11 0 -2 112
Private $0.00 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 11 1 0 1 0 2
National $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 11 1 -2 012
None $0.00 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 11 1 -2 11 2

1 2 Client $1.29 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 0 1 -2 -2 -2 1 2
Extension $1.89 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 0 -2 -2 -2 1 1
Regional $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 0 -2 -2 0 2
Private $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 0 -2 0 2
National $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 0 0 2
None $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 -2 1 2

These next steps aggregate the data. The data set is fairly large at 64,800 observations, and aggregating
greatly reduces its size, which makes both the TRANSREG and the PHREG steps run in just a few
seconds. This step also excludes the unavailable alternatives. When w is 1 (true) the alternative is
available and counted, otherwise when w is 0 (false) the alternative is unavailable and excluded by the
where clause and not counted. There is nothing in subsequent steps that assumes a fixed number of
alternatives.
proc summary data=res2 nway;

class set brand price shelf micro x1 x2 xb x6 x8 al a2 a5 a6 a8 c;

output out=agg(drop=_type_);

where w; /* exclude unavailable, w = 0 */

run;

proc print; where set = 1; run;

All of the variables used in the analysis are named as class variables in PROC SUMMARY, which
reduces the data set from 64,800 observations to 286. Here are the aggregated data for the first choice
set.
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Consumer Food Product Example

B P S M F

r rh i R

0 a ie c E
b en cl r b'd X X Xaaa aa Q
s td e f o 1 2 5 6 8125 68c _
1 1 Client $1.29 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 011 -2 11 74
2 1 Client $1.29 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 01 1 -2 1 2 226
3 1 Extension $2.39 No Micro $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 1 1 220
4 1 Extension $2.39 No Micro $1.29 $2.39 $1.99 $0.00 $1.99 1 01 -2 1 2 80
5 1 National $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 111 -201 6
6 1 National $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 0 2 294
7 1 None $0.00 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 11 -2 1 2 300
8 1 Regional $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 0 -2 1 2 300

In the first choice set, the client brand was chosen (c = 1) a total of _freq_ = 74 times and not chosen
(c =2) a total of _freq_ = 226 times. Each alternative was chosen and not chosen a total of 300 times,
which is the number of subjects. These next steps code and run the analysis.

Cross Effects

This next step codes the design for analysis. This coding was discussed on page 321. PROC TRANS-
REG is run like before, except now the data set Agg is specified and the ID variable includes _freq-
(the frequency variable) but not Subj (the subject number variable).

proc transreg data=agg design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)
class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’)
identity(xl x2 x5 x6 x8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’)
identity(al a2 ab a6 a8) *
class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id set c _freq_;
label shelf = ’Shelf Talker’
micro = ’Microwave’;
run;
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Note that like we saw in the %ChoicEff macro, PROC TRANSREG produces the following warning.

WARNING: This usage of * sets one group’s slope to zero. Specify |
to allow all slopes and intercepts to vary. Alternatively,
specify CLASS(vars) * identity(vars) identity(vars) for
separate within group functions and a common intercept.
This is a change from Version 6.

This is because class was interacted with identity using the asterisk instead of the vertical bar. In
a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero="constant-alternative-level’, you can safely ignore
it.

The analysis is the same as we have done previously with aggregate data. PROC PHREG is run to fit
the mother logit model, complete with availability cross effects.

proc phreg data=coded;
strata set;
model c*xc(2) = &_trgind / ties=breslow;
freq _freq_;
run;

Multinomial Logit Model Results

These steps produced the following results. (Recall that we used %phchoice(on) on page 143 to
customize the output from PROC PHREG.)

Consumer Food Product Example
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Frequency Variable _FREQ_

Ties Handling BRESLOW
Number of Observations Read 284
Number of Observations Used 284
Sum of Frequencies Read 47400

Sum of Frequencies Used 47400
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 1500 300 1200
2 2 900 300 600
3 3 900 300 600
4 4 1500 300 1200
5 5 1500 300 1200
6 6 900 300 600
7 7 1500 300 1200
8 8 1500 300 1200
9 9 1500 300 1200
10 10 1500 300 1200
11 11 900 300 600
12 12 1500 300 1200
13 13 1500 300 1200
14 14 900 300 600
15 15 900 300 600
16 16 1500 300 1200
17 17 1500 300 1200
18 18 1500 300 1200
19 19 1500 300 1200
20 20 1200 300 900
21 21 900 300 600
22 22 1200 300 900
23 23 1500 300 1200
24 24 1500 300 1200
25 25 1500 300 1200
26 26 1500 300 1200
27 27 1500 300 1200
28 28 1500 300 1200
29 29 1500 300 1200
30 30 900 300 600
31 31 1500 300 1200
32 32 1500 300 1200
33 33 1200 300 900
34 34 1200 300 900
35 35 1200 300 900
36 36 1200 300 900
Total 47400 10800 36600

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Criterion

-2 LOG L

AIC
SBC

Model Fit Statistics

Without
Covariates

154710.28
154710.28
154710.28

Covari

13430
13440
13478
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With
ates

5.63
9.63
8.57

Testing Global Null Hypothesis: BETA=0

Test

Likelihood Ratio

Score
Wald

Chi-Square

20404 .6461
22883.7078
6444 .0844

DF

52
52
52

Pr > ChiSq

<.0001
<.0001
<.0001

Multinomial Logit Parameter Estimates

Client
Extension
National
Private
Regional

Client Price
Extension Price
National Price
Private Price
Regional Price

Shelf Talker

Micro

CE, Client
CE, Client
CE, Client
CE, Client
CE, Client

CE,
CE,
CE,
CE,
CE,

CE,
CE,
CE,
CE,
CE,

Client
Extension

on
on
on National
Private
Regional
Client
Extension
National
Private
Regional
Client
Extension
National
Private
Regional

on
on

Extension on

Extension on
Extension on
Extension on

Extension on

on
on
on
on
on

Regional
Regional
Regional
Regional
Regional

Parameter St

DF Estimate
8.16629
.30298
5.41386
4.90773
4.96459

.11653
.99948
1.25938
.33471
.22852

0.66941

N e e e e = T e T i =
|
—

O O RO EFL,R O O N DD W

0.59645

0
.31640
.50555
.25802
1.15121

.52993

0
.55507
0.20613
.54337

.14955
.43726
.81230
.20206

0

= = O O O

OFRr P RPr KR, P RPPLPORFL P EBRPBRPB OB
e e

andard
Error

.96395
.13379
.90468
.06749
.93423

.77149
.21987
.74132
. 76283
.48246

.07828
.06746

. 78240
.80031
.82061
.03011

.22364

.24852
.25789
.43547

.07675
.08276
.13204
.09692

Chi-Square Pr > ChiSq
4.2442 0.0394
6.2119 0.0127
1.2184 0.2697
1.4558 0.2276
0.6999 0.4028
2.0945 0.1478
0.6713 0.4126
0.5231 0.4695
3.0614 0.0802
0.6867 0.4073

73.1204 <.0001
78.1706 <.0001
0.1635 0.6859
0.3990 0.5276
0.0989 0.7532
1.2489 0.2638
0.1876 0.6650
0.1977 0.6566
0.0269 0.8698
0.1433 0.7050
1.1398 0.2857
1.7620 0.1844
2.5629 0.1094
1.2031 0.2727
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CE, Private on Client 1 -0.42457 0.75836 0.3134 0.5756
CE, Private on Extension 1 -0.35800 0.75937 0.2223 0.6373
CE, Private on National 1 -0.68966 0.79742 0.7480 0.3871
CE, Private on Private 0 0 . . .

CE, Private on Regional 1 -1.11543 1.08771 1.0516 0.3051
CE, National on Client 1 1.42556 1.75683 0.6584 0.4171
CE, National on Extension 1 1.03538 1.75043 0.3499 0.5542
CE, National on National 0 0 . . .

CE, National on Private 1 1.46740 1.78874 0.6730 0.4120
CE, National on Regional 1 -0.28269 2.28193 0.0153 0.9014
AE, Client on Client 0 0 . . .

AE, Client on Extension 1 0.12477 0.38019 0.1077 0.7428
AE, Client on National 1 0.10606 0.38579 0.0756 0.7834
AE, Client on Private 1 -0.04026 0.39633 0.0103 0.9191
AE, Client on Regional 1 -0.57219 0.48525 1.3904 0.2383
AE, Extension on Client 1 0.77428 0.65342 1.4041 0.2360
AE, Extension on Extension 0 0 . . .

AE, Extension on National 1 0.61514 0.67002 0.8429 0.3586
AE, Extension on Private 1 0.18324 0.67377 0.0740 0.7856
AE, Extension on Regional 1 0.38862 0.76269 0.2596 0.6104
AE, Regional on Client 1 0.87692 0.77389 1.2840 0.2572
AE, Regional on Extension 1 1.05490 0.77497 1.8529 0.1734
AE, Regional on National 1 1.29670 0.79530 2.6584 0.1030
AE, Regional on Private 1 0.98393 0.77581 1.6085 0.2047
AE, Regional on Regional 0 0 .

AE, Private on Client 1 0.29125 0.48172 0.3655 0.5454
AE, Private on Extension 1 0.26656 0.48436 0.3029 0.5821
AE, Private on National 1 0.49015 0.50341 0.9480 0.3302
AE, Private on Private 0 0 . . .

AE, Private on Regional 1 0.81907 0.74339 1.2140 0.2705
AE, National on Client 1 -1.15849 1.35844 0.7273 0.3938
AE, National on Extension 1 -0.88510 1.35042 0.4296 0.5122
AE, National on National 0 0 . . .

AE, National on Private 1 -1.32585 1.38251 0.9197 0.3376
AE, National on Regional 1 0.31543 1.74206 0.0328 0.8563

Since the number of alternatives is not constant within each choice set, the summary table has non-
constant numbers of alternatives and numbers of alternatives not chosen. The number chosen, 300 (or
one per subject per choice set), is constant, since each subject always chooses one alternative from each
choice set regardless of the number of alternatives. The total number of alternatives ranges from 900
with three alternatives to 1500 with five alternatives.

The cross effects are mostly nonsignificant. Since most of the cross effects are nonsignificant, we can
rerun the analysis with a simpler model.
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proc transreg data=agg design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id set c _freq_;
label shelf = ’Shelf Talker’
micro = ’Microwave’;
run;

proc phreg data=coded;
strata set;
model cxc(2) = &_trgind / ties=breslow;
freq _freq_;
run;

Here are the parameter estimates for the simpler model.

Multinomial Logit Parameter Estimates

Parameter Standard

DF Estimate Error Chi-Square Pr > ChiSq
Client 1 5.65644 0.20231 781.6872 <.0001
Extension 1 6.42043 0.21086 927.1112 <.0001
National 1 0.77822 0.63713 1.4919 0.2219
Private 1 4.51101 0.30491 218.8745 <.0001
Regional 1 1.71388 0.99673 2.9567 0.0855
Client Price 1 -0.76985 0.09446 66.4224 <.0001
Extension Price 1 -0.50666 0.08350 36.8162 <.0001
National Price 1 0.74444 0.29078 6.5542 0.0105
Private Price 1 -1.33357 0.14151 88.8068 <.0001
Regional Price 1 -0.42010 0.46037 0.8327 0.3615
Shelf Talker 1 0.71984 0.06941 107.5588 <.0001
Micro 1 0.58407 0.05632 107.5642 <.0001

The most to least preferred brands are: client line extension, client brand, private label, the regional
competitor, the national brand, and the none alternative (with an implicit part-worth utility of zero).
The price effects are mostly negative, and the positive effects are only marginally significant. Both the
shelf-talker and the microwaveable option have positive utility.

Modeling Subject Attributes

This example uses the same design and data as we just saw, but this time we have some demographic
information about our respondents that we wish to model. The following DATA step reads a subject
number, the choices, and the respondent age and income (in thousands of dollars).
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data results;
input Subj (choosel-choose&n) (1.) age income;
datalines;
1 222224155212222522221221222221212522 33 109
2 222225421242222122221212222221211322 56 117
3 212224521545222122221222221121112522 56 78
4 212125121212222122221222421221212522 57 107

299 112225121212122121521222212211212622 41 89
300 122225123242122122221211222123212322 38 95

3

Merging the data and design is no different from what we saw previously. To make this analysis simpler,
we will not fit any cross effects or availability cross effects, although we certainly could.

Jmktmerge (design=sasuser.Entree_ChDes(drop=x1--x8 al--a8), data=results,
out=res2, nsets=&n, nalts=&m, setvars=choosel-choose&n)

proc print data=res2;
by subj set; id subj set;
where (subj = 1 and set = 1) or

(subj = 2 and set = 2) or
(subj = 3 and set = 3) or
(subj = 300 and set = 36);

run;

Here is a small sample of the data. Note that like before, the unavailable alternatives are required for
the merge step.

Consumer Food Product Example

Subj Set Age Income Brand Price Micro Shelf W c
1 1 33 109 Client $1.29 Stove No 1 2
33 109 Extension $2.39 Micro No 1 1

33 109 Regional $1.99 Stove No 1 2

33 109 Private $0.00 Micro No 0 2

33 109 National $1.99 Stove No 1 2

33 109 None $0.00 Stove No 1 2

2 2 56 117 Client $1.29 Stove No 1 2
56 117 Extension $1.89 Stove No 1 1

56 117 Regional $0.00 Stove No 0 2

56 117 Private $0.00 Stove No 0 2

56 117 National $0.00 Stove No 0 2

56 117 None $0.00 Stove No 1 2
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3 3 56 78 Client $0.00 Stove No 0 2
56 78 Extension $2.39 Micro No 1 1

56 78 Regional $0.00 Stove No 0 2

56 78 Private $2.29 Stove No 1 2

56 78 National $0.00 Stove No 0 2

56 78 None $0.00 Stove No 1 2

300 36 38 95 Client $2.09 Stove No 1 2
38 95 Extension $2.39 Micro Talker 1 1

38 95 Regional $0.00 Stove No 0 2

38 95 Private $0.00 Stove No 0 2

38 95 National $2.39 Stove No 1 2

38 95 None $0.00 Stove No 1 2

You can see that the demographic information matches the raw data and is constant within each
subject. The rest of the data processing is virtually the same as well. Since we have demographic
information, we will not aggregate. There would have to be ties in both the demographics and choice
for aggregation to have any effect.

We use PROC TRANSREG to code, adding Age and Income to the analysis.

proc transreg data=res2 design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)
identity(age income) * class(brand / zero=’None’ separators=’’ ’, ’)
class(brand / zero=’None’ separators=’’ ’ ’) % identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’) /
lprefix=0 order=data;

output out=code(drop=_type_ _name_ intercept);
id subj set c w;
label shelf = ’Shelf Talker’
micro = ’Microwave’;
run;

data coded(drop=w); set code; where w; run; /* exclude unavailable */

The Age and Income variables are incorporated into the analysis by interacting them with Brand.
Demographic variables must be interacted with product attributes to have any effect. If identity(age
income) had been specified instead of identity(age income) * class(brand / ...) the coeflicients
for age and income would be zero. This is because age and income are constant within each choice set
and subject combination, which means they are constant within each stratum. The second separator
>, ? is used to create names for the brand/demographic interaction terms like ’Age, Client’.

These next steps print the first coded choice set.

proc print data=coded(obs=4) label;
id brand price;
var BrandClient -- BrandPrivate Shelf Micro c;
run;
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proc print data=coded(obs=4 drop=Age) label;
id brand price;
var Age:;
run;
proc print data=coded(obs=4 drop=Income) label;
id brand price;
var Income:;
run;

proc print data=coded(obs=4) label;
id brand price;

var BrandClientPrice —-- BrandPrivatePrice;
format BrandClientPrice -- BrandPrivatePrice best4.;
run;

Here is the coded data set for the first subject and choice set. The part that is new is the second and
third panel, which will be used to capture the brand by age and brand by income effects.

Here are the attributes and the brand effects.

Consumer Food Product Example

Shelf
Brand Price Client Extension Regional Private Talker Microwave c
Client $1.29 1 0 0 0 No Stove 2
Extension $2.39 0 1 0 0 No Micro 1
Regional  $1.99 0 0 1 0 No Stove 2
National $1.99 0 0 0 0 No Stove 2
Here are the age by brand effects

Consumer Food Product Example

Age, Age, Age, Age, Age,
Brand Price Client Extension Regional Private National
Client $1.29 33 0 0 0 0
Extension $2.39 0 33 0 0 0
Regional $1.99 0 0 33 0 0
National $1.99 0 0 0 0 33

Here are the income by brand effects.
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Consumer Food Product Example

Income, Income, Income, Income, Income,
Brand Price Client Extension Regional Private National
Client $1.29 109 0 0 0 0
Extension $2.39 0 109 0 0 0
Regional $1.99 0 0 109 0 0
National $1.99 0 0 0 0 109

Here are the alternative-specific price effects.

Consumer Food Product Example

Client Extension Regional Private
Brand Price Price Price Price Price
Client $1.29 1.29 0 0 0
Extension $2.39 0 2.39 0 0
Regional $1.99 0 0 1.99 0
National $1.99 0 0 0 0

The PROC PHREG specification is the same as we have used before with nonaggregated data.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

This step took just about one minute and produced the following results.

Consumer Food Product Example
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Ties Handling BRESLOW
Number of Observations Read 47400

Number of Observations Used 47400
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives
Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen
1 2400 3 2
1800 4 3
3 6600 5 1 4
Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics
Without With
Criterion Covariates Covariates
-2 LOG L 31508.579 10939.139
AIC 31508.579 10983.139
SBC 31508.579 11143.460
Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 20569.4401 22 <.0001
Score 21088.4411 22 <.0001
Wald 6947.1766 22 <.0001
Consumer Food Product Example
The PHREG Procedure
Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq
Client 1 2.04997 0.81287 6.3599 0.0117
Extension 1 0.47882 0.81714 0.3434 0.5579
Regional 1 -1.49923 1.51428 0.9802 0.3221
Private 1 3.33861 0.85485 15.2528 <.0001
National 1 -0.62955 1.06206 0.3514 0.5533
Age, Client 1 0.01142 0.00944 1.4655 0.2261
Age, Extension 1 0.00855 0.00949 0.8111 0.3678
Age, Regional 1 0.01114 0.01205 0.8548 0.3552
Age, Private 1 0.00826 0.00970 0.7247 0.3946
Age, National 1 0.00809 0.00964 0.7042 0.4014
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Income, Client 1 0.03227 0.00771 17.4954 <.0001
Income, Extension 1 0.05717 0.00776 54.2991 <.0001
Income, Regional 1 0.02496 0.01014 6.0642 0.0138
Income, Private 1 0.00957 0.00794 1.4521 0.2282
Income, National 1 0.00929 0.00789 1.3858 0.2391
Client Price 1 -0.76510 0.09598 63.5410 <.0001
Extension Price 1 -0.51364 0.08465 36.8207 <.0001
Regional Price 1 -0.27824 0.46406 0.3595 0.5488
Private Price 1 -1.37957 0.14286 93.2538 <.0001
National Price 1 0.82684 0.29260 7.9852 0.0047
Shelf Talker 1 0.74026 0.07033 110.7751 <.0001
Micro 1 0.59312 0.05692 108.6006 <.0001

In previous examples, when we used the brief option to produce a brief summary of the strata, the
table had only one line. In this case, since our choice sets have 3, 4, or 5 alternatives, we have three
rows, one for each choice set size. The coefficients for the age and income variables are generally not
very significant in this analysis except an effect for income on the client brand and particularly on the
extension.
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Allocation of Prescription Drugs

This example discusses an allocation study, which is a technique often used in the area of prescription
drug marketing research. This example discusses designing the allocation experiment, processing the
data, analyzing frequencies, analyzing proportions, coding, analysis, and results. The principles of
designing an allocation study are the same as for designing a first-choice experiment, as is the coding
and final analysis. However, processing the data before analysis is different.

The previous examples have all modeled simple choice. However, sometimes the response of interest is
not simple first choice. For example, in prescription drug marketing, researchers often use allocation
studies where multiple, not single choices are made. Physicians are asked questions like “For the next
ten prescriptions you write for a particular condition, how many would you write for each of these
drugs?” The response, for example, could be “5 for drug 1, none for drug 2, 3 for drug 3, and 2 for
drug 4.”

Designing the Allocation Experiment

In this study, physicians were asked to specify which of ten drugs they would prescribe to their next
ten patients. In this study, ten drugs, Drug 1 — Drug 10, were available each at three different prices,
$50, $75, and $100. In real studies, real brand names would be used and there would probably be more
attributes. Since experimental design has been covered in some detail in other examples, we chose a
simple design for this experiment so that we could concentrate on data processing. First, we use the
%MktRuns autocall macro to suggest a design size. (All of the autocall macros used in this book are
documented starting on page 597.) We specify 3 ** 10 for the 10 three-level factors.

title ’Allocation of Prescription Drugs’;

Ymktruns( 3 **x 10 )

Allocation of Prescription Drugs
Design Summary

Number of
Levels Frequency

3 10

Allocation of Prescription Drugs

Saturated =21
Full Factorial = 59,049
Some Reasonable Cannot Be
Design Sizes Violations Divided By
27 * 0
36 * 0

45 * 0
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54 * 0

21 45 9
24 45 9
30 45 9
33 45 9
39 45 9
42 45 9

* — 100% Efficient Design can be made with the MktEx Macro.

Allocation of Prescription Drugs

n Design Reference
27 3 **x 13 Fractional-Factorial
36 2 %% 11 3 ** 12 Orthogonal Array
36 2 xx 4 3 *x 13 Orthogonal Array
36 2 xx 2 3 xx 12 6 *xx 1 Orthogonal Array
36 3 %% 13 4 xx | Orthogonal Array
36 3 kx 12 12 *x 1 Orthogonal Array
45 3 xx 10 5 *xx 1 Orthogonal Array
54 2 %% 1 3 %% 25 Orthogonal Array
54 2 %% 1 3 *xx 21 9 *kx 1 Orthogonal Array
54 3 *xx 24 6 *x 1 Orthogonal Array
54 3 %% 20 6 *x 1 9 *xx 1 Orthogonal Array
54 3 *xx 18 18 *x 1 Orthogonal Array

We need at least 21 choice sets and we see the optimal sizes are all divisible by nine. We will use 27
choice sets, which can give us up to 13 three-level factors.

Next, we use the %MktEx macro to create the design.! In addition, one more factor is added to the
design. This factor will be used to block the design into three blocks of size 9.

%let nalts = 10;

%mktex(3 ** &nalts 3, n=27, seed=396)
The macro finds a 100% D-efficient design.

Allocation of Prescription Drugs
Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
1 Start 100.0000 100.0000 Tab
End 100.0000

"Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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Allocation of Prescription Drugs
The OPTEX Procedure

Class Level Information

Class Levels -Values-
x1 3 123
x2 3 123
x3 3 123
x4 3 123
x5 3 123
x6 3 123
x7 3 123
x8 3 123
x9 3 123
x10 3 123
x11 3 123

Allocation of Prescription Drugs

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 100.0000 100.0000 100.0000 0.9230
The %MktEx macro always creates factor names of x1, x2, and so on with values of 1, 2, .... You can

create a data set with the names and values you want and use it to rename the factors and reset the
levels. This first step creates a data set with 11 variables, Block and Brandl - Brand10. Block has
values 1, 2, and 3, and the brand variables have values of 50, 75, and 100 with a dollar format. The
%MktLab macro takes the data=Randomized design data set and uses the names, values, and formats
in the key=Key data set to make the out=Final data set. This data set is sorted by block and printed.
The %MktEval macro is called to check the results.

data key(drop=i);
input Block Brandl;
array Brand[10];
do i = 2 to 10; brand[i] = brandl; end;
format brand: dollar4.;
datalines;
1 50
2 75
3 100
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proc print; run;
Jmktlab (key=key) ;
proc sort out=sasuser.DrugAllo_LinDes; by block; run;
proc print; id block; by block; run;

Y%mkteval (blocks=block)
Here is the key= data set.

Allocation of Prescription Drugs
Obs Block Brandl Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brandi1O

1 1 $50 $50 $50 $50 $50 $50 $50 $50 $50 $50
2 2 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75
3 3 $100 $100 $100 $100 $100 $100 $100  $100 $100  $100

The %MktLab macro prints the following mapping information.

Variable Mapping:
x1 : Block
x2 : Brandil
x3 : Brand2
x4 : Brand3
x5 : Brand4
x6 : Brandb
x7 : Brand6
x8 : Brand7
x9 : Brand8
x10 : Brand9
x11 : BrandlO
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Here is the design.

Allocation of Prescription Drugs
Block Brandl Brand2 Brand3 Brand4 Brandb5 Brand6 Brand7 Brand8 Brand9 BrandilO

1 $50 $75 $50 $75 $100 $100 $100  $100 $50  $100
$100 $50  $100 $75 $75 $75  $100 $50  $100 $75
$50 $50 $75  $100 $50 $75 $50 $75 $50 $75
$75 $50 $50 $50  $100 $75 $75  $100 $75 $75
$75 $75  $100  $100 $75  $100 $50 $50 $75  $100
$50 $100  $100 $50 $75 $50 $75 $50 $50 $50
$100 $75 $75 $50 $50  $100 $75 $75  $100  $100
$100  $100 $50 $100  $100 $50 $50  $100  $100 $50
$75  $100 $75 $75 $50 $50  $100 $75 $75 $50

2 $100 $75 $50  $100 $75 $50  $100 $75 $75 $75
$100  $100  $100 $75 $50 $75 $75  $100 $75  $100
$50 $75  $100 $50 $50 $50 $50  $100  $100 $75
$75 $50  $100  $100 $50 $100 $100 $100 $50 $50
$50  $100 $75 $100  $100 $75  $100 $50  $100  $100
$100 $50 $75 $50  $100  $100 $50 $50 $75 $50
$50 $50 $50 $75 $75  $100 $75 $75  $100 $50
$75 $75 $75 $75  $100 $50 $75 $50 $50 $75
$75  $100 $50 $50 $75 $75 $50 $75 $50  $100

3 $100 $75  $100 $75  $100 $75 $50 $75 $50 $50
$75 $75 $50 $50 $50 $75  $100 $50  $100 $50
$50 $75 $75  $100 $75 $75 $75  $100 $75 $50
$50  $100 $50 $75 $50  $100 $50 $50 $75 $75
$50 $50  $100 $50  $100 $50  $100 $75 $75  $100
$75 $50 $75 $75 $75 $50 $50 $100 $100  $100
$75 $100 $100 $100 $100  $100 $75 $75  $100 $75

$100 $50 $50  $100 $50 $50 $75 $50 $50  $100
$100  $100 $75 $50 $75 $100 $100 $100 $50 $75
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Here are some of the evaluation results.

Allocation of Prescription Drugs
Canonical Correlations Between the Factors
There are O Canonical Correlations Greater Than 0.316

Block Brandl Brand2 Brand3 Brand4 Brandb5 Brand6 Brand7 Brand8 Brand9 BrandilO

Block 1 0 0 0 0 0 0 0 0 0 0
Brandl O 1 0 0 0 0 0 0 0 0 0
Brand2 O 0 1 0 0 0 0 0 0 0 0
Brand3 O 0 0 1 0 0 0 0 0 0 0
Brand4 O 0 0 0 1 0 0 0 0 0 0
Brand5 O 0 0 0 0 1 0 0 0 0 0
Brand6 O 0 0 0 0 0 1 0 0 0 0
Brand7 O 0 0 0 0 0 0 1 0 0 0
Brand8 O 0 0 0 0 0 0 0 1 0 0
Brand9 O 0 0 0 0 0 0 0 0 1 0
Brand10 O 0 0 0 0 0 0 0 0 0 1

Allocation of Prescription Drugs
Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

Frequencies
Block 999
Brand1l 999
Brand2 999
Brand3 999
Brand4 999
Brand5 999
Brand6 999
Brand7 999
Brand8 999
Brand9 999
Brandi10 999
Block Brandil 333333333
Block Brand2 333333333
Block Brand3 333333333
Block Brand4 333333333
Block Brandb 333333333
Block Brand6 333333333
Block Brand7 333333333
Block Brand8 333333333
Block Brand9 333333333

333333333

Block Brandi1O
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N-Way 11111111111

111
111

=
=
=
=
=

Processing the Data

Questionnaires are generated and data collected using a minor modification of the methods discussed
in earlier examples. The difference is instead of asking for first choice data, allocation data are collected
instead. Each row of the input data set contains a block, subject, and set number, followed by the
number of times each of the ten alternatives was chosen. If all of the choice frequencies are zero, then
the constant alternative was chosen. The if statement is used to check data entry. For convenience,
choice set number is recoded to run from 1 to 27 instead of consisting of three blocks of nine sets. This
gives us one fewer variable on which to stratify.

data results;
input Block Subject Set @9 (freql-freg&mnalts) (2.);
if not (sum(of freq:) in (0, &nalts)) then put _all_;
set = (block - 1) * 9 + set;

datalines;
1 11 0080200000
1 12 0080002000
1 13 000000O0O01I00O0
1 14 1001330020
1 15 2080000000
1 16 0131000014
1 17 0131120020
1 18 0030021004
1 19 0250000030
2 210 1102030111
2 211 1031011021

In the first step, in creating an analysis data set for an allocation study, we reformat the data from
one row per choice set per block per subject (9 x 3 x 100 = 2700 observations) to one per alternative
(including the constant) per choice set per block per subject ((10+1)x9x3x100 = 29, 700 observations).
For each choice set, 11 observations are written storing the choice frequency in the variable Count and
the brand in the variable Brand. If no alternative is chosen, then the constant alternative is chosen ten
times, otherwise it is chosen zero times.

data allocs(keep=block set brand count);
set results;

array freq[&nalts];
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* Handle the &nalts alternatives;
do b =1 to &nalts;

Brand = ’Brand ’ || put(b, 2.);
Count = freql[b];

output;

end;

* Constant alt choice is implied if nothing else is chosen.

brand = ’ ’ is used to flag the constant alternative.;
brand = ’ ’;
count = 10 * (sum(of freq:) = 0);
output;
run;

proc print data=results(obs=3) label noobs; run;
proc print data=allocs(obs=33); id block set; by block set; run;

The PROC PRINT steps show how the first three observations of the Results data set are transposed
into the first 33 observations of the Allocs data set.

Allocation of Prescription Drugs

Block Subject Set Freql Freq2 Freq3 Freq4 Freqb Freq6 Freq7 Freq8 Freq9 FreqlO

1 1 1 0 0 8 0 2 0 0 0 0 0
1 1 2 0 0 8 0 0 0 2 0 0 0
1 1 3 0 0 0 0 0 0 0 0 10 0

Allocation of Prescription Drugs
Block Set Brand Count

1 1 Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
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Brand
Brand 10

O O O O O O N O WO o
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1 2 Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
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1 3 Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand 10
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The next step aggregates the data. It stores in the variable Count the number of times each alternative
of each choice set was chosen. This creates a data set with 297 observations (3 blocks x 9 sets x 11
alternatives = 297).

* Aggregate, store the results back in count.;

proc summary data=allocs nway missing;
class set brand;
output sum(count)=Count out=allocs(drop=_type_ _freq_);
run;

These next steps prepare the design for analysis. We need to create a data set Key that describes how
the factors in our design will be used for analysis. It will contain all of the factor names, Brandi,
Brand?2, ..., Brand10. We can run the %MktKey macro to get these names for cutting and pasting into
the program without typing them.

Jmktkey (Brand1-Brand10)
The %MktKey macro produced the following line.
Brandl Brand2 Brand3 Brand4 Brandb5 Brand6 Brand7 Brand8 Brand9 Brandl10

The next step rolls out the experimental design data set to match the choice allocations data set. The
data set is transposed from one row per choice set to one row per alternative per choice set. This data
set also has 297 observations. As we saw in many previous examples, the %MktRoll macro can be used
to process the design.
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data key(keep=Brand Price);

input Brand $ 1-8 Price $;

datalines;

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand

1

© 00 N O O W N

Brand 10

3

Brandil
Brand?2
Brand3
Brand4
Brandb
Brand6
Brand7
Brand8
Brand9
Brand10

TS-722F — Discrete Choice

Jmktroll (design=sasuser.DrugAllo_LinDes, key=key, alt=brand, out=rolled,

options=nowarn)

proc print data=rolled(obs=11); format price dollar4.; run;

Allocation of Prescription Drugs

Obs

© 00 N Ok WN -

= e
= O

Set

T T e T = N S S S

Brand

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
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Brand
Brand 10

Price

$50
$75
$50
$75
$100
$100
$100
$100
$50
$100

Both data sets must be sorted the same way before they can be merged. The constant alternative,
indicated by a missing brand, is last in the design choice set and hence is out of order. Missing must
come before nonmissing for the merge. The order is correct in the Allocs data set since it was created
by PROC SUMMARY with Brand as a class variable.

proc sort data=rolled; by set brand; run;

The data are merged along with error checking to ensure that the merge proceeded properly. Both
data sets should have the same observations and Set and Brand variables, so the merge should be one

to one.
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data allocs?2;

merge allocs(in=flagl) rolled(in=flag?2);

by set brand;

if flagl ne flag2 then put ’ERROR: Merge is not 1 to 1.7;

format price dollar4.;

run;

proc print data=allocs2(obs=22);
var brand price count;

sum count;

by notsorted set;
id set;

run;

355

In the aggregate and combined data set, we see how often each alternative was chosen for each choice
set. For example, in the first choice set, the constant alternative was chosen zero times, Brand 1 at
$100 was chosen 103 times, and so on. The 11 alternatives were chosen a total of 1000 times, 100

subjects times 10 choices each.

Allocation of Prescription Drugs

Set

Brand

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand 10

© 00 N O O WN -

Price

$50
$75
$50
$75
$100
$100
$100
$100
$50
$100

Count

103
58
318
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2 . 10
Brand 1 $100 73
Brand 2 $50 76
Brand 3 $100 342
Brand 4 $75 55
Brand 5 $75 50
Brand 6 $75 77
Brand 7 $100 95
Brand 8 $50 71
Brand 9 $100 72
Brand 10 $75 79

2 1000

At this point, the data set contains 297 observations (27 choice sets times 11 alternatives) showing the
number of times each alternative was chosen. This data set must be augmented to also include the
number of times each alternative was not chosen. For example, in the first choice set, brand 1 was
chosen 103 times, which means it was not chosen 0+ 58 +318 +99 + 54 +83 4+ 71 4+ 58 + 100 4+ 56 = 897
times. We use a macro, %MktAllo for “marketing allocation study” to process the data. We specify the
input data=allocs2 data set, the output out=allocs3 data set, the number of alternatives including
the constant (nalts=Yeval(&nalts + 1)), the variables in the data set except the frequency variable
(vars=set brand price), and the frequency variable (freq=Count). The macro counts how many
times each alternative was chosen and not chosen and writes the results to the out= data set along
with the usual ¢ = 1 for chosen and ¢ = 2 for unchosen.

Y%mktallo(data=allocs2, out=allocs3, nalts=leval(&nalts + 1),
vars=set brand price, fregq=Count)

proc print data=allocs3(obs=22);
var set brand price count c;
run;

The first 22 records of the allocation data set are shown next.

Allocation of Prescription Drugs

Obs Set Brand Price Count c
1 1 0 1
2 1 . 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
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7 1 Brand 3 $50 318 1
8 1 Brand 3 $50 682 2
9 1 Brand 4 $75 99 1
10 1 Brand 4 $75 901 2
11 1 Brand 5 $100 54 1
12 1 Brand 5 $100 946 2
13 1 Brand 6 $100 83 1
14 1 Brand 6 $100 917 2
15 1 Brand 7 $100 71 1
16 1 Brand 7 $100 929 2
17 1 Brand 8 $100 58 1
18 1 Brand 8 $100 942 2
19 1 Brand 9 $50 100 1
20 1 Brand 9 $50 900 2
21 1 Brand 10 $100 56 1
22 1 Brand 10 $100 944 2

In the first choice set, the constant alternative is chosen zero times and not chosen 1000 times, Brand
1 is chosen 103 times and not chosen 1000 — 103 = 897 times, Brand 2 is chosen 58 times and not
chosen 1000 — 58 = 942 times, and so on. Note that allocation studies do not always have fixed sums,
so it is important to use the %MktAllo macro or some other approach that actually counts the number
of times each alternative was not chosen. It is not always sufficient to simply subtract from a fixed
constant (in this case, 1000).

Coding and Analysis

The next step codes the design for analysis. Indicator variables are created for Brand and Price. All
of the PROC TRANSREG options have been discussed in other examples.

proc transreg design data=allocs3 nozeroconstant norestoremissing;
model class(brand price / zero=none) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id set c count;
run;

Analysis proceeds like it has in all other examples. We stratify by choice set number. We do not need
to stratify by Block since choice set number does not repeat within block.

proc phreg data=coded;
where count > O;
model cxc(2) = &_trgind / ties=breslow;
freq count;
strata set;
run;

We used the where statement to exclude observations with zero frequency; otherwise PROC PHREG
complains about them.
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Multinomial Logit Model Results

Here are the results. Recall that we used %phchoice(on) on page 143 to customize the output from
PROC PHREG.

Allocation of Prescription Drugs
The PHREG Procedure

Model Information

Data Set WORK . CODED

Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Frequency Variable Count

Ties Handling BRESLOW
Number of Observations Read 583
Number of Observations Used 583
Sum of Frequencies Read 297000
Sum of Frequencies Used 297000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 11000 1000 10000
2 2 11000 1000 10000
3 3 11000 1000 10000
4 4 11000 1000 10000
5 5 11000 1000 10000
6 6 11000 1000 10000
7 7 11000 1000 10000
8 8 11000 1000 10000
9 9 11000 1000 10000
10 10 11000 1000 10000
11 11 11000 1000 10000
12 12 11000 1000 10000
13 13 11000 1000 10000
14 14 11000 1000 10000
15 15 11000 1000 10000
16 16 11000 1000 10000
17 17 11000 1000 10000

18 18 11000 1000 10000
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19
20
21
22
23
24

19
20
21
22
23
24
25
26
27

297000

Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand
Brand

Test

Likelihood Ratio

Score
Wald
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10

Convergence Status

270000

Convergence criterion (GCONV=1E-8) satisfied.

o
T

e e e T e e = =

Model Fit Statistics

Criterion

-2 LOG L

AIC
SBC

Without
Covariates

502505.
502505.
502505.

13
13
13

With
Covariates

489062.
489086 .
489185.

66
66
11

Testing Global Null Hypothesis: BETA=0

Chi-Square

13442 .4676
18340.8415
14087.6778

DF

12
12
12

Pr >

Multinomial Logit Parameter Estimates

Parameter

Estimate

N NNNDNDDNDDNDWDNDDN

.09906
.09118
.54204
.09710
.085623
.035630
.06920
.08573
.11705
.06363

Standard

O O OO O O O o oo

Error

.06766
.06769
.06484
.06766
.06771
.06790
.06777
.06771
.06759
.06779

Chi-Square

962.
954.
2984.
960.
948.
898.
932.
948.
980.
926.

5297
5113
4698
5277
4791
6218
3154
9824
9640
7331

ChiSq

<.0001
<.0001
<.0001

Pr > ChiSq

AN NNANANANANANANANNAN

.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
.0001
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$50 1 0.00529 0.01628 0.1058 0.7450
$75 1 0.0005304 0.01629 0.0011 0.9740
$100 0 0

The output shows that there are 27 strata, one per choice set, each consisting of 1000 chosen alter-
natives (10 choices by 100 subjects) and 10,000 unchosen alternatives. All of the brand coefficients
are “significant,” with the Brand 3 effect being by far the strongest. (We will soon see that statistical
significance should be ignored with allocation studies.) There is no price effect.

Analyzing Proportions

Recall that we collected data by asking physicians to report which brands they would prescribe the
next ten times they write prescriptions. Alternatively, we could ask them to report the proportion of
time they would prescribe each brand. We can simulate having proportion data by dividing our count
data by 10. This means our frequency variable will no longer contain integers, so we need to specify
the notruncate option on PROC PHREG freq statement to allow “noninteger frequencies.”

data coded?2;
set coded;
count = count / 10;
run;

proc phreg data=coded2;
where count > O;
model c*c(2) = &_trgind / ties=breslow;
freq count / notruncate;
strata set;
run;

When we do this, we see the number of alternatives and the number chosen and not chosen decrease
by a factor of 10 as do all of the Chi-Square tests. The coefficients are unchanged. This implies that
market share calculations are invariant to the different scalings of the frequencies. However, the p-
values are not invariant. The sample size is artificially inflated when counts are used so p-values are
not interpretable in an allocation study. When proportions are used, each subject is contributing 1 to
the number chosen instead of 10, just like a normal choice study, so p-values have meaning.

Allocation of Prescription Drugs
The PHREG Procedure

Model Information

Data Set WORK . CODED2
Dependent Variable c

Censoring Variable c

Censoring Value(s) 2

Frequency Variable Count

Ties Handling BRESLOW
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Number of Observations Read 583
Number of Observations Used 583
Sum of Frequencies Read 29700
Sum of Frequencies Used 29700

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not

Stratum Set Alternatives Alternatives Chosen
1 1 1100.0 100.0 1000.0
2 2 1100.0 100.0 1000.0
3 3 1100.0 100.0 1000.0
4 4 1100.0 100.0 1000.0
5 5 1100.0 100.0 1000.0
6 6 1100.0 100.0 1000.0
7 7 1100.0 100.0 1000.0
8 8 1100.0 100.0 1000.0
9 9 1100.0 100.0 1000.0
10 10 1100.0 100.0 1000.0
11 11 1100.0 100.0 1000.0
12 12 1100.0 100.0 1000.0
13 13 1100.0 100.0 1000.0
14 14 1100.0 100.0 1000.0
15 15 1100.0 100.0 1000.0
16 16 1100.0 100.0 1000.0
17 17 1100.0 100.0 1000.0
18 18 1100.0 100.0 1000.0
19 19 1100.0 100.0 1000.0
20 20 1100.0 100.0 1000.0
21 21 1100.0 100.0 1000.0
22 22 1100.0 100.0 1000.0
23 23 1100.0 100.0 1000.0
24 24 1100.0 100.0 1000.0
25 25 1100.0 100.0 1000.0
26 26 1100.0 100.0 1000.0
27 27 1100.0 100.0 1000.0
Total 29700.0 2700.0 27000.0

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 37816.553 36472.307
AIC 37816.553 36496.307
SBC 37816.553 36567.119

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1344 .2468 12 <.0001

Score 1834.0841 12 <.0001

Wald 1408.7678 12 <.0001

Multinomial Logit Parameter Estimates
Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq
Brand 1 1 2.09906 0.21395 96.2530 <.0001
Brand 2 1 2.09118 0.21404 95.4511 <.0001
Brand 3 1 3.54204 0.20503 298.4470 <.0001
Brand 4 1 2.09710 0.21398 96.0528 <.0001
Brand 5 1 2.08523 0.21411 94.8479 <.0001
Brand 6 1 2.03530 0.21470 89.8622 <.0001
Brand 7 1 2.06920 0.21430 93.2315 <.0001
Brand 8 1 2.08573 0.21411 94.8982 <.0001
Brand 9 1 2.11705 0.21375 98.0964 <.0001
Brand 10 1 2.06363 0.21436 92.6733 <.0001
$50 1 0.00529 0.05148 0.0106 0.9181
$75 1 0.0005304 0.05152 0.0001 0.9918
$100 0 0
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Chair Design with Generic Attributes

This study illustrates creating an experimental design for a purely generic choice model. This example
discusses generic attributes, alternative swapping, choice set swapping, and constant alternatives. In
a purely generic study, there are no brands, just bundles of attributes. Also see page 89 in the
experimental design chapter for examples of how to combinatorially construct optimal generic choice
designs for certain problems.

Say a manufacturer is interested in designing one or more new chairs. The manufacturer can vary the
attributes of the chairs, present subjects with competing chair designs, and model the effects of the
attributes on choice. Here are the attributes of interest.

Factor Attribute Levels

X1 Color 3 Colors
X2 Back 3 Styles
X3 Seat 3 Styles

X4 Arm Rest 3 Styles
X5 Material 3 Materials

Since seeing descriptions of chairs is not the same as seeing and sitting in the actual chairs, the
manufacturer is going to actually make sample chairs for people to try and choose from. Subjects will
be shown groups of three chairs at a time. If we were to make our design using the approach discussed
in previous examples, we would use the %MktEx autocall macro to create a design with 15 factors, five
for the first chair, five for the second chair, and five for the third chair. This design would have to have
at least 15 x (3 —1) + 1 = 31 runs and 93 sample chairs. Here is how we could have made the design.

title ’Generic Chair Attributes’;

* This design will not be used;
Ymktex(3 **x 15, n=36, seed=238)

Jmktkey (3 5)

Jmktroll (design=randomized, key=key, out=cand)

The %MktEx approach to designing an experiment like this allows you to fit very general models including
models with alternative-specific effects and even mother logit models. However, at analysis time for
this purely generic model, we will fit a model with 10 parameters, two for each of the five factors,
class(x1-x5). Creating a design with over 31 x 3 = 93 chairs is way too expensive. In ordinary linear
designs, we need at least as many runs as parameters. In choice designs, we need to count the total
number of alternatives across all choice sets, subtract the number of choice sets, and this number must
be at least as large as the number of parameters. Equivalently, each choice set allows us to estimate
m — 1 parameters, where m is the number of alternatives in that choice set. In this case, we could fit
our purely generic model with as few as 10/(3 — 1) = 5 choice sets.

Since we only need a simple generic model for this example, and since our chair manufacturing for our
research will be expensive, we will not use the %MktEx approach for designing our choice experiment.
Instead, we will use a different approach that will allow us to get a smaller design that is adequate for
our model and budget. Recall the discussion of linear design efficiency, choice model design efficiency,
and using linear design efficiency as a surrogate for choice design goodness starting on page 53. Instead

#Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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of using linear design efficiency as a surrogate for choice design goodness, we can directly optimize
choice design efficiency given an assumed model and parameter vector 3. This approach uses the
%ChoicEff macro.

Generic Attributes, Alternative Swapping, Large Candidate Set

This part of the example illustrates using the %ChoicEff macro for efficient choice designs, using its
algorithm that builds a design from candidate alternatives (as opposed to candidates consisting of
entire choice sets). First, we will use the %MktRuns macro to suggest a candidate-set size.

Y%mktruns (3 ** 5)

Here are some of the results.

Generic Chair Attributes

Design Summary

Number of
Levels Frequency
3 5
Saturated = 11
Full Factorial = 243
Some Reasonable Cannot Be
Design Sizes Violations Divided By
18 * 0
27 * 0
36 * 0
12 10 9
15 10 9
21 10 9
24 10 9
30 10 9
33 10 9
11 15 39

* — 100% Efficient Design can be made with the MktEx Macro.
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Generic Chair Attributes

n Design Reference

18 2 %xx 1 3 *xx 7 Orthogonal Array

18 3 xx 6 6 %k 1 Orthogonal Array

27 3 ** 13 Fractional-Factorial
27 3 %% 9 9O xx | Fractional-Factorial
36 2 %k 11 3 *x 12 Orthogonal Array

36 2 %% 10 3 *x 8 6 *x 1 Orthogonal Array

36 2 xx 4 3 %% 13 Orthogonal Array

36 2 %% 3 3 *xx 9 6 *x 1 Orthogonal Array

36 2 %k 2 3 %k 12 6 **x 1 Orthogonal Array

36 2 xx 2 3 %k b5 6 ¥k 2 Orthogonal Array

36 2 %k 1 3 %k 8 6 %k 2 Orthogonal Array

36 3 *xx 13 4 *xx 1 Orthogonal Array

36 3 k% 12 12 *x 1 Orthogonal Array

36 3 xx 7 6 *x 3 Orthogonal Array

We could use candidate sets of size: 18, 27 or 36. Additionally, since this problem is small, we could
try an 81-run fractional-factorial design or the 243-run full-factorial design. We will choose the 243-run
full-factorial design, since it is reasonably small and it will give the macro the most freedom to find a
good design.}

We will use the %MktEx macro to create a candidate set. The candidate set will consist of 5 three-level
factors, one for each of the five generic attributes. We will add three flag variables to the candidate set,
f1-£3, one for each alternative. Since there are three alternatives, the candidate set must contain those
observations that may be used for alternative 1, those observations that may be used for alternative
2, and those observations that may be used for alternative 3. The flag variable for each alternative
consists of ones for those candidates that may be included for that alternative and zeros or missings
for those candidates that may not be included for that alternative. The candidates for the different
alternatives may be all different, all the same, or something in between depending on the problem.
For example, the candidate set may contain one observation that is only used for the last, constant
alternative. In this purely generic case, each flag variable consists entirely of ones indicating that any
candidate can appear in any alternative. The %MktEx macro will not allow you to create constant
or one-level factors. We can instead use the %MktLab macro to add the flag variables, essentially by
specifying that we have multiple intercepts. The option int=£f1-f3 creates three variables with values
all one. The default output data set is called Final. The following code creates the candidates.

%mktex (3 **x 5, n=243)
Jmktlab(data=design, int=f1-£3)

proc print data=final(obs=27); run;

8Later, we will see we could have chosen 18.
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The columns £1-£3 are the flags, and x1-x5 are the generic attributes. Here is part of the candidate
set.

Generic Chair Attributes

Obs f1 £2 £3 x1 x2 x3 x4 x5
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 2
3 1 1 1 1 1 1 1 3
4 1 1 1 1 1 1 2 1
5 1 1 1 1 1 1 2 2
6 1 1 1 1 1 1 2 3
7 1 1 1 1 1 1 3 1
8 1 1 1 1 1 1 3 2
9 1 1 1 1 1 1 3 3

10 1 1 1 1 1 2 1 1
11 1 1 1 1 1 2 1 2
12 1 1 1 1 1 2 1 3
13 1 1 1 1 1 2 2 1
14 1 1 1 1 1 2 2 2
15 1 1 1 1 1 2 2 3
16 1 1 1 1 1 2 3 1
17 1 1 1 1 1 2 3 2
18 1 1 1 1 1 2 3 3
19 1 1 1 1 1 3 1 1
20 1 1 1 1 1 3 1 2
21 1 1 1 1 1 3 1 3
22 1 1 1 1 1 3 2 1
23 1 1 1 1 1 3 2 2
24 1 1 1 1 1 3 2 3
25 1 1 1 1 1 3 3 1
26 1 1 1 1 1 3 3 2
27 1 1 1 1 1 3 3 3

Next, we will search that candidate set for an efficient design for the model specification class(x1-x5)
and the assumption 3 = 0. We will use the %ChoicEff autocall macro to do this. (All of the autocall
macros used in this book are documented starting on page 597.) This approach is based on the
work of Huber and Zwerina (1996) who proposed constructing efficient experimental designs for choice
experiments under an assumed model and 3. The %ChoicEff macro uses a modified Fedorov algorithm
(Fedorov, 1972; Cook and Nachtsheim, 1980) to optimize the choice model variance matrix. We will
be using the largest possible candidate set for this problem, the full-factorial design, and we will ask
for more than the default number of iterations, so run time will be slower than it could be. However,
we will be requesting a very small number of choice sets. Building the chairs will be expensive, so we
want to get a really good but small design. This specification requests a generic design with six choice
sets each consisting of three alternatives.

%choiceff (data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f3, beta=zero)
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The data=final option names the input data set of candidates. The model=class(x1-x5) option
specifies the most general model that will be considered at analysis time. The nsets=6 option specifies
the number of choice sets. Note that this is considerably smaller than the minimum of 31 that would
be required if we were just using the %MktEx linear-design approach (6 x 3 = 18 chairs instead of
31 x 3 = 93 chairs). The maxiter=100 option requests 100 designs based on 100 random initial designs
(by default, maxiter=2). The seed=121 option specifies the random number seed. The flags=f1-£3
specifies the flag variables for alternatives 1 to 3. Implicitly, this option also specifies the fact that
there are three alternatives since three flag variables were specified. The beta=zero option specifies
the assumption 3 = 0. A vector of numbers like beta=-1 0 -1 0 -1 0 -1 0 -1 0 -1 0 could be
specified. (See page 609 for an example of this.) When you wish to assume all parameters are zero,
you can specify beta=zero instead of typing a vector of the zeros. You can also omit the beta= option
if you just want the macro to list the parameters. You can use this list to ensure that you specify the
parameters in the right order.

The first part of the output from the macro is a list of all of the effects generated and the assumed
values of 8. It is very important to check this list and make sure it is correct. In particular, when you
are explicitly specifying the 3 vector, you need to make sure you specified all of the values in the right
order.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Next, the macro produces the iteration history, which is different from the iteration histories we are
used to seeing in the %MktEx macro. The %ChoicEff macro uses PROC IML and a modified Fedorov
algorithm to iteratively improve the efficiency of the choice design given the specified candidates, model,
and 8. Note that these efficiencies are not on a 0 to 100 scale. This step took about 12 minutes. Here
are some of the results.

Generic Chair Attributes

Design  Iteration D-Efficiency D-Error
1 0 0.352304 2.838455

1 0.946001 1.057081

2 1.001164 0.998838

3 1.041130 0.960494

4 1.044343 0.957540
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34 0 0.469771
1 0.919074
2 1.0568235
3 1.154701
4 1.154701

0 0.456308
1 1.006320
2 1.042702
3 1.042702

TS-722F — Discrete Choice

2.128698
1.088051
0.944970
0.866025
0.866025

D-Error

2.191501
0.993719
0.959046
0.959046

Next, the macro shows which design it chose and the final D-efficiency and D-error (D-efficiency =1 /

D-error).

Final Results

Design 34
Choice Sets 6
Alternatives 3
D-Efficiency 1.154701
D-Error 0.866025

Next, it shows the variance, standard error, and df for each effect. It is important to ensure that each
effect is estimable: (df = 1). Usually, when all of the variances are constant, like we see in this table,

it means that the macro has found the optimal design.
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Variable

Name

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52

Generic Chair Attributes

Label

x1
x1
x2
x2
x3
x3
x4
x4
x5
x5

NP, NP NP, DNDNEFEPEDNP-

Variance DF
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

10

Standard
Error

T = T e T = e S =

The data set Best contains the final, best design found.

proc print; by set; id set; run;

The data set contains: Design - the number of the design with the maximum D-efficiency, Efficiency
- the D-efficiency of this design, Index - the candidate set observation number, Set - the choice set
number, Prob - the probability that this alternative will be chosen given 3, n - the observation number,
x1-x5 - the design, and £1-£3 - the flags.

Generic

Set Design Efficiency Index

1 34
34
34
2 34
34
34
3 34
34
34
4 34
34
34
5 34
34
34

I = T e = T e S e e N e T e

.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470
.15470

183
62
121
217
45
104
215
147
4
78
178
110
90
46
230

O O O O O O O OO O OO o oo

.33333 595
.33333 596
.33333 597
.33333 598
.33333 599
.33333 600
.33333 601
.33333 602
.33333 603
.33333 604
.33333 605
.33333 606
.33333 607
.33333 608
.33333 609
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6 34 1.15470 195 0.33333 610 1 1 i 3 2 1 2 3
34 1.15470 11 0.33333 611 1 1 1 1 1 2 1
34 1.15470 160  0.33333 612 1 1 i1 2 3 3 3 1

This design has 18 runs (6 choice sets x 3 alternatives). Notice that in this design, each level occurs
exactly once in each factor and each choice set. To use this design for analysis, you would only need the
variables Set and x1-x5. Since it is already in choice design format, it would not need to be processed
using the %MktRoll macro. Since data collection, processing, and analysis have already been covered
in detail in other examples, this example will concentrate solely on experimental design.

Generic Attributes, Alternative Swapping, Small Candidate Set

In this part of this example, we will try to make an equivalent design to the one we just made, only
this time using a smaller candidate set. Here is the code.

Y%mktex(3 ** 5, n=18)
Jmktlab(data=design, int=f1-£f3)

%choiceff (data=final, model=class(x1-x5), nsets=6, maxiter=20,
seed=121, flags=f1-f3, beta=zero)

proc print; run;

This time, instead of creating a full-factorial candidate set, we asked for 5 three-level factors from the
L1g, an orthogonal tabled design in 18 runs. We also asked for fewer iterations in the %ChoicEff macro.
Since the candidate set is much smaller, the macro should be able to find the best design available in
this candidate set fairly easily. Here are some of the results.

Generic Chair Attributes

n Name Beta Label
1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2
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Generic Chair Attributes

Design  Iteration D-Efficiency D-Error
1 0 0 .

1 0.913290 1.094943

2 1.008888 0.991191

3 1.042878 0.958885

4 1.154701 0.866025

5 1.154701 0.866025

Design  Iteration D-Efficiency D-Error
20 0 0.364703 2.741954

1 0.851038 1.175036

2 1.008888 0.991191

3 1.042878 0.958885

4 1.154701 0.866025

5 1.154701 0.866025

Final Results

Design 1
Choice Sets 6
Alternatives 3
D-Efficiency 1.154701
D-Error 0.866025

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error
1 x11 x1 1 1 1 1
2 x12 x1 2 1 1 1
3 x21 x2 1 1 1 1
4 x22 x2 2 1 1 1
5 x31 x3 1 1 1 1
6 x32 x3 2 1 1 1
7 x41 x4 1 1 1 1
8 x42 x4 2 1 1 1
9 x51 x5 1 1 1 1
10 x52 x5 2 1 1 1

—
o



372 TS-722F — Discrete Choice

Generic Chair Attributes

Obs Design Efficiency Index Set Prob n f1 f2 £3 x1 x2 x3 x4 x5
1 1 1.15470 11 1 0.33333 1 1 1 1 2 3 1 3 1
2 1 1.15470 13 1 0.33333 2 1 1 i 3 1 2 1 2
3 1 1.15470 4 1 0.33333 3 1 1 1 i 2 3 2 3
4 1 1.15470 3 2 0.33333 4 1 1 1 i 2 1 3 2
5 1 1.15470 12 2 0.33333 5 1 1 i 2 3 2 1 3
6 1 1.15470 14 2 0.33333 6 1 1 1 3 1 3 2 1
7 1 1.15470 5 3 0.33333 7 1 1 1 1 3 2 2 1
8 1 1.15470 8 3 0.33333 8 1 1 i 2 1 3 3 2
9 1 1.15470 15 3 0.33333 9 1 1 1 3 2 1 1 3

10 1 1.15470 4 0.33333 10 1 1 T 2 2 2 2 2
11 1 1.15470 1 4 0.33333 11 1 1 1 1 1 1 1 1
12 1 1.15470 18 4 0.33333 12 1 1 i1 3 3 3 3 3
13 1 1.15470 10 5 0.33333 13 1 1 1 2 2 3 1 1
14 1 1.15470 17 5 0.33333 14 1 1 i 3 3 1 2 2
15 1 1.15470 2 5 0.33333 15 1 1 1 1 1 2 3 3
16 1 1.15470 6 6 0.33333 16 1 1 1 i 3 3 1 2
17 1 1.15470 7 6 0.33333 17 1 1 1 2 1 1 2 3
18 1 1.15470 16 6 0.33333 18 1 1 1 3 2 2 3 1

Notice that we got the same D-efficiency and variances as before (D-efficiency = 1.1547005384 and all
variances 1). Also notice the Index variable in the design (which is the candidate set row number).
Each candidate appears in the design exactly once. As is shown in the experimental design chaper
starting on page 89, for problems like this (all generic attributes, no brands, no constant alternative,
total number of alternatives equal to the number of runs in an orthogonal design, all factors available
in that orthogonal design, and an assumed 3 vector of zero) that the optimal design can be created by
optimally sorting the rows of an orthogonal design into choice sets, and the %ChoicEff macro can do
this quite well. More directly, this design could be made from the orthogonal array 3°6! in 18 runs by
using the six-level factor as the choice set number.

Six choice sets is a bit small. If you can afford a larger number, it would be good to try a larger design.
In this case, nine choice sets are requested using a fractional-factorial candidate set in 27 runs. Notice
that like before, the number of runs in the candidate set was chosen to be the product of the number
of choice sets and the number of alternatives in each choice set.

%mktex(3 **x 5, n=27, seed=382)
Jmktlab(data=design, int=f1-£3)

%choiceff (data=final, model=class(x1-x5), nsets=9, maxiter=20,
seed=121, flags=f1-f3, beta=zero)

proc print; id set; by set; var index prob x:; run;
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Here are the variances and the design.
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Variable
n Name

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52
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Set Index

13
20

12

26
10

18

27

19
15

23
16

Generic Chair Attributes

Label

x1
x1
x2
x2
x3
x3
x4
x4
x5
x5

NP NFPLPDNDNEFEDNEPE DN

Generic

Prob

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

0.33333
0.33333
0.33333

Variance
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Chair Attributes

x1

N - W

N =~ W

w = N
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x3

N =~ W

W = N

w = N
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x4

W= N

N, W

andard
Error

.81650
.81650
.81650
.81650
.81650
.81650
.81650
.81650
.81650
.81650

x5
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8 17 0.33333 2 3 2 3 2
24 0.33333

1 0.33333 1 1 1 1 1

9 7 0.33333 1 3 1 3 3

14 0.33333 1

21 0.33333 3 1 3 1 2

Notice that like before, the variances are constant, but in this case smaller at 2/3, and each candidate
appears once. This is an optimal design in 9 choice sets. More directly, this design could be made from
the orthogonal array 3°9' in 27 runs by using the nine-level factor as the choice set number.

Generic Attributes, a Constant Alternative, and Alternative Swapping

Now let’s make a design for the same problem but this time with a constant alternative. We will first
use the %MktEx macro just like before to make a design for the nonconstant alternatives. We will then
use a DATA step to add the flags and a constant alternative.

title ’Generic Chair Attributes’;
%mktex (3 **x 5, n=243, seed=306)

data final(drop=i);

set design end=eof;

retain f1-f3 1 f4 0;

output;

if eof then do;
array x[9] x1-x5 f1-f4;
doi=1to9; x[i] = 1 1le 5 or i eq 9; end;
output;
end;

run;

proc print data=final(where=(x1 eq x3 and x2 eq x4 and x3 eq x5 or f4)); run;

Here is a sample of the observations in the candidate set.

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 2 £3 4

1 1 1 1 1 1 1 1 1 0
31 1 2 1 2 1 1 1 1 0
61 1 3 1 3 1 1 1 1 0
92 2 1 2 1 2 1 1 1 0

122 2 2 2 2 2 1 1 1 0
152 2 3 2 3 2 1 1 1 0
183 3 1 3 1 3 1 1 1 0
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213 3 2 3 2 3 1 1 1 0
243 3 3 3 3 3 1 1 1
244 1 1 1 1 1 0 0 0 1

The first 243 observations may be used for any of the first three alternatives and the 244th observation
may only be used for fourth or constant alternative. In this example, the constant alternative is
composed solely from the first level of each factor. Of course this could be changed depending on the
situation. The %ChoicEff macro invocation is the same as before, except now we have four flags.

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f4, beta=zero)

proc print; by set; id set; run;

You can see in the final design that there are now four alternatives and the last alternative in each
choice set is constant and is always flagged by f4=1. In the interest of space, most of the iteration
histories are omitted.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Generic Chair Attributes

Design  Iteration D-Efficiency D-Error
1 0 0.424723 2.354476

1 0.900662 1.110294

2 0.939090 1.064861

3 0.943548 1.059830
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D-Error

Design I

0.494007
0.873818
0.915135
0.960392
0.999769
1.003398

2.024263
1.144404
1.092735
1.041241
1.000231
0.996614

Variable
Name

x11
x12
x21
x22
x31
x32
x41
x42
x51
x52

teration D-Efficiency
0 0.528399
1 0.883854
2 0.924346
3 0.939811
4 0.942047

Generic Chair Attributes

Final Results

Design 13
Choice Sets 6
Alternatives 4
D-Efficiency 1.003398
D-Error 0.996614

Generic Chair Attributes

Label Variance
x1 1 1.14695
x1 2 1.33333
x2 1 1.14695
x2 2 1.33333
x3 1 1.19793
x3 2 1.27439
x4 1 1.19793
x4 2 1.27439
x5 1 1.13102
x5 2 1.27439

o
i e i el e e o o ]

[y

10

1.892509
1.131408
1.081846
1.064044
1.061518

Standard
Error

.07096
.15470
.07096
.15470
.09450
.12889
.09450
.12889
.06350
.12889

e e e
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Generic Chair Attributes

Set Design Efficiency Index Prob

1 13
13
13
13

2 13
13
13
13

3 13
13
13
13

4 13
13
13
13

5 13
13
13
13

6 13
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13
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When there were three alternatives, each alternative had a probability of choice of 1/3, and now with
four alternatives, the probability is 1/4. They are all equal because of the assumption 3 = 0. With
other assumptions about (3, typically the probabilities will not all be equal. To use this design for
analysis, you would only need the variables Set and x1-x5. Since it is already in choice design format
(one row per alternative), it would not need to be processed using the %MktRoll macro. Note that
when you make designs with the %ChoicEff macro, the model statement in PROC TRANSREG should

match or be no more complicated than the model specification that generated the design:

model class(x1-x5);

A model with fewer degrees of freedom is safe, although the design will be suboptimal. For example,

if x1-x5 are quantitative attributes, this would be safe:

model identity(x1-x5);
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However, specifying interactions, or using this design in a branded study and specifying alternative-
specific effects like this could lead to quite a few inestimable parameters.

* Bad idea for this design!!;
model class(x1-x5 x1*x2 x4#*x5);

* Another bad idea for this design!!;
model class(brand)
class(brand * x1 brand * x2 brand * x3 brand * x4 brand * x5);

Generic Attributes, a Constant Alternative, and Choice Set Swapping

The %ChoicEff macro can be used in a very different way. Instead of providing a candidate set of
alternatives to swap in and out of the design, you can provide a candidate set of entire choice sets.
For this particular example, swapping alternatives will almost certainly be better (see page 381).
However, sometimes, if you need to impose restrictions on which alternative can appear with which
other alternative, then you must use the set-swapping options. We will start by using the %MktEx
macro to make a candidate design, with one run per choice set and one factor for each attribute of
each alternative (just like we did in the vacation, fabric softener, and food examples). We will then
process the candidates from one row per choice set to one row per alternative per choice set using the
%MktRoll macro.

%mktex(3 **x 15, n=81 * 81, seed=522)

Jmktkey(3 5)

data key;
input (x1-x5) ($);
datalines;
x1 x2 x3 x4 x5
x6 X7 x8 x9 x10

x11 x12 x13 x14 x15

Jmktroll (design=randomized, key=key, out=rolled)

* Code the constant alternative;
data final;
set rolled;
if _alt_ = ’4’ then do; x1 =1; x2 =1; x3 =1; x4 =1; x5 =1, end;

run;

proc print; by set; id set; where set in (1, 100, 1000, 5000, 6561); run;
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The %MktKey macro produced the following data set, which we copied, pasted, and augmented to make
the Key data set.

x1 X2 x3 x4 x5
x1 x2 x3 x4 x5
x6 X7 x8 x9 x10

x11 x12 x13 x14 x15

Here are a few of the candidate choice sets.

Generic Chair Attributes

Set _Alt_ x1 x2 x3 x4 x5
1 1 2 1 1 2 3

2 3 3 1 1 1

3 2 2 1 1 3

4 1 1 1 1 1

100 1 1 2 1 2 1
2 2 3 3 2 1

3 2 2 3 3 2

4 1 1 1 1 1

1000 1 2 1 2 1 3
2 2 1 2 1 2

3 1 3 2 2 2

4 1 1 1 1 1

5000 1 3 1 3 2 3
2 3 3 3 3 2

3 1 2 1 2 3

4 1 1 1 1 1

6561 1 1 3 1 2 2
2 3 2 2 2 2

3 1 3 3 1 3

4 1 1 1 1 1

Next, we will then run the %ChoicEff macro, only this time we will specify nalts=4 instead of
flags=f1-f4. Since there are no alternative flag variables to count, we have to tell the macro how
many alternatives are in each choice set. We will also ask for fewer iterations since the candidate set
is large.

%choiceff (data=final, model=class(x1-x5), nsets=6, nalts=4, maxiter=10,
beta=zero, seed=109)



380 TS-722F — Discrete Choice

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Generic Chair Attributes

Design  Iteration D-Efficiency D-Error
1 0 0.536166 1.865093

1 0.848201 1.178966

2 0.872298 1.146398

3 0.872298 1.146398

Design Iteration D-Efficiency D-Error
5 0 0.529592 1.888245

1 0.836422 1.195568

2 0.861051 1.161372

3 0.898936 1.112426

4 0.904411 1.105692

5 0.904411 1.105692

Design  Iteration D-Efficiency D-Error
10 0 0.539774 1.852627

1 0.820582 1.218648

2 0.846874 1.180814

3 0.869219 1.150458

4 0.869219 1.150458



Chair Design with Generic Attributes 381
Generic Chair Attributes

Final Results

Design 5
Choice Sets 6
Alternatives 4
D-Efficiency 0.904411
D-Error 1.105692

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error
1 x11 x1 1 1.14609 1 1.07056
2 x12 x1 2 2.32530 1 1.52489
3 x21 x2 1 1.48741 1 1.21959
4 x22 x2 2 1.95354 1 1.39769
5 x31 x3 1 1.16334 1 1.07858
6 x32 x3 2 1.50116 1 1.22522
7 x41 x4 1 1.34713 1 1.16066
8 x42 x4 2 1.35845 1 1.16552
9 x51 x5 1 1.27405 1 1.12874
10 x52 x5 2 1.54939 1 1.24475

10

This design is less D-efficient than we found using the alternative-swapping algorithm, so we will not
use it.

Design Algorithm Comparisons

It is instructive to compare the three approaches outlined in this chapter in the context of this problem.
There are 33%° = 14, 348, 907 choice sets for this problem (three-level factors and 3 alternatives times 5
factors per alternative). If we were to use the pure linear design approach using the %MktEx macro, we
could never begin to consider all possible candidate choice sets. Similarly, with the choice-set-swapping
algorithm of the %ChoicEff macro, we could never begin to consider all possible candidate choice sets.
Furthermore, with the linear design approach, we could not create a design with six choice sets since
the minimum size is 2 x 1541 = 31. Now consider the alternative-swapping algorithm. It uses at most
a candidate set with only 244 observations (3° + 1). From it, every possible choice set can potentially
be constructed, although the macro will only consider a tiny fraction of the possibilities. Hence, the
alternative swapping will usually find a better design, because the candidate set does not limit it.

Both uses of the %ChoicEff macro have the advantage that they are explicitly minimizing the variances
of the parameter estimates given a model and a 3 vector. They can be used to produce smaller, more
specialized, and better designs. However, if the 3 vector or model is badly misspecified, the designs
could be horrible. How badly do things have to be misspecified before you will have problems? Who
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knows. More research is needed. In contrast, the linear model %MktEx approach is very conservative
and safe in that it should let you specify a very general model and still produce estimable parameters.
The cost is you may be using many more choice sets than you need, particularly for nonbranded generic
attributes. If you really have some information about your parameters, you should use them to produce
a smaller and better design. However, if you have little or no information about parameters and if you
anticipate specifying very general models like mother logit, then you probably want to use the linear
design approach.
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Initial Designs

This section illustrates some design strategies that involve improving on or augmenting initial designs.
We will not actually use any designs from this section.

Improving an Existing Design

Sometimes, it is useful to try to improve an existing design. In this example, we use the %MktEx macro
to create a design in 80 runs for 25 four-level factors. In the next step, we specify init=, and the macro
goes straight into the design refinement history seeking to refine the input design. You might want to
do this for example whenever you have a good, but not 100% D-efficient design, and you are willing to
wait a few minutes to see if the macro can make it any better.

title ’Try to Improve an Existing Design’;

%mktex(4 **x 25, n=80, seed=368)
Jmktex(4 ** 25, n=80, seed=306, init=design, maxtime=20)

Here is the D-efficiency of the final design from the first step.

Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 91.4106 83.9583 97.6073 0.9747

This is a large problem. One in which the maxtime= option may cause the macro to stop before it
reaches the maximum number of iterations. Running a second refinement step might help improve the
design by adding a few more iterations. Here are the results from the second step.

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes

0 Initial 91.4106 91.4106 Ini

1 Start 90.0771 Pre,Mut,Ann
1 End 91.3476



384

N NNDNDDNDDNDDNDDNDDNDNDDNDDNDNDNDNN

(o) I o) Ie) Bie))

NN NN NNNNNANNNNNNNNNN N

Start
36 12
56 6

13 10
23 18
17 16
34 6
b6 19
56 21
77 1
23 18
48 3
43 9
40 18

End

Start
63 19
68 18

End

Start
25 4
34 7
47 2
48 14
56 4
56 15
60 6
68
78 5
13 21
18 19
43 10
48 14
50 22

~

80 15
46 12
48 6

End

88.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.

90.
91.
91.
91.

89.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.

8927
4181
4285
4372
4373
4404
4445
4572
4673
4768
4821
4827
4848
4863
4863
4863

2194
5811
5835
5751

4607
5851
5902
5913
5930
5955
5999
6142
6172
6172
6249
6249
6249
6282
6408
6417
6430
6430
6430
6430

91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.

91.
91.

91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.
91.

4181
4285
4372
4373
4404
4445
4572
4673
4768
4821
4827
4848
4863
4863

5811
5835

5851
5902
5913
5930
5955
5999
6142
6172
6172
6249
6249
6249
6282
6408
6417
6430
6430
6430

TS-722F — Discrete Choice
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Initial Designs 385

10 Start 89.8707 Pre,Mut,Ann
10 End 91.6629

Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
1 91.7082 83.9853 97.5951 0.9747

The macro skips the normal first steps, algorithm search and design search, and goes straight into
the design refinement search. In this example a small improvement was found, although often, no
improvement is found.

When Some Choice Sets are Fixed in Advance

Sometimes certain runs or choice sets are fixed in advance and must be included in the design. The
#MktEx macro can be used to efficiently augment a starting design with other choice sets. Suppose
that you can make a choice design from the Lsg (2!13'2). In addition, you want to optimally add four
more choice sets to use as holdouts. First we will look at how to do this using the fixed= option. This
option can be used for fairly general design augmentation and refinement 