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he helped me in more ways than he could ever know. From graduate school at UNC, I would like to
thank Ron Helms, Keith Muller, and especially my advisor and mentor Forrest Young. From SAS, I
would like to thank Warren Sarle, Bob Rodriguez, and all of my colleagues in SAS/STAT Research
and Development. It is great to work with such a smart, talented, productive, and helpful group of
people. Finally, I would like to thank my mother, my late father, and my stepfather Ed, for being so
good to my Mom and for being such a wonderful grandfather to my children. Sadly, Ed passed away
after a lengthy illness just as I was finishing this edition. We all miss him very much. I dedicate this
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About this Edition

This edition is mostly a minor revision of the 2004 edition. Some new orthogonal arrays were added
and there are a few other changes to the %MktEx macro. The %MktEx macro has grown and evolved a
lot over the years. At first, %MktEx was going to be just a minor new design tool. Then it evolved to
be our main design work horse, incorporating PROC FACTEX, PROC OPTEX, the %MktDes macro,
and a great deal of new code. At that point, I envisioned it as a design solution not a design tool. I
thought people would just specify a factor list, the number of runs, and maybe some interactions, and
that would be it. %MktEx would do the rest with little user involvement. For many problems, I was
correct. However, what I did not envision at that point was how %MktEx would open up whole new
design frontiers, particularly in the area of large and highly-restricted designs. For those problems,
%MktEx became a tool and not a solution. It takes a sophisticated user, many options, and a potentially
complicated restrictions macro to make highly-restricted designs. Most of the new options in %MktEx
are designed to make that process easier. Still, many highly-restricted design problems are hard, and
I will continue to do what I can in future releases to make them easier.

The new %MktEx option, order=matrix=SAS-data-set, allows you to specify exactly what columns
are worked on in what order and in what groups. This can be very useful for certain highly-restricted
designs and designs with interactions. The init= data set is much more flexible now. You can initialize
any arbitrary part of the design and let %MktEx search for the rest. One way you can use this is when
you want to force perfect balance and orthogonality in certain specific factors. See page 390. The
%MktEx balance= option has changed with this release. It now has a stage, based on the new mintry=
option, where it just seeks to improve efficiency before imposing balance restrictions. This approach
seems to be superior to the old approach. Also, you can now differentially weight the contributors to
design badness when there are ad hoc restrictions and also balance= or partial= restrictions. Another
new option, repeat= gives you more control on the algorithm with restricted designs. When you specify
examine=i v the formatting for the information and variance matrices has been improved.

The %MktKey macro, which aids the creation of the Key data set, for use with the %MktRoll macro,
has been changed. You can still use it the way you always did, but now it can rearrange the list into
a matrix, and for simple generic designs, it can directly create the Key data set without cutting and
pasting and running a subsequent data step.

In this edition, the Experimental Design, Efficiency, Coding, and Choice Designs chapter on
pages 47-97 has been revised and some new material was added. If you are interested in choice modeling,
read this chapter first. Among other things, this chapter now has a complete choice modeling example,
from start to finish. Since it does not have all of the facets and nuances of the examples in the discrete
choice chapter, it should be better than those examples in helping you get started. A new section
starting on page 70 lists the steps in designing a choice experiment and analyzing choice data and
points you to all of the examples of each step in the discrete choice chapter.

In this edition, almost all of the examples have been modified to use the %ChoicEff macro to evaluate
the choice design under the assumption that β = 0. This is in addition to using the %MktEval macro
to evaluate the linear design. I really like the idea of using %ChoicEff specifying the most complicated
model that you intend to use to ensure that all the right parameters are estimable before you collect
any data.

The Food Product Example with Asymmetry and Availability Cross Effects example has
had an error in it from the start. Previous versions confused cross effects and availability cross effects.
That has been fixed with this edition. I apologize for the error.



A big part of this book is about experimental design. Efficient experimental-design software, like some
other search software, is notorious for not finding the exact same results if anything changes (operating
system, computer, SAS release, code version, compiler, math library, phase of the moon, and so on),
and %MktEx is no exception. It will find the same design if you specify a random number seed and run
the same macro over and over again on the same machine, but if you change anything, it might find a
different design. The algorithm is seeking to optimize an efficiency function. All it takes is one little
difference, such as two numbers being almost identical but different in the last bit, and the algorithm
can start down a different path. We expect as things change and the code is enhanced that the designs
will be similar. Sometimes two designs may even have the exact same efficiency, but they will not
be identical. %MktEx and other efficient design software take every step that increases efficiency. One
could conceive of an alternative algorithm that repeatedly evaluates every possible step and then takes
only the largest one with fuzzing to ensure proper tie handling. Such an algorithm would be less likely
to give different designs, but it would be much slower. Hence, we take the standard approach of using
a fast algorithm that makes great designs, but not always the same designs.

For many editions and with every revision, I regenerated every design, every sample data set, every bit
of output, and then made changes all over the text to refer to the new output. Many times I had to do
this more than once when a particularly attractive enhancement that changed the results occured to
me late in the writing cycle. It was difficult, tedious, annoying, error prone, and time consuming, and
it really did not contribute much to the book since you would very likely be running under a different
configuration than me and not get exactly the same answers as me, no matter what either you or I
did. Starting with the January 2004 edition, I said enough is enough! For many versions now, in the
accompanying sample code, I have hard-coded in the actual example design after the code so you could
run the sample and reproduce my results. I am continuing to do that, however I have not redone every
example. Expect to get similar but different results, and use the sample code if you want to get the
exact same design that was in the book. I would rather spend my time giving you new capabilities
than rewriting old examples that have not changed in any important way.

In this and every other edition, all of the data sets in the discrete choice and conjoint examples are
artificial. As a software developer, I do not have access to real data. Even if I did, it would be hard
to use since most of those chapters are about design. Of course the data need to come from people
making judgments based on the design. If I had real data in an example, I would no longer be able to
change and enhance the design strategy for that example. Many of the examples have changed many
times over the years as better design software and strategies became available. In this edition, like all
previous editions, the emphasis is on showing the best-known design strategies not on illustrating the
analysis of real data.

The orthogonal array catalog is now complete to the best of my knowledge up through 143 runs with
pretty good coverage from 144 to 513 runs. If you know of any orthogonal arrays that are not in it,
please e-mail Warren.Kuhfeld@sas.com. Also, if you know how to construct any of these difference
schemes, I would appreciate hearing from you: D(60, 36, 3), D(102, 51, 3), D(60, 21, 4), D(112, 64, 4),
D(30, 15, 5), D(35, 17, 5), D(40, 25, 5), D(55, 17, 5), D(60, 25, 5), D(65, 25, 5), D(85, 35, 5), D(48, 10,
6), D(60, 11, 6), D(84, 16, 6), D(35, 11, 7), D(42, 18, 7), D(63, 28, 7), D(70, 18, 7), D(40, 8, 10), D(30,
7, 15), D(21, 6, 21). The notation D(r, c, s) refers to an r× c matrix of order s. For the first time with
this release, the list of missing difference schemes does not contain any generalized Hadamard matrices.

I hope you like these enhancements. Feedback is welcome. Your feedback can help make these tools
better.
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Marketing Research:

Uncovering Competitive Advantages

Warren F. Kuhfeld

Abstract

SAS provides a variety of methods for analyzing marketing data including conjoint analysis, corre-
spondence analysis, preference mapping, multidimensional preference analysis, and multidimensional
scaling. These methods allow you to analyze purchasing decision trade-offs, display product positioning,
and examine differences in customer preferences. They can help you gain insight into your products,
your customers, and your competition. This chapter discusses these methods and their implementation
in SAS.∗

Introduction

Marketing research is an area of applied data analysis whose purpose is to support marketing decision
making. Marketing researchers ask many questions, including:

• Who are my customers?

• Who else should be my customers?

• Who are my competitors’ customers?

• Where is my product positioned relative to my competitors’ products?

• Why is my product positioned there?

• How can I reposition my existing products?

• What new products should I create?

• What audience should I target for my new products?

∗This is a minor modification of a paper that was presented to SUGI 17 by Warren F. Kuhfeld and to the 1992
Midwest SAS Users Group meeting by Russell D. Wolfinger. Copies of this chapter (TS-722A) and all of the macros are
available on the web http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Marketing researchers try to answer these questions using both standard data analysis methods, such
as descriptive statistics and crosstabulations, and more specialized marketing research methods. This
chapter discusses two families of specialized marketing research methods, perceptual mapping and
conjoint analysis. Perceptual mapping methods produce plots that display product positioning, product
preferences, and differences between customers in their product preferences. Conjoint analysis is used
to investigate how consumers trade off product attributes when making a purchasing decision.

Perceptual Mapping

Perceptual mapping methods, including correspondence analysis (CA), multiple correspondence analy-
sis (MCA), preference mapping (PREFMAP), multidimensional preference analysis (MDPREF), and
multidimensional scaling (MDS), are data analysis methods that generate graphical displays from data.
These methods are used to investigate relationships among products as well as individual differences
in preferences for those products.†

CA and MCA can be used to display demographic and survey data. CA simultaneously displays in a
scatter plot the row and column labels from a two-way contingency table (crosstabulation) constructed
from two categorical variables. MCA simultaneously displays in a scatterplot the category labels from
more than two categorical variables.

MDPREF displays products positioned by overall preference patterns. MDPREF also displays dif-
ferences in how customers prefer products. MDPREF displays in a scatter plot both the row labels
(products) and column labels (consumers) from a data matrix of continuous variables.

MDS is used to investigate product positioning. MDS displays a set of object labels (products) whose
perceived similarity or dissimilarity has been measured.

PREFMAP is used to interpret preference patterns and help determine why products are positioned
where they are. PREFMAP displays rating scale data in the same plot as an MDS or MDPREF plot.
PREFMAP shows both products and product attributes in one plot.

MDPREF, PREFMAP, CA, and MCA are all similar in spirit to the biplot, so first the biplot is
discussed to provide a foundation for discussing these methods.

The Biplot. A biplot (Gabriel, 1981) simultaneously displays the row and column labels of a data
matrix in a low-dimensional (typically two-dimensional) plot. The “bi” in “biplot” refers to the joint
display of rows and columns, not to the dimensionality of the plot. Typically, the row coordinates are
plotted as points, and the column coordinates are plotted as vectors.

Consider the artificial preference data matrix in Figure 1. Consumers were asked to rate their preference
for products on a 0 to 9 scale where 0 means little preference and 9 means high preference. Consumer
1’s preference for Product 1 is 4. Consumer 1’s most preferred product is Product 4, which has a
preference of 6.

†Also see pages 803 and 817.



TS-722A − Marketing Research: Uncovering Competitive Advantages 23

Consumer 1 Consumer 2 Consumer 3

Product 1
Product 2
Product 3
Product 4


4 1 6
4 2 4
1 0 2
6 2 8


Figure 1. Preference Data Matrix

Y
4 1 6
4 2 4
1 0 2
6 2 8



=

=

A
1 2
2 0
0 1
2 2



×

×

B′

[
2 1 2
1 0 2

]

Figure 2. Preference Data Decomposition

The biplot is based on the idea of a matrix decomposition. The (n×m) data matrix Y is decomposed
into the product of an (n× q) matrix A and a (q ×m) matrix B′. Figure 2 shows a decomposition of
the data in Figure 1.‡ The rows of A are coordinates in a two-dimensional plot for the row points in
Y, and the columns of B′ are coordinates in the same two-dimensional plot for the column points in
Y. In this artificial example, the entries in Y are exactly reproduced by scalar products of coordinates.
For example, the (1, 1) entry in Y is y11 = a11 × b11 + a12 × b12 = 4 = 1× 2 + 2× 1.

The rank of Y is q ≤ MIN(n, m). The rank of a matrix is the minimum number of dimensions that are
required to represent the data without loss of information. The rank of Y is the full number of columns
in A and B. In the example, q = 2. When the rows of A and B are plotted in a two-dimensional
scatter plot, the scalar product of the coordinates of a′i and b′j exactly equals the data value yij . This
kind of scatter plot is a biplot. When q > 2 and the first two dimensions are plotted, then AB′ is
approximately equal to Y, and the display is an approximate biplot.§ The best values for A and B, in
terms of minimum squared error in approximating Y, are found using a singular value decomposition
(SVD).¶ An approximate biplot is constructed by plotting the first two columns of A and B.

When q > 2, the full geometry of the data cannot be represented in two dimensions. The first two
columns of A and B provide the best approximation of the high dimensional data in two dimensions.
Consider a cloud of data in the shape of an American football. The data are three dimensional. The
best one dimensional representation of the data—the first principal component—is the line that runs
from one end of the football, through the center of gravity or centroid and to the other end. It is the
longest line that can run through the football. The second principal component also runs through the
centroid and is perpendicular or orthogonal to the first line. It is the longest line that can be drawn
through the centroid that is perpendicular to the first. If the football is a little thicker at the laces,
the second principal component runs from the laces through the centroid and to the other side of the
football. All of the points in the football shaped cloud can be projected into the plane of the first two
principal components. The resulting scatter plot will show the approximate shape of the data. The
two longest dimensions are shown, but the information in the other dimensions are lost. This is the
principle behind approximate biplots. See Gabriel (1981) for more information on the biplot.

‡Figure 2 does not contain the decomposition that would be used for an actual biplot. Small integers were chosen to
simplify the arithmetic.

§In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.
¶SVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition. SVD is closely

tied to the statistical method of principal component analysis.
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Figure 3. Multidimensional Preference Analysis

Multidimensional Preference Analysis. Multidimensional Preference Analysis (Carroll, 1972) or
MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate
their preference for a set of objects—products in marketing research.

Questions that can be addressed with MDPREF analyses include: Who are my customers? Who else
should be my customers? Who are my competitors’ customers? Where is my product positioned
relative to my competitors’ products? What new products should I create? What audience should I
target for my new products?

For example, consumers were asked to rate their preference for a group of automobiles on a 0 to 9 scale,
where 0 means no preference and 9 means high preference. Y is an (n×m) matrix that contains ratings
of the n products by the m consumers. Figure 3 displays an example in which 25 consumers rated
their preference for 17 new (at the time) 1980 automobiles. Each consumer is a vector in the space,
and each car is a point identified by an asterisk (*). Each consumer’s vector points in approximately
the direction of the cars that the consumer most preferred.

The dimensions of this plot are the first two principal components. The plot differs from a proper
biplot of Y due to scaling factors. At one end of the plot of the first principal component are the most
preferred automobiles; the least preferred automobiles are at the other end. The American cars on the
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average were least preferred, and the European and Japanese cars were most preferred. The second
principal component is the longest dimension that is orthogonal to the first principal component. In
the example, the larger cars tend to be at the top and the smaller cars tend to be at the bottom.

The automobile that projects farthest along a consumer vector is that consumer’s most preferred
automobile. To project a point onto a vector, draw an imaginary line through a point crossing the
vector at a right angle. The point where the line crosses the vector is the projection. The length of
this projection differs from the predicted preference, the scalar product, by a factor of the length of the
consumer vector, which is constant within each consumer. Since the goal is to look at projections of
points onto the vectors, the absolute length of a consumer’s vector is unimportant. The relative lengths
of the vectors indicate fit, with longer vectors indicating better fit. The coordinates for the endpoints
of the vectors were multiplied by 2.5 to extend the vectors and create a better graphical display. The
direction of the preference scale is important. The vectors point in the direction of increasing values of
the data values. If the data had been ranks, with 1 the most preferred and n the least preferred, then
the vectors would point in the direction of the least preferred automobiles.

Consumers 9 and 16, in the top left portion of the plot, most prefer the large American cars. Other
consumers, with vectors pointing up and nearly vertical, also show this pattern of preference. There is
a large cluster of consumers, from 14 through 20, who prefer the Japanese and European cars. A few
consumers, most notably consumer 24, prefer the small and inexpensive American cars. There are no
consumer vectors pointing through the bottom left portion of the plot between consumers 24 and 25,
which suggests that the smaller American cars are generally not preferred by any of these consumers.

Some cars have a similar pattern of preference, most notably Continental and Eldorado. This indicates
that marketers of Continental or Eldorado may want to try to distinguish their car from the competition.
Dasher, Accord, and Rabbit were rated similarly, as were Malibu, Mustang, Volare, and Horizon.
Several vectors point into the open area between Continental/Eldorado and the European and Japanese
cars. The vectors point away from the small American cars, so these consumers do not prefer the small
American cars. What car would these consumers like? Perhaps they would like a Mercedes or BMW.

Preference Mapping. Preference mapping‖ (Carroll, 1972) or PREFMAP plots resemble biplots,
but are based on a different model. The goal in PREFMAP is to project external information into a
configuration of points, such as the set of coordinates for the cars in the MDPREF example in Figure
3. The external information can aid interpretation.

Questions that can be addressed with PREFMAP analyses include: Where is my product positioned
relative to my competitors’ products? Why is my product positioned there? How can I reposition my
existing products? What new products should I create?

‖Preference mapping is sometimes referred to as external unfolding.



26 TS-722A − Marketing Research: Uncovering Competitive Advantages

Figure 4. Preference Mapping, Vector Model

The PREFMAP Vector Model. Figure 4 contains an example in which three attribute variables
(ride, reliability, and miles per gallon) are displayed in the plot of the first two principal components
of the car preference data. Each of the automobiles was rated on a 1 to 5 scale, where 1 is poor and
5 is good. The end points for the attribute vectors are obtained by projecting the attribute variables
into the car space. Orthogonal projections of the car points on an attribute vector give an approximate
ordering of the cars on the attribute rating. The ride vector points almost straight up, indicating that
the larger cars, such as the Eldorado and Continental, have the best ride. Figure 3 shows that most
consumers preferred the DL, Japanese cars, and larger American cars. Figure 4 shows that the DL and
Japanese cars were rated the most reliable and have the best fuel economy. The small American cars
were not rated highly on any of the three dimensions.

Figure 4 is based on the simplest version of PREFMAP—the vector model. The vector model operates
under the assumption that some is good and more is always better. This model is appropriate for
miles per gallon and reliability—the more miles you can travel without refueling or breaking down, the
better.
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Figure 5. Preference Mapping, Ideal Point Model

The PREFMAP Ideal Point Model. The ideal point model differs from the vector model, in that
the ideal point model does not assume that more is better, ad infinitum. Consider the sugar content of
cake. There is an ideal amount of sugar that cake should contain—not enough sugar is not good, and
too much sugar is also not good. In the cars example, the ideal number of miles per gallon and the
ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal point is
infinitely far away. This argument is less compelling for ride; the point for a car with smooth, quiet
ride may not be infinitely far away. Figure 5 shows the results of fitting an ideal point model for the
three attributes. In the vector model, results are interpreted by orthogonally projecting the car points
on the attribute vectors. In the ideal point model, Euclidean distances between car points and ideal
points are compared. Eldorado and Continental have the best predicted ride, because they are closest
to the ride ideal point. The concentric circles drawn around the ideal points help to show distances
between the cars and the ideal points. The numbers of circles and their radii are arbitrary. The overall
interpretations of Figures 4 and 5 are the same. All three ideal points are at the edge of the car points,
which suggests the simpler vector model is sufficient for these data. The ideal point model is fit with a
multiple regression model and some pre- and post-processing. The regression model uses the MDS or
MDPREF coordinates as independent variables along with an additional independent variable that is
the sum of squares of the coordinates. The model is a constrained response-surface model.
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The results in Figure 5 were modified from the raw results to eliminate anti-ideal points. The ideal
point model is a distance model. The rating data are interpreted as distances between attribute ideal
points and the products. In this example, each of the automobiles was rated on these three dimensions,
on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be—a
ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean
this car is different from a car with a good ride. So the raw coordinates must be multiplied by −1 to
get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for
the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the
possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative,
the two multiplications by −1 cancel, and the coordinates are ideal points. When the coefficient for
the sum-of-squares variable is positive, the coordinates are multiplied by −1 to get an ideal point.

Correspondence Analysis. Correspondence analysis (CA) is used to find a low-dimensional graphical
representation of the association between rows and columns of a contingency table (crosstabulation).
It graphically shows relationships between the rows and columns of a table; it graphically shows the
relationships that the ordinary chi-square statistic tests. Each row and column is represented by a
point in a Euclidean space determined from cell frequencies. CA is a popular data analysis method
in France and Japan. In France, CA analysis was developed under the strong influence of Jean-Paul
Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart, Morineau, and Warwick (1984);
Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi (1990); Greenacre and Hastie
(1987); and many other sources. Hoffman and Franke (1986) provide a good introductory treatment
using examples from marketing research.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should
be my customers? Who are my competitors’ customers? Where is my product positioned relative to
my competitors’ products? Why is my product positioned there? How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

MCA Example. Figure 6 contains a plot of the results of a multiple correspondence analysis (MCA)
of a survey of car owners. The questions included origin of the car (American, Japanese, European),
size of car (small, medium, large), type of car (family, sporty, work vehicle), home ownership (owns,
rents), marital/family status (single, married, single and living with children, and married living with
children), and sex (male, female). The variables are all categorical.

The top-right quadrant of the plot suggests that the categories single, single with kids, one income, and
renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are
associated. In the bottom-left quadrant you can see the association between being married, owning your
own home, and having two incomes. Having children is associated with owning a large American family
car. Such information can be used to identify target audiences for advertisements. This interpretation is
based on points being located in approximately the same direction from the origin and in approximately
the same region of the space. Distances between points are not interpretable in MCA.
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Figure 6. Multiple Correspondence Analysis
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Figure 7. MDS and PREFMAP

Multidimensional Scaling. Multidimensional scaling (MDS) is a class of methods for estimating
the coordinates of a set of objects in a space of specified dimensionality from data measuring the
distances between pairs of objects (Kruskal and Wish, 1978; Schiffman, Reynolds, and Young, 1981;
Young, 1987). The data for MDS consist of one or more square symmetric or asymmetric matrices of
similarities or dissimilarities between objects or stimuli. Such data are also called proximity data. In
marketing research, the objects are often products. MDS is used to investigate product positioning.

For example, consumers were asked to rate the differences between pairs of beverages. In addition,
the beverages were rated on adjectives such as Good, Sweet, Healthy, Refreshing, and Simple Tasting.
Figure 7 contains a plot of the beverage configuration along with attribute vectors derived through
preference mapping. The alcoholic beverages are clustered at the bottom. The juices and carbonated
soft drinks are clustered at the left. Grape and Apple juice are above the carbonated and sweet soft
drinks and are perceived as more healthy than the other soft drinks. Perhaps sales of these drinks
would increase if they were marketed as a healthy alternative to sugary soft drinks. A future analysis,
after a marketing campaign, could check to see if their positions in the plot change in the healthy
direction.
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Water, coffee and tea drinks form a cluster at the right. V8 Juice and Milk form two clusters of
one point each. Milk and V8 are perceived as the most healthy, whereas the alcoholic beverages are
perceived as least healthy. The juices and carbonated soft drinks were rated as the sweetest. Pepsi and
Coke are mapped to coincident points. Postum (a coffee substitute) is near Hot Coffee, Orange Soda
is near Orange Crush, and Lemon Koolaid is near Lemonade.

Geometry of the Scatter Plots. It is important that scatter plots displaying perceptual mapping
information accurately portray the underlying geometry. All of the scatter plots in this chapter were
created with the axes equated so that a centimeter on the y-axis represents the same data range as
a centimeter on the x-axis.∗∗ This is important. Distances, angles between vectors, and projections
are evaluated to interpret the plots. When the axes are equated, distances and angles are correctly
presented in the plot. When axes are scaled independently, for example to fill the page, then the correct
geometry is not presented. This important step of equating the axes is often overlooked in practice.

For MDPREF and PREFMAP, the absolute lengths of the vectors are not important since the goal
is to project points on vectors, not look at scalar products of row points and column vectors. It is
often necessary to change the lengths of all of the vectors to improve the graphical display. If all of
the vectors are relatively short with end points clustered near the origin, the display will be difficult
to interpret. To avoid this problem in Figure 3, both the x-axis and y-axis coordinates were multiplied
by the same constant, 2.5, to lengthen all vectors by the same relative amount. The coordinates must
not be scaled independently.

Conjoint Analysis

Conjoint analysis is used in marketing research to analyze consumer preferences for products and
services. See Green and Rao (1971) and Green and Wind (1975) for early introductions to conjoint
analysis and Green and Srinivasan (1990) for a recent review article.

Conjoint analysis grew out of the area of conjoint measurement in mathematical psychology. In its
original form, conjoint analysis is a main effects analysis-of-variance problem with an ordinal scale-
of-measurement dependent variable. Conjoint analysis decomposes rankings or rating-scale evaluation
judgments of products into components based on qualitative attributes of the products. Attributes
can include price, color, guarantee, environmental impact, and so on. A numerical utility or part-worth
utility value is computed for each level of each attribute. The goal is to compute utilities such that the
rank ordering of the sums of each product’s set of utilities is the same as the original rank ordering or
violates that ordering as little as possible.

When a monotonic transformation of the judgments is requested, a nonmetric conjoint analysis is
performed. Nonmetric conjoint analysis models are fit iteratively. When the judgments are not trans-
formed, a metric conjoint analysis is performed. Metric conjoint analysis models are fit directly with
ordinary least squares. When all of the attributes are nominal, the metric conjoint analysis problem
is a simple main-effects ANOVA model. The attributes are the independent variables, the judgments
comprise the dependent variable, and the utilities are the parameter estimates from the ANOVA model.
The metric conjoint analysis model is more restrictive than the nonmetric model and will generally
fit the data less well than the nonmetric model. However, this is not necessarily a disadvantage since
over-fitting is less of a problem and the results should be more reproducible with the metric model.

∗∗If the plot axes are not equated in this chapter, it is due to unequal distortions of the axes that occurred during the
final printing process.
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In both metric and nonmetric conjoint analysis, the respondents are typically not asked to rate all pos-
sible combinations of the attributes. For example, with five attributes, three with three levels and two
with two levels, there are 3×3×3×2×2 = 108 possible combinations. Rating that many combinations
would be difficult for consumers, so typically only a small fraction of the combinations are rated. It
is still possible to compute utilities, even if not all combinations are rated. Typically, combinations
are chosen from an orthogonal array which is a fractional-factorial design. In an orthogonal array, the
zero/one indicator variables are uncorrelated for all pairs in which the two indicator variables are not
from the same factor. The main effects are orthogonal but are confounded with interactions. These
interaction effects are typically assumed to be zero.

Questions that can be addressed with conjoint analysis include: How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

Consider an example in which the effects of four attributes of tea on preference were evaluated. The
attributes are temperature (Hot, Warm, and Iced), sweetness (No Sugar, 1 Teaspoon, 2 Teaspoons),
strength (Strong, Moderate, Weak), and lemon (With Lemon, No Lemon). There are four factors:
three with three levels and one with two levels. Figure 8 contains the results.††

Sweetness was the most important attribute (the importance is 55.795). This consumer preferred two
teaspoons of sugar over one teaspoon, and some sugar was preferred over no sugar. The second most
important attribute was strength (25.067), with moderate and strong tea preferred over weak tea. This
consumer’s most preferred temperature was iced, and no lemon was preferred over lemon.

Software

SAS includes software that implements these methods. SAS/STAT software was used to perform the
analyses for all of the examples. Perceptual mapping methods are described with more mathematical
detail starting on page 817.

Correspondence Analysis. The SAS/STAT procedure CORRESP performs simple and multiple
correspondence analysis and outputs the coordinates for plotting. Raw data or tables may be input.
Supplementary classes are allowed.

Multidimensional Preference Analysis. The SAS/STAT procedure PRINQUAL performs multidi-
mensional preference analysis and outputs the coordinates for plotting. Nonmetric MDPREF, with
transformations of continuous and categorical variables, is also available.

Preference Mapping. The SAS/STAT procedure TRANSREG performs preference mapping and
outputs the coordinates. Nonmetric PREFMAP, with transformations of continuous and categorical
variables, is also available.

Multidimensional Scaling. The SAS/STAT procedure MDS performs multidimensional scaling and
outputs the coordinates. Metric, nonmetric, two-way, and three-way models are available.

††See page 483 for more information on conjoint analysis. Note that the results in Figure 8 have been customized using
ODS. See page 485 for more information on customizing conjoint analysis output.
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Conjoint Analysis of Tea-Tasting Data

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Linear(subj2)

Univariate ANOVA Table Based on the Usual Degrees of Freedom

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 7 617.7222 88.24603 32.95 <.0001
Error 10 26.7778 2.67778
Corrected Total 17 644.5000

Root MSE 1.63639 R-Square 0.9585
Dependent Mean 12.16667 Adj R-Sq 0.9294
Coeff Var 13.44979

Utilities Table Based on the Usual Degrees of Freedom

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 12.1667 0.38570

Lemon: No 0.7222 0.38570 7.008
Lemon: Yes -0.7222 0.38570

Temperature: Hot 0.5000 0.54546 12.129
Temperature: Iced 1.0000 0.54546
Temperature: Warm -1.5000 0.54546

Sweetness: No Sugar -7.3333 0.54546 55.795
Sweetness: 1 Teaspoon 3.1667 0.54546
Sweetness: 2 Teaspoons 4.1667 0.54546

Strength: Moderate 1.8333 0.54546 25.067
Strength: Strong 1.5000 0.54546
Strength: Weak -3.3333 0.54546

Figure 8. Conjoint Analysis
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Scatter Plots. The Base SAS procedure PLOT can plot the results from these analyses and optimally
position labels in the scatter plot. PROC PLOT uses an algorithm, developed by Kuhfeld (1991), that
uses a heuristic approach to avoid label collisions. Labels up to 200 characters long can be plotted.

The %PlotIt macro, was used to create graphical scatter plots of labeled points. There are options
to draw vectors to certain symbols and draw circles around other symbols. This macro is in the SAS
autocall macro library. Also see page 803.

Conjoint Analysis. The SAS/STAT procedure TRANSREG can perform both metric and nonmetric
conjoint analysis. PROC TRANSREG can handle both holdout observations and simulations. Holdouts
are ranked by the consumers but are excluded from contributing to the analysis. They are used to
validate the results of the study. Simulation observations are not rated by the consumers and do
not contribute to the analysis. They are scored as passive observations. Simulations are what-if
combinations. They are combinations that are entered to get a prediction of what their utility would
have been if they had been rated. Conjoint analysis is described in more detail starting on page 483.

The %MktEx macro can generate orthogonal designs for both main-effects models and models with in-
teractions. Nonorthogonal designs—for example, when strictly orthogonal designs require too many
observations—can also be generated. Nonorthogonal designs can be used in conjoint analysis studies to
minimize the number of stimuli when there are many attributes and levels. This macro is in the SAS au-
tocall macro library and is also available free of charge on the web:
http://support.sas.com/techsup/tnote/tnote stat.html#market. Experimental design and the %MktEx
macro are described in more detail in starting on pages 47, 99, 121, 141, 483, 597, and 667.

Other Data Analysis Methods. Other procedures that are useful for marketing research include the
SAS/STAT procedures for regression, ANOVA, discriminant analysis, principal component analysis,
factor analysis, categorical data analysis, covariance analysis (structural equation models), and the
SAS/ETS procedures for econometrics, time series, and forcasting. Discrete choice data can be analyzed
with multinomial logit models using the PHREG procedure. Discrete choice is described in more detail
in starting on page 141.

Conclusions

Marketing research helps you understand your customers and your competition. Correspondence anal-
ysis compactly displays survey data to aid in determining what kinds of consumers are buying your
products. Multidimensional preference analysis and multidimensional scaling show product positioning,
group preferences, and individual preferences. Plots from these methods may suggest how to reposition
your product to appeal to a broader audience. They may also suggest new groups of customers to tar-
get. Preference mapping is used as an aid in understanding MDPREF and MDS results. PREFMAP
displays product attributes in the same plot as the products. Conjoint analysis is used to investigate
how consumers trade off product attributes when making a purchasing decision.

The insight gained from perceptual mapping and conjoint analysis can be a valuable asset in marketing
decision making. These techniques can help you gain insight into your products, your customers, and
your competition. They can give you the edge in gaining a competitive advantage.



Introducing the Market Research
Analysis Application

Wayne E. Watson

Abstract

Market research focuses on assessing the preferences and choices of consumers and potential consumers.
A new component of SAS/STAT software in Release 6.11 of the SAS System is an application written
in SAS/AF that provides statistical and graphical techniques for market research data analysis. The
application allows you to employ statistical methods such as conjoint analysis, discrete choice analysis,
correspondence analysis, and multidimensional scaling through intuitive point-and-click actions.∗

Conjoint Analysis

Conjoint analysis is used to evaluate consumer preference. If products are considered to be composed
of attributes, conjoint analysis can be used to determine what attributes are important to product
preference and what combinations of attribute levels are most preferred.

Usually, conjoint analysis is a main-effects analysis of variance of ordinally-scaled dependent variables.
Preferences are used as dependent variables, and attributes are used as independent variables. Often,
a monotone transformation is used with the dependent variables to fit a model with no interactions.

As an example, suppose you have four attributes that you think are related to automobile tire purchase.
You want to know how important each attribute is to consumers’ stated preferences for a potential tire
purchase. The four attributes under investigation are

• brand name

• expected tread mileage

• purchase price

• installation cost
The attributes of brand name, tread mileage, and purchase price have three possible values and instal-
lation cost has two values. The values for each attribute are:

∗For current documentation on the Market Research Application see SAS Institute Inc, Getting Started with The
Market Research Application, Cary, NC: SAS Institute Inc., 1997, 56 pp. This paper was written and presented at SUGI
20 (1995) by Wayne E. Watson. This paper was also presented to SUGI-Korea (1995) by Warren F. Kuhfeld. Wayne
Watson is a Research Statistician at SAS and wrote the Marketing Research Application which uses procedures and
macros written by Warren F. Kuhfeld. Copies of this chapter (TS-722B) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Figure 1. Selecting a Data Set and Analysis Figure 2. Conjoint Analysis Variable Selection

Brand: Michelin, Goodyear, Firestone
Tread Mileage: 40,000, 60,000, 80,000
Price: $45.00, $60.00, $75.00
Installation Cost: $0.00, $7.50

Seven respondents are asked to rank in order of preference 18 out of the possible 54 combinations.
Although rankings are used in this example, preference ratings are frequently used in conjoint analysis.

Invoking the Application. With the data in the SAS data set, SASUSER.TIRES, you can invoke the
Market Research application and perform a conjoint analysis. The application is invoked by issuing
the “market” command on any command line.

Selecting a Data Set and Analysis. The first window displayed requires you to select a data set and
an analysis. Because your data set is SASUSER.TIRES, select SASUSER as the library in the left-hand
list box and TIRES as the data set in the right-hand list box. Then, select an analysis by clicking
on the down arrow to the right of the analysis name field below the list boxes and select “Conjoint
Analysis” from the displayed popup menu. See Figure 1.

View the data by pressing the View Data button and then selecting “Data values.” The other selection
under the View Data button,“Variable attributes,” displays information about each variable.

Selecting Variables. To proceed with the analysis once you have selected a data set and an analysis,
press the OK button at the bottom of the window.

The analysis requires preference and attribute variables. The preference variables are the ranks from
the seven respondents and the attribute variables are the four factors. See Figure 2.

You can choose to perform a metric or a non-metric conjoint analysis; the metric analysis uses the
ranks as they are, while the non-metric analysis performs a monotone transformation on the ranks. To
set the measurement type for the preferences, click on the down arrow in the Preferences box at the
top right of the window. Select “Metric (reflected).” “Reflected” is used because the lowest rank value,
1, corresponds to the most preferred offering. If the highest preference value corresponded to the most
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preferred offering, the “Metric” selection should be used instead.

To select preference variables, select RANK1, RANK2, ... RANK7 in the Variables list box on the left
side of the window, and press the Preference button in the Variable Roles box.

Likewise, you must select a measurement type for the attribute variables you want to use. The default
measurement type for attributes is Qualitative, which treats the variable as a set of dummy variables
with the coefficients of the dummy variables summing to 0. In this way, the utility coefficients † of
each attribute sum to 0.

Use this measurement type for all four attribute variables, BRAND, MILEAGE, CHARGES, and
PRICE. After selecting these four variables in the Variables list box, press the Attribute button in the
Variable Roles box. Alternatively, you could use the “Continuous” measurement type for MILEAGE,
CHARGES, or PRICE because these attributes are quantitative in nature.

To delete one or more of the Preference or Attribute variables, either double-click on each one in the
appropriate right-hand list box or select them in any of the three list boxes and press the Remove
button.

To obtain help about the window, press the Help button at the bottom of the window or click on any
of the border titles on the window, for example, “Variables,” “Variable Roles,” “Preferences.”

Once the variables have been selected, press the OK button at the bottom of the window to perform
the analysis. To change the analysis, return to the Variable Selection window by pressing the Variables
button on the analysis main window.

Results. The first result is a plot of the relative importance of each attribute. Relative importance is
a measure of importance of the contribution of each attribute to overall preference; it is calculated by
dividing the range of utilities for each attribute by the sum of all ranges and multiplying by 100.

In the example, Tire Mileage is the most important attribute with an average relative importance
of 49%. The box-and-whisker plot displays the first and third quartiles as the ends of the box, the
maximum and minimum as the whiskers (if they fall outside the box), and the median as a vertical bar
in the interior of each box. See Figure 3.

To display a selection of additional results, press the Results button on the window. The first selection,
the Utilities Table window, displays the utility coefficients for each level of an attribute for all pref-
erences (the dependent variables). The relative importance of each attribute is displayed separately
for each preference variable. This table illustrates that BRAND is the most important attribute for
RANK1, the first respondent, and Michelin is the most preferred brand, because it has the highest
utility coefficient value. Thus, the first respondent preferred a 80,000 mile, $45 Michelin with no
installation charge.

After closing this window, you can view these results in graphical form by pressing the Results button
again and selecting “Utilities plots.” The plot of the Brand utilities indicates that one respondent
clearly prefers Michelin while the other respondents only mildly prefer one brand over another.

To change the plot from the BRAND to the MILEAGE attribute, select MILEAGE in the list box at
the right. All but one person prefer longer over shorter mileage tires, and that one prefers the 60,000
mile tire. You can examine plots for the PRICE and CHARGES attributes in the same way.

†Utility coefficients are estimates of the value or worth to a subject of each level of an attribute. The most preferred
combination of attributes for a subject is the one with the attribute levels having the highest utility coefficient values for
each attribute.
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Figure 3. Plot of Relative Importance of Attributes Figure 4. Estimating Market Share

Estimating Market Share. You also can calculate the expected market share for each tire purchase
alternative in the sample. To do so, press the Results button and select “Market Share Simulation.” The
entry in the table with the largest market share is the 80,000 mile, $45 Firestone with no installation
charge. It is expected to account for 42.9% of the market. The maximum utility simulation model,
the default, was used to calculate the market share. You can choose from two other models: the logit
model and the Bradley-Terry-Luce model. Click on the down arrow at the top of the window and select
the desired model from the displayed list. See Figure 4.

Only 18 of the 54 possible tire purchase combinations were presented to the respondents. You may
want to predict the expected market share of one or more of the combinations that were not present in
the sample. To do so, press the Add Row button at the bottom of the window and fill in the observation
in the top row of the table. Click on “-Select-” in each attribute column and select the desired level.
If the observation that you create is a duplicate, a warning message is displayed. You can modify the
contents of the Id column to contain a description of your own choice. After you have added some
combinations, you can produce the expected market shares by pressing the Rerun button.

As an example an 80,000 mile, $45 Michelin with no installation charges would be expected to have a
64.3% market share if it was the only combination added to the original sample. Adding combinations
may change the estimated market share of the other combinations.

Discrete Choice Analysis

Conjoint analysis is used to examine the preferences of consumers. The rationale for the use of prefer-
ences is that they indicate what people will choose to buy. Often in market research, the choices that
consumers actually make are the behavior of interest. In these instances, it is appropriate to analyze
choices directly using discrete choice analysis.

In discrete choice analysis, the respondent is presented with several choices and selects one of them.
As in conjoint analysis, the factors that define the choice possibilities are called attributes. Here, they
are called choice attributes to distinguish them from other factors, like demographic variables, that
may be of interest but do not contribute to the definition of the choices. Each set of possible choices
is called a choice set.
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Figure 5. Discrete Choice Analysis Variable Selection

This example has choice possibilities defined by two attributes, price and brand. Five choice alternatives
are presented at a time to a respondent, from which one alternative is chosen. Eight of these choice
sets are presented, each one with a different set of five combinations of price and brand.

To change to a different data set or analysis, select “File → New dataset/analysis” on the main analysis
window. Each time you change the data set or analysis or exit the application, you are asked if you
want save the changes that you have made during the session. On the data set selection window, select
the PRICE data set in the SASUSER library and then select “Discrete choice analysis.” To continue,
press the OK button.

With the other analyses in the application, you would be taken directly to the appropriate variable
selection window. With discrete choice analysis, a supplementary window is displayed to help you
determine if your data are in the appropriate form.

With discrete choice analysis, the structure of the data is important and must be in one of several
layouts. After specifying if your data are contained in one or two data sets and whether a frequency
variable is used, you can view the appropriate layout by pressing the Examine button. The most
important requirement of the data layout is that all choice alternatives must be included, whether
chosen or not.

If your data are not in the proper form, they must be rearranged before proceeding with the analysis.
If your data are in the proper form, continue with the analysis by pressing the OK button. If not, press
the Cancel button.

On the Variable Selection window that appears next, you must select several required variables: a
response variable, some choice attribute variables, and a subject variable. Optionally, you can also
choose a frequency variable and some non-choice attribute variables. If you select a frequency variable,
a subject variable is not necessary.

For this example, select CHOOSE as the response variable. You also must indicate which value of
the variable represents a choice. Click on the down arrow to the right of “Choice Value:” and select
1 from the list. In this example the value 1 indicates the chosen alternative and the value 0 indicates
the non-chosen alternatives. See Figure 5.
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Next, select PRICE and BRAND1, BRAND2, ..., BRAND4 as Choice attributes. BRAND is a nominal
variable with five levels. It can be represented as four dummy-coded variables. ‡

Select FREQ as the frequency variable. The frequency variable contains the count of the number of
times that a choice alternative was selected.

Because the data include more than one choice set, a Choice Set variable is needed; the choice set
variable in this example is SET. After selecting the appropriate variables, press the OK button to
perform the analysis.

On the analysis main window, a bar chart is displayed of the significances of each of the choice and
non-choice attributes. The chart illustrates that PRICE, BRAND1, BRAND2, and BRAND4 are
significant.

You can view other results by pressing the Results button and selecting “Statistics,” “Choice probabil-
ities,” or “Residual plots” from the ensuing menu. Overall model fit statistics and parameter estimates
for the attributes are available from the Statistics window. Probabilities for each choice alternative are
available from the Choice Probabilities window. Plots of residual and predicted values are available
from the Residual Plots window.

Correspondence Analysis

Categorical data are frequently encountered in the field of market research. Correspondence analysis
is a technique that graphically displays relationships among the rows and columns in a contingency
table. In the resulting plot there is a point for each row and each column of the table. Rows with
similar patterns of counts have points that are close together, and columns with similar patterns of
counts have points that are close together.

The CARS data set in the SASUSER library is used as an example (also described in the SAS/STAT
User’s Guide). The CARS data are a sample of individuals who were asked to provide information
about themselves and their cars. The pertinent questions for the example are country of origin of their
car and their family status.

Simple Correspondence Analysis. Simple correspondence analysis analyzes a contingency table made
up of one or more column variables and one or more row variables. To select a data set on which to
perform a correspondence analysis, select “File → New dataset/analysis” on the main analysis window.
First, select the CARS data set, then select “Correspondence analysis” as the analysis, and then press
the OK button.

This example uses raw variables instead of an existing table. The desired type of analysis (simple
correspondence analysis) and data layout (raw variables) are default selections on the Variable Selection
window. Select ORIGIN, the country of origin of the car, as the column variable and MARITAL, family
status, as the row variable to create the desired contingency table. See Figure 6.

‡Each dummy-coded variable has the value of 1 for a different level of the attribute. In this way, each dummy-coded
variable represents the presence of that level and the absence of the other levels.
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Figure 6. Simple Correspondence Analysis
Variable Selection

Figure 7. Correspondence Analysis Plot

Plot. The plot displays the column points and row points. The first example in the SAS/STAT
User’s Guide provides an interpretation of the plot. The interpretation has two aspects: what each
dimension represents and what the relationship of the points in the dimensional space represents. An
interpretation of the vertical dimension is that it represents the country of origin of the cars, with
most of the influence coming from whether the car is American or Japanese. The horizontal dimension
appears to represent “Single with kids” versus all of the other values. See Figure 7.

Although the row and column points are spread throughout the plot, “married” and “single” appear
to be slightly more similar to each other than any of the other points. Keep in mind that distances
between row and column points cannot be compared, only distances among row points and distances
among column points. However, by treating the country-of-origin points as lines drawn from the 0,0
point and extending off the graph, you can see that the “Married with kids” point is closest to the
American car line and the “Single” point is closest to the Japanese car line.

Plot Controls. To enlarge the plot, click on the up arrow in the zoom control box. To return the plot
to its zero zoom state, click on the [0] button. If the plot is zoomed, you can move the plot left and
right and up and down using the scroll bars.

Results. You can view other results by pressing the Results button and selecting “Inertia table,”
“Statistics,” or “Frequencies.” The Inertia Table window lists the singular values and inertias for all
possible dimensions in the analysis. The Statistics window displays tables of statistics that aid in
the interpretations of the dimensions and the points: the row and column coordinates, the partial
contributions to inertia, and the squared cosines. The Frequency Table window displays observed,
expected, and deviation contingency tables and row and column profiles.
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Multiple Correspondence Analysis. In a multiple correspondence analysis, only column variables
are used. They are used to create a Burt table § which is then used in the analysis.

The same data set can be used to illustrate multiple correspondence analysis. Return to the Variables
Selection window by pressing the Variables button on the main analysis window. See Figure 8. Perform
the following steps:

1. Remove the current column and row variables either by double-clicking on them or by selecting
them and pressing the Remove button.

2. Select “Multiple Correspondence Analysis” in the Type of Analysis box in the upper left of the
window.

3. Select the column variables ORIGIN, TYPE, SIZE, HOME, SEX, INCOME, and MARITAL by
clicking on the ORIGIN variable and dragging through the list to the MARITAL variable, then
press the Column button.

4. Press the OK button to perform the analysis.

Figure 8. Multiple Correspondence Analysis Variable Selection

The distances between points of different variables can be interpreted in multiple correspondence anal-
ysis because they are all column points. However, the multiple correspondence analysis example has
more dimensions (12) to interpret and examine than the single correspondence analysis example (2).
The total number of dimensions can be examined in the inertia table, which is accessed from the Results
button.

By default, a two-dimensional solution is computed. To request a higher dimensional solution, open
the Variable Selection window, press the Options button, and select (or enter) the desired number of
dimensions.

If you request a three-dimensional (or higher) solution, you can plot the dimensions two at a time by
pressing the Plot button and selecting dimensions for the x axis and the y axis.

§A Burt table is a partitioned symmetric matrix containing all pairs of crosstabulations among a set of categorical
variables. For further explanation, see the SAS/STAT User’s Guide
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Figure 9. MDPREF Analysis Variable Selection Figure 10. MDPREF Plot

Multidimensional Preference Analysis

With conjoint analysis, respondents indicate their preferences for products that are composed of at-
tributes determined by the experimenter. Sometimes, the data of interest may be preferences of existing
products for which relevant attributes are not defined for the respondent. Multidimensional preference
analysis (MDPREF) is used to analyze such data.

MDPREF is a principal component analysis of a data matrix whose columns correspond to people
and whose rows correspond to objects, the transpose of the usual people by objects multivariate data
matrix.

The CARPREF data set in the SASUSER library is used as an example (also described in the
SAS/STAT User’s Guide. It contains data about the preferences of 25 respondents for 17 cars. The
preferences are on a scale of 0 to 9 with 0 meaning a very weak preference and 9 meaning a very strong
preference. Select the data set and analysis as described in the preceding examples.

As in conjoint analysis, you can choose to perform a metric or non-metric analysis. Choose the mea-
surement type by clicking the arrow in the upper right corner of the window and selecting the desired
type. Other, less frequently used, types are available under the “Other” selection. The measurement
type is used for all subsequently selected Subject variables. Infrequently, subject variables with different
types may be used.

For the example, use the Metric measurement type. Select the preference ratings of each respondent,
JUDGE1, JUDGE2, ..., JUDGE25, as Subject variables. Also, select MODEL as the Id variable. See
Figure 9.

You also can set the number of dimensions for the analysis; the default is two. A scree plot of the
eigenvalues is useful in determining an appropriate number of dimensions. To display the scree plot,
press the Scree Plot button. The plot illustrates that the magnitude of the eigenvalues falls off for
the first two dimensions; then the plot flattens out for the third and remaining dimensions. From this
graph, two dimensions appear appropriate. After closing the Scree Plot window, press the OK button
to perform the analysis. See Figure 10.
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Figure 11. MDS Variable Selection

Results. The plot on the main analysis window contains points for the 17 car models and vectors
for the 25 respondents. Interpretations of the two dimensions are 1) the vertical dimension separates
foreign and domestic cars in the upper half and lower half, respectively, and 2) the horizontal dimension
separates small cars and big cars in the left and right halves, respectively. Respondents prefer cars
whose points are closest to their vector. Notice that there are a number of vectors in the upper right
quadrant of the plot but there are no cars. This lack of available products to satisfy peoples’ preferences
indicates a possible niche to fill.

Other results are the “Initial Eigenvalue Plot,” “Final Eigenvalue Plot,” and “Configuration Table.”
The Initial Eigenvalue plot is the same as the scree plot on the Variable Selection window. The Final
Eigenvalue plot is also a scree plot; it differs from the initial plot only if a measurement type other
than Metric is used. The Configuration Table contains the coordinates for the car points.

Multidimensional Scaling

Multidimensional Scaling (MDS) takes subjects’ judgments of either similarity or difference of pairs of
items and produces a map of the perceived relationship among items.

For example, suppose you ask seven subjects to state their perceived similarity on a 1 to 7 scale for pairs
of beverages, with 1 meaning very similar and 7 meaning very different. The beverages are milk, coffee,
tea, soda, juice, bottled water, beer, and wine. Someone may state that their perceived similarity
between coffee and tea is 3, somewhat similar, or 7, very different. There are 28 possible pairs of these
eight beverages.

The data are ordered in an eight observation by eight variable matrix with one matrix (eight obser-
vations) for each subject. On the Data Set Selection window, select the BEVERAGE data set in the
SASUSER library, then press the OK button. A message window informs you that MDS requires either
similarity or distance data. Press the Continue button.

On the Variables Selection window, select the variables MILK, COFFEE, TEA, SODA, JUICE, BOT-
WATER, BEER, AND WINE as the objects. See Figure 11. It is crucial that the order of the objects
is the same as their order in the rows of each matrix. In other words, from the above order, the upper
left corner element in the matrix is MILK, MILK (which has a distance of zero) and the element to its
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Figure 12. MDS Coordinates Plot Figure 13. MDS Individual Coefficients Plot

right is MILK, COFFEE.

Also, select BEVERAGE, the beverage names, as the ID variable and NAME, the subject identifiers,
as the SUBJECT variable. Because the objects are ordinally-scaled, the ordinal measurement level,
the default, is appropriate for this example.

If you think that your subjects may use different perceptual schemes for judging similarity, you can
choose to perform an individual differences analysis. Press the Options button and select “Individual
Differences Analysis.” The data are distances, the default, because larger numbers represent more
difference (less similarity). If the data were similarities, you would choose the appropriate selection on
the Options window. To close the options window, press the OK button.

As in correspondence analysis and MDPREF analysis, you can set the number of dimensions for the
solution. With MDS you have an extra capability; you can solve for several dimensional solutions in
one analysis.

Choose a three-dimensional solution by entering a “3” in the input field to the right of the “From:”
label or by clicking on the up arrow to its right until the number 3 appears in the input field. As with
the other dimensional analyses, a scree plot may be useful in determining the appropriate number of
dimensions. You can create the plot by pressing the Scree Plot button.

To continue with the analysis, press the OK button on the Variable Selection window.

Results. As with the correspondence analysis and MDPREF plots, interpreting the MDS plot has two
parts: 1) finding a reasonable interpretation for each of the plot dimensions, and 2) finding a reasonable
interpretation of the relationship of the points in the plot. See Figure 12.

The presence of bottled water, milk, and juice at the top of the plot and wine, beer, and coffee
at the bottom of the plot might indicate a good for you/not so good for you interpretation for the
vertical dimension, Dimension 1. The horizontal dimension, Dimension 2, does not have as clear an
interpretation. Try to come up with your own interpretation that would have tea, coffee, and water on
one side and juice, beer, and wine on the other.
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Because you requested a three-dimensional solution, two other plots can be displayed: Dimensions 1
and 3 and Dimensions 2 and 3. To change which dimensions are plotted, press the Plot button and
select the desired dimensions. Also, on this window you can choose to display the coefficients of the
individual differences analysis instead of the coordinates. To do so, select “Coefficient” at the bottom
of the window and press the OK button.

In an individual differences analysis, there is a common perceptual map for all subjects, but different
subjects have different weights for each dimension. See Figure 13. SUBJ4 is found to be highest on the
vertical axis and lowest on the horizontal axis. In other words, SUBJ4 weights whatever this dimension
represents more than do the other subjects and it weights whatever dimension 2 represents less than
the other subjects. If the good-for-you interpretation is appropriate for Dimension 1, then it plays a
larger role in SUBJ4’s perceptual mapping of these beverages than it does for other subjects.

It is possible that SUBJ1, SUBJ2, SUBJ3, SUBJ6, and SUBJ7 may cluster together and SUBJ4 and
SUBJ5 may be outliers. Additional subjects may sharpen this possible clustering or eliminate it. MDS
is useful in market research for discovering possible perceptual perspectives used by consumers and for
revealing possible market segments.

You can display other results by pressing the Results button. These results include Fit statistics,
Configuration tables, Residual plots, and the Iteration history. The fit statistics are measures of how
well the data fit the model. The Configuration tables contain the coordinates and, optionally, the
individual difference coefficients that are used in the plots. The Residual plots allow you to assess the
fit of the model graphically. The iteration history contains information about how many iterations
were needed and how the criterion changed over the iterations.

Summary

Investigators in the field of market research are interested in how consumers make decisions when they
choose to buy products. What attributes are important? Do all people make decisions in the same
way? If not, how do they differ? What are the perceptual schemes that people use in their purchasing
decisions?

The analyses described in this paper can be used with many different types of data to investigate these
questions. The Market Research application makes these analyses easy to use, and it is available in
Release 6.11 and subsequent releases with the SAS/STAT product.
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Experimental Design, Efficiency,
Coding, and Choice Designs

Warren F. Kuhfeld

Abstract

This chapter discusses some of the fundamental concepts in marketing research experimental design
including standard factorial designs, orthogonal arrays, nonorthogonal designs, and choice and conjoint
designs. Design terminology is introduced, design efficiency is explained, and the process of going from
an efficient linear design to a choice design is explained. You should be familiar with the concepts in
this chapter before studying the conjoint or discrete choice chapters. After you are comfortable with
the material in this chapter, it would be good to also look at the design chapters starting on pages 99
and 121 as well.∗

Introduction

Experimental designs are fundamental components of marketing research, conjoint analysis, and choice
modeling. An experimental design is a plan for running an experiment. The factors of an experimental
design are the columns or variables that have two or more fixed values, or levels. The rows of a design
are sometimes called runs and correspond to product profiles. Experiments are performed to study
the effects of the factor levels on the dependent or response variable. The factors are the attributes of
the hypothetical products or services. In a discrete-choice study, the rows of the design correspond to
product alternatives, and blocks of several rows comprise a set of products and are called choice sets.
The dependent variable or response is choice. In a conjoint study, the rows of the design correspond
to products, and the dependent variable or response is a rating or a ranking of the products. See page
483 for an introduction to conjoint analysis and page 144 for an introduction to choice models. The
next two sections show simple examples of conjoint and choice experiments.

∗Copies of this chapter (TS-722C), the other chapters, and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market. This chapter is based on the tutorial that Don Anderson
and I have given for many years at the American Marketing Association’s Advanced Research Techniques Forum. Be
forewarned that this chapter still contains some of the occasional silliness that is in the tutorial.
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The Basic Conjoint Experiment

A conjoint study uses experimental design to create a list of products, and subjects rate or rank the
products. Here is a conjoint design and the layout of a simple conjoint experiment with two factors. In
a real experiment, the product descriptions would be more involved and may use art or pictures, but
the basic experiment involves people seeing products and rating or ranking them. The brand factor
has three levels, Acme, Ajax, and Widget, and the price factor has two levels, $1.99 and $2.99. There
are a total of six products.

Conjoint Design
Acme $1.99
Acme $2.99
Ajax $1.99
Ajax $2.99
Widget $1.99
Widget $2.99

Full-Profile Conjoint Experiment

Acme $1.99

Acme $2.99

Ajax $1.99

Ajax $2.99

Widget $1.99

Widget $2.99

Rate Your
Purchase Interest

The Basic Choice Experiment

A discrete choice study uses experimental design to create sets of products, and subjects choose a
product from each set. Here is a choice design and the layout of a simple choice experiment. In a real
experiment, the product descriptions would be more involved and they may use art or pictures, but the
basic experiment involves people seeing sets of products and making choices. This example has four
choice sets, each composed of three alternative products, so subjects would make four choices. Each
alternative is composed of two factors: brand has three levels, and price has two levels.

Choice Design
1 Acme $2.99

Ajax $1.99
Widget $1.99

2 Acme $2.99
Ajax $2.99
Widget $2.99

3 Acme $1.99
Ajax $1.99
Widget $2.99

4 Acme $1.99
Ajax $2.99
Widget $1.99

Discrete Choice Experiment
1

Acme $2.99

Acme $2.99

Acme $1.99

Acme $1.99

2
Ajax $1.99

Ajax $2.99

Ajax $1.99

Ajax $2.99

3
Widget $1.99

Widget $2.99

Widget $2.99

Widget $1.99

Choice



TS-722C − Experimental Design, Efficiency, Coding, and Choice Designs 49

Experimental Design Terminology

Here again is the conjoint design but presented in three forms. The following tables contain a “raw”
experimental design with two factors, the same design with factor names and levels assigned, and a
randomized version of the raw design.

Full-Factorial
Design

x1 x2
1 1
1 2
2 1
2 2
3 1
3 2

Full-Profile
Conjoint Design
Brand Price
Acme 1.99
Acme 2.99
Ajax 1.99
Ajax 2.99
Widget 1.99
Widget 2.99

Randomized
Design

x1 x2
2 2
1 1
1 2
3 1
3 2
2 1

This is an example of a full-factorial design. It consists of all possible combinations of the levels of the
factors. Full-factorial designs allow you to estimate main effects and interactions. A main effect is a
simple effect, such as a price or brand effect. In a main effects model, for example, the brand effect is
the same at the different prices and the price effect is the same for the different brands. Interactions
involve two or more factors, such as a brand by price interaction. In a model with interactions, for
example, brand preference is different at the different prices and the price effect is different for the
different brands. In Figure 1, there is a main effect for price, and utility increases by one when price
goes from $2.99 to $1.99 for all brands. Similarly, the change in utility from Acme to Ajax to Widget
does not depend on price. In contrast, there are interactions in Figure 2, so the price effect is different
depending on brand, and the brand effect is different depending on price.

Before an experimental design is used, it should be randomized. This involves sorting the rows into a
random order and randomly reassigning all of the factor levels. It is not unusual, for example, for the

Figure 1 Figure 2
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first row of a design to contain all ones, the first level. Randomization takes care of this by mixing
things up. It also eliminates showing all of one brand, then all of the next, and so on. Randomization
for example will change levels (1 2 3) to one of the following: (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2),
(3 2 1).

In a full-factorial design, all main effects, all two-way interactions, and all higher-order interactions
are estimable and uncorrelated. The problem with a full-factorial design is that, for most practical
situations, it is too cost-prohibitive and tedious to have subjects consider all possible combinations.
For example, with five factors, two at four levels and three at five levels (denoted 4253), there are
4 × 4 × 5 × 5 × 5 = 2000 combinations in the full-factorial design. For this reason, researchers often
use fractional-factorial designs, which have fewer runs than full-factorial designs. The price of having
fewer runs is that some effects become confounded. Two effects are confounded or aliased when they
are not distinguishable from each other. This means that lower-order effects such as main effects or
two-way interactions may be aliased with higher order interactions in most of our designs. We estimate
lower-order effects by assuming that higher-order effects are zero or negligible. See page 306 for an
example of aliasing.

Fractional-factorial designs that are both orthogonal and balanced are of particular interest. A design
is balanced when each level occurs equally often within each factor, which means that the intercept
is orthogonal to each effect. When every pair of levels occurs equally often across all pairs of factor,
the design is said to be orthogonal. Another way in which a design can be orthogonal is when the
frequencies for level pairs are proportional instead of equal. For example, with 2 two-level factors,
an orthogonal design could have pair-wise frequencies proportional to 2, 4, 4, 8. Such a design will
not be balanced−one level will occur twice as often as the other. Imbalance is a generalized form of
nonorthogonality, hence it increases the variances of the parameter estimates and decreases efficiency.

Fractional-factorial designs are categorized by their resolution. The resolution identifies which effects,
possibly including interactions, are estimable. For example, for resolution III designs, all main effects
are estimable free of each other, but some of them are confounded with two-factor interactions. For
resolution IV designs, all main effects are estimable free of each other and free of all two-factor in-
teractions, but some two-factor interactions are confounded with other two-factor interactions. For
resolution V designs, all main effects and two-factor interactions are estimable free of each other. More
generally, if resolution (r) is odd, then effects of order e = (r − 1)/2 or less are estimable free of each
other. However, at least some of the effects of order e are confounded with interactions of order e + 1.
If r is even, then effects of order e = (r − 2)/2 are estimable free of each other and are also free of
interactions of order e + 1. Higher resolutions require larger designs. Resolution III fractional-factorial
designs are frequently used in marketing research.

A special type of factorial design is the orthogonal array. An orthogonal array or orthogonal design is
one in which all estimable effects are uncorrelated. Orthogonal arrays come in specific numbers of runs
for specific numbers of factors with specific numbers of levels. Here is a list of all orthogonal arrays up
to 28 runs. The list shows the number of runs followed by the design, in notation: levels raised to the
number-of-factors power.
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4 23

6 2131

8 27

2441

9 34

10 2151

12 211

2431

2261

3141

14 2171

15 3151

16 215

21241

2942

2881

2643

2344

45

18 2137

2191

3661

20 219

2851

22101

4151

21 3171

22 21111
24 223

22041

21631

21461

2133141

212121

2114161

3181

25 56

26 21131

27 313

3991

28 227

21271

22141

4171

An orthogonal array is both balanced and orthogonal, and hence 100% efficient and optimal. Efficiency,
which is explained starting on page 53, is a measure of the goodness of the experimental design. The
term “orthogonal array,” as it is sometimes used in practice, is imprecise. It is correctly used to refer
to designs that are both orthogonal and balanced, and hence optimal. However, the term is sometimes
also used to refer to designs that are orthogonal but not balanced, and hence not 100% efficient and
sometimes not even optimal. Orthogonal designs are often practical for main-effects models when the
number of factors is small and the number of levels of each factor is small. However, there are some
situations in which orthogonal designs are not practical, such as when

• not all combinations of factor levels are feasible or make sense

• the desired number of runs is not available in an orthogonal design

• a nonstandard model is being used, such as a model with interactions, polynomials, or splines.

When an orthogonal and balanced design is not practical, you must make a choice. One choice is to
change the factors and levels to fit some known orthogonal design. This choice is undesirable for obvious
reasons. When a suitable orthogonal and balanced design does not exist, efficient nonorthogonal designs
can be used instead. Nonorthogonal designs, where some coefficients may be slightly correlated, can
be used in all of the situations listed previously. You do not have to adapt every experiment to fit
some known orthogonal array. First you choose the number of runs. You are not restricted by the
sizes of orthogonal arrays, which come in specific numbers of runs for specific numbers of factors with
specific numbers of levels. Then you specify the levels of each of the factors and the number of runs.
Algorithms for generating efficient designs select a set of design points from a set of candidate points,
such as a full factorial, that optimize an efficiency criterion. Throughout this book, we will use the
%MktEx macro to find good, efficient experimental designs. The %MktEx macro is a part of the SAS
autocall library. See page 597 for information on installing and using SAS autocall macros.
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Eigenvalues, Means, and Footballs

The next section will discuss experimental design efficiency. To fully understand that section, you need
some basic understanding of eigenvalues, and various types of means or averages. This section explains
these and other concepts, but without a high degree of mathematical rigor. An American football
provides a nice visual image for understanding the eigenvalues of a matrix.

The rows or columns of a matrix can be thought of as a swarm of points in Euclidean space. Similarly,
a football consists of a set of points in a space. Sometimes, it is helpful to get an idea of the size of
your group of points. For a football, you might think of three measures because a football is a three-
dimensional object: the longest length from end to end, the height in the center and perpendicular to
the length, and finally the width, which for a fully-inflated football is the same as the height. One can
do similar things for matrices, and that’s where eigenvalues come in. For many of us, eigenvalues are
most familiar from factor analysis and principal component analysis. In principal component analysis,
one rotates a cloud of points to a principal axes orientation, just as this football has been rotated
so that its longest dimension is horizontally displayed. The principal components correspond to: the
longest squared length, the second longest squared length perpendicular or orthogonal to the first, the
third longest squared length orthogonal to the first two, and so on. The eigenvalues are the variances
of the principal components and are proportional to squared lengths. The eigenvalues provide a set of
measures of the size of a matrix, just as the lengths provide a set of measures of the size of a football.

Here is a small experimental design, the coded design X, the sum of squares and cross products matrix
X′X, the matrix inverse (X′X)−1, and the eigenvalues of the inverse, Λ.

Design
1 1 1
1 2 2
1 2 2
2 1 2
2 2 1
2 2 1

X
1 1 1 1
1 1 -1 -1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1
1 -1 -1 1

X′X
6 0 -2 0
0 6 0 -2

-2 0 6 0
0 -2 0 6

(X′X)−1

0.188 0.000 0.063 0.000
0.000 0.188 0.000 0.063
0.063 0.000 0.188 0.000
0.000 0.063 0.000 0.188

Λ
1/4 0 0 0

0 1/4 0 0
0 0 1/8 0
0 0 0 1/8
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X is made from the raw design by coding, which in this case simply involves creating an intercept and
appending the design, replacing 2 with -1. See page 64 for more on coding. The X′X matrix comes from
a matrix multiplication of the transpose of X times X. For example the -2 in the first row comes from
x′1x3 = (1 1 1 1 1 1)′(1 -1 -1 1 -1 -1) = 1×1+1×−1+1×−1+1×1+1×−1+1×−1 = −2.
Explaining the computations involved in finding the matrix inverse and eigenvalues is beyond the scope
of this chapter, however, they are explained in many linear algebra and multivariate statistics texts.

The trace is the sum of the diagonal elements of a matrix, which for (X′X)−1 is both the sum of the
variances and the sum of the eigenvalues: trace ((X′X)−1) = trace (Λ) = 0.188+0.188+0.188+0.188 =
1/4 + 1/4 + 1/8 + 1/8 = 0.75. The determinant of (X′X)−1, denoted |(X′X)−1|, is the product of the
eigenvalues and is 0.0009766: |(X′X)−1| = |Λ| = 1/4× 1/4× 1/8× 1/8 = 0.0009766. The determinant
of a matrix is geometrically interpreted in terms of the volume of the space defined by the matrix.
The formula for the determinant of a nondiagonal matrix is complicated, so determinants are more
conveniently expressed as a function of the eigenvalues.

Given a set of eigenvalues, or any set of numbers, we frequently want to create a single number that
summarizes the values in the set. The most obvious way to do this is to compute the average or
arithmetic mean. The familiar arithmetic mean is found by adding together p numbers and then
dividing by p. A trace, divided by p, is an arithmetic mean. The arithmetic mean is an enormously
popular and useful statistic, however it is not the only way to average numbers. The less familiar
geometric mean is found by multiplying p numbers together and then taking the pth root of the
product. The pth root of a determinant is a geometric mean of eigenvalues. To better understand the
geometric mean, consider an example. Say your investments increased by 7%, 5%, and 12% over a
three year period. The arithmetic mean of these numbers, (7 + 5 + 12)/3 = 8%, is not the average
increase that would have come if the investments had increased by the same amount every year. To
find that average, we need the geometric mean: (1.07× 1.05× 1.12)1/3 = 1.0796. The average increase
is 7.96%.

Experimental Design Efficiency

This section discusses precisely what is meant by an efficient design. While this section is important,
it is not critical that you understand every mathematical detail. The concepts are explained again
in a more intuitive and less mathematical way in the next section. Also, refer to page 99 for more
information on efficient experimental designs.

The goodness or efficiency of an experimental design can be quantified. Common measures of the
efficiency of an (ND × p) design matrix X are based on the information matrix X′X. The variance-
covariance matrix of the vector of parameter estimates β̂ in a least-squares analysis is proportional
to (X′X)−1. An efficient design will have a “small” variance matrix, and the eigenvalues of (X′X)−1

provide measures of its “size.” The two most prominent efficiency measures are based on quantifying
the idea of matrix size by averaging (in some sense) the eigenvalues or variances.

A-efficiency is a function of the arithmetic mean of the eigenvalues, which is also the arithmetic mean
of the variances, and is given by trace ((X′X)−1)/p. A-efficiency is perhaps the most obvious measure
of efficiency. As the variances get smaller and the arithmetic mean of the variances of the parameter
estimates goes down, A-efficiency goes up. However, as we learned in the previous section, there
are other averages that we might consider. D-efficiency is a function of the geometric mean of the
eigenvalues, which is given by |(X′X)−1|1/p. Both D-efficiency and A-efficiency are based on the idea of
average variance, but in different senses of the word “average.” We will usually use D-efficiency for two
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reasons. It is the easier and faster of the two for a computer program to optimize. Furthermore, relative
D-efficiency, the ratio of two D-efficiencies for two competing designs, is invariant under different coding
schemes. This is not true with A-efficiency. A third common efficiency measure, G-efficiency, is based
on σM , the maximum standard error for prediction over the candidate set. All three of these criteria
are convex functions of the eigenvalues of (X′X)−1 and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency;
conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design
is balanced and orthogonal when (X′X)−1 is diagonal and equals 1

ND
I for a suitably coded X. A

design is orthogonal when the submatrix of (X′X)−1, excluding the row and column for the intercept,
is diagonal; there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-
diagonal elements in the intercept row and column are zero. How we choose X determines the efficiency
of our design. Ideally, we want to choose our X’s so that the design is balanced and orthogonal or at
least very nearly so. More precisely, we want to choose X so that we maximize efficiency.

These measures of efficiency can be scaled to range from 0 to 100 (see pages 64− 66 for the orthogonal
coding of X that must be used with these formulas):

A-efficiency = 100× 1
ND trace ((X′X)−1)/p

D-efficiency = 100× 1
ND |(X′X)−1|1/p

G-efficiency = 100×
√

p/ND

σM

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that
may not exist, so they are not useful as absolute measures of design efficiency. Instead, they should be
used relatively, to compare one design to another for the same situation. Efficiencies that are not near
100 may be perfectly satisfactory.

Experimental Design: Rafts, Rulers, Alligators, and Stones

A good physical metaphor for understanding experimental design and design efficiency is a raft. A raft
is a flat boat, often supported by flotation devices attached to the corners. The raft in Figure 3 has
four Styrofoam blocks under each corner, which provide nice stability and equal support. This raft
corresponds to 2 two-level factors from a 16-run design (see Table 1). The four corners correspond to
each of the four possible combinations of 2 two-level factors, and the four blocks under the raft form
an up-side-down bar chart showing the frequencies for each of the four combinations. Looking at the
raft, one can tell that the first factor is balanced (equal support on the left and on the right) as is the
second (equal support in the front and the back). The design is also orthogonal (equal support in all
four corners). Making a design that supports your research conclusions is like making a raft that you
are actually going to use in water full of piranha and alligators. You want good support no matter
which portion of the raft you find yourself on. Similarly, you want good support for your research and
good information about all of your product attributes and attribute levels.

Now compare the raft in Figure 3 to the one shown in Figure 4. The Figure 4 raft corresponds to
the two-level factors in the design shown in Table 2. This design has 18 runs, and since 18 cannot be
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divided by 2× 2, a design that is both balanced and orthogonal is not possible. Clearly this design is
not balanced in either factor. There are twelve blocks on the left and only six on the right, and there
are twelve blocks on the back and only six on the front. This design is however orthogonal because the
corner frequencies are proportional. These two factors can be made from 2 three-level factors in the L18

design, which has up to 7 three-level factors. See Table 3. The three-level factors are all orthogonal,
and recoding levels, replacing 3 with 1, preserves that orthogonality at the cost of decreased efficiency
and a horrendous lack of balance. See Table 3 on page 106 for the information and variance matrices
for the Figure 4 raft.

Finally, compare the raft in Figure 4 to the one shown in Figure 5. Both of these correspond to designs
with two-level factors in 18 runs. The Figure 5 raft corresponds to a design that is balanced. There
are nine blocks on the left and nine on the right, and there are nine blocks on the back and nine on the
front. The design is not however orthogonal since the corner frequencies are 4, 5, 4, and 5, which are
not equal or even proportional. Ideally, you would like a raft like the one in Figure 3, which corresponds
to a design that is both orthogonal and balanced. However, to have both two or more three-level and
two or more two-level factors, you need 36 runs. In 18 runs, you can make an optimal design, like
the one in Table 4 and Figure 5, that provides good support under all corners but not perfectly equal
support. See Tables 3 and 4 in the next chapter on pages 107 and 106 for the information and variance
matrices for the Figure 4 and 5 rafts.

Which raft would you rather walk on? The Figure 3 and Figure 5 rafts are going to be pretty stable.
The Figure 3 raft is in fact optimal, given exactly 16 Styrofoam blocks, and the Figure 5 raft is also
optimal, given exactly 18 Styrofoam blocks. The Figure 4 raft might be fine if you stay in the back
left corner, but take one step, and you will be alligator bait.† Seriously though, all alligator silliness
aside, if you do not provide stable and well supported research, your clients or brand managers will
find someone else who can. In both raft and design terms, the problem is one of stability and support.
In design terms, part of your results will not be stable due to a lack of information about the front
right combination in your factorial design. How confident will you be in your results when you have so
little information about some of your product attribute levels?

The Table 4 design (Figure 5 raft) brings to mind a cup containing exactly one half cup of water. The
optimist sees the cup as half full, and the pessimist sees it as half empty. In the design, the optimist
sees a little extra support in the back left and front right corners. The pessimist sees a little less
support in the front left and back right corners. Either way, all available resources (design points) are
optimally allocated to maximize efficiency and stability. What you would really like is both balance
and orthogonality. However, you cannot get both in 18 runs, because 2 × 2 does not divide 18. Still,
you can do pretty well. Mick Jagger and Keith Richards (1969) summed it up best in one of their

†The alligator knows where your weakness is, and he is watching! The alligator was in the ART Forum tutorial from
the start, and I did not want to leave him out of this chapter, even if this part is a bit silly. Here is the alligator story
that started all of this silliness. I live in central North Carolina. There are alligators in the southeast part of NC, but
there are not supposed to be any in my part. In fact, on rare occasions, they swim up river in the summer and end up in
surprising places like the time a ten-footer ended up in a golf course lake outside of Raleigh. I live not too far from Jordan
lake, which contrary to popular belief was not named after Michael Jordan, who played his college ball nearby at UNC.
Just before our first design tutorial, some fishermen were out bow fishing one night on Jordan lake. One of them shot
what he thought was a really big fish. It turned out, it was a small alligator. Shooting an alligator is North Carolina is a
very illegal thing to do. Nevertheless, the fishermen decided to have their trophy stuffed. They took it to a taxidermist,
which was a very stupid thing to do, because a law-abiding taxidermist must turn you in to the authorities if you bring in
a protected animal to be mounted. They were both arrested and slapped with a hefty fine. In their defense, they argued,
“But how were we supposed to know it was an alligator? There are no alligators in this part of North Carolina!” The
authorities agreed that this was true, but they still had to pay the fine. The moral of the story is you always have to
watch for alligators, because you never know where they will turn up. The real point is, the alligator is a predator, just
like your competition. Just as you would be foolish to float through the gators on an unstable raft, you would be unwise
to use anything less than the most efficient design you can find to support your research conclusions.
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Figure 3 16 Runs, Orthogonal and Balanced Figure 5 18 Runs, Balanced and Almost Orthogonal

Figure 4 18 Runs, Orthogonal but not Balanced
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Table 1
Two-Level Factors in 16 Runs

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 2 2 2 1 1 2 2 1 2 2
1 1 2 2 1 1 2 2 1 2 1 2 2 1 2
1 1 2 2 2 2 1 1 1 2 2 1 2 2 1
1 2 1 2 1 2 1 2 2 2 2 2 1 1 1
1 2 1 2 2 1 2 1 2 2 1 1 1 2 2
1 2 2 1 1 2 2 1 2 1 2 1 2 1 2
1 2 2 1 2 1 1 2 2 1 1 2 2 2 1
2 1 1 2 1 2 2 1 2 1 1 2 2 2 1
2 1 1 2 2 1 1 2 2 1 2 1 2 1 2
2 1 2 1 1 2 1 2 2 2 1 1 1 2 2
2 1 2 1 2 1 2 1 2 2 2 2 1 1 1
2 2 1 1 1 1 2 2 1 2 2 1 2 2 1
2 2 1 1 2 2 1 1 1 2 1 2 2 1 2
2 2 2 2 1 1 1 1 1 1 2 2 1 2 2
2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

Table 2
Unbalanced

2233 in 18 Runs
1 1 1 1 1
1 1 2 3 3
1 1 1 3 2
1 1 3 2 3
1 2 2 2 1
1 2 3 1 2
1 1 1 2 3
1 1 3 3 2
1 1 2 2 2
1 1 3 1 1
1 2 1 3 1
1 2 2 1 3
2 1 2 1 2
2 1 3 2 1
2 1 1 1 3
2 1 2 3 1
2 2 1 2 2
2 2 3 3 3

Table 3

Making Twos from Threes
1 1 1 1
1 1 1 1
1 1 2 2
1 1 2 2
1 1 3 1
1 1 3 1
2 2 1 1
2 2 1 1
2 → 2 2 → 2
2 2 2 2
2 2 3 1
2 2 3 1
3 1 1 1
3 1 1 1
3 1 2 2
3 1 2 2
3 1 3 1
3 1 3 1

Table 4
Optimal

2233 in 18 Runs
1 1 1 2 2
1 1 2 3 2
1 1 3 1 2
1 1 3 2 3
1 2 1 1 3
1 2 1 3 1
1 2 2 1 3
1 2 2 2 1
1 2 3 3 1
2 1 1 2 1
2 1 1 3 3
2 1 2 1 1
2 1 2 3 3
2 1 3 1 1
2 2 1 1 2
2 2 2 2 2
2 2 3 2 3
2 2 3 3 2
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most influential commentaries on choice designs: “You can’t always get what you want, but if you try
sometimes, you just might find, you get what you need!”‡ What you want is orthogonality and balance.
What you need is good stability. Efficient designs can give you what you need.

The Table 2 and Figure 4 design may seem like just a “straw man,” something that we build up just so
that we can knock it down. However, this design was widely used in the past, and in fact, in spite of
the fact that its deficiencies have been known for over 10 years (Kuhfeld, Tobias, and Garratt 1994) it
is still used in some sources as a text-book example of a good design. In fact, it is a text-book example
of how not to make designs. It is an example of what can happen when you choose orthogonality
as the be-all-end-all design criterion, ignoring both balance and statistical efficiency. It is also an
example of what can happen when you construct designs from a small, inferior, and incomplete catalog
instead of using a comprehensive designer. Even among orthogonal designs, it is not optimal (see
pages 105–107). If we can achieve perfect orthogonality and balance, our design will be optimal and
have maximum efficiency. The key consideration is that maximizing statistical efficiency minimizes the
variability of our parameter estimates, and that is what we want to achieve. Recall that for a linear
model, the variance-covariance matrix of the vector of parameter estimates is proportional to (X′X)−1.
Maximizing efficiency minimizes those variances, covariances, and hence standard errors. These designs
are discussed in more detail, including an examination of their variance matrices, starting on page 105.

How we choose our design, our X values, affects the variability of our parameter estimates. Previously
we talked about eigenvalues and the variance matrix, which provided a mathematical representation
of the idea that we choose our X values so that our parameter estimates will have small standard
errors. Now, we will discuss this less mathematically. Imagine that we are going to construct a very
simple experiment. We are interested in investigating the purchase interest of a product as a function
of its price. So we design an experiment with two prices, $1.49 and $1.50 and ask people to rate how
interested they are in the products at those two prices. We plot the results with price on the horizontal
axis and purchase interest on the vertical axis. We find that the price effect is minimal. See Figure
6. Now imagine that the line is a ruler and the two dots are your fingers. Your fingers are the design
points providing support for your research. Your fingers are close together because in our research
design, we chose two prices that are close together. Furthermore, imagine that there is a small amount
of error in your data, that is error in the reported purchase interest, which is in the vertical direction.
To envision this, move your fingers up and down, just a little bit. What happens to your slope and
intercept as you do this?§ They vary a lot! This is not a function of your data; it is a function of your
design being inefficient because you did not adequately sample a reasonable price range.

Next, let’s design a similar experiment, but this time with prices of $0.99 and $1.99. See Figure 7.
Imagine again that the line is a ruler and the two dots are your fingers, but this time they are farther
apart. Again, move your fingers up and down, just a little bit. What happens to your slope and
intercept as you do this? Not very much; they change a little bit. The standard errors for Figure
6 would be much greater than the standard errors for Figure 7. How you choose your design points
affects the stability of your parameter estimates. This is the same lesson that the mathematics involving
(X′X)−1 gives you. You want to choose your X’s so that efficiency is maximized and the variability of
your parameter estimates is minimized. This example does not imply, however, that you should pick
prices like $0.01 and $1,000,000,000. Your design levels need to make sense for the product.

‡Like the alligator, Mick and Keith have been a part of the tutorial for many years. Of course they weren’t really
writing about choice designs when they wrote this immortal line, but this line is amazingly applicable to the problems of
applied design!

§I encourage you to actually try this and see what happens! At this point in the tutorial, I am up front demonstrating
this. It is a great physical demonstration showing that you you choose X affects the stability of the parameter estimates.
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Figure 6 Prices Close Together Figure 7 Prices Farther Apart

The Number of Factor Levels

The number of levels of the factors can affect design efficiency. Since two points define a line, it is
inefficient to use more than two points to model a linear function. When a quadratic function is used
(x and x2 are included in the model), three points are needed−the two extremes and the midpoint.
Similarly, four points are needed for a cubic function. More levels are needed when the functional form
is unknown. Extra levels allow for the examination of complicated nonlinear functions, with a cost of
decreased efficiency for the simpler functions. When the function is assumed to be linear, experimental
points should not be spread throughout the range of experimentation.

We are often tempted to have more levels than we really need, particularly for factors like price. If
you expect to model a quadratic price function, you only need three price points. It may make sense
to have one or two more price points so that you can test for departures from the quadratic model,
but you do not want more than that. You probably would never be interested in a price function
more complicated than a cubic function. Creating a design with many price points and then fitting a
low-order price function reduces efficiency at analysis time. The more factors you have with more than
two or three levels, the harder it is usually going to be to find an orthogonal and balanced design or
even a close approximation.

There are times, however, when you can reasonably create factors with more levels than you really
need. Say you have a design with two-level and four-level factors and you want to create quadratic
price effects, which would mean three evenly-spaced levels. Say you also want the ability to test for
departures from a quadratic model. One strategy is to create an eight-level price factor. Then you can
recode it as follows: (1 2 3 4 5 6 7 8) → (1 2 3 4 5 1 3 5). Notice that you will end up with twice
as many points at the min, middle, and max positions as in the second and fourth positions. This
will give you good efficiency for the quadratic effect and some information about higher-order effects.
Furthermore, there are many designs with mixtures of (2, 4, and 8)-level factors in 64 runs, which you
can easily block. You need 400 runs before you can find a design with mixes of (2, 4, and 5)-level
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factors in an orthogonal array. If you are assigning levels with a format, you can assign levels and do
the recoding all at the same time.

proc format;
value price 1 = $2.89 2 = $2.99 3 = $3.09 4 = $3.19 5 = $3.29

6 = $2.89 7 = $3.09 8 = $3.29;
run;

Conjoint, Linear, and Choice Designs

Consider a simple example of three brands each at two prices. We always use linear-model theory to
guide us in creating designs for a full-profile conjoint studies. Usually we pick orthogonal arrays for
conjoint studies. For choice modeling, the process is somewhat different. We will often use linear-model
theory to create a linear design from which we could construct a choice design to use in a discrete choice
study. The conjoint and linear (choice) designs are shown next.

Full-Profile
Conjoint Design
Brand Price

1 1.99
1 2.99
2 1.99
2 2.99
3 1.99
3 2.99

Linear Design
Used to Make a Choice Design
Brand 1 Brand 2 Brand3
Price Price Price
1.99 1.99 1.99
1.99 2.99 2.99
2.99 1.99 2.99
2.99 2.99 1.99

This conjoint design has two factors, brand and price, and six runs or product profiles. Subjects would
be shown each combination, such as brand 1 at $1.99 and be asked to report purchase interest through
either a rating (for example, on a 1 to 9 scale) or a ranking of the six profiles.

The linear version of the choice design for a pricing study with three brands has three factors (Brand
1 Price, Brand 2 Price, and Brand 3 Price) and one row for each choice set. More generally, the linear
design has one factor for each attribute of each alternative (or brand), and brand is not a factor in
the linear design. Each brand is a “bin” into which its factors are collected. Subjects would see these
sets of products and report which one they would choose (and implicitly, which ones they would not
choose). However, before we fit the choice model, we will need to construct a true choice design from
the linear design and code the choice design. See Tables 5, 6, and 7.

The linear design has one row per choice set. The choice design has three rows for each choice set,
one for each alternative. The linear design and the choice design contain different arrangements of the
exact same information. In the linear design, brand is a bin into which its factors are collected (in
this case one factor per brand). In the choice design, brand and price are both factors, because the
design has been rearranged from one row per choice set to one row per alternative per choice set. For
this problem, with only one attribute per brand, the first row of the choice design matrix corresponds
to the first value in the linear design matrix, Brand 1 at $1.99. The second row of the choice design
matrix corresponds to the second value in the linear design matrix, Brand 2 at $1.99. The third row of
the choice design matrix corresponds to the third value in the linear design matrix, Brand 3 at $1.99,
and so on.
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Table 5

Linear Design
1 2 3

1.99 1.99 1.99

1.99 2.99 2.99

2.99 1.99 2.99

2.99 2.99 1.99

Table 6

Choice Design
Set Brand Price

1 1 1.99
2 1.99
3 1.99

2 1 1.99
2 2.99
3 2.99

3 1 2.99
2 1.99
3 2.99

4 1 2.99
2 2.99
3 1.99

Table 7

Choice Design Coding
Brand
Effects Brand by Price

Set 1 2 3 1 2 3

1 1 0 0 1.99 0 0
0 1 0 0 1.99 0
0 0 1 0 0 1.99

2 1 0 0 1.99 0 0
0 1 0 0 2.99 0
0 0 1 0 0 2.99

3 1 0 0 2.99 0 0
0 1 0 0 1.99 0
0 0 1 0 0 2.99

4 1 0 0 2.99 0 0
0 1 0 0 2.99 0
0 0 1 0 0 1.99

A design is coded by replacing each factor with one more columns of indicator variables (which are
often referred to as “dummy variables”) or other codings. In this example, a brand factor is replaced
by the three binary variables. We will go through how to construct and code linear and choice designs
many times in the examples using a number of different codings. For now, just notice that the conjoint
design is different from the linear design, which is different from the choice design. They aren’t even
the same size! Also note that we cannot use linear efficiency criteria to directly construct the choice
design bypassing the linear design step. Usually, we will use the %MktEx macro to make a linear design,
the %MktRoll macro to convert it into a choice design, and the TRANSREG procedure to code the
choice design.

Here is a slightly more involved illustration of the differences between the linear and final version of a
choice design. This example has three brands and three alternatives, one per brand. The category is
sports beverages, and they are available in three sizes, at two prices with three different types of tops
including a pop up top and two different twist versions. Six choice sets are shown in Table 8.

The linear design has one row per choice set. The full choice design has 36 choice sets. There is one
factor for each attribute of each alternative. This experiment has three alternatives, one for each of
three brands, and three attributes per alternative. The first goal is to make a linear design where each
attribute, both within and between alternatives, is orthogonal and balanced, or at least very nearly so.
Brand is the bin into which the linear factors are collected, and it becomes an actual attribute in the
choice design. The right partition of the table shows the choice design. The x1 attribute in the choice
design is made from x1, x4, and x7, in the linear design. These are the three size factors. Similarly,
x2 is made from x2, x5, and x8, in the linear design. These are the three price factors. Finally, x3 is
made from the three top factors, x3, x6, and x9.
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Table 8

Linear Design Choice Design

Brand 1 Brand 2 Brand 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 Brand x1 x2 x3
16 oz. 0.89 Twist 1 24 oz. 0.89 Twist 2 20 oz. 0.99 Pop-Up 1 16 oz. 0.89 Twist 1

2 24 oz. 0.89 Twist 2
3 20 oz. 0.99 Pop-Up

20 oz. 0.99 Pop-Up 24 oz. 0.89 Twist 1 20 oz. 0.89 Twist 2 1 20 oz. 0.99 Pop-Up
2 24 oz. 0.89 Twist 1
3 20 oz. 0.89 Twist 2

20 oz. 0.89 Twist 1 20 oz. 0.99 Twist 2 16 oz. 0.89 Twist 2 1 20 oz. 0.89 Twist 1
2 20 oz. 0.99 Twist 2
3 16 oz. 0.89 Twist 2

20 oz. 0.89 Twist 1 16 oz. 0.99 Twist 1 24 oz. 0.99 Pop-Up 1 20 oz. 0.89 Twist 1
2 16 oz. 0.99 Twist 1
3 24 oz. 0.99 Pop-Up

16 oz. 0.89 Twist 2 24 oz. 0.99 Pop-Up 16 oz. 0.99 Twist 2 1 16 oz. 0.89 Twist 2
2 24 oz. 0.99 Pop-Up
3 16 oz. 0.99 Twist 2

24 oz. 0.99 Twist 2 16 oz. 0.89 Twist 2 16 oz. 0.89 Pop-Up 1 24 oz. 0.99 Twist 2
2 16 oz. 0.89 Twist 2
3 16 oz. 0.89 Pop-Up

Blocking the Choice Design

The sports beverage example has 36 choice sets. This may be too many judgments for one subject to
make. How many blocks to use depends on the number of choice sets and the complexity of the choice
task. For example, 36 choice sets might be small enough that no blocking is necessary, or instead, they
may be divided into 2 blocks of size 18, 3 blocks of size 12, 4 blocks of size 9, 6 blocks of size 6, 9
blocks of size 4, 12 blocks of size 3, 18 blocks of size 2, or even 36 blocks of size 1. Technically, subjects
should each see exactly one choice set. Showing subjects more than one choice set is economical, and
in practice, most researchers almost always show multiple choice sets to each subject. The number
of sets shown does not change the expected utilities, however, it does affect the covariance structure.
Sometimes, attributes will be highly correlated within blocks, particularly with small block sizes, but
that is not a problem as long as they are not highly correlated over the entire design.

Efficiency of a Choice Design

All of the efficiency theory discussed so far concerned linear models. In linear models, the parameter
estimates β̂ have variances proportional to (X′X)−1. In contrast, the variances of the parameter
estimates in the discrete choice multinomial logit model are given by

V (β̂) = −
[
∂2`(β)
∂β2

]−1

=

[
Σn

k=1N

[
Σm

j=1 exp(x′jβ)xjx
′
j

Σm
j=1 exp(x′jβ)

−
(Σm

j=1 exp(x′jβ)xj)(Σm
j=1 exp(x′jβ)xj)′

(Σm
j=1 exp(x′jβ))2

]]−1
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where

`(β) = Πn
k=1

exp((Σm
j=1fjx

′
j)β)

(Σm
j=1 exp(x′jβ))N

m − brands
n − choice sets
N − people

In the choice model, ideally we would like to pick x’s that make this variance matrix “small.” Unfortu-
nately, we cannot do this unless we know β, and if we knew β, we would not need to do the experiment.
However, in the chair example on pages 363−382, we will see how to make an efficient choice design
when we are willing to make assumptions about β.

Because we do not know β, we will often create experimental designs for choice models using efficiency
criteria for linear models. We make a good design for a linear model by picking x’s that minimize a
function of (X′X)−1 and then convert our linear design into a choice design. Certain assumptions must
be made before applying ordinary general-linear-model theory to problems in marketing research. The
usual goal in linear modeling is to estimate parameters and test hypotheses about those parameters.
Typically, independence and normality are assumed. In full-profile conjoint analysis, each subject
rates all products and separate ordinary-least-squares analyses are run for each subject. This is not a
standard general linear model; in particular, observations are not independent and normality cannot
be assumed. Discrete choice models, which are nonlinear, are even more removed from the general
linear model.

Marketing researchers have always made the critical assumption that designs that are good for general
linear models are also good designs for conjoint analysis and discrete choice models. We also make
this assumption. We will assume that an efficient design for a linear model is a good design for the
multinomial logit model used in discrete choice studies. We assume that if we create the linear design
(one row per choice set and all of the attributes of all of the alternatives comprise that row), and if
we strive for linear-model efficiency (near balance and orthogonality), then we will have a good design
for measuring the utility of each alternative and the contributions of the factors to that utility. When
we construct choice designs in this way, our designs will have two nice properties. 1) Each attribute
level will occur equally often (or at least nearly equally often) for each attribute of each alternative
across all choice sets. 2) Each attribute will be independent of every other attribute (or at least nearly
independent), both those in the current alternative and those in all of the other alternatives. The
design techniques discussed in this book, based on the assumption that linear design efficiency is a
good surrogate for choice design goodness, have been used quite successfully in the field for many
years.

In most of the examples, we will use the %MktEx macro to create a good linear design, from which we
will construct our choice design. This seems to be a good, safe strategy. It is a good strategy because
it makes designs where all attributes, both within and between alternatives, are orthogonal or at least
nearly so. It is safe in the sense that you have enough choice sets and collect the right information so
that very complex models, including models with alternative-specific effects, availability effects, and
cross effects, can be fit. However, it is good to remember that when you run the %MktEx macro and
you get an efficiency value, it corresponds to the linear design, not the choice design. It is a surrogate
for the criterion of interest, the efficiency of the choice design, which is unknowable unless you know
the parameters.
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Coding, Efficiency, Balance, and Orthogonality

We mentioned on page 54 that we use a special orthogonal coding of X when computing design
efficiency. This section shows that coding and other codings. Even if you gloss over the mathematical
details, this section is informative, because it provides insights into coding and the meaning of 100%
efficiency and less than 100% efficient designs.

Here are nonorthogonal less-than-full-rank binary or indicator codings for two-level through five-level
factors. There is one column for each level, and the coding contains a 1 when the level matches the
column and a zero otherwise. We will use these codings in many places throughout the examples.

Two-Level
a 1 0
b 0 1

Three-Level
a 1 0 0
b 0 1 0
c 0 0 1

Four-Level
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1

Five-Level
a 1 0 0 0 0
b 0 1 0 0 0
c 0 0 1 0 0
d 0 0 0 1 0
e 0 0 0 0 1

Here are nonorthogonal full-rank binary or indicator codings for two-level through five-level factors.
This coding is like the full-rank coding above, except that the column corresponding to the reference
level has been dropped. Frequently, the reference level is the last level, but it can be any level. We will
use these codings in many places throughout the examples.

Two-Level
a 1
b 0

Three-Level
a 1 0
b 0 1
c 0 0

Four-Level
a 1 0 0
b 0 1 0
c 0 0 1
d 0 0 0

Five-Level
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1
e 0 0 0 0

Here are nonorthogonal effects coding for two-level¶ through five-level factors. The effects coding differs
from the full-rank binary coding in that the former always has a -1 to indicate the reference level. The
binary and effects codings are explained in more detail in the SAS/STAT manual, PROC TRANSREG,
DETAILS, “ANOVA Codings” section. We will use these codings in many places throughout the
examples.

Two-Level
a 1
b -1

Three-Level
a 1 0
b 0 1
c -1 -1

Four-Level
a 1 0 0
b 0 1 0
c 0 0 1
d -1 -1 -1

Five-Level
a 1 0 0 0
b 0 1 0 0
c 0 0 1 0
d 0 0 0 1
e -1 -1 -1 -1

Table 9, using the design in Table 8, shows the less-than-full-rank binary coding (brand, 3 parameters),
the full-rank binary coding (size, 2 parameters), and the effects coding (top, 2 parameters). Price (1
parameter) is not coded and instead is entered as is for a linear price effect.

¶The two-level effects coding is orthogonal, but the three-level and beyond codings are not.



TS-722C − Experimental Design, Efficiency, Coding, and Choice Designs 65

Table 9

Choice Design Coding
Brand Brand Brand 16 20 Twist Twist

Brand x1 x2 x3 1 2 3 oz. oz. Price 1 2
1 16 oz. 0.89 Twist 1 1 0 0 1 0 0.89 1 0
2 24 oz. 0.89 Twist 2 0 1 0 0 0 0.89 0 1
3 20 oz. 0.99 Pop-Up 0 0 1 0 1 0.99 -1 -1
1 20 oz. 0.99 Pop-Up 1 0 0 0 1 0.99 -1 -1
2 24 oz. 0.89 Twist 1 0 1 0 0 0 0.89 1 0
3 20 oz. 0.89 Twist 2 0 0 1 0 1 0.89 0 1
1 20 oz. 0.89 Twist 1 1 0 0 0 1 0.89 1 0
2 20 oz. 0.99 Twist 2 0 1 0 0 1 0.99 0 1
3 16 oz. 0.89 Twist 2 0 0 1 1 0 0.89 0 1
1 20 oz. 0.89 Twist 1 1 0 0 0 1 0.89 1 0
2 16 oz. 0.99 Twist 1 0 1 0 1 0 0.99 1 0
3 24 oz. 0.99 Pop-Up 0 0 1 0 0 0.99 -1 -1
1 16 oz. 0.89 Twist 2 1 0 0 1 0 0.89 0 1
2 24 oz. 0.99 Pop-Up 0 1 0 0 0 0.99 -1 -1
3 16 oz. 0.99 Twist 2 0 0 1 1 0 0.99 0 1
1 24 oz. 0.99 Twist 2 1 0 0 0 0 0.99 0 1
2 16 oz. 0.89 Twist 2 0 1 0 1 0 0.89 0 1
3 16 oz. 0.89 Pop-Up 0 0 1 1 0 0.89 -1 -1

Here is the orthogonal contrast coding for two-level through five-level factors. These are the same as
the orthogonal codings that will be discussed in detail next, except that this version has been scaled
so that all values are integers.

Two-Level
a 1
b -1

Three-Level
a 1 -1
b 0 2
c -1 -1

Four-Level
a 1 -1 -1
b 0 2 -1
c 0 0 3
d -1 -1 -1

Five-Level
a 1 -1 -1 -1
b 0 2 -1 -1
c 0 0 3 -1
d 0 0 0 4
e -1 -1 -1 -1

Here is the standardized orthogonal coding for two-level through five-level factors that the design soft-
ware uses internally.

Two-Level
a 1.00
b -1.00

Three-Level
a 1.22 -0.71
b 0 1.41
c -1.22 -0.71

Four-Level
a 1.41 -0.82 -0.58
b 0 1.63 -0.58
c 0 0 1.73
d -1.41 -0.82 -0.58

Five-Level
a 1.58 -0.91 -0.65 -0.50
b 0 1.83 -0.65 -0.50
c 0 0 1.94 -0.50
d 0 0 0 2.00
e -1.58 -0.91 -0.65 -0.50
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Notice that the sum of squares for the orthogonal coding of the two-level factor is 2. For both columns
of the three-level factor, the sums of squares are 3; for the three columns of the four-level factor, the
sums of squares are all 4; and for the four columns of the five-level factor, the sums of squares are all
5. Also notice that each column within a factor is orthogonal to all of the other columns−the sum of
cross products is zero. For example, in the last two columns of the five-level factor, −0.65 × −0.5 +
−0.65×−0.5 + 1.94×−.05 + 0× 2 +−0.65×−0.5 = 0. Finally notice that the codings for each level
form a contrast−the ith level versus all of the preceding levels and the last level.

Recall that our measures of design efficiency are scaled to range from 0 to 100.

A-efficiency = 100× 1
ND trace ((X′X)−1)/p

D-efficiency = 100× 1
ND |(X′X)−1|1/p

When computing D-efficiency or A-efficiency, we code X so that when the design is orthogonal and
balanced, X′X = NDI where I is a p×p identity matrix. When our design is orthogonal and balanced,
(X′X)−1 = 1

ND
I, and trace ((X′X)−1)/p = |(X′X)−1|1/p = 1/ND. In this case, the two denominator

terms cancel and efficiency is 100%. As the average variance increases, efficiency decreases.

This next example shows the coding of a 2× 6 full-factorial design in 12 runs using a coding function
that requires that the factor levels are consecutive positive integers beginning with one and ending
with m for an m-level factor. Note that the IML operator # performs ordinary (scalar) multiplication,
and ## performs exponentiation.

proc iml; /* orthogonal coding, levels must be 1, 2, ..., m */
reset fuzz;

start orthogcode(x);
levels = max(x);
xstar = shape(x, levels - 1, nrow(x))‘;
j = shape(1 : (levels - 1), nrow(x), levels - 1);
r = sqrt(levels # (x / (x + 1))) # (j = xstar) -

sqrt(levels / (j # (j + 1))) # (j > xstar | xstar = levels);
return(r);
finish;

design = (1:2)‘ @ j(6, 1, 1) || {1, 1} @ (1:6)‘;
x = j(12, 1, 1) || orthogcode(design[,1]) || orthogcode(design[,2]);
print design[format=1.] ’ ’ x[format=5.2 colname={’Int’ ’Two’ ’Six’}];

xpx = x‘ * x; print xpx[format=best5.];
inv = inv(xpx); print inv[format=best5.];
d_eff = 100 / (nrow(x) # det(inv) ## (1 / ncol(inv)));
a_eff = 100 / (nrow(x) # trace(inv) / ncol(inv));
print ’D-efficiency =’ d_eff[format=6.2]

’ A-efficiency =’ a_eff[format=6.2];
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X
DESIGN Int Two Six

1 1 1.00 1.00 1.73 -1.00 -0.71 -0.55 -0.45
1 2 1.00 1.00 0.00 2.00 -0.71 -0.55 -0.45
1 3 1.00 1.00 0.00 0.00 2.12 -0.55 -0.45
1 4 1.00 1.00 0.00 0.00 0.00 2.19 -0.45
1 5 1.00 1.00 0.00 0.00 0.00 0.00 2.24
1 6 1.00 1.00 -1.73 -1.00 -0.71 -0.55 -0.45
2 1 1.00 -1.00 1.73 -1.00 -0.71 -0.55 -0.45
2 2 1.00 -1.00 0.00 2.00 -0.71 -0.55 -0.45
2 3 1.00 -1.00 0.00 0.00 2.12 -0.55 -0.45
2 4 1.00 -1.00 0.00 0.00 0.00 2.19 -0.45
2 5 1.00 -1.00 0.00 0.00 0.00 0.00 2.24
2 6 1.00 -1.00 -1.73 -1.00 -0.71 -0.55 -0.45

XPX

12 0 0 0 0 0 0
0 12 0 0 0 0 0
0 0 12 0 0 0 0
0 0 0 12 0 0 0
0 0 0 0 12 0 0
0 0 0 0 0 12 0
0 0 0 0 0 0 12

INV

0.083 0 0 0 0 0 0
0 0.083 0 0 0 0 0
0 0 0.083 0 0 0 0
0 0 0 0.083 0 0 0
0 0 0 0 0.083 0 0
0 0 0 0 0 0.083 0
0 0 0 0 0 0 0.083

D_EFF A_EFF

D-efficiency = 100.00 A-efficiency = 100.00

With this orthogonal and balanced design, X′X = NDI = 12I, which means (X′X)−1 = 1
ND

I = 1
12I,

and D-efficiency = 100%. With a nonorthogonal design, for example with the first 10 rows of the 2× 6
full-factorial design, D-efficiency and A-efficiency are less than 100%.
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design = design[1:10,];
x = j(10, 1, 1) || orthogcode(design[,1]) || orthogcode(design[,2]);
inv = inv(x‘ * x);
d_eff = 100 / (nrow(x) # det(inv) ## (1 / ncol(inv)));
a_eff = 100 / (nrow(x) # trace(inv) / ncol(inv));
print ’D-efficiency =’ d_eff[format=6.2]

’ A-efficiency =’ a_eff[format=6.2];
quit;

D_EFF A_EFF

D-efficiency = 92.90 A-efficiency = 84.00

In this case, |(X′X)−1|1/p and trace ((X′X)−1)/p are multiplied in the denominator of the efficiency
formulas by 1

ND
= 1

10 . If an orthogonal and balanced design were available for this problem, then
(X′X)−1 would equal 1

ND
I = 1

10I. Since an orthogonal and balanced design is not possible (6 does not
divide 10), both D-efficiency and A-efficiency will be less than 100%, even with the optimal design. A
main-effects, orthogonal and balanced design, with a variance matrix equal to 1

ND
I, is the standard by

which 100% efficiency is gauged, even when we know such a design cannot exist. The standard is the
average variance for the maximally efficient potentially hypothetical design, which is knowable, not the
average variance for the optimal design, which for many practical problems we have no way of knowing.

For our purposes in this book, we will only consider experimental designs with at least as many runs
as parameters. A saturated or tight design has as many runs as there are parameters. The number
of parameters in a main-effects model is the sum of the numbers of levels of all of the factors, minus
the number of factors, plus 1 for the intercept. Equivalently, since there are m − 1 parameters in an
m-level factor, the number of parameters is 1 +

∑k
j=1(mj − 1) for k factors, each with mj levels.

If a main-effects design is orthogonal and balanced, then the design must be at least as large as the
saturated design and the number of runs must be divisible by the number of levels of all the factors
and by the products of the number of levels of all pairs of factors. For example, a 2 × 2 × 3 × 3 × 3
design cannot be orthogonal and balanced unless the number of runs is divisible by 2 (twice because
there are two 2’s), 3 (three times because there are three 3’s), 2 × 2 = 4 (once, because there is one
pair of 2’s), 2 × 3 = 6 (six times, two 2’s times three 3’s), and 3 × 3 = 9 (three times, three pairs of
3’s). If the design is orthogonal and balanced, then all of the divisions will work without a remainder.
However, all of the divisions working is a necessary but not sufficient condition for the existence of an
orthogonal and balanced design. For example, 45 is divisible by 3 and 3 × 3 = 9, but an orthogonal
and balanced saturated design 322 (22 three-level factors) in 45 runs does not exist.

Orthogonally Coding Price and Other Quantitative Attributes

For inherently quantitative factors like price, you may want to use different strategies for coding
instead of using indicator variables or effects coding. When we create a design with a quantitative
factor such as price, we do not have to do anything special. The orthogonal coding what we use to
make qualitative factors is just as applicable when the factor will become quantitative. See page 107
for more information. However, for analysis, we may want a different coding than the binary or effects
coding. Imagine, for example, a choice experiment in the SUV category with price as an attribute
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and with levels of $27,500, $30,000, and $32,500. You probably will not want to code them as is and
just add these prices directly to the model, because these values are considerably larger than the other
values in your coded independents, which will usually consist of values like -1, 0, and 1. You might
believe that choice is not a linear function of price; it may be nonlinear or quadratic. Hence, you might
think about adding a price-squared term, but squaring values this large is almost certain to cause
collinearity. When you are dealing with factors like this, you are usually better off recoding them in a
“nicer” way. The first column of the next table shows some of the steps in the recoding.

Price Centered Price Divide By Increment Square
27,500 27,500 - 30,000 = -2,500 -2,500 / 2,500 = -1 −12 = 1
30,000 30,000 - 30,000 = 0 0 / 2,500 = 0 02 = 0
32,500 32,500 - 30,000 = 2,500 2,500 / 2,500 = 1 12 = 1

The second column shows the results of centering them−subtracting the mean price of $30,000. The
third column shows the results of dividing the centered values by the increment between values, 2,500.
The fourth column shows the square of the third column. These last two columns would make much
better linear and quadratic price terms than the original price and the original price squared, however,
we can do better still. The first part of the next table shows the final steps and the full, orthogonal,
quadratic coding.

Orthogonal
Code Centered Quadratic Multiply Through Code

1 -1 1 1 - 2/3 = 1/3 3 × 1/3 = 1 1 -1 1
1 0 0 0 - 2/3 = -2/3 3 × −2/3 = -2 1 0 -2
1 1 1 1 - 2/3 = 1/3 3 × 1/3 = 1 1 1 1

The first coding consists of an intercept, a linear term, and a quadratic term. Notice that the sum
of the quadratic term is not zero, so the quadratic term is not orthogonal to the intercept. We can
correct this by centering (subtracting the mean which is 2/3). After centering, all three columns are
orthogonal. We can make the coding nicer still by multiplying the quadratic term by 3 to get rid of
the fractions. The full orthogonal coding is shown in the last set of columns. Note however, that only
the last two columns would be used. The intercept is just there to more clearly show that all columns
are orthogonal. This orthogonal coding will work for any three-level quantitative factor with equal
intervals between adjacent levels.

For four equally-spaced levels, and with less detail, the linear and quadratic coding is shown in the last
two columns of the next table.

Make Into Smallest
Price Center Divide Integers Square Center Integers Code
27500 -3750 -1.5 -3 9 4 1 -3 1
30000 -1250 -0.5 -1 1 -4 -1 -1 -1
32500 1250 0.5 1 1 -4 -1 1 -1
35000 3750 1.5 3 9 4 1 3 1
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Canonical Correlations

We will use canonical correlations to evaluate nonorthogonal designs and the extent to which factors
are correlated or are not independent. To illustrate, consider a design with four three-level factors in
9 runs shown next along with its coding.

Linear Design
x1 x2 x3 x4
1 1 1 1
1 2 3 3
1 3 2 2
2 1 2 3
2 2 1 2
2 3 3 1
3 1 3 2
3 2 2 1
3 3 1 3

Coded Linear Design
x1 x2 x3 x4

1 2 3 1 2 3 1 2 3 1 2 3
1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 0 1 0 1 0 0
0 0 1 0 0 1 1 0 0 0 0 1

Each three-level factor can be coded with three columns that contains the less-than-full-rank binary
coding (see page 64). A factor can be recoded by applying a coefficient vector α′ = (α1 α2 α3) or
β′ = (β1 β2 β3) to a coded factor to create a single column. In other words, the original coding of
(1 2 3) can be replaced with arbitrary (α1 α2 α3) or (β1 β2 β3) If two factors are orthogonal, then for
all choices of α and β, the simple correlation between recoded columns is zero. A canonical correlation
shows the maximum correlation between two recoded factors that can be obtained with the optimal α
and β. This design, 34 in 9 runs is orthogonal so for all pairs of factors and all choices of α and β, the
simple correlations between recoded factors will be zero. The canonical correlation between a factor
and itself is 1.0.

For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a
substitute for looking at the variance matrix discussed on pages 196, 243, and 683. It just provides
a quick and more-compact picture of the correlations between the factors. The variance matrix is
sensitive to the actual model specified and the actual coding. The canonical-correlation matrix just
tells you if there is some correlation between the main effects. A matrix of canonical correlations
provides a useful picture of the orthogonality or lack of orthogonality in a design. For example, this
canonical-correlation matrix from the vacation example on page 194, shown next, shows a design with
16 factors that is mostly orthogonal. However, x13-x15 are not orthogonal to each other. Still, with
r2 = 0.252 = 0.0625, these factors are nearly independent.

The Process of Designing a Choice Experiment

It is important that you understand a number of things in this chapter before you design your first
choice experiment. Most of this chapter is fairly straight-forward, but without a clear understanding
of it, you will no doubt get confused when you actually design an experiment. You should go back and
review if you are not completely comfortable with the meaning of any of these terms: linear design,
choice design, generic choice design, factors, attributes, alternatives, choice sets, orthogonality, balance,
and efficiency. In particular, the meaning of linear design and choice design (pages 60−61) and the
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Canonical Correlation Matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
x1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
x7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

x10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
x13 0 0 0 0 0 0 0 0 0 0 0 0 1 0.25 0.25 0
x14 0 0 0 0 0 0 0 0 0 0 0 0 0.25 1 0.25 0
x15 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 1 0
x16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

relationship between the two is fundamental and the source of a great deal of confusion when most
people start out. Make sure you understand them. You do not have to understand the formula for the
variance matrix for a choice model, the orthogonal coding, or the formuulas for efficiency. However,
you should be comfortable with the idea of average variability of the parameter estimates and how that
is related to efficiency.

This section lists the steps in designing a choice experiment. The next section illustrates these steps
with a simple example. All of the page numbers in this section refer to the more complicated examples
in the discrete choice chapter. Before consulting them, work through the simple example in the next
section.

The first step in designing a choice experiment involves determining:

• Is this a generic study (no brands) or a branded study? Branded studies have a label for each
alternative that conveys meaning beyond ordinary attributes. Brand names are the most common
example. The destinations in the vaction example (pages 184 and 229) also act like brands. In a
generic study, the alternatives are simply bundles of attributes (page 363).

• If it is branded, what are the brands?

• How many alternatives?

• Is there a constant (none, no purchase, delay purchase, or stick with my regular brand) alternative?

• What are the attributes of all of the alternatives, and what are their levels?

• Are any the attributes generic? In other words, are there attributes that you expect to behave
the same way across all alternatives?

• Are any the attributes alternative-specific? In other words, are there attributes that you expect
to behave differently across all alternatives (brand by attribute interactions)?
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Step 1. Write down all of your attributes of all of your alternatives and their levels. See for example
pages 184, 229, 284, and 363 .

Step 2. Is this a generic study (like the chair example on page 363) or a branded example (like the
vacation examples on pages 184 and 229 and the food example on page 284)?

Step 3. If this is a branded study:

• Use the %MktRuns macro to suggest the number of choice sets. See page 740 for documentation
and pages 156, 185, 230, 234, 294, 296, and 345 for examples.

• Use the %MktEx macro to make a linear design. See page 667 for documentation and pages 158,
158, 178, 188, 196, 232, 233, 235, 243, 287, 292, 297, 297, 300, 346, 383, 385, 386, 389, 404, 410,
413, 420, 420, 423, 430, 435, 438, 449, 452, 452, 455, 458, 460, 461, 464, and 465 for examples.

• Use the %MktEval macro to evaluate the linear design. See page 663 for documentation and pages
160, 161, 161, 194, 197, 232, 242, 292, 297, and 348 for examples.

• Print and check the linear design. See for example page 159.

• Use the %MktKey and %MktRoll macros to make a choice design from the linear design. See page
735 for documentation on the %MktRoll macro, page 710 for documentation on the %MktKey
macro, and pages 165, 200, 223, 247, 317, 353, 363, 378, 416, 425, 432, and 438, for examples.

Step 4. If this is a generic study:

• Use the %MktRuns macro to suggest a size for the candidate design. See page 740 for documentation
and page 364 for an example.

• Use the %MktEx macro to make a candidate design. See page 667 for documentation and pages
363, 365, 374, and 378 for examples.

• Use the %MktLab macro to add alternative flags. See page 712 for documentation and page 365
for an example.

• Print and check the candidate design. See for example page 365.

• Use the %ChoicEff macro to find an efficient choice design. See page 600 for documentation and
pages 366, 370, 372, 374, 375, 378, 379, 417, 425, 428, 432, 438, 440, 455, 458, 461, 464, and 465
for examples.

• Print and check the choice design. See for example page 369.

• Go back and try the %MktEx step with other size choice sets. Stop when you feel comfortable with
the results.

Step 5. Continue processing the design:

• Print and check the choice design. See for example page 201.

• Assign formats and labels. See for example page 202.

• Print and check the choice design. See for example page 202.

• Use the %ChoicEff macro to evaluate the design. See page 600 for documentation and pages 166,
203, 248, 320, 321, 437, 452, and 453 for examples.
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• For larger designs, you will need to block the design. See page 638 for documentation and pages
244 and 308 for examples. Alternatively, with the linear design approach, you can sometimes just
add a blocking factor directly to the linear design. See page 197 for an example.

Step 6. Collect data and process the design:

• Print or otherwise generate the choice tasks, and then collect and enter the data. See for example
page 207.

• Use the %MktMerge macro to merge the data and the design. See page 723 for documentation and
pages 171, 208, 223, 255, 331, and 339, for examples.

• Print part of the data and design and check the results. See for example page 208.

• Optionally, particularly for large data sets, you can aggregate the data set using PROC SUM-
MARY. See for example page 332.

• Use the TRANSREG procedure to code the design. See for example pages 173, 209, 214, 216,
219, 223, 255, 263, 265, 269, 275, 276, 278, 280, 333, 337, 340, and 357.

• Print part of the coded design and check the results. See for example page 209.

• Use the %PhChoice macro to customize the output. See page 748 for documentation and page
143 for an example.

• Use the PHREG procedure to fit the multinomial logit model. See for example pages 257, 259,
264, 266, 273, 278, 280, 334, 337, 342, 357, and 360.

There are many variations not covered in this simple outline. For example, you could use the %ChoicEff
macro even for branded studies. Also, restricted designs and partial profile designs are not mentioned
here. See the examples in the discrete choice chapter (pages 141−465) for lots of other possibilities.

A Simple Choice Experiment from A to Z

This section outlines a small and simple choice experiment from start to finish. The examples on pages
141 through 465 tend to be much more involved and have many more nuances. This example shows
the basic steps in the context of a simple example with no complications. Understanding this one will
help you with the more involved examples that come later.

The category is breakfast bars, and there are three brands, Branolicious, Brantopia, and Brantasia.‖

The choice sets will consist of three brands and a constant (no purchase) alternative. Each brand has
two attributes, a four-level price factor and a two-level number of bars per box attribute. The prices
are $2.89, $2.99, $3.09, and $3.19, and the sizes are 6 count and 8 count. The design will consist of the
following factors, shown here organized by brand and also organized by attribute. There is only one
set of attributes shown here, however it is shown in two different ways.

‖Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
We picked these silly names so no one would confuse our artificial data with real data.
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Factors Organized By Brand
Linear Choice
Factor Design
Name Levels Brand Attribute
x1 4 levels Branolicious Price
x2 2 levels Branolicious Count

x3 4 levels Brantopia Price
x4 2 levels Brantopia Count

x5 4 levels Brantasia Price
x6 2 levels Brantasia Count

Factors Organized By Attribute
Linear Choice
Factor Design
Name Levels Brand Attribute
x1 4 levels Branolicious Price
x3 4 levels Brantopia Price
x5 4 levels Brantasia Price

x2 2 levels Branolicious Count
x4 2 levels Brantopia Count
x6 2 levels Brantasia Count

We need a linear design with 6 factors: Branolicious Price, Branolicious Count, Brantopia Price,
Brantopia Count, Brantasia Price, and Brantasia Count. From it, we will make a choice design with
three attributes, brand, count, and price. We can use the %MktRuns macro to suggest the number of
choice sets. The input is the number of levels of all of the factors. See for example pages 185 and 230
for more about the syntax of this macro.

title ’Cereal Bars’;

%mktruns( 4 2 4 2 4 2 )

The output from the macro is shown next. It tells us that there are 3 two-level factors and 3 four-
level factors. The saturated design has 13 runs or rows, so we need at least 13 choice sets with this
approach. The full-factorial design has 512 runs, so there are a maximum of 512 possible choice sets.
Sixteen choice sets is ideal since there is an orthogonal-array design that we could use. The macro
stops considering larger sizes when it finds a perfect size (in this case 32) that is twice as big as another
perfect size (16). The last part of the output lists the orthgonal arrays.

Cereal Bars

Design Summary

Number of
Levels Frequency

2 3
4 3

Cereal Bars

Saturated = 13
Full Factorial = 512
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Some Reasonable Cannot Be
Design Sizes Violations Divided By

16 * 0
32 * 0
24 3 16
20 12 8 16
28 12 8 16
14 18 4 8 16
18 18 4 8 16
22 18 4 8 16
26 18 4 8 16
30 18 4 8 16

* - 100% Efficient Design can be made with the MktEx Macro.

Cereal Bars

n Design Reference

16 2 ** 6 4 ** 3 Fractional-Factorial
16 2 ** 3 4 ** 4 Fractional-Factorial
32 2 ** 22 4 ** 3 Fractional-Factorial
32 2 ** 19 4 ** 4 Fractional-Factorial
32 2 ** 16 4 ** 5 Fractional-Factorial
32 2 ** 15 4 ** 3 8 ** 1 Fractional-Factorial
32 2 ** 13 4 ** 6 Fractional-Factorial
32 2 ** 12 4 ** 4 8 ** 1 Fractional-Factorial
32 2 ** 10 4 ** 7 Fractional-Factorial
32 2 ** 9 4 ** 5 8 ** 1 Fractional-Factorial
32 2 ** 7 4 ** 8 Fractional-Factorial
32 2 ** 6 4 ** 6 8 ** 1 Fractional-Factorial
32 2 ** 4 4 ** 9 Fractional-Factorial
32 2 ** 3 4 ** 7 8 ** 1 Fractional-Factorial

We will create a linear design with 16 choice sets. The %MktRuns macro suggests 16 because it can be
divided by 2 (we have two-level factors), 4 (we have four-level factors), 2× 2 (we have more than one
two-level factor), 4 × 4 (we have more than one four-level factor), and 2 × 4 (we have both two-level
factors and four-level factors). The number of choice sets must be divisible by all of these it the design
is going to be orthogonal and balanced. Sixteen is a reasonable number of judgments for people to
make, and the other suggestions (24, 20, 28, 14, 18, 22, 26, 30) all cannot be divided by at least one of
these numbers.

We will use the %MktEx macro to get our linear design. It accepts a factor-level list like %MktRuns along
with the number of runs or choice sets. We specify a random number seed so that we always get the
same design if we rerun the %MktEx macro.

%mktex( 4 2 4 2 4 2, n=16, seed=17 )

The output is next. The %MktEx macro found a 100% efficient, orthogonal and balanced design with
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3 two-level factors and 3 four-level factors, just as the %MktRuns told us it would. The levels are all
positive integers, starting with 1 and continuing to the number of levels.

Cereal Bars

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

Cereal Bars

The OPTEX Procedure

Class Level Information

Class Levels Values
x1 4 1 2 3 4
x2 2 1 2
x3 4 1 2 3 4
x4 2 1 2
x5 4 1 2 3 4
x6 2 1 2

Cereal Bars
Average

Prediction
Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.9014

Next, we examine some of the properties of the design and we print it. The %MktEval macro tells us
which factors are orthogonal and which are correlated. It also tells us how often each level occurs, how
often each pair of levels occurs across pairs of factors, and how often each run or choice set occurs.

title2 ’Examine Correlations and Frequencies’;
%mkteval;

title2 ’Examine Design’;
proc print data=randomized; run;

Here is the first part of the output. It tells us that the design is orthogonal, that every factor is
uncorrelated with every other factor.
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Cereal Bars
Examine Correlations and Frequencies

Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6

x1 1 0 0 0 0 0
x2 0 1 0 0 0 0
x3 0 0 1 0 0 0
x4 0 0 0 1 0 0
x5 0 0 0 0 1 0
x6 0 0 0 0 0 1

Here is the next part of the output. It tells us that each level occurs equally often, (4 times in the
four-level factors and 8 times in the two-level factors), and each pair of levels occurs equally often. The
n-way frequencies tell us that every choice set occurs only once in the design−there are no duplicates.

Cereal Bars
Examine Correlations and Frequencies

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

Frequencies

x1 4 4 4 4
x2 8 8
x3 4 4 4 4
x4 8 8
x5 4 4 4 4
x6 8 8
x1 x2 2 2 2 2 2 2 2 2
x1 x3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x1 x4 2 2 2 2 2 2 2 2
x1 x5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x1 x6 2 2 2 2 2 2 2 2
x2 x3 2 2 2 2 2 2 2 2
x2 x4 4 4 4 4
x2 x5 2 2 2 2 2 2 2 2
x2 x6 4 4 4 4
x3 x4 2 2 2 2 2 2 2 2
x3 x5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x3 x6 2 2 2 2 2 2 2 2
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x4 x5 2 2 2 2 2 2 2 2
x4 x6 4 4 4 4
x5 x6 2 2 2 2 2 2 2 2
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Here is the randomized design. It has 3 four-level factors with levels 1, 2, 3, 4, followed by 3 two-level
factors with levels 1, 2, 3. It has 16 rows. The levels and rows are not sorted, so this is in a good form
for use.

Cereal Bars
Examine Design

Obs x1 x2 x3 x4 x5 x6

1 1 1 2 1 2 1
2 4 1 2 2 4 2
3 3 2 2 1 3 2
4 3 1 4 1 4 1
5 2 2 2 2 1 1
6 4 1 1 1 1 1
7 3 2 1 2 2 1
8 1 2 3 2 4 1
9 2 1 4 2 2 2
10 1 2 4 1 1 2
11 4 2 4 2 3 1
12 2 1 3 1 3 1
13 2 2 1 1 4 2
14 1 1 1 2 3 2
15 3 1 3 2 1 2
16 4 2 3 1 2 2

Next, we need to make a choice design from our linear design. We need to specify in a SAS data set the
rules for doing this. We need to specify that the brands are Branolicious, Brantopia, Brantasia, and
None. We need to specify that the Branolicious Price is made from x1, the Branolicious Count is made
from x2, the Brantopia Price is made from x3, the Brantopia Count is made from x4, the Brantasia
Price is made from x5, and the Brantasia Count is made from x6. We also need to specify that the
none alternative is not made from any of the attributes. We call this data set the key to constructing
the choice design. The variables in this data set correspond to the attributes in the choice design, and
the values correspond to the brands and to the linear design factors. The %MktKey macro gives us the
linear design factor names that we can cut and paste into this data set. For large designs, this makes
it much easier to construct the design key.

%mktkey(3 2)

Here are the three rows and two columns of the names x1-x6 for pasting into our key data set.
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x1 x2

x1 x2
x3 x4
x5 x6

Here is the key data set.

title2 ’Create the Choice Design Key’;

data key;
input

Brand $ 1-12 Price $ Count $; datalines;
Branolicious x1 x2
Brantopia x3 x4
Brantasia x5 x6
None . .
;

The %MktRoll macro uses the linear design and the information in the key data set to make the choice
design.

title2 ’Create Choice Design from Linear Design’;
%mktroll( design=randomized, key=key, alt=brand,

out=cerealdes )

proc print; id set; by set; run;

The Brand variable contains literal names, and it is named on the alt= option, which designates the
alternative name (brand) attribute. The remaining variables contain factor names from the linear data
set. Here is the choice design. It contains the variable Set along with the variable names and brands
from the key data set and also the information from the linear design all stored in the right places.

Cereal Bars
Create Choice Design from Linear Design

Set Brand Price Count

1 Branolicious 1 1
Brantopia 2 1
Brantasia 2 1
None . .

2 Branolicious 4 1
Brantopia 2 2
Brantasia 4 2
None . .
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3 Branolicious 3 2
Brantopia 2 1
Brantasia 3 2
None . .

4 Branolicious 3 1
Brantopia 4 1
Brantasia 4 1
None . .

5 Branolicious 2 2
Brantopia 2 2
Brantasia 1 1
None . .

6 Branolicious 4 1
Brantopia 1 1
Brantasia 1 1
None . .

7 Branolicious 3 2
Brantopia 1 2
Brantasia 2 1
None . .

8 Branolicious 1 2
Brantopia 3 2
Brantasia 4 1
None . .

9 Branolicious 2 1
Brantopia 4 2
Brantasia 2 2
None . .

10 Branolicious 1 2
Brantopia 4 1
Brantasia 1 2
None . .

11 Branolicious 4 2
Brantopia 4 2
Brantasia 3 1
None . .

12 Branolicious 2 1
Brantopia 3 1
Brantasia 3 1
None . .
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13 Branolicious 2 2
Brantopia 1 1
Brantasia 4 2
None . .

14 Branolicious 1 1
Brantopia 1 2
Brantasia 3 2
None . .

15 Branolicious 3 1
Brantopia 3 2
Brantasia 1 2
None . .

16 Branolicious 4 2
Brantopia 3 1
Brantasia 2 2
None . .

These next steps assign formats to the levels and print the choice sets. In the interest of space, only
the first four choice sets are printed. The design is stored in a permanent SAS data set so it will still
be available at analysis time.

title2 ’Final Choice Design’;

proc format;
value price 1 = $2.89 2 = $2.99 3 = $3.09 4 = $3.19 . = ’ ’;
value count 1 = ’Six Bars’ 2 = ’Eight Bars’ . = ’ ’;
run;

data sasuser.cerealdes;
set cerealdes;
format price price. count count.;
run;

proc print data=sasuser.cerealdes(obs=16);
by set; id set;
run;

Here are the first four choice sets.

Cereal Bars
Final Choice Design

Set Brand Price Count

1 Branolicious $2.89 Six Bars
Brantopia $2.99 Six Bars
Brantasia $2.99 Six Bars
None
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2 Branolicious $3.19 Six Bars
Brantopia $2.99 Eight Bars
Brantasia $3.19 Eight Bars
None

3 Branolicious $3.09 Eight Bars
Brantopia $2.99 Six Bars
Brantasia $3.09 Eight Bars
None

4 Branolicious $3.09 Six Bars
Brantopia $3.19 Six Bars
Brantasia $3.19 Six Bars
None

This step evaluates the goodness of the design for a choice model using the %ChoicEff macro. This
macro can also be used to search for efficient choice designs.

title2 ’Evaluate Design’;

%choiceff(model=class(brand price count), /* model, expand to dummy vars */
nalts=4, /* number of alternatives */
nsets=16, /* number of choice sets */
beta=zero, /* assumed beta vector, Ho: b=0 */
intiter=0, /* no internal iterations just */

/* evaluate the input design */
data=sasuser.cerealdes, /* the input design to evaluate */
init=sasuser.cerealdes(keep=set))/* choice set number from design*/

Here is the last output table, which is what we are most interested in seeing. We see three parameters
for brand (4 alternatives including none minus 1), three for price (4 - 1), one one for count (2 - 1). All
are estimable and all have reasonable standard errors. These results look good.

Cereal Bars
Evaluate Design

Standard
n Variable Name Label Variance DF Error

1 BrandBranolicious Brand Branolicious 0.94444 1 0.97183
2 BrandBrantasia Brand Brantasia 0.94444 1 0.97183
3 BrandBrantopia Brand Brantopia 0.94444 1 0.97183
4 Price_2_89 Price $2.89 0.88889 1 0.94281
5 Price_2_99 Price $2.99 0.88889 1 0.94281
6 Price_3_09 Price $3.09 0.88889 1 0.94281
7 CountSix_Bars Count Six Bars 0.44444 1 0.66667

==
7
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Next, the questionaire is designed. Here are two sample choice sets.

Branolicious Brantopia Brantasia No Purchase
$2.89 $2.99 $2.99
Six Bars Six Bars Six Bars

Branolicious Brantopia Brantasia No Purchase
$3.19 $2.99 $3.19
Six Bars Eight Bars Eight Bars

In practice, data collection is usually much more elaborate than this. It may involve art work or
photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the essential
ingredients remain the same. Subjects are shown sets of alternatives and are asked to make a choice,
then they go on to the next set. Each subject sees all 16 choice sets and chooses one alternative from
each. The data for each subject consist of 16 integers in the range 1 to 4 showing which alternative
was chosen. The data are collected and entered into a SAS data set. There is one row for each subject
containing the number of the chosen alternatives for each choice set.

title2 ’Read Data’;

data results;
input Subject (r1-r16) (1.);
datalines;

1 1331132331312213
2 3231322131312233
3 1233332111132233
4 1211232111313233
5 1233122111312233
6 3231323131212313
7 3231232131332333
8 3233332131322233
9 1223332111333233
10 1332132111233233

11 1233222211312333
12 1221332111213233
13 1231332131133233
14 3211333211313233
15 3313332111122233
16 3321123231331223
17 3223332231312233
18 3211223311112233
19 1232332111132233
20 1213233111312413
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21 1333232131212233
22 3321322111122231
23 3231122131312133
24 1232132111311333
25 3113332431213233
26 3213132141331233
27 3221132111312233
28 3222333131313231
29 1221332131312231
30 3233332111212233

31 1221332111342233
32 2233232111111211
33 2332332131211231
34 2221132211312411
35 1232233111332233
36 1231333131322333
37 1231332111331333
38 1223132211233331
39 1321232131211231
40 1223132331321233
;

The %MktMerge macro merges the data and the design and creates the dependent variable.

title2 ’Merge Data and Design’;

%mktmerge(design=sasuser.cerealdes, /* input design */
data=results, /* input data set */
out=res2, /* output data set with design and data */
nsets=16, /* number of choice sets */
nalts=4, /* number of alternatives */
setvars=r1-r16) /* variables with the chosen alt nums */

This data set has one row for each alternative of each choice set for each subject (in this case, there
are 4× 16× 40 = 2560 rows). This step prints the first four choice sets for the first subject.

title2 ’Design and Data Both’;

proc print data=res2(obs=16);
by set subject; id set subject;
run;

Here are the first four choice sets for the first subject.

Cereal Bars
Design and Data Both

Set Subject Brand Price Count c

1 1 Branolicious $2.89 Six Bars 1
Brantopia $2.99 Six Bars 2
Brantasia $2.99 Six Bars 2
None 2
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2 1 Branolicious $3.19 Six Bars 2
Brantopia $2.99 Eight Bars 2
Brantasia $3.19 Eight Bars 1
None 2

3 1 Branolicious $3.09 Eight Bars 2
Brantopia $2.99 Six Bars 2
Brantasia $3.09 Eight Bars 1
None 2

4 1 Branolicious $3.09 Six Bars 1
Brantopia $3.19 Six Bars 2
Brantasia $3.19 Six Bars 2
None 2

The dependent variable is c. A 1 in c indicates first choice, and a 2 indicates the alternatives that were
not chosen (second or subsequent choice).

This next step codes the design variables for analysis and prints the coded results for the first subject
for the first four choice sets. All of the independent variables are names in the class specification.
PROC TRANSREG options are explained in detail in throughout the other examples, particularly on
page 173.

title2 ’Code the Independent Variables’;

proc transreg design norestoremissing data=res2;
model class(brand price count);
id subject set c;
output out=coded(drop=_type_ _name_ intercept) lprefix=0;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Dependent Variable’;
format price price. count count.;
var Brand Price Count Subject Set c;
by set subject; id set subject;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Coding of Brand’;
format price price. count count.;
var brandbranolicious brandbrantasia brandbrantopia brand;
by set subject; id set subject;
run;

proc print data=coded(obs=16) label;
title3 ’ID Information and the Coding of Price and Count’;
format price price. count count.;
var Price_2_89 Price_2_99 Price_3_09 CountSix_Bars Price Count;
by set subject; id set subject;
run;

Here is the coded design for the first four choice sets, shown in three panels.
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Cereal Bars
Code the Independent Variables

ID Information and the Dependent Variable

Set Subject Brand Price Count Subject Set c

1 1 Branolicious $2.89 Six Bars 1 1 1
Brantopia $2.99 Six Bars 1 1 2
Brantasia $2.99 Six Bars 1 1 2
None 1 1 2

2 1 Branolicious $3.19 Six Bars 1 2 2
Brantopia $2.99 Eight Bars 1 2 2
Brantasia $3.19 Eight Bars 1 2 1
None 1 2 2

3 1 Branolicious $3.09 Eight Bars 1 3 2
Brantopia $2.99 Six Bars 1 3 2
Brantasia $3.09 Eight Bars 1 3 1
None 1 3 2

4 1 Branolicious $3.09 Six Bars 1 4 1
Brantopia $3.19 Six Bars 1 4 2
Brantasia $3.19 Six Bars 1 4 2
None 1 4 2

Cereal Bars
Code the Independent Variables

ID Information and the Coding of Brand

Set Subject Branolicious Brantasia Brantopia Brand

1 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

2 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

3 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None

4 1 1 0 0 Branolicious
0 0 1 Brantopia
0 1 0 Brantasia
0 0 0 None
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Cereal Bars
Code the Independent Variables

ID Information and the Coding of Price and Count

Six
Set Subject $2.89 $2.99 $3.09 Bars Price Count

1 1 1 0 0 1 $2.89 Six Bars
0 1 0 1 $2.99 Six Bars
0 1 0 1 $2.99 Six Bars
0 0 0 0

2 1 0 0 0 1 $3.19 Six Bars
0 1 0 0 $2.99 Eight Bars
0 0 0 0 $3.19 Eight Bars
0 0 0 0

3 1 0 0 1 0 $3.09 Eight Bars
0 1 0 1 $2.99 Six Bars
0 0 1 0 $3.09 Eight Bars
0 0 0 0

4 1 0 0 1 1 $3.09 Six Bars
0 0 0 1 $3.19 Six Bars
0 0 0 1 $3.19 Six Bars
0 0 0 0

This code fits the choice model. Notice that we use the %PhChoice macro to customize the output from
PROC PHREG so it looks more like discrete choice output and less like survival analysis output. The
choice model is a special case of a survival-analysis model. Before the model equals sign, c indicates
the chosen alternative and also the alternatives that were not chosen, those with values of 2 or greater.
After the equal sign is a macro variable that PROC TRANSREG creates with the list of coded variables.
Each subject and set combination or stratum makes a contribution to the likelihood function.

%phchoice( on )

title2 ’Multinomial Logit Discrete Choice Model’;

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subject set;
run;

%phchoice( off )

Here are the results.
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Cereal Bars
Multinomial Logit Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 2560
Number of Observations Used 2560

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 640 4 1 3

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 1774.457 1142.630
AIC 1774.457 1156.630
SBC 1774.457 1187.860

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 631.8271 7 <.0001
Score 518.1014 7 <.0001
Wald 275.0965 7 <.0001
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Cereal Bars
Multinomial Logit Discrete Choice Model

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Branolicious 1 2.64506 0.47268 31.3142 <.0001
Brantasia 1 2.94600 0.47200 38.9571 <.0001
Brantopia 1 2.44876 0.47416 26.6706 <.0001
$2.89 1 2.69907 0.20307 176.6557 <.0001
$2.99 1 1.72036 0.17746 93.9845 <.0001
$3.09 1 0.76407 0.17437 19.2008 <.0001
Six Bars 1 -0.54645 0.11899 21.0912 <.0001

Notice near the top of the output that there was one pattern of results. There were 640 times (16
choice sets times 40 people) that four alternatives were presented and one was chosen. This table
provides a check on the data entry. Usually, the number of alternatives is the same in all choice sets,
as it is here. Multiple patterns would mean a data entry error had occured. The “Multinomial Logit
Parameter Estimates” table is of primary interest. All of the part-worth utilities (parameter estimates)
are significant, and the clearest pattern in the results is that the lower prices have the highest utility.

These are the basic steps in designing, processing, and analyzing a choice experiment. Pages 141
through 465 have many more examples, much greater detail, and show how to use other tools.

Optimal Generic Choice Designs

In some situations, particularly for certain generic choice experiments, we can make optimal choice
designs under the assumption that β = 0. A generic choice experiment is one that does not have
any brands. The alternatives are simply bundles of attributes. For example, a manufacturer of any
electronic product may construct a choice study with potential variations on a new product to see
which attributes are the most important drivers of choice. Consider for example a study that involves
4 two-level factors and four choice sets, each with two alternatives. Here is an the optimal generic choice
design along with a three fractional-factorial designs. The first fractional-factorial design consists of 3
two-level factors in 4 runs and an intercept. The second fractional-factorial design consists of 3 two-
level factors in 4 runs and a “shifted intercept,” a column of twos instead of the customary column of
ones. The third fractional-factorial design consists of 1 four-level factor and 4 two-level factors in eight
runs.
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Optimal
Generic
Choice
Design

1 1 1 1
2 2 2 2

1 1 2 2
2 2 1 1

1 2 2 1
2 1 1 2

1 2 1 2
2 1 2 1

Fractional
Factorial

23 in 4 Runs
With Intercept
1 1 1 1
1 1 2 2
1 2 2 1
1 2 1 2

Shifted
Fractional
Factorial

2 2 2 2
2 2 1 1
2 1 1 2
2 1 2 1

Fractional
Factorial

4124 in 8 Runs
1 1 1 1 1
2 1 1 2 2
3 1 2 2 1
4 1 2 1 2
1 2 2 2 2
2 2 2 1 1
3 2 1 1 2
4 2 1 2 1

The first fractional-factorial design exactly matches the two-level factors in the first half of the third
fractional-factorial design, and the second fractional-factorial design exactly matches the two-level
factors in the second half of the third fractional-factorial design. Sorting the third fractional-factorial
design on the four-level factor and using it as the choice set number yields the optimal generic choice
design.

The optimal generic choice design can be constructed by creating a fractional-factorial design with
an intercept and using it to make the first alternative of each choice set. The second alternative is
made from the first by shifting or cycling through the levels (changing 1 to 2 and 2 to 1). The first
alternative is shown in the fractional-factorial table, and the second alternative is shown in shifted
fractional-factorial table. The plan for the second alternative is a different fractional-factorial plan.
Alternatively and equivalently, this design can be made from the orthogonal array 4124 in 8 runs by
using the four-level factor as the choice set number. Note that the optimal generic choice design never
shows two alternatives with the same levels of any factor. For this reason, some researchers do not
use them and consider this class of designs to be more of academic and combinatorial interest than of
practical significance.

Here is an optimal generic choice design with 9 three-level attributes, with three alternatives, and nine
choice sets, each in a separate box. It is made from the orthogonal design 3991 in 27 runs by using
the nine-level factor as the choice set number. Notice that each alternative is made from the previous
alternative by adding one to the previous level, mod 3. Similarly, the first alternative is made from the
third alternative by adding one to the previous level, mod 3.

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3

1 1 1 2 2 2 3 3 3
2 2 2 3 3 3 1 1 1
3 3 3 1 1 1 2 2 2

1 2 3 3 1 2 2 3 1
2 3 1 1 2 3 3 1 2
3 1 2 2 3 1 1 2 3

1 3 2 1 3 2 1 3 2
2 1 3 2 1 3 2 1 3
3 2 1 3 2 1 3 2 1
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1 1 1 3 3 3 2 2 2
2 2 2 1 1 1 3 3 3
3 3 3 2 2 2 1 1 1

1 2 3 1 2 3 1 2 3
2 3 1 2 3 1 2 3 1
3 1 2 3 1 2 3 1 2

1 2 3 2 3 1 3 1 2
2 3 1 3 1 2 1 2 3
3 1 2 1 2 3 2 3 1

1 3 2 2 1 3 3 2 1
2 1 3 3 2 1 1 3 2
3 2 1 1 3 2 2 1 3

1 3 2 3 2 1 2 1 3
2 1 3 1 3 2 3 2 1
3 2 1 2 1 3 1 3 2

Here is an optimal generic choice design with 8 four-level attributes, with four alternatives, and eight
choice sets, each in a separate box. It is made from the fractional-factorial design 488 in 32 runs by
using the eight-level factor as the choice set number. Notice that every attribute has all four levels
in each factor. With four-level factors, the rules that are used to make orthogonal arrays are more
complicated than the mod 3 addition that is used with three-level factors, so you do not get the same
pattern of shifted results that we saw previously.

1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4

1 1 3 4 2 2 4 3
2 2 4 3 1 1 3 4
3 3 1 2 4 4 2 1
4 4 2 1 3 3 1 2

1 2 2 3 3 4 4 1
2 1 1 4 4 3 3 2
3 4 4 1 1 2 2 3
4 3 3 2 2 1 1 4

1 2 4 2 4 3 1 3
2 1 3 1 3 4 2 4
3 4 2 4 2 1 3 1
4 3 1 3 1 2 4 2

1 3 2 1 4 2 3 4
2 4 1 2 3 1 4 3
3 1 4 3 2 4 1 2
4 2 3 4 1 3 2 1

1 3 4 4 3 1 2 2
2 4 3 3 4 2 1 1
3 1 2 2 1 3 4 4
4 2 1 1 2 4 3 3

1 4 1 3 2 3 2 4
2 3 2 4 1 4 1 3
3 2 3 1 4 1 4 2
4 1 4 2 3 2 3 1

1 4 3 2 1 4 3 2
2 3 4 1 2 3 4 1
3 2 1 4 3 2 1 4
4 1 2 3 4 1 2 3

If you need a generic choice design and you do not have the level of symmetry shown in these examples
(all m-level factors with m alternatives) then you can use the %ChoicEff macro to find an efficient
generic design using the methods shown in the chair example on page 363.

In general, optimal generic designs can be constructed for experiments with p choice sets and m-level
factors with m alternatives when there is an orthogonal array p1mq in p ×m runs where q ≤ p. We
can process the design catalog from the %MktOrth macro to find these.
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%mktorth(maxn=100, options=parent);

data x;
set mktdeslev;
array x[50];
c = 0; one = 0; q = 0;
do i = 1 to 50;

c + (x[i] > 0); /* how many differing numbers of levels */
if x[i] > 1 then do; m = i; q = x[i]; end; /* m^q */
if x[i] = 1 then do; one + 1; p = i; end; /* p^1 */
end;

if c = 2 and one = 1 and p >= q and q > 2 and p * m = n;
design = compbl(left(design));
run;

proc print; var n design; run;

Here are a few of the smaller designs that work.

Obs n Design

1 8 2 ** 4 4 ** 1
2 16 2 ** 8 8 ** 1
3 18 3 ** 6 6 ** 1
4 24 2 ** 12 12 ** 1
5 27 3 ** 9 9 ** 1
6 32 2 ** 16 16 ** 1
7 32 4 ** 8 8 ** 1
8 36 3 ** 12 12 ** 1
9 40 2 ** 20 20 ** 1
10 45 3 ** 9 15 ** 1
11 48 2 ** 24 24 ** 1
12 48 4 ** 12 12 ** 1
13 50 5 ** 10 10 ** 1
14 54 3 ** 18 18 ** 1
15 56 2 ** 28 28 ** 1
16 63 3 ** 12 21 ** 1
17 64 2 ** 32 32 ** 1
18 64 4 ** 16 16 ** 1
19 72 2 ** 36 36 ** 1
20 72 3 ** 24 24 ** 1
21 75 5 ** 8 15 ** 1
22 80 2 ** 40 40 ** 1
23 80 4 ** 10 20 ** 1
24 81 3 ** 27 27 ** 1
25 88 2 ** 44 44 ** 1
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26 90 3 ** 30 30 ** 1
27 96 2 ** 48 48 ** 1
28 98 7 ** 14 14 ** 1
29 99 3 ** 13 33 ** 1
30 100 5 ** 20 20 ** 1

For a specification of p, q, and m, assuming the orthogonal array p1mq in pm runs exists, this code
makes an optimal generic choice design. The %ChoicEff macro evaluates the results.

%let p = 6;
%let m = 3;
%let q = &p;

%mktex(&p &m ** &q, n=&p * &m)
%mktlab(data=design, vars=Set x1-x&q)

proc print; id set; by set; run;

%choiceff(data=final, init=final(keep=set), model=class(x1-x&q),
nsets=&p, nalts=&m, beta=zero)

Here is an example with m = 3 and p = q = 6 choice sets.

Set x1 x2 x3 x4 x5 x6

1 1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3

2 1 1 2 2 3 3
2 2 3 3 1 1
3 3 1 1 2 2

3 1 2 1 3 3 2
2 3 2 1 1 3
3 1 3 2 2 1

4 1 2 3 1 2 3
2 3 1 2 3 1
3 1 2 3 1 2

5 1 3 2 3 2 1
2 1 3 1 3 2
3 2 1 2 1 3

6 1 3 3 2 1 2
2 1 1 3 2 3
3 2 2 1 3 1

Here are the parameters names and their variances under the null hypothesis that β = 0.
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1 1 1
2 x12 x1 2 1 1 1
3 x21 x2 1 1 1 1
4 x22 x2 2 1 1 1
5 x31 x3 1 1 1 1
6 x32 x3 2 1 1 1
7 x41 x4 1 1 1 1
8 x42 x4 2 1 1 1
9 x51 x5 1 1 1 1
10 x52 x5 2 1 1 1
11 x61 x6 1 1 1 1
12 x62 x6 2 1 1 1

==
12

The rest of this section is optional and can be skipped by readers not interested in the combinatorial
details of this construction method. The next section starts on page 96. An orthogonal array p1mq in
p ×m runs is made by developing a difference scheme (Wang and Wu 1991). A difference scheme is
a matrix that is a “building block” used in the construction of many orthogonal arrays. It is called a
difference scheme because if you subtract any two columns, all differences occur equally often. Note
however, that the meaning of the term “subract” in this context is quite different from its customary
meaning in the real number system. Here, subtraction is in a Galois or abelian field. Explaining this
fully is beyond the scope of this discussion, but we will provide an example. Here for example are
the addition, subtraction, multiplication, and inversion tables that are used in a Galois field of order 5
(GF(5)). These tables are used when constructing factors with five levels (0 1 2 3 4).

0
1
2
3
4

Addition
0 1 2 3 4
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

0
1
2
3
4

Subtraction
0 1 2 3 4
0 4 3 2 1
1 0 4 3 2
2 1 0 4 3
3 2 1 0 4
4 3 2 1 0

0
1
2
3
4

Multiplication
0 1 2 3 4
0 0 0 0 0
0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

Inverse

0
1 1
2 3
3 2
4 4

The rules for addition and multiplication follow the rules for integer arithmetic mod 5, so for example,
4 + 4 mod 5 = 8 mod 5 = 3 and 4×4 mod 5 = 16 mod 5 = 1. The results can also be seen by accessing
the row 4, column 4 entries of the addition and multiplication tables. The rules for subtraction can
easily be derived from the rules for addition, and the rules for inversion can easily be derived from the
rules for multiplication. For example, since 4 + 3 = 2 in GF(5), then 4 = 2 - 3, and since 3 × 2 = 1,
then 2 is the inverse of 3. Note that in many cases, the rules for field arithmetic are not this simple.
In some cases, like when the order of the field is a power of a prime (4, 8, 9 ...) or a composite number
that contains a power of a prime (12, 18, ...), the rules are much more complicated, and modulo m
arithmetic does not work.

In GF(5), the multiplication table is a 5 × 5 difference scheme, D. You can verify that if you subract
every column from every other column, the five elements of the field (0 1 2 3 4) all occur exactly once
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in all of the difference vectors. An orthogonal array is made by constructing

D + 0 (0,1,2,3,4)
D + 1 (0,1,2,3,4)
D + 2 (0,1,2,3,4)
D + 3 (0,1,2,3,4)
D + 4 (0,1,2,3,4).

For each new block, the difference scheme is shifted, adding 1 each time to the previous matrix. An
additional factor can be added which consists of the levels (0, 1, ..., p−1). Here is the orthogonal array
on the left and the generic choice design made from sorting this orthogonal array on the right.

Orthogonal Array

0 0 0 0 0 0
0 1 2 3 4 1
0 2 4 1 3 2
0 3 1 4 2 3
0 4 3 2 1 4

1 1 1 1 1 0
1 2 3 4 0 1
1 3 0 2 4 2
1 4 2 0 3 3
1 0 4 3 2 4

2 2 2 2 2 0
2 3 4 0 1 1
2 4 1 3 0 2
2 0 3 1 4 3
2 1 0 4 3 4

3 3 3 3 3 0
3 4 0 1 2 1
3 0 2 4 1 2
3 1 4 2 0 3
3 2 1 0 4 4

4 4 4 4 4 0
4 0 1 2 3 1
4 1 3 0 2 2
4 2 0 3 1 3
4 3 2 1 0 4

Generic Choice Design
Set Factors

0 0 0 0 0 0
0 1 1 1 1 1
0 2 2 2 2 2
0 3 3 3 3 3
0 4 4 4 4 4

1 0 1 2 3 4
1 1 2 3 4 0
1 2 3 4 0 1
1 3 4 0 1 2
1 4 0 1 2 3

2 0 2 4 1 3
2 1 3 0 2 4
2 2 4 1 3 0
2 3 0 2 4 1
2 4 1 3 0 2

3 0 3 1 4 2
3 1 4 2 0 3
3 2 0 3 1 4
3 3 1 4 2 0
3 4 2 0 3 1

4 0 4 3 2 1
4 1 0 4 3 2
4 2 1 0 4 3
4 3 2 1 0 4
4 4 3 2 1 0

This is the same orthogonal array that %MktEx produces except that by default, %MktEx uses one-based
integers instead of a zero base. For a generic choice design, the difference scheme provides levels for
the first alternative, and all other alternatives are made from the previous alternative by adding 1 in
the appropriate field.
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Conclusions

This chapter introduced some choice design terminology and ideas without going into great detail on
how to make designs and process data for analysis. The information in this chapter should provide a
good foundation for all of the detailed examples in the discrete choice chapter.

Choice Design Glossary

Choice modeling, like all other areas, has its own vocabulary. This section defines some of those terms.
These terms are used and also defined throughout the discrete choice chapter (pages 141−465).

allocation study - An allocation study is a choice study where multiple, not single choices are made.
For example, in prescription drug marketing, physicians are asked questions like “For the next ten
prescriptions you write for a particular condition, how many would you write for each of these drugs?”

alternative-specific attribute - An alternative-specific attribute is one that is expected to interact
with brand. If you expect utility to change in different ways for the different brands, then the attribute
is alternative-specific. Otherwise, it is generic. In the analysis, there is a set of alternative-specific
attribute parameters for each alternative.

alternative - An alternative is one of the options available to be chosen in a choice set. An alternative
might correspond to a particular brand in a branded study or just a bundle of attributes in a generic
study.

attribute - An attribute is one of the characteristics of an alternative. Common attributes include
price, size, and a variety of other product-specific factors.

availability cross effects - A design may have a varying number of alternatives. When not all
alternatives are available in every choice set, availability cross effects, may be of interest. These
capture the effects of the presence/absence of one brand on the utility of another.

blocking - Large choice designs need to be broken into blocks. Subjects will just see a subset of the
full design. How many blocks depends on the number of choice sets and the complexity of the choice
task.

branded design - A branded choice design has one factor that consists of a brand name or other
alternative label. The vacation examples on pages 184-260 are examples of branded designs even
though the labels, destinations, and not brands. The examples starting on pages 156, 283, and 261 use
branded designs and actual brand names.

choice design - A choice design has one column for every different product attribute and one row for
every alternative of every choice set. In some cases, different alternatives will have different attributes
and different choice sets may have differing numbers of alternatives. See pages 48 and 60−61.

choice set - A choice set consists of two or more alternatives. Subjects see one or more choice sets
and choose one alternative from each set.

cross effects - A cross effect represents the effect of one alternative on the utility of another alternative.
When the IIA assumption holds, all cross effects will be zero.

generic attribute - A generic attribute is one that is not expected to interact with brand. If you
expect utility to change as a function of the levels of the attribute in the same way for every brand, then
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the attribute is generic. In contrast, if you expect utility to change in different ways for the different
brands, then the attribute is alternative-specific. All attributes in generic designs are generic. In the
analysis, there is one set of parameters for generic attributes, regardless of the number of alternatives.

generic design or generic model - A generic design is unbranded. The alternatives are simply
bundles of attributes. Each alternative may be for example a cell phone or computer all made by the
same manufacturer.

IIA - The independence of irrelevant alternatives or IIA property states that utility only depends on
an alternative’s own attributes. IIA means the odds of choosing alternative ci over cj do not depend
on the other alternatives in the choice set. Departures from IIA exist when certain subsets of brands
are in more direct competition and tend to draw a disproportionate amount of share from each other
than from other members in the category.

linear design - A linear design is a factorial design. In the choice model context, it contains one row
for each choice set and one column for every attribute of every alternative. The columns are grouped,
the first group contains every attribute for the first alternative, ..., and the jth group contains every
attribute for the jth alternative. The linear design is used to construct a choice design. Each of the
m blocks for the m alternatives is moved below the preceding block creating a choice design with m
times as many rows as previously and approximately 1/m times as many columns. See pages 60−61.

mother logit model - The mother logit model is a model with cross effects that can be used to test
for violations of IIA.
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Abstract

We suggest using D-efficient experimental designs for conjoint and discrete-choice studies, and discuss
orthogonal arrays, nonorthogonal designs, relative efficiency, and nonorthogonal design algorithms. We
construct designs for a choice study with asymmetry and interactions and for a conjoint study with
blocks and aggregate interactions.∗

Introduction

The design of experiments is a fundamental part of marketing research. Experimental designs are
required in widely used techniques such as preference-based conjoint analysis and discrete-choice studies
(e.g., Carmone and Green 1981; Elrod, Louviere, and Davey 1992; Green and Wind 1975; Huber, et al.
1993; Lazari and Anderson 1994; Louviere 1991; Louviere and Woodworth 1983; Wittink and Cattin
1989). Ideally, marketing researchers prefer orthogonal designs. When a linear model is fit with an
orthogonal design, the parameter estimates are uncorrelated, which means each estimate is independent
of the other terms in the model. More importantly, orthogonality usually implies that the coefficients
will have minimum variance, though we discuss exceptions to this rule. For these reasons, orthogonal
designs are usually quite good. However, for many practical problems, orthogonal designs are simply
not available. In those situations, nonorthogonal designs must be used.

∗This chapter is a revision of a paper that appeared in Journal of Marketing Research, November, 1994, pages 545−557.
Warren F. Kuhfeld is now Manager, Multivariate Models R&D, SAS. Randall D. Tobias is now Manager, Linear Models
R&D, SAS. Mark Garratt was Vice President, Conway | Milliken & Associates when this paper was first published in
1994 and is now with Miller Brewing Company. The authors thank Jordan Louviere, JMR editor Barton Weitz, and three
anonymous reviewers for their helpful comments on earlier versions of this article. Thanks to Michael Ford for the idea
for the second example. The JMR article was based on a presentation given to the AMA Advanced Research Techniques
Forum, June 14, 1993, Monterey CA.

Our primary message when this paper was published in 1994 was that marketing researchers should use D-efficient
experimental designs. This message remains as strong as ever, but today, we have much better tools for accomplishing
this than we had in 1994. Most of the revisions of the original paper are due to improvements in the tools. Our new design
tool, the %MktEx SAS macro, is easier to use than our old tools, and it usually makes better designs. Copies of this chapter
(TS-722D) and all of the macros are available on the web http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Orthogonal designs are available for only a relatively small number of very specific problems. They
may not be available when some combinations of factor levels are infeasible, a nonstandard number of
runs (factor level combinations or hypothetical products) is desired, or a nonstandard model is being
used, such as a model with interaction or polynomial effects. Consider the problem of designing a
discrete choice study in which there are alternative specific factors, different numbers of levels within
each factor, and interactions within each alternative. Orthogonal designs are not readily available for
this situation, particularly when the number of runs must be limited. When an orthogonal design
is not available, an alternative must be chosen−the experiment can be modified to fit some known
orthogonal design, which is undesirable for obvious reasons, or a known design can be modified to fit
the experiment, which may be difficult and inefficient.

Our primary purpose is to explore a third alternative, the use of optimal (or nearly optimal) designs.
Such designs are typically nonorthogonal; however they are efficient in the sense that the variances and
covariances of the parameter estimates are minimized. Furthermore, they are always available, even for
nonstandard situations. Finding these designs usually requires the aid of a computer, but we want to
emphasize that we are not advocating a black-box approach to designing experiments. Computerized
design algorithms do not supplant traditional design-creation skills. Our examples show that our best
designs were usually found when we used our human design skills to guide the computerized search.

First, we will summarize our main points; next, we will review some fundamentals of the design
of experiments; then we will discuss computer-generated designs, a discrete-choice example, and a
conjoint analysis example.

Summary of Main Points. Our goal is to explain the benefits of using computer-generated designs
in marketing research. Our main points follow:

1. The goodness of an experimental design (efficiency) can be quantified as a function of the vari-
ances and covariances of the parameter estimates. Efficiency increases as the variances decrease.
Designs should not be thought of in terms of the dichotomy between orthogonal versus nonorthog-
onal but rather as varying along the continuous attribute of efficiency. Some orthogonal designs
are less efficient than other (orthogonal and nonorthogonal) alternatives.

2. Orthogonality is not the primary goal in design creation. It is a secondary goal, associated with
the primary goal of minimizing the variances of the parameter estimates. Degree of orthogonality
is an important consideration, but other factors should not be ignored.

3. For complex, nonstandard situations, computerized searches provide the only practical method
of design generation for all but the most sophisticated of human designers. These situations do
not have to be avoided just because it is extremely difficult to generate a good design manually.

4. The best approach to design creation is to use the computer as a tool along with traditional
design skills, not as a substitute for thinking about the problem.

Background and Assumptions. We present an overview of the theory of efficient experimental
design, developed for the general linear model. This topic is well known to specialists in statistical
experimentation, though it is not typically taught in design classes. Then we will suggest ways in which
this theory can be applied to marketing research problems.
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Certain assumptions must be made before applying ordinary general linear model theory to problems in
marketing research. The usual goals in linear modeling are to estimate parameters and test hypotheses
about those parameters. Typically, independence and normality are assumed. In conjoint analysis, each
subject rates all products and separate ordinary-least-squares analyses are run for each subject. This
is not a standard general linear model; in particular, observations are not independent and normality
cannot be assumed. Discrete choice models, which are nonlinear, are even further removed from the
general linear model.

Marketing researchers have always made the critical assumption that designs that are good for general
linear models are also good for conjoint analysis and discrete choice. We also make this assumption.
Specifically, we assume the following:

1. Market share estimates computed from a conjoint analysis model using a more efficient design
will be better than estimates using a less efficient design. That is, more efficient designs mean
better estimates of the part-worth utilities, which lead to better estimates of product utility and
market share.

2. An efficient design for a linear model is a good design for the multinomial logit (MNL) model
used in discrete choice studies.

Investigating these standard assumptions is beyond the scope of this article. However, they are sup-
ported by Carson and colleagues (1994), our experiences in consumer product goods, and limited
simulation results. Much more research is needed on this topic, particularly in the area of discrete
choice.

Design of Experiments

Orthogonal Experimental Designs. An experimental design is a plan for running an experiment.
The factors of an experimental design are variables that have two or more fixed values, or levels.
Experiments are performed to study the effects of the factor levels on the dependent variable. In a
conjoint or discrete-choice study, the factors are the attributes of the hypothetical products or services,
and the response is preference or choice.

A simple experimental design is the full-factorial design, which consists of all possible combinations
of the levels of the factors. For example, with five factors, two at two levels and three at three levels
(denoted 2233), there are 108 possible combinations. In a full-factorial design, all main effects, two-
way interactions, and higher-order interactions are estimable and uncorrelated. The problem with
a full-factorial design is that, for most practical situations, it is too cost-prohibitive and tedious to
have subjects rate all possible combinations. For this reason, researchers often use fractional-factorial
designs, which have fewer runs than full-factorial designs. The price of having fewer runs is that some
effects become confounded. Two effects are confounded or aliased when they are not distinguishable
from each other.

A special type of fractional-factorial design is the orthogonal array, in which all estimable effects are
uncorrelated. Orthogonal arrays are categorized by their resolution. The resolution identifies which
effects, possibly including interactions, are estimable. For example, for resolution III designs, all main
effects are estimable free of each other, but some of them are confounded with two-factor interactions.
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For resolution V designs, all main effects and two-factor interactions are estimable free of each other.
Higher resolutions require larger designs. Orthogonal arrays come in specific numbers of runs (e.g., 16,
18, 20, 24, 27, 28) for specific numbers of factors with specific numbers of levels.

Resolution III orthogonal arrays are frequently used in marketing research. The term “orthogonal
array,” as it is sometimes used in practice, is imprecise. It correctly refers to designs that are both
orthogonal and balanced, and hence optimal. It is also imprecisely used to refer to designs that
are orthogonal but not balanced, and hence potentially nonoptimal. A design is balanced when each
level occurs equally often within each factor, which means the intercept is orthogonal to each effect.
Imbalance is a generalized form of nonorthogonality, which increases the variances of the parameter
estimates.

Design Efficiency. Efficiencies are measures of design goodness. Common measures of the
efficiency of an (ND × p) design matrix X are based on the information matrix X′X. The variance-
covariance matrix of the vector of parameter estimates β in a least-squares analysis is proportional
to (X′X)−1. An efficient design will have a “small” variance matrix, and the eigenvalues of (X′X)−1

provide measures of its “size.” Two common efficiency measures are based on the idea of “average
eigenvalue” or “average variance.” A-efficiency is a function of the arithmetic mean of the eigenvalues,
which is given by trace ((X′X)−1)/p. D-efficiency is a function of the geometric mean of the eigenvalues,
which is given by |(X′X)−1|1/p. A third common efficiency measure, G-efficiency, is based on σM , the
maximum standard error for prediction over the candidate set. All three of these criteria are convex
functions of the eigenvalues of (X′X)−1 and hence are usually highly correlated.

For all three criteria, if a balanced and orthogonal design exists, then it has optimum efficiency;
conversely, the more efficient a design is, the more it tends toward balance and orthogonality. A design
is balanced and orthogonal when (X′X)−1 is diagonal (for a suitably coded X, see page 64). A design is
orthogonal when the submatrix of (X′X)−1, excluding the row and column for the intercept, is diagonal;
there may be off-diagonal nonzeros for the intercept. A design is balanced when all off-diagonal elements
in the intercept row and column are zero.

These measures of efficiency can be scaled to range from 0 to 100 (for a suitably coded X):

A-efficiency = 100× 1
ND trace ((X′X)−1)/p

D-efficiency = 100× 1
ND |(X′X)−1|1/p

G-efficiency = 100×
√

p/ND

σM

These efficiencies measure the goodness of the design relative to hypothetical orthogonal designs that
may be far from possible, so they are not useful as absolute measures of design efficiency. Instead, they
should be used relatively, to compare one design with another for the same situation. Efficiencies that
are not near 100 may be perfectly satisfactory.

Figure 1 shows an optimal design in four runs for a simple example with two factors, using interval-
measure scales for both. There are three candidate levels for each factor. The full-factorial design is
shown by the nine asterisks, with circles around the optimal four design points. As this example shows,
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Figure 1
Candidate Set and Optimal Design
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Table 1
Full-Factorial Design

Information Matrix

Int X1 X2 X3 - X4 - X5 -

Int 108 0 0 0 0 0 0 0 0
X1 0 108 0 0 0 0 0 0 0
X2 0 0 108 0 0 0 0 0 0
X3 0 0 0 108 0 0 0 0 0

- 0 0 0 0 108 0 0 0 0
X4 0 0 0 0 0 108 0 0 0

- 0 0 0 0 0 0 108 0 0
X5 0 0 0 0 0 0 0 108 0

- 0 0 0 0 0 0 0 0 108

100.0000 D-efficiency
100.0000 A-efficiency
100.0000 G-efficiency

efficiency tends to emphasize the corners of the design space. Interestingly, nine different sets of four
points form orthogonal designs−every set of four that forms a rectangle or square. Only one of these
orthogonal designs is optimal, the one in which the points are spread out as far as possible.

Computer-Generated Design Algorithms. When a suitable orthogonal design does not exist, computer-
generated nonorthogonal designs can be used instead. Various algorithms exist for selecting a good set
of design points from a set of candidate points. The candidate points consist of all of the factor-level
combinations that can potentially be included in the design−for example the nine points in Figure 1.
The number of runs, ND, is chosen by the researcher. Unlike orthogonal arrays, ND can be any number
as long as ND ≥ p.† The algorithm searches the candidate points for a set of ND design points that is
optimal in terms of a given efficiency criterion.

It is almost never possible to list all ND-run designs and choose the most efficient or optimal design,
because run time is exponential in the number of candidates. For example, with 2233 in 18 runs, there
are 108!/(18!(108− 18)!) = 1.39× 1020 possible designs. Instead, nonexhaustive search algorithms are
used to generate a small number of designs, and the most efficient one is chosen. The algorithms select
points for possible inclusion or deletion, then compute rank-one or rank-two updates of some efficiency
criterion. The points that most increase efficiency are added to the design. These algorithms invariably
find efficient designs, but they may fail to find the optimal design, even for the given criterion. For
this reason, we prefer to use terms like information-efficient and D-efficiency over the more common
optimal and D-optimal.

There are many algorithms for generating information-efficient designs. We will begin by describing
some of the simpler approaches and then proceed to the more complicated (and more reliable) algo-

†In fact, this restriction is not strictly necessary. So called “super-saturated” designs (Booth and Cox, 1962) have
more runs than parameters. However, such designs are typically not used in marketing research. The %MktRuns SAS
macro provides some guidance on the selection of ND. See page 740.
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rithms. Dykstra’s (1971) sequential search method starts with an empty design and adds candidate
points so that the chosen efficiency criterion is maximized at each step. This algorithm is fast, but it
is not very reliable in finding a globally optimal design. Also, it always finds the same design (due to
a lack of randomness).

The Mitchell and Miller (1970) simple exchange algorithm is a slower but more reliable method. It
improves the initial design by adding a candidate point and then deleting one of the design points,
stopping when the chosen criterion ceases to improve. The DETMAX algorithm of Mitchell (1974)
generalizes the simple exchange method. Instead of following each addition of a point by a deletion,
the algorithm makes excursions in which the size of the design may vary. These three algorithms add
and delete points one at a time.

The next two algorithms add and delete points simultaneously, and for this reason, are usually more
reliable for finding the truly optimal design; but because each step involves a search over all possible
pairs of candidate and design points, they generally run much more slowly (by an order of magnitude).
The Fedorov (1972) algorithm simultaneously adds one candidate point and deletes one design point.
Cook and Nachtsheim (1980) define a modified Fedorov algorithm that finds the best candidate point
to switch with each design point. The resulting procedure is generally as efficient as the simple Fedorov
algorithm in finding the optimal design, but it is up to twice as fast. We extensively use one more
algorithm, the coordinate exchange algorithm of Meyer and Nachtsheim (1995). This algorithm does
not use a candidate set. Instead it refines an initial design by exchanging each level with every other
possible level, keeping those exchanges that increase efficiency. In effect, this method uses a virtual
candidate set that consists of all possible runs, even when the full-factorial candidate set is too large
to generate and store.

Choice of Criterion and Algorithm. Typically, the choice of efficiency criterion is less important
than the choice between manual design creation and computerized search. All of the information-
efficient designs presented in this article were generated optimizing D-efficiency because it is faster to
optimize than A-efficiency and because it is the standard approach. It is also possible to optimize
A-efficiency, though the algorithms generally run much more slowly because the rank-one updates
are more complicated with A-efficiency. G-efficiency is an interesting ancillary statistic; however, our
experience suggests that attempts to maximize G-efficiency with standard algorithms do not work very
well.

The candidate set search algorithms, ordered from the fastest and least reliable to the slowest and
most reliable, are: sequential, simple exchange, DETMAX, and modified Fedorov. We always use the
modified Fedorov and coordinate exchange algorithms even for extremely large problems; we never
even try the other algorithms. For small problems in which the full factorial is no more than a few
thousand runs, modified Fedorov tends to work best. For larger problems, coordinate exchange tends
to be better. Our latest software, the %MktEx macro, tries a few iterations with both methods, then
picks the best method for that problem and continues on with more iterations using just the chosen
method. See page 667 and all of the examples starting on page 141.

Nonlinear Models. The experimental design problem is relatively simple for linear models and much
more complicated for nonlinear models. The usual goal when creating a design is to minimize some
function of the variance matrix of the parameter estimates, such as the determinant. For linear models,
the variance matrix is proportional to (X′X)−1, and so the design optimality problem is well-posed.
However, for nonlinear models, such as the multinomial logit model used with discrete-choice data, the
variance matrix depends on the true values of the parameters themselves. (See pages 121, 600, and
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363 for more on efficient choice designs based on assumptions about the parameters.) Thus in general,
there may not exist a design for a discrete-choice experiment that is always optimal. However, Carson
and colleagues (1994) and our experience suggest that D-efficient designs work well for discrete-choice
models.

Lazari and Anderson (1994) provide a catalog of designs for discrete-choice models, which are good
for certain specific problems. For those specific situations, they may be as good as or better than
computer-generated designs. However, for many real problems, cataloged designs cannot be used
without modification, and modification can reduce efficiency. We carry their work one step further by
discussing a general computerized approach to design generation.

Design Comparisons

Comparing Orthogonal Designs. All orthogonal designs are not perfectly or even equally efficient.
In this section, we compare designs for 2233. Table 1 gives the information matrix, X′X, for a full-
factorial design using an orthogonal coding. The matrix is a diagonal matrix with the number of runs
on the diagonal. The three efficiency criteria are printed after the information matrix. Because this
is a full-factorial design, all three criteria show that the design is 100% efficient. The variance matrix
(not shown) is (1/108)I = 0.0093I.

Table 2 shows the information matrix, efficiencies, and variance matrix for a classical 18-run orthogonal
design for 2233, Chakravarti’s (1956) L18, for comparison with information-efficient designs with 18
runs. (The SAS ADX menu system was used to generate the design. Tables A1 and A2 contain the
factor levels and the orthogonal coding used in generating Table 2.) Note that although the factors are
all orthogonal to each other, X1 is not balanced. Because of this, the main effect of X1 is estimated
with a higher variance (0.063) than X2 (0.056).

The precision of the estimates of the parameters critically depends on the efficiency of the experimental
design. The parameter estimates in a general linear model are always unbiased (in fact, best linear
unbiased [BLUE]) no matter what design is chosen. However, all designs are not equally efficient. In
fact, all orthogonal designs are not equally efficient, even when they have the same factors and the
same number of runs. Efficiency criteria can be used to help choose among orthogonal designs. For
example, the orthogonal design in Tables 3 and A3 (from the Green and Wind 1975 carpet cleaner
example) for 2233 is less D-efficient than the Chakravarti L18 (97.4166/98.6998 = 0.9870). The Green
and Wind design can be created from a 35 balanced orthogonal array by collapsing two of the three-
level factors into two-level factors. In contrast, the Chakravarti design is created from a 2134 balanced
orthogonal array by collapsing only one of the three-level factors into a two-level factor. The extra
imbalance makes the Green and Wind design less efficient. (Note that the off-diagonal 2 in the Green
and Wind information matrix does not imply that X1 and X2 are correlated. It is an artifact of the
coding scheme. The off-diagonal 0 in the variance matrix shows that X1 and X2 are uncorrelated.)

Orthogonal Versus Nonorthogonal Designs. Orthogonal designs are not always more efficient than
nonorthogonal designs. Tables 4 and A4 show the results for an information-efficient, main-effects-only
design in 18 runs. The OPTEX procedure of SAS software was used to generate the design, using the
modified Fedorov algorithm. The information-efficient design is slightly better than the classical L18,
in terms of the three efficiency criteria. In particular, the ratio of the D-efficiencies for the classical
and information-efficient designs are 99.8621/98.6998 = 1.0118. In contrast to the L18, this design is
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Table 2
Orthogonal Design
Information Matrix

Int X1 X2 X3 - X4 - X5 -

Int 18 6 0 0 0 0 0 0 0
X1 6 18 0 0 0 0 0 0 0
X2 0 0 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0

- 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 0 0

- 0 0 0 0 0 0 18 0 0
X5 0 0 0 0 0 0 0 18 0

- 0 0 0 0 0 0 0 0 18

98.6998 D-efficiency
97.2973 A-efficiency
94.8683 G-efficiency

Variance Matrix

Int X1 X2 X3 - X4 - X5 -

Int 63 -21 0 0 0 0 0 0 0
X1 -21 63 0 0 0 0 0 0 0
X2 0 0 56 0 0 0 0 0 0
X3 0 0 0 56 0 0 0 0 0

- 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 56 0 0 0

- 0 0 0 0 0 0 56 0 0
X5 0 0 0 0 0 0 0 56 0

- 0 0 0 0 0 0 0 0 56

Note: multiply variance matrix values by 0.001.

Table 3
Green & Wind Orthogonal Design

Information Matrix

Int X1 X2 X3 - X4 - X5 -

Int 18 -6 -6 0 0 0 0 0 0
X1 -6 18 2 0 0 0 0 0 0
X2 -6 2 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0

- 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 0 0

- 0 0 0 0 0 0 18 0 0
X5 0 0 0 0 0 0 0 18 0

- 0 0 0 0 0 0 0 0 18

97.4166 D-efficiency
94.7368 A-efficiency
90.4534 G-efficiency

Variance Matrix

Int X1 X2 X3 - X4 - X5 -

Int 69 21 21 0 0 0 0 0 0
X1 21 63 0 0 0 0 0 0 0
X2 21 0 63 0 0 0 0 0 0
X3 0 0 0 56 0 0 0 0 0

- 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 56 0 0 0

- 0 0 0 0 0 0 56 0 0
X5 0 0 0 0 0 0 0 56 0

- 0 0 0 0 0 0 0 0 56

Notes: multiply variance matrix values by 0.001.

balanced in all the factors, but X1 and X2 are slightly correlated, shown by the 2’s off the diagonal.
There is no completely orthogonal (that is, both balanced and orthogonal) 2233 design in 18 runs.‡ The
nonorthogonality in Table 4 has a much smaller effect on the variances of X1 and X2 (1.2%) than the
lack of balance in the orthogonal design in Table 2 has on the variance of X2 (12.5%). In optimizing
efficiency, the search algorithms effectively optimize both balance and orthogonality. In contrast, in
some orthogonal designs, balance and efficiency may be sacrificed to preserve orthogonality.

This example shows that a nonorthogonal design may be more efficient than an unbalanced orthogonal
design. We have seen this phenomenon with other orthogonal designs and in other situations as well.
Preserving orthogonality at all costs can lead to decreased efficiency. Orthogonality was extremely
important in the days before general linear model software became widely available. Today, it is more
important to consider efficiency when choosing a design. These comparisons are interesting because they
illustrate in a simple example how lack of orthogonality and imbalance affect efficiency. Nonorthogonal
designs will never be more efficient than balanced orthogonal designs, when they exist. However,
nonorthogonal designs may well be more efficient than unbalanced orthogonal designs. Although this
point is interesting and important, what is most important is that good nonorthogonal designs exist in

‡In order for the design to be both balanced and orthogonal, the number of runs must be divisible by 2, 3, 2 × 2,
3 × 3, and 2 × 3. Since 18 is not divisible by 2 × 2, orthogonality and balance are not both simultaneously possible for
this design.
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Table 4
Information-Efficient Orthogonal Design

Information Matrix

Int X1 X2 X3 - X4 - X5 -

Int 18 0 0 0 0 0 0 0 0
X1 0 18 2 0 0 0 0 0 0
X2 0 2 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0

- 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 0 0

- 0 0 0 0 0 0 18 0 0
X5 0 0 0 0 0 0 0 18 0

- 0 0 0 0 0 0 0 0 18

99.8621 D-efficiency
99.7230 A-efficiency
98.6394 G-efficiency

Variance Matrix

Int X1 X2 X3 - X4 - X5 -

Int 56 0 0 0 0 0 0 0 0
X1 0 56 -6 0 0 0 0 0 0
X2 0 -6 56 0 0 0 0 0 0
X3 0 0 0 56 0 0 0 0 0

- 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 56 0 0 0

- 0 0 0 0 0 0 56 0 0
X5 0 0 0 0 0 0 0 56 0

- 0 0 0 0 0 0 0 0 56

Notes: multiply variance matrix values by 0.001.
The diagonal entries for X1 and X2 are slightly larger
at 0.0563 than the other diagonal entries of 0.0556.

Table 5
Unrealistic Combinations Excluded

Information Matrix

Int X1 X2 X3 - X4 - X5 -

Int 18 0 0 0 0 0 0 0 0
X1 0 18 2 0 0 0 0 0 0
X2 0 2 18 0 0 0 0 0 0
X3 0 0 0 18 0 0 0 0 0

- 0 0 0 0 18 0 0 0 0
X4 0 0 0 0 0 18 0 -6 5

- 0 0 0 0 0 0 18 5 0
X5 0 0 0 0 0 -6 5 18 0

- 0 0 0 0 0 5 0 0 18

96.4182 D-efficiency
92.3190 A-efficiency
91.0765 G-efficiency

Variance Matrix

Int X1 X2 X3 - X4 - X5 -

Int 56 0 0 0 0 0 0 0 0
X1 0 56 -6 0 0 0 0 0 0
X2 0 -6 56 0 0 0 0 0 0
X3 0 0 0 56 0 0 0 0 0

- 0 0 0 0 56 0 0 0 0
X4 0 0 0 0 0 69 -7 25 -20

- 0 0 0 0 0 -7 61 -20 2
X5 0 0 0 0 0 25 -20 69 -7

- 0 0 0 0 0 -20 2 -7 61

Notes: multiply variance matrix values by 0.001.

many situations in which no orthogonal designs exist. These designs are also discussed and at a more
basic level starting on page 54.

Design Considerations

Codings and Efficiency. The specific design matrix coding does not affect the relative D-
efficiency of competing designs. Rank-preserving linear transformations are immaterial, whether they
are from full-rank indicator variables to effects coding or to an orthogonal coding such as the one
shown in Table A2. Any full-rank coding is equivalent to any other. The absolute D-efficiency values
will change, but the ratio of two D-efficiencies for competing designs is constant. Similarly, scale for
quantitative factors does not affect relative efficiency. The proof is simple. If design X1 is recoded
to X1A, then |(X1A)′(X1A)| = |A′X′

1X1A| = |AA′||X′
1X1|. The relative efficiency of design X1

compared to X2 is the same as X1A compared to X2A, since the |AA′|’s terms in efficiency ratios
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will cancel. We prefer the orthogonal coding because it yields “nicer” information matrices with the
number of runs on the diagonal and efficiency values scaled so that 100 means perfect efficiency.

Quantitative Factors. The factors in an experimental design are usually qualitative (nominal), but
quantitative factors such as price are also important. With quantitative factors, the choice of levels
depends on the function of the original variable that is modeled. To illustrate, consider a pricing study
in which price ranges from $0.99 to $1.99. If a linear function of price is modeled, only two levels
of price should be used−the end points ($0.99 and $1.99). Using prices that are closer together is
inefficient; the variances of the estimated coefficients will be larger. The efficiency of a given design is
affected by the coding of quantitative factors, even though the relative efficiency of competing designs
is unaffected by coding. Consider treating the second factor of the Chakravarti L18, 2233 as linear.
It is nearly three times more D-efficient to use $0.99 and $1.99 as levels instead of $1.49 and $1.50
(58.6652/21.0832 = 2.7826). To visualize this, imagine supporting a yard stick (line) on your two index
fingers (with two points). The effect on the slope of the yard stick of small vertical changes in finger
locations is much greater when your fingers are closer together than when they are near the ends.

Of course there are other considerations besides the numerical measure of efficiency. It would not make
sense to use prices of $0.01 and $1,000,000 just because that is more efficient than using $0.99 and
$1.99. The model is almost certainly not linear over this range. To maximize efficiency, the range
of experimentation for quantitative factors should be as large as possible, given that the model is
plausible.

The number of levels also affects efficiency. Because two points define a line, it is inefficient to use more
than two points to model a linear function. When a quadratic function is used (x and x2 are included
in the model), three points are needed−the two extremes and the midpoint. Similarly, four points are
needed for a cubic function. More levels are needed when the functional form is unknown. Extra levels
allow for the examination of complicated nonlinear functions, with a cost of decreased efficiency for
the simpler functions. When the function is assumed to be linear, experimental points should not be
spread throughout the range of experimentation. See page 785 for a discussion of nonlinear functions
of quantitative factors in conjoint analysis.

Most of the discussion outside this section has concerned qualitative (nominal) factors, even if that
was not always explicitly stated. Quantitative factors complicate general design characterizations. For
example, we previously stated that “if a balanced and orthogonal design exists, then it has optimum
efficiency.” This statement must be qualified to be absolutely correct. The design would not be optimal
if, for example, a three-level factor were treated as quantitative and linear.

Nonstandard Algorithms and Criteria. Other researchers have proposed other algorithms and cri-
teria. Steckel, DeSarbo, and Mahajan (SDM) (1991) proposed using computer-generated experimental
designs for conjoint analysis to exclude unacceptable combinations from the design. They considered a
nonstandard measure of design goodness based on the determinant of the (m-factor × m-factor) corre-
lation matrix (|R|) instead of the customary determinant of the (p-parameter × p-parameter) variance
matrix (|(X′X)−1|). The SDM approach represents each factor by a single column rather than as a
set of coded indicator variables. Designs generated using nonstandard criteria will not generally be
efficient in terms of standard criteria like A-efficiency and D-efficiency, so the parameter estimates will
have larger variances. To illustrate graphically, refer to Figure 1. The criterion |R| cannot distinguish
between any of the nine different four-point designs, constructed from this candidate set, that form a
square or a rectangle. All are orthogonal; only one is optimal.
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We generated a D-efficient design for SDM’s example, treating the variables as all quantitative (as
they did). The |R| for the SDM design is 0.9932, whereas the |R| for the information-efficient design
is 0.9498. The SDM approach works quite well in maximizing |R|; hence the SDM design is close to
orthogonal. However, efficiency is not always maximized when orthogonality is maximized. The SDM
design is approximately 75% as D-efficient as a design generated with standard criteria and algorithms
(70.1182/93.3361 = 0.7512).

Choosing a Design. Computerized search algorithms generate many designs, from which the re-
searcher must choose one. Often, several designs are tied or nearly tied for the best D, A, and G
information efficiencies. A design should be chosen after examining the design matrix, its information
matrix, its variance matrix, factor correlations, and levels frequencies. It is important to look at the
results and not just routinely choose the design from the top of the list.

For studies involving human subjects, achieving at least nearly-balanced designs is an important con-
sideration. Consider for example a two-level factor in an 18-run design in which one level occurs 12
times and the other level occurs 6 times versus a design in which each level occurs 9 times. Subjects
who see one level more often than the other may try to read something into the study and adjust their
responses in some way. Alternatively, subjects who see one level most often may respond differently
than those who see the second level most often. These are not concerns with nearly balanced designs.
One design selection strategy is to choose the most balanced design from the top few.

Many other strategies can be used. Perhaps correlation and imprecision are tolerable in some variables
but not in others. Perhaps imbalance is tolerable, but the correlations between the factors should be
minimal. Goals will no doubt change from experiment to experiment. Choosing a suitable design can
be part art and part science. Efficiency should always be considered when choosing between alternative
designs, even manually created designs, but it is not the only consideration.∗

Adding Observations or Variables. These techniques can be extended to augment an existing design.
A design with r runs can be created by augmenting m specified combinations (established brands or
existing combinations) with r−m combinations chosen by the algorithm. Alternatively, combinations
that must be used for certain variables can be specified, and then the algorithm picks the levels for
the other variables (Cook and Nachtsheim 1989). This can be used to ensure that some factors are
balanced or uncorrelated; another application is blocking factors. Using design algorithms, we are able
to establish numbers of runs and blocking patterns that fit into practical fielding schedules.

Designs with Interactions. There is a growing interest in using both main effects and interactions
in discrete-choice models, because interaction and cross-effect terms may improve aggregate models
(Elrod, Louviere, and Davey 1992). The current standard for choice models is to have all main-effects
estimable both within and between alternatives. It is often necessary to estimate interactions within
alternatives, such as in modeling separate price elasticities for product forms, sizes or packages. For
certain classes of designs, in which a brand appears in only a subset of runs, it is often necessary to
have estimable main-effects, own-brand interactions, and cross-effects in the submatrix of the design
in which that brand is present. One way to ensure estimability is to include in the model interactions
between the alternative-specific variables of interest and the indicator variables that control for presence
or absence of the brand in the choice set. Orthogonal designs that allow for estimation of interactions
are usually very large, whereas efficient nonorthogonal designs can be generated for any linear model,
including models with interactions, and for any (reasonable) number of runs.

∗See the %MktEval macro, page 663, for a tool that helps evaluate designs.
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Unrealistic Combinations. It is sometimes useful to exclude certain combinations from the candidate
set. SDM (1991) have also considered this problem. Consider a discrete-choice model for several brands
and their line extensions. It may not make sense to have a choice set in which the line extension is
present and the “flagship” brand absent. Of course, as we eliminate combinations, we may introduce
unavoidable correlation between the parameter estimates. In Tables 5 and A5, the twenty combinations
where (X1 = 1 and X2 = 1 and X3 = 1) or (X4 = 1 and X5 = 1) were excluded and an 18-run
design was generated with the modified Fedorov algorithm. With these restrictions, all three efficiency
criteria dropped, for example 96.4182/99.8621 = 0.9655. This shows that the design with excluded
combinations is almost 97% as D-efficient as the best (unrestricted) design. The information matrix
shows that X1 and X2 are correlated, as are X4 and X5. This is the price paid for obtaining a design
with only realistic combinations.

In the “Quantitative Factors” section, we stated “Because two points define a line, it is inefficient to
use more than two points to model a linear function.” When unrealistic combinations are excluded,
this statement may no longer be true. For example, if minimum price with maximum size is excluded,
an efficient design may involve the median price and size.

Choosing the Number of Runs. Deciding on a number of runs for the design is a complicated
process; it requires balancing statistical concerns of estimability and precision with practical concerns
like time and subject fatigue. Optimal design algorithms can generate designs for any number of runs
greater than or equal to the number of parameters. The variances of the least-squares estimates of the
part-worth utilities will be roughly inversely proportional to both the D-efficiency and the number of
runs. In particular, for a given number of runs, a D-efficient design will give more accurate estimates
than would be obtained with a less efficient design. A more precise value for the number of choices
depends on the ratio of the inherent variability in subject ratings to the absolute size of utility that
is considered important. Subject concerns probably outweigh the statistical concerns, and the best
course is to provide as many products as are practical for the subjects to evaluate. In any case, the
use of information-efficient designs provides more flexibility than manual methods.

Asymmetry in the Number of Levels of Variables. In many practical applications of discrete-
choice modeling, there is asymmetry in the number of factor levels, and interaction and polynomial
parameters must be estimated. One common method for generating choice model designs is to create a
resolution III orthogonal array and modify it. The starting point is a qΣMj design, where q represents
a fixed number of levels across all attributes and Mj represents the number of attributes for brand j.
For example, in the “Consumer Food Product” example in a subsequent section, with five brands with
1, 3, 1, 2, and 1 attributes and with each attribute having at most four levels, the starting point is
a 48 orthogonal array. Availability cross-effect designs are created by letting one of the Mj variables
function as an indicator for presence/absence of each brand or by allowing one level of a common
variable (price) to operate as the indicator. These methods are fairly straightforward to implement in
designs in which the factor levels are all the same, but they become quite difficult to set up when there
are different numbers of levels for some factors or in which specific interactions must be estimable.

Asymmetry in the number of levels of factors may be handled either by using the “coding down”
approach (Addelman 1962b) or by expansion. In the coding down approach, designs are created using
factors that have numbers of levels equal to the largest number required in the design. Factors that
have fewer levels are created by recoding. For example, a five-level factor {1, 2, 3, 4, 5} can be recoded
into a three-level factor by duplicating levels {1, 1, 2, 2, 3}. The variables will still be orthogonal
because the indicator variables for the recoding are in a subspace of the original space. However,
recoding introduces imbalance and inefficiency. The second method is to expand a factor at k-levels
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into several variables at some fraction of k-levels. For example, a four-level variable can be expanded
into three orthogonal two-level variables. In many cases, both methods must be used to achieve the
required design.

These approaches are difficult for a simple main-effect design of resolution III and extremely difficult
when interactions between asymmetric factors must be considered. In practical applications, asym-
metry is the norm. Consider for example the form of an analgesic product. One brand may have
caplet and tablet varieties, another may have tablet, liquid, and chewable forms. In a discrete-choice
model, these two brand/forms must be modeled as asymmetric alternative-specific factors. If we fur-
thermore anticipated that the direct price elasticity might vary, depending on the form, we would need
to estimate the interaction of a quantitative price variable with the nominal-level form variable.

Computerized search methods are simpler to use by an order of magnitude. They provide asymmet-
ric designs that are usually nearly balanced, as well as providing easy specification for interactions,
polynomials and continuous by class effects.

Strategies for Many Variables. Consider generating a 315 design in 36 runs. There are 14,348,907
combinations in the full-factorial design, which is too many to use even for a candidate set. For
problems like this, the coordinate exchange algorithm (Meyer and Nachtsheim 1995)] works well. The
%MktEx macro which uses coordinate exchange with a partial orthogonal array initialization easily finds
design over 98.9% D-efficient. Even designs with over 100 variables can be created this way.

Examples

Choice of Consumer Food Products. Consider the problem of using a discrete choice model to study
the effect of introducing a retail food product. This may be useful, for example, to refine a marketing
plan or to optimize a product prior to test market. A typical brand team will have several concerns such
as knowing the potential market share for the product, examining the source of volume, and providing
guidance for pricing and promotions. The brand team may also want to know what brand attributes
have competitive clout and want to identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen
entrees. The client has one nationally branded competitor, a regional competitor in each of three
regions, and a profusion of private label products at the grocery chain level. The product comes in two
different forms: stove-top or microwaveable. The client believes that the private labels are very likely
to mimic this line extension and to sell it at a lower price. The client suspects that this strategy on
the part of private labels may work for the stove-top version but not for the microwaveable, in which
they have the edge on perceived quality. They also want to test the effect of a shelf-talker that will
draw attention to their product.

This problem may be set up as a discrete choice model in which a respondent’s choice among brands,
given choice set Ca of available brands, will correspond to the brand with the highest utility. For each
brand i, the utility Ui is the sum of a systematic component Vi and a random component ei. The
probability of choosing brand i from choice set Ca is therefore:

P (i|Ca) = P (Ui > max(Uj)) = P (Vi + ei > max(Vj + ej)) ∀ (j 6= i) ∈ Ca
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Table 6
Factors and Levels

Alternative Factor Levels Brand Description

1 X1 4 Client 3 prices + absent

2 X2 4 Client Line Extension 3 prices + absent
X3 2 microwave/stove-top
X4 2 shelf-talker yes/no

3 X5 3 Regional 2 prices + absent

4 X6 3 Private Label 2 prices + absent
X7 2 microwave/stove-top

5 X8 3 Competitor 2 prices + absent

Assuming that the ei follow an extreme value type I distribution, the conditional probabilities P (i|Ca)
can be found using the MNL formulation of McFadden (1974)

P (i|Ca) = exp(Vi)/
∑

j∈Ca
exp(Vj)

One of the consequences of the MNL formulation is the property of independence of irrelevant alterna-
tives (IIA). Under the assumption of IIA, all cross-effects are assumed to be equal, so that if a brand
gains in utility, it draws share from all other brands in proportion to their current shares. Departures
from IIA exist when certain subsets of brands are in more direct competition and tend to draw a
disproportionate amount of share from each other than from other members in the category. One way
to capture departures from IIA is to use the mother logit formulation of McFadden (1974). In these
models, the utility for brand i is a function of both the attributes of brand i and the attributes of other
brands. The effect of one brand’s attributes on another is termed a cross-effect. In the case of designs
in which only subsets Ca of the full shelf set C appear, the effect of the presence or absence of one
brand on the utility of another is termed an availability cross-effect.

In the frozen entree example, there are five alternatives: the client, the client’s line extension, a national
branded competitor, a regional brand and a private label brand. Several regional and private labels
can be tested in each market, then aggregated for the final model. Note that the line extension is
treated as a separate alternative rather than as a “level” of the client brand. This enables us to model
the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand
is shown at either two or three price points. Additional price points are included so that quadratic
models of price elasticity can be tested. The indicator for the presence or absence of any brand in the
shelf set is coded using one level of the price variable. The layout of factors and levels is given in Table
6.

In addition to intercepts and main effects, we also require that all two-way interactions within alterna-
tives be estimable: X2*X3, X2*X4, X3*X4 for the line extension and X6*X7 for private labels. This
will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to
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see if the promotion works better combined with a low price or with different forms. Using a linear
model for X1-X8, the total number of parameters including the intercept, all main effects, and two-way
interactions with brand is 25. This assumes that price is treated as qualitative. The actual number
of parameters in the choice model is larger than this because of the inclusion of cross-effects. Using
indicator variables to code availability, the systematic component of utility for brand i can be expressed
as:

Vi = ai +
∑

k(bik × xik) +
∑

j 6=i zj(dij +
∑

l(gijl × xjl))

where

ai = intercept for brand i
bik = effect of attribute k for brand i, where k = 1, ..,Ki

xik = level of attribute k for brand i
dij = availability cross-effect of brand j on brand i

zj = availability code =

{
1 if j ∈ Ca,
0 otherwise

gijl = cross-effect of attribute l for brand j on brand i, where l = 1, .., Lj

xjl = level of attribute l for brand j.

The xik and xjl might be expanded to include interaction and polynomial terms. In an availability
cross-effects design, each brand is present in only a fraction of choice sets. The size of this fraction
or subdesign is a function of the number of levels of the alternative-specific variable that is used to
code availability (usually price). For example, if price has three valid levels and a fourth “zero” level
to indicate absence, then the brand will appear in only three out of four runs. Following Lazari and
Anderson (1994), the size of each subdesign determines how many model equations can be written for
each brand in the discrete choice model. If Xi is the subdesign matrix corresponding to Vi, then each
Xi must be full rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full candidate set is generated consisting of 3456 runs. It is then reduced to 2776
runs that contain between two and four brands so that the respondent is never required to compare
more than four brands at a time. In the algorithm model specification, we designate all variables as
classification variables and require that all main effects and two-way interactions within brands be
estimable. The number of runs to use follows from a calculation of the number of parameters that
we wish to estimate in the various submatrices Xi of X. Assuming that there is a category “None”
used as a reference cell, the numbers of parameters required for various alternatives are shown in the
Table 7 along with the size of submatrices (rounded down) for various numbers of runs. Parameters
for quadratic price models are given in parentheses. Note that the effect of private label being in a
microwaveable or stove-top form (stove/micro cross-effect) is an explicit parameter under the client
line extension.

The number of runs chosen was N=26. This number provides adequate degrees of freedom for the
linear price model and will also allow estimation of direct quadratic price effects. To estimate quadratic
cross-effects for price would require 32 runs at the very least. Although the technique of using two-way
interactions between nominal level variables will usually guarantee that all direct and cross-effects are
estimable, it is sometimes necessary and a good practice to check the ranks of the submatrices for more
complex models (Lazari and Anderson 1994). Creating designs for cross effects can be difficult, even
with the aid of a computer.
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Table 7
Parameters

Client Private
Effect Client Line Extension Regional Label Competitor

intercept 1 1 1 1 1
availability cross-effects 4 4 4 4 4
direct price effect 1 (2) 1 (2) 1 1 1
price cross-effects 4 (8) 4 (8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross-effects - 1 - - -
shelf-talker - 1 - - -
price*stove/microwave - 1 (2) - 1 -
price*shelf-talker - 1 (2) - - -
stove/micro*shelf-talker - 1 - - -

Total 10 (15) 16 (23) 10 12 10

Subdesign size

22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

It took approximately 4.5 minutes to generate a design. The final (unrandomized) design in 26 runs is
in table A6.† The coded choice sets are presented in Table A7 and the level frequencies are presented
in Table A8. Note that the runs have been ordered by the presence/absence of the shelf-talker. This
ordering is done because it is unrealistic to think that once the respondent’s attention has been drawn
in by the promotion, it can just be “undrawn.” The two blocks that result may be shown to two groups
of people or to the same people sequentially. It would be extremely difficult and time consuming to
generate a design for this problem without a computerized algorithm.

Conjoint Analysis with Aggregate Interactions. This example illustrates creating a design for a
conjoint analysis study. The goal is to create a 36 design in 90 runs. The design consists of five blocks
of 18 runs each, so each subject will only have to rate 18 products. Within each block, main-effects
must be estimable. In the aggregate, all main-effects and two-way interactions must be estimable.
(The utilities from the main-effects models will be used to cluster subjects, then in the aggregate
analysis, clusters of subjects will be pooled across blocks and the blocking factor ignored.) Our goal
is to create a design that is simultaneously efficient in six ways. Each of the five blocks should be
an efficient design for a first-order (main-effects) model, and the aggregate design should be efficient
for the second-order (main-effects and two-way interactions) model. The main-effects models for the
five blocks have 5(1 + 6(3 − 1)) = 65 parameters. In addition, there are (6 × 5/2)(3 − 1)(3 − 1) = 60
parameters for interactions in the aggregate model. There are more parameters than runs, but not all

†This is the design that was presented in the original 1994 paper, which due to differences in the random number
seeds, is not reproduced by today’s tools.



TS-722D − Efficient Experimental Design with Marketing Research Applications 115

parameters will be simultaneously estimated.

One approach to this problem is the Bayesian regression method of DuMouchell and Jones (1994).
Instead of optimizing |X′X|, we optimized |X′X+P|, where P is a diagonal matrix of prior precisions.
This is analogous to ridge regression, in which a diagonal matrix is added to a rank-deficient X′X to
create a full-rank problem. We specified a model with a blocking variable, main effects for the six
factors, block-effect interactions for the six factors, and all two-way interactions. We constructed P to
contain zeros for the blocking variable, main effects, and block-effect interactions, and 45s (the number
of runs divided by 2) for the two-way interactions. Then we used the modified Fedorov algorithm to
search for good designs.

With an appropriate coding for X, the value of the prior precision for a parameter roughly reflects the
number of runs worth of prior information available for that parameter. The larger the prior precision
for a parameter, the less information about that parameter is in the final design. Specifying a nonzero
prior precision for a parameter reduces the contribution of that parameter to the overall efficiency. For
this problem, we wanted maximal efficiency for the within-subject main-effects models, so we gave a
nonzero prior precision to the aggregated two-way interactions.

Our best design had a D-efficiency for the second-order model of 63.9281 (with a D-efficiency for the
aggregate main-effects model of 99.4338) and D-efficiencies for the main-effects models within each
block of 100.0000, 100.0000, 100.0000, 99.0981, and 98.0854. The design is completely balanced within
all blocks. We could have specified other values in P and gotten better efficiency for the aggregate
design but less efficiency for the blocks. Choice of P depends in part on the primary goals of the
experiment. It may require some simulation work to determine a good choice of P.

All of the examples in this article so far have been straight-forward applications of computerized design
methodology. A set of factors, levels, and estimable effects was specified, and the computer looked for
an efficient design for that specification. Simple problems, such as those discussed previously, require
only a few minutes of computer time. This problem was much more difficult, so we let a work station
generate designs for about 72 hours. (We could have found less efficient but still acceptable designs in
much less time.) We were asking the computer to find a good design out of over 9.6×10116 possibilities.
This is like looking for a needle in a haystack, when the haystack is the size of the entire known universe.
With such problems, we may do better if we use our intuition to give the computer “hints,” forcing
certain structure into the design. To illustrate, we tried this problem again, this time using a different
approach.

We used the modified Fedorov algorithm to generate main-effects only 36 designs in 18 runs. We
stopped when we had ten designs all with 100% efficiency. We then wrote an ad hoc program that
randomly selected five of the ten designs, randomly permuted columns within each block, and randomly
permuted levels within each block. These operations do not affect the first-order efficiencies but do
affect the overall efficiency for the aggregate design. When an operation increased efficiency, the new
design was kept. We iterated over the entire design 20 times. We let the program run for about 16
hours, which generated 98 designs, and we found our best design in three hours. Our best design had
a D-efficiency for the second-order model of 68.0565 (versus 63.9281 previously), and all first-order
efficiencies of 100.

Many other variations on this approach could be tried. For example, columns and blocks could be
chosen at random, instead of systematically. We performed excursions of up to eight permutations
before we reverted to the previous design. This number could be varied. It seemed that permuting
the levels helped more than permuting the columns, though this was not thoroughly investigated.
Whatever is done, it is important to consider efficiency. For example, just randomly permuting levels
can create very inefficient designs.
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For this particular problem, the ad hoc algorithm generated better designs than the Bayesian method,
and it required less computer time. In fact, 91 out of the 98 ad hoc designs were better than the best
Bayesian design. However, the ad hoc method required much more programmer time. It is possible to
manually create a design for this situation, but it would be extremely difficult and time consuming to
find an efficient design without a computerized algorithm for all but the most sophisticated of human
designers. The best designs were found when used both our human design skills and a computerized
search. We have frequently found this to be the case.

Conclusions

Computer-generated experimental designs can provide both better and more general designs for discrete-
choice and preference-based conjoint studies. Classical designs, obtained from books or computerized
tables, can be good options when they exist, but they are not the only option. The time-consuming and
potentially error-prone process of finding and manually modifying an existing design can be avoided.
When the design is nonstandard and there are restrictions, a computer can generate a design, and it can
be done quickly. In most situations, a good design can be generated in a few minutes or hours, though
for certain difficult problems more time may be necessary. Furthermore, when the circumstances of
the project change, a new design can again be generated quickly.

We do not argue that computerized searches for D-efficient designs are uniformly superior to manually
generated designs. The human designer, using intuition, experience, and heuristics, can recognize
structure that an optimization algorithm cannot. On the other hand, the computerized search usually
does a good job, it is easy to use, and it can create a design faster than manual methods, especially
for the nonexpert. Computerized search methods and the use of efficiency criteria can benefit expert
designers as well. For example, the expert can manually generate a design and then use the computer
to evaluate and perhaps improve its efficiency.

In nonstandard situations, simultaneous balance and orthogonality may be unobtainable. Often, the
best that can be hoped for is optimal efficiency. Computerized algorithms help by searching for the most
efficient designs from a potentially very large set of possible designs. Computerized search algorithms
for D-efficient designs do not supplant traditional design-creation skills. Rather, they provide helpful
tools for finding good, efficient experimental designs.
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Table A1
Chakravarti’s L18, Factor Levels

X1 X2 X3 X4 X5

-1 -1 -1 -1 -1
-1 -1 0 0 1
-1 -1 1 1 0
-1 1 -1 1 0
-1 1 0 -1 -1
-1 1 1 0 1
1 -1 -1 0 0
1 -1 -1 1 1
1 -1 0 -1 0
1 -1 0 1 -1
1 -1 1 -1 1
1 -1 1 0 -1
1 1 -1 -1 1
1 1 -1 0 -1
1 1 0 0 0
1 1 0 1 1
1 1 1 -1 0
1 1 1 1 -1

Table A2
Chakravarti’s L18, Orthogonal Coding

X1 X2 X3 - X4 - X5 -

-1 -1 -1.225 -0.707 -1.225 -0.707 -1.225 -0.707
-1 -1 0.000 1.414 0.000 1.414 1.225 -0.707
-1 -1 1.225 -0.707 1.225 -0.707 0.000 1.414
-1 1 -1.225 -0.707 1.225 -0.707 0.000 1.414
-1 1 0.000 1.414 -1.225 -0.707 -1.225 -0.707
-1 1 1.225 -0.707 0.000 1.414 1.225 -0.707
1 -1 -1.225 -0.707 0.000 1.414 0.000 1.414
1 -1 -1.225 -0.707 1.225 -0.707 1.225 -0.707
1 -1 0.000 1.414 -1.225 -0.707 0.000 1.414
1 -1 0.000 1.414 1.225 -0.707 -1.225 -0.707
1 -1 1.225 -0.707 -1.225 -0.707 1.225 -0.707
1 -1 1.225 -0.707 0.000 1.414 -1.225 -0.707
1 1 -1.225 -0.707 -1.225 -0.707 1.225 -0.707
1 1 -1.225 -0.707 0.000 1.414 -1.225 -0.707
1 1 0.000 1.414 0.000 1.414 0.000 1.414
1 1 0.000 1.414 1.225 -0.707 1.225 -0.707
1 1 1.225 -0.707 -1.225 -0.707 0.000 1.414
1 1 1.225 -0.707 1.225 -0.707 -1.225 -0.707
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Table A3
Green & Wind

Orthogonal Design
Example

X1 X2 X3 X4 X5

-1 -1 -1 -1 -1
-1 -1 -1 1 0
-1 -1 0 -1 -1
-1 -1 0 0 1
-1 -1 0 1 -1
-1 -1 1 -1 0
-1 -1 1 0 1
-1 -1 1 1 0
-1 1 -1 1 1
-1 1 -1 -1 1
-1 1 0 0 0
-1 1 1 0 -1
1 -1 -1 0 -1
1 -1 -1 0 0
1 -1 0 1 1
1 -1 1 -1 1
1 1 1 1 -1
1 1 0 -1 0

Table A4
Information-Efficient

Design,
Factor Levels

X1 X2 X3 X4 X5

-1 -1 -1 0 -1
-1 -1 0 -1 0
-1 -1 0 1 -1
-1 -1 1 0 1
-1 -1 1 1 1
-1 1 -1 -1 0
-1 1 -1 0 -1
-1 1 0 -1 1
-1 1 1 1 0
1 -1 -1 -1 1
1 -1 -1 1 0
1 -1 0 0 0
1 -1 1 -1 -1
1 1 -1 1 1
1 1 0 0 1
1 1 0 1 -1
1 1 1 -1 -1
1 1 1 0 0

Table A5
Information-Efficient
Design, Unrealistic

Combinations Excluded

X1 X2 X3 X4 X5

-1 -1 -1 1 0
-1 -1 -1 -1 1
-1 -1 -1 0 -1
-1 -1 0 -1 1
-1 -1 0 0 0
-1 1 1 1 0
-1 1 1 -1 -1
-1 1 1 0 1
-1 1 0 1 -1
1 -1 1 1 -1
1 -1 1 -1 0
1 -1 1 0 1
1 -1 0 1 -1
1 1 -1 1 0
1 1 -1 -1 -1
1 1 -1 0 1
1 1 0 -1 1
1 1 0 0 0

Table A6
Consumer Food Product (Raw) Design

X1 X2 X3 X4 X5 X6 X7 X8

1 1 2 1 1 2 1 3
1 2 2 1 2 3 1 2
1 4 1 1 1 3 1 3
2 2 1 1 3 2 1 1
2 3 2 1 2 2 2 3
2 4 2 1 3 3 2 2
3 1 1 1 3 2 2 2
3 3 2 1 3 1 2 1
3 4 2 1 2 1 1 1
4 1 1 1 2 3 2 1
4 1 2 1 3 3 1 1
4 2 2 1 1 2 2 3
4 3 1 1 1 1 1 2

1 3 1 2 3 2 2 1
1 3 2 2 3 1 1 3
1 4 2 2 1 1 2 1
2 1 1 2 1 3 1 1
2 2 2 2 3 2 1 1
2 3 1 2 2 1 2 3
2 4 1 2 3 1 1 2
3 1 2 2 2 3 2 2
3 2 1 2 1 3 2 3
3 4 2 2 2 3 1 3
4 1 1 2 3 2 1 3
4 2 1 2 2 1 2 2
4 3 2 2 1 2 1 2
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Table A7
Consumer Food Product Choice Set

Block 1: Shelf-Talker Absent For Client Line Extension

Choice Client Client Line Regional Private National
Set Brand Extension Brand Label Competitor

1 $1.29 $1.39/stove $1.99 $2.29/micro N/A
2 $1.29 $1.89/stove $2.49 N/A $2.39
3 $1.29 N/A $1.99 N/A N/A
4 $1.69 $1.89/micro N/A $2.29/micro $1.99
5 $1.69 $2.39/stove $2.49 $2.29/stove N/A
6 $1.69 N/A N/A N/A $2.39
7 $2.09 $1.39/micro N/A $2.29/stove $2.39
8 $2.09 $2.39/stove N/A $1.49/stove $1.99
9 $2.09 N/A $2.49 $1.49/micro $1.99

10 N/A $1.39/micro $2.49 N/A $1.99
11 N/A $1.39/stove N/A N/A $1.99
12 N/A $1.89/stove $1.99 $2.29/stove N/A
13 N/A $2.39/micro $1.99 $1.49/micro $2.39

Block 2: Shelf-Talker Present For Client Line Extension

Choice Client Client Line Regional Private National
Set Brand Extension Brand Label Competitor

14 $1.29 $2.39/micro N/A $2.29/stove $1.99
15 $1.29 $2.39/stove N/A $1.49/micro N/A
16 $1.29 N/A $1.99 $1.49/stove $1.99
17 $1.69 $1.39/micro $1.99 N/A $1.99
18 $1.69 $1.89/stove N/A $2.29/micro $1.99
19 $1.69 $2.39/micro $2.49 $1.49/stove N/A
20 $1.69 N/A N/A $1.49/micro $2.39
21 $2.09 $1.39/stove $2.49 N/A $2.39
22 $2.09 $1.89/micro $1.99 N/A N/A
23 $2.09 N/A $2.49 N/A N/A
24 N/A $1.39/micro N/A $2.29/micro N/A
25 N/A $1.89/micro $2.49 $1.49/stove $2.39
26 N/A $2.39/stove $1.99 $2.29/micro $2.39

Table A8
Consumer Food Product Design Level Frequencies

Level X1 X2 X3 X4 X5 X6 X7 X8

1 6 7 12 13 8 8 14 9
2 7 6 14 13 8 9 12 8
3 6 7 10 9 9
4 7 6
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Table A9
Consumer Food Product Design Creation Code

*-----------------------------------------------------*
| Construct the Design. |
*-----------------------------------------------------;

%macro bad;
bad = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
bad = abs(bad - 3) * ((bad < 2) | (bad > 4));
%mend;

%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=bad, outr=sasuser.choicdes )

*-----------------------------------------------------*
| Print the Design. |
*-----------------------------------------------------;

proc format;
value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;
run;

data key;
missing N;
input x1-x8;
format x1 x2 x5 x6 x8 dollar5.2

x4 yn. x3 x7 micro.;
label x1 = ’Client Brand’

x2 = ’Client Line Extension’
x3 = ’Client Micro/Stove’
x4 = ’Shelf Talker’
x5 = ’Regional Brand’
x6 = ’Private Label’
x7 = ’Private Micro/Stove’
x8 = ’National Competitor’;

datalines;
1.29 1.39 1 1 1.99 1.49 1 1.99
1.69 1.89 2 2 2.49 2.29 2 2.39
2.09 2.39 . . N N . N
N N . . . . . .
;

%mktlab(data=sasuser.choicdes, key=key)

proc sort out=sasuser.finchdes; by x4; run;

proc print label; id x4; by x4; run;
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Abstract

Researchers have traditionally built choice designs using extensions of concepts from the general linear
design literature. We show that a computerized search strategy can generate efficient choice designs
with standard personal computers. This approach holds three important advantages over previous
design strategies. First, it allows the incorporation of anticipated model parameters, thereby increasing
design efficiency and considerably reducing the number of required choices. Second, complex choice
designs can be easily generated, allowing researchers to conduct choice experiments that more closely
mirror actual market conditions. Finally, researchers can explore model and design modifications and
examine trade-offs between a design’s statistical benefits and its operational and behavioral costs.∗

Introduction

Discrete choice experiments are becoming increasingly popular in marketing, economics, and trans-
portation. These experiments enable researchers to model choice in an explicit competitive context,
thus realistically emulating market decisions. A choice design consists of choice sets composed of sev-
eral alternatives, each defined as combinations of different attribute levels. A good choice design is
efficient, meaning that the parameters of the choice model are estimated with maximum precision.

A number of methods have been suggested for building choice designs (Anderson and Wiley 1992,
Bunch, Louviere, and Anderson 1996, Krieger and Green 1991, Kuhfeld 2005 (page 141), Lazari and
Anderson 1994, Louviere and Woodworth 1983). Most of the methods use extensions of standard
linear experimental designs (Addelman 1962b, Green 1974). However, the use of linear designs in
choice experiments may be nonoptimal due to two well-known differences between linear and choice

∗Klaus Zwerina is a consultant at BASF AG, Ludwigshafen, Germany. Joel Huber is Professor of Marketing, Fuqua
School of Business, Duke University. Warren F. Kuhfeld is Manager, Multivariate Models R&D, Statistical Research and
Development, SAS Institute Inc. We would like to thank Jim Bettman and Richard Johnson for their helpful comments
on an earlier version of this chapter. Copies of this chapter (TS-722E) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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models. First, probabilistic choice models are nonlinear in the parameters, implying that the statistical
efficiency of a choice design depends on an (unknown) parameter vector. This property implies the
need to bring anticipated parameter values in choice designs. Second, choice design efficiency depends
both on the creation of appropriate profiles and properly placing them into several choice sets. For
example, in a linear design, the order of the 16 profiles in a conjoint exercise does not affect its formal
efficiency, whereas the efficiency of the same 16 profiles broken into four choice sets depends critically on
the grouping. Despite its limitations, linear design theory has been used to produce satisfactory choice
designs for many years, drawing on readily available tables and processes. Such carefully selected linear
designs are reasonable, general-purpose choice designs, but are generally not optimal in a statistical
sense.

We present a general strategy for the computerized construction of efficient choice designs. This
contribution can be viewed as an extension of the work of Kuhfeld, Tobias, and Garratt (1994) and of
Huber and Zwerina (1996). Kuhfeld et al. recommended using a search algorithm to find efficient linear
designs. Huber and Zwerina show how to modify choice designs using anticipated model parameters in
order to improve design efficiency. We adapt the optimization procedure outlined in Kuhfeld et al. to
the principles of choice design efficiency described by Huber and Zwerina. Our approach holds several
important advantages over previous choice design strategies. It (1) optimizes the “correct” criterion of
minimizing estimation error rather than following linear design principles, (2) it can generate choice
designs that accommodate any anticipated parameter vector, (3) it can accommodate virtually any
level of model complexity, and finally (4) it can be built using widely available software. To illustrate,
we include a SAS/IML program that generates relatively simple choice designs. This program can be
easily generalized to handle far more complex problems.

The chapter begins with a review of criteria for efficient choice designs and illustrates how they can be
built with a computer. Then, beginning with simple designs, we illustrate how the algorithm works and
how our linear design intuition must be changed when coping with choice designs. Next, we generate
more complex choice designs and show how to evaluate the impact on efficiency of different design
and model modifications. We conclude with a discussion of the proposed choice design approach and
directions for future research.

Criteria For Choice Design Efficiency

Measure Of Choice Design Efficiency. First, we derive a measure of efficiency in choice designs
from the well-known multinomial logit model (McFadden 1974). This model assumes that consumers
make choices among alternatives that maximize their perceived utility, u, given by

u = xiβ + e (1)

where xi is a row vector of attributes characterizing alternative i, β is a column vector of K weights
associated with these attributes, and e is an error term that captures unobserved variations in utility.
Suppose that there are N choice sets, Cn, indexed by n = 1, 2, . . . , N , where each choice set is charac-
terized by a set of alternatives Cn = {x1n,K, xJnn}. If the errors, e, are independently and identically
Gumbel distributed, then it can be shown that the probability of choosing an alternative i from a
choice set Cn is
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Pin(Xn,β) =
exinβ∑Jn

j=1 exjnβ
(2)

where Xn is a matrix that consists of Jn row vectors, each describing the characteristics of the alter-
natives, xjn. The vertical concatenation of the Xn matrices is called a choice design matrix X.

The task of the analyst is to find a parameter estimate for β in Equation (2) that maximizes the like-
lihood given the data. Under very general conditions, the maximum likelihood estimator is consistent
and asymptotically normal with covariance matrix

Σ = (Z′PZ)−1 =

 N∑
n=1

JN∑
j=1

z′jnPjnzjn

−1

(3)

where zjn = xjn −
Jn∑
i=1

xinPin .

Equation (3) reveals some important properties of (nonlinear) choice models. In linear models, centering
occurs across all profiles whereas in choice models, centering occurs within choice sets. This shows that
in choice designs both the profile selection and the assignment of profiles to choice sets affects the
covariance matrix. Moreover, in linear models, the covariance matrix does not depend on the true
parameter vector, whereas in choice models the probabilities, Pjn, are functions of β and hence the
covariance matrix. Assuming β = 0 simplifies the design problem, however Huber and Zwerina (1996)
recently demonstrated that this assumption may be costly. They showed that incorrectly assuming that
β = 0 may require from 10% to 50% more respondents than those built from reasonably anticipated
parameters.

The goal in choice designs is to define a group of choice sets, given the anticipated β, that minimizes
the “size” of the covariance matrix, Σ, defined in Equation (3). There are various summary measures
of error size that can be derived from the covariance matrix (see, e.g., Raktoe, Hedayat, and Federer
1981). Perhaps the most intuitive summary measure is the average variance around the estimated
parameters of a model. This measure is referred to in the literature as A-efficiency or its inversely
related counterpart,

A− error = trace (Σ)/K (4)

where K is the number of parameters. Two problems with this measure limit its suitability as an overall
measure of design efficiency. First, relative A-error is not invariant under (nonsingular) recodings of
the design matrix, i.e., design efficiency depends on the type of coding. Second, it is computationally
expensive to update. A related measure,

D − error = |Σ|1/K (5)

is based on the determinant as opposed to the trace of the covariance matrix. D-error is computationally
efficient to update, and the ratios of D-errors are invariant under different codings of the design matrix.
Since A-error is the arithmetic mean and D-error is the geometric mean of the eigenvalues of Σ, they
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are generally highly correlated. D-error thereby provides a reasonable way to find designs that are
“good” on alternative criteria. For example, if A-error is the ultimate criterion, we can first minimize
D-error and then select the design with minimum A-error rather than minimizing A-error directly. For
these reasons, D-error (or its inverse, D-efficiency or D-optimality) is the most common criterion for
evaluating linear designs and we advocate it as a criterion for choice designs.

Next, we discuss four principles of choice design efficiency defined by Huber and Zwerina (1996). Choice
designs that satisfy these principles are optimal, however, these principles are only satisfied for a few
special cases and under quite restrictive assumptions. The principles of orthogonality and balance that
figured so prominently in linear designs remain important in understanding what makes a good choice
design, but they will be less useful in generating one.

Four Principles Of Efficient Choice Designs. Huber and Zwerina (1996) identify four principles
which when jointly satisfied indicate that a design has minimal D-error. These principles are orthog-
onality, level balance, minimal overlap, and utility balance. Orthogonality is satisfied when the levels
of each attribute vary independently of one another. Level balance is satisfied when the levels of each
attribute appear with equal frequency. Minimal overlap is satisfied when the alternatives within each
choice set have nonoverlapping attribute levels. Utility balance is satisfied when the utilities of alterna-
tives within choice sets are the same, i.e., the design will be more efficient as the expected probabilities
within a choice set Cn among Jn alternatives approach 1/Jn.

These principles are useful in understanding what makes a choice design efficient, and improving
any principle, holding the others constant, improves efficiency. However, for most combinations of
attributes, levels, alternatives, and assumed parameter vectors, it is impossible to create a design that
satisfies these principles. The proposed approach does not build choice designs from these formal
principles, but instead uses a computer to directly minimize D-error. As a result, these principles may
only be approximately satisfied in our designs, but they will generally be more efficient than those built
directly from the principles.

A General Method For Efficient Choice Designs

Figure 1 provides a flowchart of the proposed design approach. The critical aspect of this approach
involves an adaptation of Cook and Nachtsheim’s (1980) modification of the Fedorov (1972) algorithm
that has successfully been used to generate efficient linear designs (e.g., Cook and Nachtsheim 1980,
Kuhfeld et al. 1994). We will first describe the proposed choice design approach conceptually and then
define the details in a context of a particular search.

The process begins by building a candidate set, which is a list of potential alternatives. A random
selection of these alternatives is the starting design. The algorithm alters the starting design by
exchanging its alternatives with the candidate alternatives. The algorithm finds the best exchange
(if one exists) for the first alternative in the starting design. The first iteration is completed once
the algorithm has sequentially found the best exchanges for all of the alternatives in the starting
design. After that, the process moves back to the first alternative and continues until no substantial
efficiency improvement is possible. To avoid poor local optima, the whole process can be restarted with
different random starting designs and the most efficient design is selected. For example, if there are 300
alternatives in the candidate set and 50 alternatives in the choice design, then each iteration requires
testing 15,000 possible exchanges, which is a reasonable problem on today’s desktop computers and
workstations. While there is no guarantee that it will converge to an optimal design, our experience
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with relatively small problems suggests that the algorithm works very well.

To illustrate the process we first generate choice designs for simple models that reveal the characteristics
of efficient choice designs. In examining these simple designs, our focus is on the benefits and the
insights that derive from using this approach. Then, we apply the approach to more complex design
problems, such as alternative-specific designs and designs with constant alternatives. As we illustrate
more complex designs, we will focus on the use of the approach, per se. We provide illustrative computer
code in the appendix.

Choice Design Applications

Generic Models. The simplest choice models involve alternatives described by generic attributes.
The utility functions for these models consist of attribute parameters that are the same for all alterna-
tives, for example, a common price slope across all alternatives. Generic designs are appealing because
they are simple and analogous to main-effects conjoint experiments. Bunch et al. (1996) evaluate
ways to generate generic choice designs and show that shifted or cyclic designs generally have superior
efficiency compared with other strategies for generating main effects designs. These shifted designs use
an orthogonal fractional factorial to provide the “seed” alternatives for each choice set. Subsequent
alternatives within a choice set are cyclically generated. The attribute levels of the new alternatives add
one to the level of the previous alternative until it is at its highest level, at which point the assignment
re-cycles to the lowest level.

For certain families of plans and assuming that all coefficients are zero, these shifted designs satisfy all
four principles, and thus are optimal.† For example, consider a choice experiment with three attributes,
each at three levels, defining three alternatives in each of nine choice sets. The left-hand panel of Table
1 shows a plan using the Bunch et al. (1996) method.

In this special case, all four efficiency principles are perfectly satisfied. Level balance is satisfied since
each level occurs in precisely 1/3 of the cases, and orthogonality can be confirmed by noting the all
pairs of attribute levels occur in precisely 1/9 of the attributes (Addelman 1962b). There is perfect
minimal overlap since each level occurs exactly once in each choice set, and finally, utility balance is
trivially satisfied with the assumption that β = 0. More formally, it is useful to examine the covariance
matrix of the (effects-coded) parameters, reported in the first panel of Table 2. The equal variances
across attributes and the zero covariances across attributes both indicate optimality.

A simple design such as this could have been built from our algorithm, although using a standard
orthogonal array and cyclic permutations ensured optimality. Our next example, encompassing a
model with just one interaction term, illustrates the case when a computerized search is very useful in
finding a statistically efficient design.

Estimating an A×B Interaction. For the previous example with nine choice sets, let us assume that
the researcher is confident that there are no A×C or B×C interactions, but the A×B interaction must
be estimated. The middle panel of Table 1 shows the best design we were able to find which includes
this one interaction. Note that in this design, the principle of minimal overlap on attributes A and B
is violated, in that attribute levels are frequently repeated within a set. In general, interactions require
overlap of attribute levels to produce the contrasts necessary to estimate the effects.

†We were not able to analytically prove this, but after examining scores of designs, we have never found more efficient
designs than those that satisfy all four principles.
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Figure 1
Flowchart of Algorithm for Constructing Efficient Choice Designs
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Table 1
Main Effects and A×B-Interaction Effects Choice Design

β0-Efficient β0-Efficient β1-Efficient
Main-Effects Design Interaction-Effects Interaction-Effects

(β0=0 0 0 0 0 0) (β0=0 0 0 0 0 0 0 0 0) (β1=-1 0 -1 0 -1 0 0 0 0)

Set Alt A B C A B C p(β1) A B C p(β1)
1 I 1 1 1 2 3 2 .495 2 1 3 .422

II 2 2 2 2 2 3 .495 1 3 2 .422
III 3 3 3 1 1 1 .009 3 1 1 .155

2 I 1 2 2 3 1 1 .155 3 2 2 .422
II 2 3 3 2 2 2 .422 2 1 3 .155
III 3 1 1 1 2 3 .422 3 3 1 .422

3 I 1 3 3 1 1 2 .042 2 2 3 .155
II 2 1 1 1 3 1 .114 3 3 2 .422
III 3 2 2 3 1 3 .844 2 3 3 .422

4 I 2 1 3 2 1 2 .018 2 1 2 .422
II 3 2 1 3 3 3 .965 1 1 3 .422
III 1 3 2 2 2 1 .018 1 2 1 .155

5 I 2 2 1 1 3 3 .245 3 1 2 .422
II 3 3 2 3 3 2 .665 1 1 3 .155
III 1 1 3 2 3 1 .090 3 2 1 .422

6 I 2 3 2 2 1 3 .468 1 3 3 .422
II 3 1 3 1 2 1 .063 2 3 2 .422
III 1 2 1 1 3 2 .468 3 2 1 .155

7 I 3 1 2 3 2 3 .665 1 2 1 .212
II 1 2 3 3 3 1 .245 2 2 1 .576
III 2 3 1 3 1 2 .090 1 1 2 .212

8 I 3 2 3 1 2 2 .042 1 2 3 .576
II 1 3 1 2 3 3 .844 1 3 1 .212
III 2 1 2 3 2 1 .114 3 1 1 .212

9 I 3 3 1 1 1 3 .114 2 2 2 .212
II 1 1 2 2 1 1 .042 3 1 3 .576
III 2 2 3 3 2 2 .844 2 3 1 .212

avemaxp = .690 avemaxp = .474
D-error(β0) = .192 D-error(β0) = .306 D-error(β0) = .365

D-error(β1) = .630 D-error(β1) = .399

The covariance matrix of this design, depicted in the lower half of Table 2, highlights the effects
of incorporating the A×B interaction. Violating minimal overlap permits the estimation of the A×B
interaction by sacrificing efficiency on the main effects of attribute A and B, reflected in higher variances
of the main effects estimates (a1, a2, b1, and b2). The D-error of the main effect estimates increases by
24%, from .192 to .239, and the covariances across attributes A and B are no longer zero. Note also that
the errors around attribute C are unchanged−they are unaffected by the A×B interaction, indicating
that the algorithm was able to find a design that allowed the A×B interaction to be uncorrelated with
C.
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Table 2
Covariance Matrix of Main Effects and A×B-Interaction

Effects Choice Design

β0-Efficient Main Effects Design
a1 a2 b1 b2 c1 c2

a1 .222 -.111 .000 .000 .000 .000
a2 -.111 .222 .000 .000 .000 .000
b1 .000 .000 .222 -.111 .000 .000
b2 .000 .000 -.111 .222 .000 .000
c1 .000 .000 .000 .000 .222 -.111
c1 .000 .000 .000 .000 -.111 .222
D-error(β0)=.192

β0-Efficient Interaction Effects Design
a1 a2 b1 b2 c1 c2 ab11 ab12 ab21 ab22

a1 .296 -.130 .019 -.019 .000 .000 -.037 .000 .000 -.019
a2 -.130 .296 -.019 .019 .000 .000 .037 .000 .000 .019
b1 .019 -.019 .296 -.130 .000 .000 .019 -.056 .000 .037
b2 -.019 .019 -.130 .296 .000 .000 -.019 .056 .000 -.037
c1 .000 .000 .000 .000 .222 -.111 .000 .000 .000 .000
c2 .000 .000 .000 .000 -.111 .222 .000 .000 .000 .000
ab11 -.037 .037 .019 -.019 .000 .000 .630 -.333 -.333 .148
ab12 .000 .000 -.056 .056 .000 .000 -.333 .556 .167 -.278
ab21 .000 .000 .000 .000 .000 .000 -.333 .167 .667 -.333
ab22 -.019 .019 .037 -.037 .000 .000 .148 -.278 -.333 .630
D-error(β0) of main effects = .239
D-error(β0) of all effects = .306

There are several important lessons from this simple example. First, it illustrates that a design that is
“perfect” for one model may be far from optimal for a slightly different model. Adding one interaction
strongly altered the covariance matrix, so efficient designs generally violate the formal principles. Sec-
ond, the example shows that estimating new interactions is not without cost; being able to estimate
one interaction increased by 24% the error on the main effects. Finally, the trade-off of efficiency
with estimability demonstrates one of the primary benefits of this approach−it allows the analyst to
understand the efficiency implications of changes in the design structure and/or model specification.
This use of the approach will be illustrated again in the context of more complex choice designs.

The Impact Of Non-Zero Betas. The preceding discussion has assumed that the true parameters are
zero. This assumption is justified when there is very little information about the model parameters;
however, typically the analyst has some information on the relative importance of attributes or the
relative value of their levels (Huber and Zwerina 1996). To show the potential gain that can come
from nonzero parameters, assume that the anticipated partworths of the main effects for the three level
attributes discussed previously are not 0, 0, 0, but -1, 0, 1, while the A×B-interaction effect continues to
have zero parameters.‡ Calling the new parameter vector β1 to distinguish it from the zero parameter

‡We assume for simplicity that the interaction has parameter values of zero. Note, this also produces minimal variance
of estimates around zero, implying greatest power of a test in the region of that null hypothesis.
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Table 3
Attributes/Levels for an Alternative-Specific Choice Experiment

Alternative-Specific Levels
Attributes Coke Pepsi RC Cola
Price per case $5.69 $5.39 $4.49

$6.89 $5.99 $5.39
$7.49 $6.59 $5.99

Container 12 oz cans 12 oz cans 12 oz cans
10 oz bottle 10 oz bottle 16 oz bottle
16 oz bottle 18 oz bottle 22 oz bottle

Flavor Regular Regular Regular
Cherry Coke Pepsi Lite Cherry
Diet Coke Diet Pepsi Diet

vector, β0, the third panel of Table 1 displays the efficient design using these parameters. This new
design has a D-error(β1) of 0.399. However, if instead we had used the design in the center panel, its
error given β1 is true would have been .630, implying that 37% (1 - .399/.630) fewer respondents are
needed for the “utility balanced” over the “utility neutral” design.

Comparing the last two panels in Table 1 reveals how the algorithm used the anticipated nonzero
parameters to produce a more efficient design. As an index of utility balance, we calculated the
average of the maximum within-choice-set choice probabilities (avemaxp). The smaller this index the
harder is the average choice task and the greater is “utility balance.” We can see, by using β1, the
new design is more utility balanced than the previous design, which results in an average maximum
probability of .474 compared with one of .690. We also see that the increase in utility balance sacrifices
somewhat the three formal principles, reflected in an increase of D-error(β0) from .306 to .365. The
new design does not have perfect orthogonality, level balance, utility balance, or minimal overlap, but
it is more efficient than any design that is perfect on any of those criteria.

More Complex Choice Designs. The proposed algorithm is very general and can be applied to
virtually any level of design complexity. We will use it next to generate an alternative-specific choice
design, which has a separate set of parameters for each alternative. Suppose, the researcher is interested
in simulating the market behavior of three brands, Coke, Pepsi, and RC Cola, with the attribute
combinations shown in Table 3.

This kind of choice experiment, which we call a market emulation study, is quite different from the
generic choice design presented previously. In a market emulation study, emphasis is on predicting
the impact of brand, flavor, and container decisions in the context of a realistic market place offering.
What this kind of study gains in realism, it loses in the interpretability of its results. For example,
since each brand only occurs at specific prices, it is much harder to disentangle the independent effects
of brand and price. These designs are, however, useful in assessing the managerially critical question
of the impact of, say, a 60 cent drop in the price of Coke’s 16 ounce case in a realistic competitive
configuration.
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Since we assume that the impact of price depends on the brand to which it is attached, it is im-
portant that the impact of price be estimable within each brand.§ Further, let us assume that
the reaction to price additionally depends on the number of ounces, so that it is necessary to es-
timate the brand×price×container interaction. Using standard ANOVA-coding, these assumptions
require four main effects (brand, flavor, container, and price for 8 df), four two-way interactions
(brand×price, brand×flavor, brand×container, and price×container for 16 df), and one three-way in-
teraction (brand×price×container for 8 df), resulting in a total of 32 parameters.¶

Suppose we want to precisely estimate these effects with a choice design consisting of 27 choice sets
each composed of three alternatives.∗ The candidate set of alternatives comprises the 34 = 81 possible
alternatives, and the initial design is a random selection from these. The algorithm exchanges alterna-
tives between the candidate set and the starting design until the efficiency gain becomes negligible. In
the example with 27 choice sets and 32 parameters, D-error is .167. This statistic provides a baseline
for evaluating other related designs, which we will generate in the following section.

Evaluating Design Modifications. The proposed approach can be used to evaluate design modi-
fications. Typically, efficiency is meaningful within a relatively narrow family of designs, limited to
a particular attribute structure, model specification, and number of alternatives per choice set. For
many applications, optimizing a design within such a narrow design family is too restrictive. Most
analysts are not tightly bound to a particular number of alternatives per choice set or even particular
attributes, but are interested in exploring the impact of changes in these specifications on the precision
of the parameter estimates. We will demonstrate how comparing designs across design families allows
a reasoned trade-off of design structure against estimation precision.

Consider the following questions an analyst might ask concerning the alternative-specific choice design
just presented.

1. How much does efficiency increase if 54 choice sets are used instead of two replications of 27
choice sets?

2. What is the efficiency loss if each of the brands (Coke, Pepsi, RC) must be present in a choice
set?

3. What is the gain in efficiency if a fourth alternative is added to each choice set?

4. What happens to efficiency if this fourth alternative is constant (e.g., “keep on shopping”)?

The first question assesses the benefit of building a design with 54 choice sets rather than using the
original 27 choice sets twice. As Table 4 shows, specifying twice as many choice sets produces a D-
error of .079 compared with .084 (=.167/2) for two independent runs of the 27 choice set design. This
relatively small 6% benefit in efficiency indicates that the original 27 choice set design, while highly
fractionated, appears to have suffered little due to this fact.

The second question evaluates the impact of constraints on the choice sets that respondents face. The
original design often paired the same brand against itself within a choice set. For example, a choice

§The assumption that price has a different impact depending on the brand is testable. The ability to make that test
is just one of the advantages of these choice designs.

¶We need the fourth two-way interaction, price×container, to be able to estimate the three-way interaction
brand×price×container. Of course, there are many other ways of coding a design.

∗The appendix contains a SAS/IML program that performs the search for this design. Focusing on the principles of
the algorithm, the program was deliberately kept simple, specific, and small. A general macro for searching for choice
designs, %ChoicEff, is documented in Kuhfeld (2005) starting on pages 597 and 600. See page 363 for an example.



TS-722E − A General Method for Constructing Efficient Choice Designs 131

Table 4
Impact of Design Modifications on D-Error

Efficiency
Design Modification D-error per Choice Set Comments
27 sets, 3 alternatives per
set.

.167 100% Original design.

Double the number of sets. .079 106% Limited benefit from doubling the
number of sets.

Require each alternative to
contain one of each brand.

.175 95% Shows minor cost of constraining a
design.

Add a fourth alternative. .144 116% Diminishing returns from adding ad-
ditional alternatives.

Fourth alternative is con-
stant.

.195 86% Design is less efficient because con-
stant alternative is chosen 25% of the
time.

set with Coke in a 12 oz bottle for $5.69 per case might include Coke in a 16 oz bottle for $7.49 per
case. For managerial reasons it might be desirable to have each brand (Coke, Pepsi, RC) represented
in every set of three alternatives. To examine the cost of this constraint, Coke is assigned to the first
alternative, Pepsi to the second alternative, and RC to the third alternative within each of the 27
choice sets. With this constraint, the D-error is .175. This relatively moderate decrease in efficiency of
5% should be acceptable if there are managerially-based reasons to constrain the choice sets.

The third question investigates the benefits of adding a fourth alternative to each choice set. This
change increases by 25% the number of alternatives, although the marginal effect of an additional
alternative should not be as great. With this modification, D-error becomes .144, producing a 16%
efficiency gain over three alternatives per choice set. The decision whether to include a fourth alternative
now pits the analyst’s appraisal of the trade-off between the value of this 16% efficiency gain and the
cost in respondent time and reliability.

What happens if this fourth alternative is common and constrained to be constant in all choice sets?
With a constant alternative, respondents are not forced to make a choice among undesirable alterna-
tives. Moreover, a constant alternative permits an estimate of demand volume rather than just market
shares (Carson et al. 1994). A constant alternative can take many forms, ranging from the respondent’s
“current brand,” to an indication that “none are acceptable,” or simply “keep on shopping.” While
constant alternatives are often added to choice sets, little is known about the efficiency implications
of this practice. To create designs with a constant alternative, this alternative must be added to the
candidate set. Also, a model with a constant alternative has one more parameter. Comparing a design
with a constant alternative to one without, it is necessary to calculate D-error with respect to the
original 32 parameters using the corresponding submatrix of Σ.

Adding a constant alternative to the original design increases the D-error of the original 32 parameters
by 17% and is nearly 35% worse than allowing the fourth alternative to be variable. Some part of
this loss in efficiency is due to the one additional degree of freedom from the constant alternative. A
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larger part is due to the efficiency lost when respondents are assumed to select the constant alternative.
Every time it is chosen, one obtains less information about the values of the other parameters. In this
case, the assumption that β = 0 is not benign, as it assumes the constant alternative, along with all
others in the four-option choice sets, will be chosen 25% of the time. We can reduce the efficiency cost
to the other parameters by using a smaller β for the constant alternative, reflecting the assumption
that it will be chosen less often.

In summary, the analysis suggests that adding a constant alternative to a three-alternative choice set
can degrade the precision of estimates around the original parameters. Two caveats are important.
First, this result will not always occur. We have found some highly fractionated designs where a
constant alternative adds to the resolution of the original design. Second, there are studies where
a major goal is the estimation of the constant alternative; in that case “oversampling” the constant
ensures that its coefficient will be known with greater precision.

An important lesson across these four examples is that one cannot rely on heuristics to guide design
strategies, ignoring statistical efficiency. It is generally necessary to test specific design strategies, given
anticipated model parameters, to find a good choice design.

Evaluating Model Modifications. The proposed approach can be used to assess modifications of the
model specification. This allows one, for example, to estimate the cost of “assumption insurance,” i.e.,
building a design that is robust to false assumptions. Often we assume that factors are independent;
for example, that the utility of price does not depend on brand or container. In many instances this
assumption would be better termed a “presumption” in that if it is wrong, the estimates are biased,
but there is no way to know given the design. Assessing the cost of assumption insurance involves four
steps:

1. Find the best design for the unrestricted model (possibly including interactions).

2. Find the best design for the restricted model.

3. Evaluate D-error for that unrestricted design under the restricted model.

4. Evaluate D-error for the best design for the restricted model.

The cost of assumption insurance is the percent difference between steps 3 and 4, reflecting the loss of
efficiency of the core parameters for the two designs. We illustrate how to assess this cost for a design
that permits the price term to interact with brand and container versus one that assumes they are
independent. To simplify the example, we take the same case as before, but assume that price is a
linear rather than a categorical variable.†

The first step involves finding an efficient design with all price interactions with brand and brand×con-
tainer estimable. This unrestricted model has 7 df for main effects (two for brand, two for con-
tainer, two for flavor, and one for price), 12 df for two-way interactions (brand×price, brand×flavor,
brand×container, container×price), and 4 df for the three-way interaction (brand×container×price).
An efficient design for this unrestricted model has a D-error of .148. If this design is used for a restricted
model in which price does not interact (7 df for main effects and 8 df for two-way interactions) then

†Substituting a linear price term for a three-level categorical one has two immediate implications. First, any change
in coding results in quite different absolute values of D-error. Second, in optimizing a linear coding for price, the search
routine will try to eliminate alternatives with the middle level of price within brand. This focus on extremes is appropriate
given the linear assumption, but, may preclude estimation of quadratic effects.
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D-error drops to .118. The critical question is how much better still can one do by searching for the
best design in the 15-parameter restricted model. The best design we find has a D-error of .110. Thus,
assumption insurance in this case imposes a 6% (1 - .110/.118) efficiency loss, a reasonable cost given
that prices will often interact with brands and containers.

To summarize, the search routine allows estimates of the cost in efficiency of various design modifications
and even changes in the model specification. Again, the important lesson is not the generalizations
from the results of these particular examples, but rather an understanding of how these and similar
questions can be answered in the context of any research study.

How Good Are These Designs? The preceding discussion has shown that our adaptation of the
modified Fedorov algorithm can find estimable choice designs and answer a variety of useful questions.
We still need to discuss the question, how close to optimal are these designs? The search is nonexhaus-
tive, and there is no guarantee that the solutions are optimal or even nearly so. For some designs, such
as the alternative-specific one shown previously, we can never be completely certain that the search
process does not consistently find poor local optima. However, one can achieve some confidence from
the pattern of results based on different random restarts; similar efficiencies emerging from different
random starts indicate robustness of the resultant designs. An even stronger test is to assess efficien-
cies of the search process in cases where an optimal solution is known. While this cannot be done
generally, we can test the absolute efficiency of certain symmetric designs, where the optimal design
can be built using formal methods. We illustrated this kind of design in the three attribute, three level,
three alternative, nine choice set (33/3/9) design discussed earlier, and found that the search routine
was not able to find a better design. Now, we ask how good are our generated designs relative to three
optimal designs: the design mentioned previously and two corresponding, but bigger designs−44/4/16
and a 55/5/25 generic design.

For these types of designs we apply the proposed algorithm and compare our designs with the analyti-
cally generated ones. For each design, we used ten different random starts and three internal iterations.
Figure 2 displays the impact of efficiency on different starting points and different numbers of internal
iterations.

Figure 2 reveals important properties of the proposed algorithm. After the first iteration, the algorithm
finds a choice design with about 90% relative efficiency, after a few more iterations, relative efficiencies
approach 95%-99%. Further, this property appears to be independent of any initial starting design−the
process converges just as quickly from a random start as from a rational one. These encouraging
properties suggest important advantages for the practical use of the approach. First, in contrast
to Huber and Zwerina (1996), the process does not require a rational starting design (which may be
difficult to build). Second, since the process yields very efficient designs after only one or two iterations,
most practical problems involving even large choice designs can be accommodated.

Conclusions

We propose an adaptation of the modified Fedorov algorithm to construct statistically efficient choice
designs with standard personal computers. The algorithm generates efficient designs quickly and is
appropriate for all but the largest choice designs. The approach is illustrated with a SAS/IML program.
SAS has the advantage of a general model statement that facilitates the building of choice designs with
different model specifications. The cost of using SAS/IML software, however, is that the algorithm
generally runs slower than a program developed in, for example, PASCAL or C.
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Figure 2
Convergence Pattern From Different Random Starts

There are three major advantages of using a computer to construct choice designs rather than deriving
them from formal principles. First, computers are the only way we know to build designs that allow one
to incorporate anticipated model parameters. Since the incorporation of this information can increase
efficiency by 10% to 50% (see Huber and Zwerina 1996), this benefit alone justifies the use of computer
search routines to find efficient choice designs.

The second advantage is that one is less restricted in design selection. Symmetric designs may not
reflect the typically asymmetric characteristics of the real market. The adaptability of computerized
searches is particularly important in choice studies that simulate consumer choice in a real market
(Carson et al. 1994). Moreover, the process we propose allows the analyst to generate choice designs
that account for any set of interactions, or alternative-specific effects of interest and critical tests of
these assumptions. We illustrated a market emulation design that permits brand to interact with
price, container, and flavor and can test the three-way interaction of brand by container by price. This
pattern of alternative-specific effects would be very hard to build with standard designs, but it is easy
to do with the computerized search routine by simply setting the model statement. The process can
handle even more complex models, such as availability and attribute cross effects models (Lazari and
Anderson 1994).

Finally, the ability to assess expected errors in parameters permits the researcher to examine the impact
of different modifications in a given design, such as adding more choice sets or dropping a level from
a factor. Most valuable, perhaps, is the ability to easily test designs for robustness. We provide one
example of assumption insurance, but others are straightforward to generate. What happens to the
efficiency of a design if there are interactions, but they are not included in the model statement? What
kind of model will do a good job given a linear representation of price, but will also permit a test of
curvature? What happens to the efficiency of the design if one’s estimate of β is wrong?
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There are several areas in which future research is needed. The first of these involves studies of
the search process per se. We chose the modified Fedorov algorithm because it is robust and runs fast
enough on today’s desktop computers. As computing power increases, more exhaustive searches should
be evaluated. For extremely large problems, faster and less reliable algorithms may be appropriate.
Furthermore, while the approach builds efficient choice designs for multinomial logit models, efficiency
issues with respect to other models, for example, nested logit and probit models, have yet to be explored.

A second area in which research would be fruitful involves the behavioral impact of different choice
designs. The evaluations of our designs all implicitly assumed that the error level is constant regardless
of the design. Many choice experiments use relatively small set sizes and few attributes reflecting an
implicit recognition that “better” information comes from making the choice less complex. However,
from a statistical perspective it is easy to show that smaller set sizes reduce statistical efficiency. In
one example, we demonstrated that increasing the number of alternatives per choice set from three
to four can increase efficiency by 16%. This gain depends on the assumption that respondent’s error
levels do not change. If they do increase, then that 16% percent gain might be lessened or even
reversed. Thus, there is a need for a series of studies measuring respondents’ error levels to tasks at
different levels of complexity. Also, it is important to measure the degree of correspondence between
the experimental tasks and the actual market behavior, choice experiments are intended to simulate.
Such information is critical for correct trade-offs between design efficiency, measured here, and survey
effectiveness, measured in the marketplace.

The purpose of this article is to demonstrate the important advantages of a flexible computerized search
in generating efficient choice designs. The proposed adaptation of the modified Fedorov algorithm solves
many of the practical problems involved in building choice designs, thus enabling more researchers to
conduct choice experiments. Nevertheless, we want to emphasize that it does not preclude traditional
design skills; they remain critical in determining the model specification and in assessing the choice
designs produced by the computerized search.
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Appendix

SAS/IML Code for the Proposed Choice Design Algorithm

The SAS code shows a simple implementation of the algorithm. In this example, the program finds
a design with 27 choice sets and three alternatives per set. There are four attributes (brand, price,
container, and flavor) each with three levels. A design is requested in which all main effects, the two-way
interactions between brand and the other attributes, the two-way interaction between container and
price, and the brand by price by container three-way interaction are estimable. Here, the parameters
are assumed to be zero, but could be easily changed by setting other values.

A computer that evaluated all possible (8181/3!27! = 5 × 9 × 10125) designs would take numerous
billion years. Instead, we use the modified Fedorov algorithm, which uses the following heuristic: find
the best exchange for each design point given all of the other candidate points. With 81 candidate
alternatives, 27 choice sets, 3 alternatives per set, (say) 3 internal iterations, and 2 random starts,
81 × 27 × 3 × 3 × 2 = 39, 366 exchanges must be evaluated. The algorithm tries to maximize |X′X|
rather than minimizing |(X′X)−1| (note that |(X′X)−1| = |X′X|−1). Each exchange requires then the
evaluation of a matrix determinant, |X′X|. Fortunately, we do not have to evaluate this determinant
from scratch for each exchange since |X′X + x′x| = |X′X||I + x(X′X)−1x′| (Mardia et al. 1979).
Each exchange evaluates a quadratic form, and in this example with three alternatives per choice set,
the determinant of a 3 × 3 matrix. It should also be noted that this algorithm can handle a rank-
deficient covariance matrix by operating on |X′X + Iε|, where ε is a small number. This eliminates
zero determinants so that less-than-full-rank codings and singular starting designs are not a problem.
With these short cuts, one iteration required about 30 seconds on an ordinary 486 PC, implying that
the algorithm is reasonable for many marketing contexts.

This appendix is provided simply to show the algorithm for those who might wish to implement or better
understand it. If you want to use the algorithm, use the %ChoicEff autocall SAS macro documented
in Kuhfeld (2005) starting on pages 597 and 600. See page 363 for an example. The %ChoicEff is
much larger and more full-featured than the code shown in this appendix.
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/*-------------------------------Initial Set Up-------------------------------*/
%let beta = 0 0 0 0 0 0 0 0 /* 8 main effects */

0 0 0 0 0 0 0 0 /* brand x price, brand x container,*/
0 0 0 0 /* brand x flavor, */
0 0 0 0 /* price x container interactions */
0 0 0 0 0 0 0 0; /* brand x price x container */

%let nalts = 3; /* Number of alternatives */
%let nsets = 27; /* Number of choice sets */

proc plan ordered; /* Create candidate alternatives */
factors brand=3 price=3 contain=3 flavor=3 / noprint;
output out=candidat;
run;

proc transreg design data=candidat; /* Code the candidate alternatives */
model class(brand price contain flavor brand*price brand*contain

brand*flavor contain*price brand*contain*price / effects);
output out=tmp_cand;
run;

proc contents p data=tmp_cand(keep=&_trgind); run;

/*------------------------Begin Efficient Design Search-----------------------*/
proc iml; file log;

use tmp_cand(keep=&_trgind); /* Identify candidate set for input */
read all into cand; /* Read candidate set into IML */
utils = exp(cand * {&beta}‘); /* exp(alternative utilities) */
np = 1 / ncol(cand); /* Exponent applied to determinant */
imat = i(&nalts); /* Identity matrix */
nobs = &nsets # &nalts; /* Total n of alts in choice design */
ncands = nrow(cand); /* Number of candidates */
fuzz = i(ncol(cand)) # 1e-8; /* X‘X ridge factor, avoid singular */

start center(x, exputil); /* Probability centering subroutine */
do i = 1 to nrow(x) / &nalts; /* Do for each choice set */

k = (i-1)#&nalts+1 : i#&nalts; /* Choice set index vector */
p = exputil[k,]; p = p / sum(p); /* Probability of choice */
z = x[k,]; /* Get choice set */
x[k,] = (z - j(&nalts,1,1) * /* Center choice set, absorb p’s */

p‘ * z) # sqrt(p);
end;

finish;

/*---------------Create Designs With Different Random Starts---------------*/
do desnum = 1 to 2; /* Number of designs to create */

indvec = ceil(ncands * /* Random index vector (indvec) */
uniform(j(1, nobs, 0))); /* into candidates */

des = cand[indvec,]; /* Initial random design */
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run center(des, utils[indvec,]); /* Probability center */
currdet = det(des‘ * des); /* Initial determinants, eff’s */
maxdet = currdet; oldeff = currdet ## np; fineff = oldeff;
if fineff <= 0 then err = .; else err = 1 / fineff;
put /// +8 ’Design Iteration D-Efficiency D-Error’ /

+8 ’----------------------------------------------’;
put +6 desnum 6. 0 10. +6 fineff best12. +2 err best12.;

/*--------------------------Internal Iterations-------------------------*/
do iter = 1 to 8 until(converge); /* Iterate until convergence */

/*---------Consider Replacing Each Alternative in the Design---------*/
do desi = 1 to nobs; /* Process each alt in design */

ind = ceil(desi / &nalts); /* Choice set number */
ind = (ind - 1) # &nalts + 1 /* Choice set index vector */

: ind # &nalts;
besttry = des[ind,]; /* Store current choice set */
des[ind,] = 0; /* Remove current choice set */
do i = 0 to 100 until(d ## np > 1e-8);

xpx = des‘*des + i#i*fuzz; /* X‘X, ridged if necessary */
d = det(xpx); /* Determinant, if 0 then X‘X will */
end; /* be ridged to make it nonsingular */

xpxinv = inv(xpx); /* Inverse (all but current set) */
indcan = indvec[,ind]; /* Indvec for this choice set */
alt = mod(desi-1, &nalts) + 1;/* Alternative number */

/*-----------------Loop Over All of the Candidates----------------*/
do candi = 1 to ncands; /* Consider each candidate */

indcan[,alt] = candi; /* Update indvec for this candidate */
tryit = cand[indcan,]; /* Candidate choice set */
run center(tryit, /* Probability center */

utils[indcan,]);
currdet = d * /* Update determinant */

det(imat + tryit * xpxinv * tryit‘);

/*------------Store Results When Efficiency Improves-----------*/
if currdet > maxdet then do;

maxdet = currdet;/* Best determinant so far */
indvec[,desi] = candi; /* Indvec of best design so far */
besttry = tryit; /* Best choice set so far */
end;

end;

des[ind,] = besttry; /* Update design with new choice set*/
end;

/*----------Evaluate Efficiency/Convergence, Report Results----------*/
neweff = maxdet ## np; /* Newest efficiency */
converge = ((neweff - oldeff) / /* Less than 1/2 percent */
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max(oldeff,1e-8) < 0.005); /* improvement means convergence */
oldeff = neweff; /* Store for use in next iteration */
fineff = det(des‘ * des) ## np; /* Efficiency at end of iteration */
if fineff <= 0 then err = .; else err = 1 / fineff;
put +12 iter 10. +6 fineff best12. +2 err best12.;
end;

/*----Store Efficiency, Index of Efficient Design, Covariance Matrix----*/
final = final // (shape(desnum || fineff, nobs, 2) || indvec‘);
cov = cov // (shape(desnum || fineff, ncol(des), 2) ||

sweep(des‘ * des, 1 : ncol(des)));
end;

/*----------------------Write Results to SAS Data Sets---------------------*/
create cov var({design effic &_trgind}); append from cov;
create results var({design effic index }); append from final;
quit;

/*-------------Store Actual Design Points, Using Indices from IML-------------*/
data results; set results; i=index; n=_n_; set candidat point=i; run;
proc sort; by descending effic n; run; /* Put most eff design first */
proc print; run; /* Print designs, best to worst */





Discrete Choice

Warren F. Kuhfeld

Abstract

Discrete choice modeling is a popular technique in marketing research, transportation, and other areas,
and is used for understanding people’s stated choice among alternatives. We will discuss designing
a choice experiment, preparing the questionnaire, inputting and processing the data, performing the
analysis, and interpreting the results.∗

Introduction

This chapter shows you how to use the multinomial logit model (McFadden, 1974; Manski and McFad-
den, 1981; Louviere and Woodworth, 1983) to investigate consumer’s stated choices. The multinomial
logit model is an alternative to full-profile conjoint analysis and is extremely popular in marketing
research (Louviere, 1991; Carson et. al., 1994). Discrete choice, using the multinomial logit model,
is sometimes referred to as “choice-based conjoint.” However, discrete choice uses a different model
from full-profile conjoint analysis. Discrete choice applies a nonlinear model to aggregate choice data,
whereas full-profile conjoint analysis applies a linear model to individual-level rating or ranking data.

Several examples are discussed.† There is also a very basic introductory example starting on page 73
in the introduction to experimental design chapter, which starts on page 47. Be sure to read the design
chapter before proceeding to the examples in this chapter.

• The candy example (page 144) is a first, very simple example that discusses the multinomial logit
model, the input data, analysis, results, and computing probability of choice.

• The fabric softener example (page 156) is a small, somewhat more realistic example that dis-
cusses designing the choice experiment, randomization, generating the questionnaire, entering
and processing the data, analysis, results, probability of choice, and custom questionnaires.

• The first vacation example (page 184) is a larger, symmetric example that discusses designing the
choice experiment, blocks, randomization, generating the questionnaire, entering and processing
the data, coding, and alternative-specific effects.

∗Copies of this chapter (TS-722F) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market. This document would not be possible without the
help of Randy Tobias who contributed to the discussion of experimental design and Ying So who contributed to the
discussion of analysis. Randy Tobias wrote PROC FACTEX and PROC OPTEX. Ying So wrote PROC PHREG. Warren
F. Kuhfeld wrote PROC TRANSREG and the macros.

†All of the example data sets are artificially generated.
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• The second vacation example (page 229) is a larger, asymmetric example that discusses designing
the choice experiment, blocks, blocking an existing design, interactions, generating the question-
naire, generating artificial data, reading, processing, and analyzing the data, aggregating the data
to save time and memory.

• The brand choice example (page 261) is a small example that discusses the processing of aggregate
data, the mother logit model, and the likelihood function.

• The food product example (page 283) is a medium sized example that discusses asymmetry,
coding, checking the design to ensure that all effects are estimable, price cross effects, availability
cross effects, interactions, overnight design searches, modeling subject attributes, and designs
when balance is of primary importance.

• The drug allocation example (page 345) is a small example that discusses data processing for
studies where respondents potentially make multiple choices.

• The chair example (page 363) is a purely generic-attributes study, and it uses the %ChoicEff
macro to create experimental designs.

• The next example section (page 383) shows how to improve an existing design and augmenting a
design with some choice sets are fixed in advance.

• The last example section (page 397) discusses partial-profile designs and designs with restrictions.
Also see page 700 for an example of a choice design with a complicated set of restrictions.

This chapter relies heavily on a number of macros and procedures.

• We use the %MktRuns autocall macro to suggest design sizes. See page 740 for documentation.

• We use the %MktEx autocall macro to generate most of our experimental designs. See page 667
for documentation.

• We use the %MktEval autocall macro to evaluate our designs. See page 663 for documentation.

• We use the %ChoicEff autocall macro to generate certain specialized choice designs. We also use
it to evaluate our choice designs before collecting data. See page 600 for documentation.

• We use the autocall macros %MktKey, %MktRoll, %MktMerge, and %MktAllo to prepare the data
and design for analysis. See pages 710, 735, 723, and 632 for documentation.

• We use PROC TRANSREG to do all of our design coding.

• We use the %PhChoice autocall macro to customize our printed output. This macro uses PROC
TEMPLATE and ODS (Output Delivery System) to customize the output from PROC PHREG,
which fits the multinomial logit model. See page 748 for documentation.

• The %MktBal macro can be used to make perfectly balanced designs. See page 635 for documen-
tation.

• The %MktBlock macro can be used to block a linear or choice design. See page 638 for documen-
tation.

• The %MktDups macro can be used to search for duplicate runs or choice sets. See page 655 for
documentation.
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• The %MktLab macro can be used to assign different variable names, labels and levels to experi-
mental designs and to add an intercept. See page 712 for documentation.

• The %MktOrth macro can be used to list orthogonal experimental designs that the %MktEx macro
can produce. See page 725 for documentation.

• The %MktPPro macro can be used to make certain partial-profile choice designs. See page 731 for
documentation.

All of these macros are distributed with SAS 9.1 as autocall macros (see page 597 for more infor-
mation on autocall macros), however, you should get the latest versions of the macros from the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.

Experimental Design

Experimental design is a fundamental component of choice modeling. A discrete choice study uses
experimental design to create sets of products, and subjects choose a product from each set. Often, the
most challenging part of the entire study is making the design. There are many examples of making
choice designs in this chapter. Before you read them, be sure to read the design chapter beginning on
page 47. As you become more comfortable with the ideas in that chapter, you should also look at the
other two design chapters beginning on pages 99 and 121.

Customizing the Multinomial Logit Output

The multinomial logit model for discrete choice experiments is fit using the SAS/STAT procedure
PHREG (proportional hazards regression), with the ties=breslow option. The likelihood function of
the multinomial logit model has the same form as a survival analysis model fit by PROC PHREG.
The output from PROC PHREG is primarily designed for survival-analysis studies. Before we fit the
multinomial logit model with PROC PHREG, we can customize the output to make it more appropriate
for choice experiments. We will use the autocall macro %PhChoice macro. See page 597 for information
on autocall macros. You can run the following macro to customize PROC PHREG output.

%phchoice(on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from
PROC PHREG. Running this code edits the templates and stores copies in sasuser. These changes
will remain in effect until you delete them, so typically, you only have to run this macro once. Note
that these changes assume that each effect in the choice model has a variable label associated with
it, so there is no need to print variable names. If you are coding with PROC TRANSREG, this will
usually be the case. To return to the default output from PROC PHREG, run the following macro.

%phchoice(off)

See page 748 for more information on the %PhChoice macro.
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Candy Example

We begin with a very simple introductory example. In this example, we will discuss the multinomial
logit model, data input and processing, analysis, results, interpretation, and probability of choice. Many
aspects of this example, the experimental design in particular, are simpler than almost all realistic choice
studies. Still, it is useful to start with a simple choice study with no experimental design issues to
consider. In this example, each of ten subjects was presented with eight different chocolate candies
and asked to choose one. The eight candies consist of the 23 combinations of dark or milk chocolate,
soft or chewy center, and nuts or no nuts. Each subject saw all eight candies and made one choice.
Experimental choice data such as these are typically analyzed with a multinomial logit model.

The Multinomial Logit Model

The multinomial logit model assumes that the probability that an individual will choose one of the m
alternatives, ci, from choice set C is

p(ci|C) =
exp(U(ci))∑m

j=1 exp(U(cj))
=

exp(xiβ)∑m
j=1 exp(xjβ)

where xi is a vector of alternative attributes and β is a vector of unknown parameters. U(ci) = xiβ
is the utility for alternative ci, which is a linear function of the attributes. The probability that an
individual will choose one of the m alternatives, ci, from choice set C is the exponential of the utility
of the alternative divided by the sum of all of the exponentiated utilities.

There are m = 8 attribute vectors in this example, one for each alternative. Let x = (Dark/Milk,
Soft/Chewy, Nuts/No Nuts) where Dark/Milk = (1 = Dark, 0 = Milk), Soft/Chewy = (1 = Soft, 0 =
Chewy), Nuts/No Nuts = (1 = Nuts, 0 = No Nuts). The eight attribute vectors are

x1 = (0 0 0) (Milk, Chewy, No Nuts)
x2 = (0 0 1) (Milk, Chewy, Nuts )
x3 = (0 1 0) (Milk, Soft, No Nuts)
x4 = (0 1 1) (Milk, Soft, Nuts )
x5 = (1 0 0) (Dark, Chewy, No Nuts)
x6 = (1 0 1) (Dark, Chewy, Nuts )
x7 = (1 1 0) (Dark, Soft, No Nuts)
x8 = (1 1 1) (Dark, Soft, Nuts )

Say, hypothetically that β′ = (4 −2 1). That is, the part-worth utility for dark chocolate is 4, the
part-worth utility for soft center is -2, and the part-worth utility for nuts is 1. The utility for each of
the combinations, xiβ, would be as follows.

U(Milk, Chewy, No Nuts) = 0× 4 + 0×−2 + 0× 1 = 0
U(Milk, Chewy, Nuts ) = 0× 4 + 0×−2 + 1× 1 = 1
U(Milk, Soft, No Nuts) = 0× 4 + 1×−2 + 0× 1 = -2
U(Milk, Soft, Nuts ) = 0× 4 + 1×−2 + 1× 1 = -1
U(Dark, Chewy, No Nuts) = 1× 4 + 0×−2 + 0× 1 = 4
U(Dark, Chewy, Nuts ) = 1× 4 + 0×−2 + 1× 1 = 5
U(Dark, Soft, No Nuts) = 1× 4 + 1×−2 + 0× 1 = 2
U(Dark, Soft, Nuts ) = 1× 4 + 1×−2 + 1× 1 = 3
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The denominator of the probability formula,
∑m

j=1 exp(xjβ), is exp(0)+exp(1)+exp(−2)+exp(−1)+
exp(4) + exp(5) + exp(2) + exp(3) = 234.707. The probability that each alternative is chosen,
exp(xiβ)/

∑m
j=1 exp(xjβ), is

p(Milk, Chewy, No Nuts) = exp(0) / 234.707 = 0.004
p(Milk, Chewy, Nuts ) = exp(1) / 234.707 = 0.012
p(Milk, Soft, No Nuts) = exp(-2) / 234.707 = 0.001
p(Milk, Soft, Nuts ) = exp(-1) / 234.707 = 0.002
p(Dark, Chewy, No Nuts) = exp(4) / 234.707 = 0.233
p(Dark, Chewy, Nuts ) = exp(5) / 234.707 = 0.632
p(Dark, Soft, No Nuts) = exp(2) / 234.707 = 0.031
p(Dark, Soft, Nuts ) = exp(3) / 234.707 = 0.086

Note that even combinations with a negative or zero utility have a nonzero probability of choice.
Also note that adding a constant to the utilities will not change the probability of choice, however
multiplying by a constant will.

Probability of choice is a nonlinear and increasing function of utility. The following plot shows the
relationship between utility and probability of choice for this hypothetical situation.

data x;
do u = -2 to 5 by 0.1;

p = exp(u) / 234.707;
output;
end;

run;

proc gplot;
title h=1 ’Probability of Choice as a Function of Utility’;
plot p * u;
symbol1 i=join;
run; quit;
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This plot shows the function exp(−2) to exp(5), scaled into the range zero to one, the range of prob-
ability values. For the small negative utilities, the probability of choice is essentially zero. As utility
increases beyond two, the function starts rapidly increasing.

In this example, the chosen alternatives are x5, x6, x7, x5, x2, x6, x2, x6, x6, x6. Alternative x2 was
chosen 2 times, x5 was chosen 2 times, x6 was chosen 5 times, and x7 was chosen 1 time. The choice
model likelihood for these data is the product of ten terms, one for each choice set for each subject.
Each term consists of the probability that the chosen alternative is chosen. For each choice set, the
utilities for all of the alternatives enter into the denominator, and the utility for the chosen alternative
enters into the numerator. The choice model likelihood for these data is

LC =
exp(x5β)[∑8

j=1 exp(xjβ)
] × exp(x6β)[∑8

j=1 exp(xjβ)
] × exp(x7β)[∑8

j=1 exp(xjβ)
] × exp(x5β)[∑8

j=1 exp(xjβ)
] ×

exp(x2β)[∑8
j=1 exp(xjβ)

] × exp(x6β)[∑8
j=1 exp(xjβ)

] × exp(x2β)[∑8
j=1 exp(xjβ)

] × exp(x6β)[∑8
j=1 exp(xjβ)

] ×
exp(x6β)[∑8

j=1 exp(xjβ)
] × exp(x6β)[∑8

j=1 exp(xjβ)
]

=
exp((2x2 + 2x5 + 5x6 + x7)β)[∑8

j=1 exp(xjβ)
]10

The Input Data

The data set consists of one observation for each alternative of each choice set for each subject. (A
typical choice study has more than one choice set per person. This first example only has one choice
set to help keep it simple.) All of the chosen and unchosen alternatives must appear in the data set.
The data set must contain variables that identify the subject, the choice set, which alternative was
chosen, and the set of alternatives from which it was chosen. In this example, the data set contains
10× 1× 8 = 80 observations: 10 subjects each saw 1 choice set with 8 alternatives.

Typically, two variables are used to identify the choice sets, subject ID and choice set within subject.
In this simple case where each subject only made one choice, the choice set variable is not necessary.
However, we use it here to illustrate the general case. The variable Subj is the subject number, and Set
identifies the choice set within subject. The chosen alternative is indicated by c=1, which means first
choice. All second and subsequent choices are unobserved, so the unchosen alternatives are indicated
by c=2, which means that all we know is that they would have been chosen after the first choice.
Both the chosen and unchosen alternatives must appear in the input data set since both are needed to
construct the likelihood function. The c=2 observations enter into the denominator of the likelihood
function, and the c=1 observations enter into both the numerator and the denominator of the likelihood
function. In this input DATA step, the data for four alternatives appear on one line, and all of the
data for a choice set of eight alternatives appear on two lines. The DATA step shows data entry in
the way that requires the fewest programming statements. Each execution of the input statement
reads information about one alternative. The @@ in the input statement specifies that SAS should not
automatically go to a new input data set line when it reads the next row of data. This specification
is needed here because each line in the input data set contains the data for four output data set rows.
The data from the first two subjects is printed.
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title ’Choice of Chocolate Candies’;

data chocs;
input Subj c Dark Soft Nuts @@;
Set = 1;
datalines;

1 2 0 0 0 1 2 0 0 1 1 2 0 1 0 1 2 0 1 1
1 1 1 0 0 1 2 1 0 1 1 2 1 1 0 1 2 1 1 1
2 2 0 0 0 2 2 0 0 1 2 2 0 1 0 2 2 0 1 1
2 2 1 0 0 2 1 1 0 1 2 2 1 1 0 2 2 1 1 1
3 2 0 0 0 3 2 0 0 1 3 2 0 1 0 3 2 0 1 1
3 2 1 0 0 3 2 1 0 1 3 1 1 1 0 3 2 1 1 1
4 2 0 0 0 4 2 0 0 1 4 2 0 1 0 4 2 0 1 1
4 1 1 0 0 4 2 1 0 1 4 2 1 1 0 4 2 1 1 1
5 2 0 0 0 5 1 0 0 1 5 2 0 1 0 5 2 0 1 1
5 2 1 0 0 5 2 1 0 1 5 2 1 1 0 5 2 1 1 1
6 2 0 0 0 6 2 0 0 1 6 2 0 1 0 6 2 0 1 1
6 2 1 0 0 6 1 1 0 1 6 2 1 1 0 6 2 1 1 1
7 2 0 0 0 7 1 0 0 1 7 2 0 1 0 7 2 0 1 1
7 2 1 0 0 7 2 1 0 1 7 2 1 1 0 7 2 1 1 1
8 2 0 0 0 8 2 0 0 1 8 2 0 1 0 8 2 0 1 1
8 2 1 0 0 8 1 1 0 1 8 2 1 1 0 8 2 1 1 1
9 2 0 0 0 9 2 0 0 1 9 2 0 1 0 9 2 0 1 1
9 2 1 0 0 9 1 1 0 1 9 2 1 1 0 9 2 1 1 1
10 2 0 0 0 10 2 0 0 1 10 2 0 1 0 10 2 0 1 1
10 2 1 0 0 10 1 1 0 1 10 2 1 1 0 10 2 1 1 1
;

proc print data=chocs noobs;
where subj <= 2;
var subj set c dark soft nuts;
run;

Choice of Chocolate Candies

Subj Set c Dark Soft Nuts

1 1 2 0 0 0
1 1 2 0 0 1
1 1 2 0 1 0
1 1 2 0 1 1
1 1 1 1 0 0
1 1 2 1 0 1
1 1 2 1 1 0
1 1 2 1 1 1
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2 1 2 0 0 0
2 1 2 0 0 1
2 1 2 0 1 0
2 1 2 0 1 1
2 1 2 1 0 0
2 1 1 1 0 1
2 1 2 1 1 0
2 1 2 1 1 1

These next steps illustrate a more typical form of data entry. The experimental design is stored in a
separate data set from the choices and is merged with the choices as the data are read, which produces
the same results as the preceding steps. The process of merging the experimental design and the data
is explicitly illustrated with a DATA step program. In practice, and in all of the other examples, we
use the %MktMerge macro to do this.

title ’Choice of Chocolate Candies’;

* Alternative Form of Data Entry;

data combos; /* Read the design matrix. */
input Dark Soft Nuts;
datalines;

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
;

data chocs; /* Create the data set. */
input Choice @@; drop choice; /* Read the chosen combo num. */
Subj = _n_; Set = 1; /* Store subj, choice set num. */
do i = 1 to 8; /* Loop over alternatives. */

c = 2 - (i eq choice); /* Designate chosen alt. */
set combos point=i; /* Read design matrix. */
output; /* Output the results. */
end;

datalines;
5 6 7 5 2 6 2 6 6 6
;

The variable Choice is the number of the chosen alternative. For each choice set, each of the eight
observations in the experimental design is read. The point= option on the set statement is used to
read the ith observation of the data set Combos. When i (the alternative index) equals Choice (the
number of the chosen alternative), the logical expression (i eq choice) equals 1; otherwise it is 0.
The statement c = 2 - (i eq choice) sets c to 1 (two minus one) when the alternative is chosen
and 2 (two minus zero) otherwise. All eight observations in the Combos data set are read 10 times, once
per subject. The resulting data set is the same as the one we created previously. As we mentioned
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previously, in all of the remaining examples, we will simplify this process by using the %MktMerge macro
to merge the design and data. The basic logic underlying this macro is shown in the preceding step.
The number of a chosen alternative is read, then each alternative of the choice set is read, the chosen
alternative is flagged (c = 1), and the unchosen alternatives are flagged (c = 2). One observation
per choice set per subject is read from the input data stream, and one observation per alternative per
choice set per subject is written.

Choice and Survival Models

In SAS, the multinomial logit model is fit with the SAS/STAT procedure PHREG (proportional hazards
regression), with the ties=breslow option. The likelihood function of the multinomial logit model has
the same form as a survival-analysis model fit by PROC PHREG.

In a discrete choice study, subjects are presented with sets of alternatives and asked to choose the most
preferred alternative. The data for one choice set consist of one alternative that was chosen and m− 1
alternatives that were not chosen. First choice was observed. Second and subsequent choices were not
observed; it is only known that the other alternatives would have been chosen after the first choice. In
survival analysis, subjects (rats, people, light bulbs, machines, and so on) are followed until a specific
event occurs (such as failure or death) or until the experiment ends. The data are event times. The
data for subjects who have not experienced the event (such as those who survive past the end of a
medical experiment) are censored. The exact event time is not known, but it is known to have occurred
after the censored time. In a discrete choice study, first choice occurs at time one, and all subsequent
choices (second choice, third choice, and so on) are unobserved or censored. The survival and choice
models are the same.

Fitting the Multinomial Logit Model

The data are now in the right form for analysis. To fit the multinomial logit model, use PROC PHREG
as follows.

proc phreg data=chocs outest=betas;
strata subj set;
model c*c(2) = dark soft nuts / ties=breslow;
label dark = ’Dark Chocolate’ soft = ’Soft Center’

nuts = ’With Nuts’;
run;

The data= option specifies the input data set. The outest= option requests an output data set called
Betas with the parameter estimates. The strata statement specifies that each combination of the
variables Set and Subj forms a set from which a choice was made. Each term in the likelihood
function is a stratum. There is one term or stratum per choice set per subject, and each is composed
of information about the chosen and all the unchosen alternatives.

In the left side of the model statement, you specify the variables that indicate which alternatives were
chosen and not chosen. While this could be two different variables, we will use one variable c to
provide both pieces of information. The response variable c has values 1 (chosen or first choice) and
2 (unchosen or subsequent choices). The first c of the c*c(2) in the model statement specifies that
c indicates which alternative was chosen. The second c specifies that c indicates which alternatives
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were not chosen, and (2) means that observations with values of 2 were not chosen. When c is set up
such that 1 indicates the chosen alternative and 2 indicates the unchosen alternatives, always specify
c*c(2) on the left of the equal sign in the model statement. The attribute variables are specified after
the equal sign. Specify ties=breslow after a slash to explicitly specify the likelihood function for the
multinomial logit model. (Do not specify any other ties= options; ties=breslow specifies the most
computationally efficient and always appropriate way to fit the multinomial logit model.) The label
statement is added since we are using a template that assumes each variable has a label.

Note that the c*c(n) syntax allows second choice (c=2) and subsequent choices (c=3, c=4, ...) to be
entered. Just enter in parentheses one plus the number of choices actually made. For example, with
first and second choice data specify c*c(3). Note however that some experts believe that second and
subsequent choice data are much less reliable than first choice data.

Multinomial Logit Model Results

The output is shown next. Recall that we used %phchoice(on) on page 143 to customize the output
from PROC PHREG.

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 80
Number of Observations Used 80

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 8 1 7
2 2 1 8 1 7
3 3 1 8 1 7
4 4 1 8 1 7
5 5 1 8 1 7
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6 6 1 8 1 7
7 7 1 8 1 7
8 8 1 8 1 7
9 9 1 8 1 7
10 10 1 8 1 7

---------------------------------------------------------------------------
Total 80 10 70

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
With Nuts 1 0.84730 0.69007 1.5076 0.2195

The first table, Model Information, contains the input data set name, dependent variable name,
censoring information, and tie handling option.

The Summary of Subjects, Sets, and Chosen and Unchosen Alternatives table is printed by de-
fault and should be used to check the data entry. In general, there are as many strata as there are
combinations of the Subj and Set variables. In this case, there are ten strata. Each stratum must be
composed of m alternatives. In this case, there are eight alternatives. The number of chosen alterna-
tives should be 1, and the number of unchosen alternatives is m − 1 (in this case 7). Always check
the summary table to ensure that the data are arrayed correctly.
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The Convergence Status table shows that the iterative algorithm successfully converged. The next
tables, Model Fit Statistics and Testing Global Null Hypothesis: BETA=0 contain the overall
fit of the model. The -2 LOG L statistic under With Covariates is 28.727 and the Chi-Square statistic
is 12.8618 with 3 df (p=0.0049), which is used to test the null hypothesis that the attributes do not
influence choice. At common alpha levels such as 0.05 and 0.01, we would reject the null hypothesis of
no relationship between choice and the attributes. Note that 41.589 (-2 LOG L Without Covariates,
which is -2 LOG L for a model with no explanatory variables) minus 28.727 (-2 LOG L With Covariates,
which is -2 LOG L for a model with all explanatory variables) equals 12.8618 (Model Chi-Square, which
is used to test the effects of the explanatory variables).

Next is the ’Multinomial Logit Parameter Estimates’ table. For each effect, it contains the maximum
likelihood parameter estimate, its estimated standard error (the square root of the corresponding
diagonal element of the estimated variance matrix), the Wald Chi-Square statistic (the square of the
parameter estimate divided by its standard error), the df of the Wald Chi-Square statistic (1 unless the
corresponding parameter is redundant or infinite, in which case the value is 0), and the p-value of the
Chi-Squared statistic with respect to a chi-squared distribution with one df. The parameter estimate
with the smallest p-value is for soft center. Since the parameter estimate is negative, chewy is the more
preferred level. Dark is preferred over milk, and nuts over no nuts, however only the p-value for Soft is
less than 0.05.

Fitting the Multinomial Logit Model, All Levels

It is instructive to perform some manipulations on the data set and analyze it again. These steps will
perform the same analysis as before, only now, coefficients for both levels of the three attributes are
printed. Binary variables for the missing levels are created by subtracting the existing binary variables
from 1.

data chocs2;
set chocs;
Milk = 1 - dark; Chewy = 1 - Soft; NoNuts = 1 - nuts;
label dark = ’Dark Chocolate’ milk = ’Milk Chocolate’

soft = ’Soft Center’ chewy = ’Chewy Center’
nuts = ’With Nuts’ nonuts = ’No Nuts’;

run;

proc phreg data=chocs2;
strata subj set;
model c*c(2) = dark milk soft chewy nuts nonuts / ties=breslow;
run;

Choice of Chocolate Candies

The PHREG Procedure

Model Information

Data Set WORK.CHOCS2
Dependent Variable c



Candy Example 153

Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 80
Number of Observations Used 80

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Subj Set Alternatives Alternatives Chosen

1 1 1 8 1 7
2 2 1 8 1 7
3 3 1 8 1 7
4 4 1 8 1 7
5 5 1 8 1 7
6 6 1 8 1 7
7 7 1 8 1 7
8 8 1 8 1 7
9 9 1 8 1 7
10 10 1 8 1 7

---------------------------------------------------------------------------
Total 80 10 70

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 41.589 28.727
AIC 41.589 34.727
SBC 41.589 35.635

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 12.8618 3 0.0049
Score 11.6000 3 0.0089
Wald 8.9275 3 0.0303
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Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Dark Chocolate 1 1.38629 0.79057 3.0749 0.0795
Milk Chocolate 0 0 . . .
Soft Center 1 -2.19722 1.05409 4.3450 0.0371
Chewy Center 0 0 . . .
With Nuts 1 0.84730 0.69007 1.5076 0.2195
No Nuts 0 0 . . .

Now the zero coefficients for the reference levels, milk, chewy, and no nuts are printed. The part-worth
utility for Milk Chocolate is a structural zero, and the part-worth utility for Dark Chocolate is larger
at 1.38629. Similarly, the part-worth utility for Chewy Center is a structural zero, and the part-worth
utility for Soft Center is smaller at -2.19722. Finally, the part-worth utility for No Nuts is a structural
zero, and the part-worth utility for Nuts is larger at 0.84730.

Probability of Choice

The parameter estimates are used next to construct the estimated probability that each alternative
will be chosen. The DATA step program uses the following formula to create the choice probabilities.

p(ci|C) =
exp(xiβ)∑m

j=1 exp(xjβ)

* Estimate the probability that each alternative will be chosen;

data p;
retain sum 0;
set combos end=eof;

* On the first pass through the DATA step (_n_ is the pass
number), get the regression coefficients in B1-B3.
Note that they are automatically retained so that they
can be used in all passes through the DATA step.;

if _n_ = 1 then
set betas(rename=(dark=b1 soft=b2 nuts=b3));

keep dark soft nuts p;
array x[3] dark soft nuts;
array b[3] b1-b3;

* For each combination, create x * b;
p = 0;
do j = 1 to 3;

p = p + x[j] * b[j];
end;
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* Exponentiate x * b and sum them up;
p = exp(p);
sum = sum + p;

* Output sum exp(x * b) in the macro variable ’&sum’;
if eof then call symput(’sum’,put(sum,best12.));
run;

proc format;
value df 1 = ’Dark’ 0 = ’Milk’;
value sf 1 = ’Soft’ 0 = ’Chewy’;
value nf 1 = ’Nuts’ 0 = ’No Nuts’;
run;

* Divide each exp(x * b) by sum exp(x * b);
data p;

set p;
p = p / (&sum);
format dark df. soft sf. nuts nf.;
run;

proc sort;
by descending p;
run;

proc print;
run;

Choice of Chocolate Candies

Obs Dark Soft Nuts p

1 Dark Chewy Nuts 0.50400
2 Dark Chewy No Nuts 0.21600
3 Milk Chewy Nuts 0.12600
4 Dark Soft Nuts 0.05600
5 Milk Chewy No Nuts 0.05400
6 Dark Soft No Nuts 0.02400
7 Milk Soft Nuts 0.01400
8 Milk Soft No Nuts 0.00600

The three most preferred alternatives are Dark/Chewy/Nuts, Dark/Chewy/No Nuts, and Milk/Chewy/Nuts.
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Fabric Softener Example

In this example, subjects are asked to choose among fabric softeners. This example shows all of the
steps in a discrete choice study, including experimental design creation and evaluation, creating the
questionnaire, inputting the raw data, creating the data set for analysis, coding, fitting the discrete
choice model, interpretation, and probability of choice. In addition, custom questionnaires are dis-
cussed. We assume that the reader is familiar with the experimental design issues that are discussed
starting on page 47.

Set Up

The study involves four fictitious fabric softeners Sploosh, Plumbbob, Platter, and Moosey.‡ Each choice
set consists of each of these four brands and a constant alternative Another. Each of the brands is
available at three prices, $1.49, $1.99, and $2.49. Another is only offered at $1.99. There are 50
subjects, each of which will see the same choice sets. We can use the %MktRuns autocall macro to help
us choose the number of choice sets. All of the autocall macros used in this book are documented
starting on page 597. To use this macro, you specify the number of levels for each of the factors. With
four brands each with three prices, you specify four 3’s (or 3 ** 4).

title ’Choice of Fabric Softener’;

%mktruns( 3 3 3 3 )

The output first tells us that we specified a design with four factors, each with three levels. The next
table reports the size of the saturated design, which is the number of parameters in the linear model
based on this design, and suggests design sizes.

Choice of Fabric Softener

Design Summary

Number of
Levels Frequency

3 4

Choice of Fabric Softener

Saturated = 9
Full Factorial = 81

‡Of course real studies would use real brands. Since we have not collected real data, we cannot use real brand names.
We picked these silly names so no one would confuse our artificial data with real data.
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Some Reasonable Cannot Be
Design Sizes Violations Divided By

9 * 0
18 * 0
12 6 9
15 6 9
10 10 3 9
11 10 3 9
13 10 3 9
14 10 3 9
16 10 3 9
17 10 3 9

* - 100% Efficient Design can be made with the MktEx Macro.

Choice of Fabric Softener

n Design Reference

9 3 ** 4 Fractional-Factorial
18 2 ** 1 3 ** 7 Orthogonal Array
18 3 ** 6 6 ** 1 Orthogonal Array

The output from this macro tells us that the saturated design has nine runs and the full-factorial design
has 81 runs. It also tells us that 9 and 18 are optimal design sizes with zero violations. The macro tells
us that in nine runs, an orthogonal design with 4 three-level factors is available, and in 18 runs, two
orthogonal and balanced designs are available: one with a two-level factor and 7 three-level factors,
and one with 6 three-level factors and a six-level factor. There are zero violations with these designs
because these sizes can be divided by 3 and 3 × 3 = 9. Twelve and 15 are also reported as potential
design sizes, but each has 6 violations. Six times (the 4(4 − 1)/2 = 6 pairs of the four 3’s) 12 and 15
cannot be divided by 3× 3 = 9. Ideally, we would like to have a manageable number of choice sets for
people to evaluate and a design that is both orthogonal and balanced. When violations are reported,
orthogonal and balanced designs are not possible. While orthogonality and balance are not required,
they are nice properties to have. With 4 three-level factors, the number of choice sets in all orthogonal
and balanced designs must be divisible by 3× 3 = 9.

Nine choice sets is a bit small. Furthermore, there are no error df. We set the number of choice sets to
18 since it is small enough for each person to see all choice sets, large enough to have reasonable error
df, and an orthogonal and balanced design is available. It is important to understand however that the
concept of number of parameters and error df discussed here applies to the linear design and not to
the choice design.§ We could use the nine-run design for a discrete choice model and have error df in
the choice model. If we were to instead use this design for a full-profile conjoint (not recommended),
there would be no error df.

To make the code easier to modify for future use, the number of choice sets and alternatives are stored
in macro variables and the prices are put into a format. Our design, in raw form, will have values for
price of 1, 2, and 3. We will use a format to assign the actual prices: $1.49, $1.99, and $2.49. The

§See page 60 for an explanation of linear versus choice designs.
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format also creates a price of $1.99 for missing, which will be used for the constant alternative.

%let n = 18; /* n choice sets */
%let m = 5; /* m alternative including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */

proc format; /* create a format for the price */
value price 1 = ’$1.49’ 2 = ’$1.99’ 3 = ’$2.49’ . = ’$1.99’;
run;

Designing the Choice Experiment

In the next steps, an efficient experimental design is created. We will use an autocall macro %MktEx
to create most of our designs. (All of the autocall macros used in this book are documented starting
on page 597.) When you invoke the %MktEx macro for a simple problem, you only need to specify the
numbers of levels, and number of runs. The macro does the rest. Here is the %MktEx macro usage for
this example:

%mktex(3 ** 4, n=&n)

The syntax ’n ** m’ means m factors each at n levels. This example has four factors, x1 through x4,
all with three levels. A design with 18 runs is requested. The n= option specifies the number of runs.
These are all the options that are needed for a simple problem such as this one. However, throughout
this book, random number seeds are explicitly specified with the seed= option so that the results will
be reproducible.¶ Here is the macro call with the random number seed specified:

%mktex(3 ** 4, n=&n, seed=17)

Here are the results.

Choice of Fabric Softener

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

¶By specifying a random number seed, results should be reproducible within a SAS release for a particular operating
system and for a particular version of the macro. However, due to machine and macro differences, some results may not
be exactly reproducible everywhere. For most orthogonal and balanced designs, the results should be reproducible. When
computerized searches are done, it is likely that you will not get the same design as the one in the book, although you
would expect the efficiency differences to be slight.
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Choice of Fabric Softener

The OPTEX Procedure

Class Level Information

Class Levels Values

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 3 1 2 3

Choice of Fabric Softener

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.7071

Here is the design.

proc print; run;

Choice of Fabric Softener

Obs x1 x2 x3 x4

1 1 1 1 1
2 1 1 2 2
3 1 2 1 3
4 1 2 3 1
5 1 3 2 3
6 1 3 3 2
7 2 1 1 3
8 2 1 3 1
9 2 2 2 2
10 2 2 3 3
11 2 3 1 2
12 2 3 2 1
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13 3 1 2 3
14 3 1 3 2
15 3 2 1 2
16 3 2 2 1
17 3 3 1 1
18 3 3 3 3

The macro found a perfect, orthogonal and balanced, 100% D-efficient design consisting of 4 three-level
factors, x1-x4. The levels are the integers 1 to 3. For this problem, the macro generated the design
directly. For other problems, the macro may have to use a computerized search. See page 191 for more
information on how the %MktEx macro works.

Examining the Design

You should run basic checks on all designs, even orthogonal designs such as this one. You can use the
%MktEval macro to display information about the design. The macro first prints a matrix of canonical
correlations between the factors. We hope to see an identity matrix (a matrix of ones on the diagonal
and zeros everywhere else) which means the design is orthogonal. Next, the macro prints all one-way
frequencies for all attributes, all two-way frequencies, and all n-way frequencies (in this case four-way
frequencies). We hope to see equal or at least nearly equal one-way and two-way frequencies, and we
want to see that each combination occurs only once.

%mkteval;

Choice of Fabric Softener
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4

x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 0 0 1

Choice of Fabric Softener
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

x1 6 6 6
x2 6 6 6
x3 6 6 6
x4 6 6 6
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x1 x2 2 2 2 2 2 2 2 2 2
x1 x3 2 2 2 2 2 2 2 2 2
x1 x4 2 2 2 2 2 2 2 2 2
x2 x3 2 2 2 2 2 2 2 2 2
x2 x4 2 2 2 2 2 2 2 2 2
x3 x4 2 2 2 2 2 2 2 2 2
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A canonical correlation is the maximum correlation between linear combinations of the coded factors
(see page 70). All zeros off of the diagonal show that this design is orthogonal for main effects. If any
off-diagonal canonical correlations had been greater than 0.316 (r2 > 0.1), the macro would have listed
them in a separate table. The last title line tells you that none of them was this large. For nonorthogonal
designs and designs with interactions, the canonical-correlation matrix is not a substitute for looking
at the variance matrix (with examine=v, discussed on pages 196, 243, and 683). It just provides a quick
and more-compact picture of the correlations between the factors. The variance matrix is sensitive to
the actual model specified and the actual coding. The canonical-correlation matrix just tells you if
there is some correlation between the main effects. In this case, there are no correlations.

The equal one-way frequencies show you that this design is balanced. The equal two-way frequencies
show you that this design is orthogonal. The n-way frequencies, all equal to one, show there are no
duplicate profiles. This is a perfect design for a main-effects model.

You should always check the n-way frequencies to ensure that you do not have duplicates. For this
situation for example, a 100% D-efficient design exists where each run appears twice. It consists of two
copies of the fractional-factorial design 34 in 9 runs. When you get duplicates, specify options=nodups
in the %MktEx macro, or sometimes you can just change the random number seed. Most designs will
not have duplicates, so it is better to specify options=nodups only after you have found a design with
duplicates. The no-duplicates constraint greatly slows down the algorithm.

The %MktEval macro produces a very compact summary of the design, hence some information, for
example the levels to which the frequencies correspond, is not shown. You can use the print=freqs
option to get a less compact and more detailed display.

%mkteval(data=design, print=freqs)

Here are some of the results.

Choice of Fabric Softener
Frequencies

Effects Frequency x1 x2 x3 x4

x1 6 1 . . .
6 2 . . .
6 3 . . .

x2 6 . 1 . .
6 . 2 . .
6 . 3 . .
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.

.

.

x1 x2 2 1 1 . .
2 1 2 . .
2 1 3 . .
2 2 1 . .
2 2 2 . .
2 2 3 . .
2 3 1 . .
2 3 2 . .
2 3 3 . .

.

.

.

x3 x4 2 . . 1 1
2 . . 1 2
2 . . 1 3
2 . . 2 1
2 . . 2 2
2 . . 2 3
2 . . 3 1
2 . . 3 2
2 . . 3 3

N-Way 1 1 1 1 1
1 1 1 2 2
1 1 2 1 3
1 1 2 3 1
1 1 3 2 3
1 1 3 3 2
1 2 1 1 3
1 2 1 3 1
1 2 2 2 2
1 2 2 3 3
1 2 3 1 2
1 2 3 2 1
1 3 1 2 3
1 3 1 3 2
1 3 2 1 2
1 3 2 2 1
1 3 3 1 1
1 3 3 3 3
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The Randomized Design and Postprocessing

The design we just looked at and examined was in the default output data set, Design. The Design data
set is sorted, and often the first row consists entirely of ones. For these reasons, you should actually use
the randomized design. In the randomized design, the choice sets are presented in a random order and
the levels have been randomly reassigned. Neither of these operations affects the design D-efficiency,
balance, or orthogonality. The macro automatically randomizes the design and stores the results in a
data set called Randomized. The next steps assign formats and labels and store the results in a SAS
data set sasuser.Softener LinDes. It is important to store the design in a permanent SAS data set
or in some other permanent form so that it will be available for analysis after the data are collected.

Every SAS data set has a two-level name of the form libref.filename. You can always reference
a file with its two-level name. However, you can also use a one-level name, and then that data set
is stored in temporary SAS data library with a libref of Work. Temporary data sets are deleted at
the end of your SAS session, so any data that must be saved needs to be stored in a permanent SAS
data set. The libref called sasuser is automatically available for permanent storage in most SAS
installations. Furthermore, you can make your own libref using a libname statement. You may wish
to create a separate library for each project. The latter approach of using a libname statement is
usually preferable, but for our purposes, mainly to avoid discussing issues of host-specific paths and
file names, we will use sasuser. See your BASE SAS documentation and SAS Companion for your
operating system for more information on data libraries, libref, and libname.

data sasuser.Softener_LinDes;
set randomized;
format x1-x&mm1 price.;
label x1 = ’Sploosh’ x2 = ’Plumbbob’ x3 = ’Platter’ x4 = ’Moosey’;
run;

This is the final design.

proc print data=sasuser.Softener_LinDes label; /* print final design */
title2 ’Efficient Design’;
run;

Choice of Fabric Softener
Efficient Design

Obs Sploosh Plumbbob Platter Moosey

1 $1.99 $1.99 $1.99 $2.49
2 $2.49 $1.49 $1.49 $1.99
3 $1.49 $2.49 $2.49 $1.49
4 $2.49 $1.99 $2.49 $1.99
5 $1.49 $1.49 $1.49 $2.49
6 $1.49 $2.49 $1.99 $1.99
7 $2.49 $1.99 $1.99 $1.49
8 $2.49 $2.49 $1.49 $1.49
9 $1.99 $1.49 $2.49 $1.49
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10 $1.49 $1.49 $1.99 $1.49
11 $1.99 $2.49 $1.49 $2.49
12 $1.49 $1.99 $1.49 $1.99
13 $1.99 $1.99 $1.49 $1.49
14 $1.49 $1.99 $2.49 $2.49
15 $2.49 $1.49 $2.49 $2.49
16 $1.99 $2.49 $2.49 $1.99
17 $1.99 $1.49 $1.99 $1.99
18 $2.49 $2.49 $1.99 $2.49

From a Linear Design to a Choice Design

The randomized design is now in a useful form for making the questionnaire, which is discussed in the
next section. However, it is not in the final choice-design form that is needed for analysis and for the
last evaluation that we should perform before collecting data. In this section, we convert our linear
design to a choice design and evaluate its goodness for a choice model.

Our linear design, which we stored in a permanent SAS data set, sasuser.Softener LinDes, is ar-
ranged with one row per choice set. For analysis, we need a choice design with one row for each
alternative of each choice set. We call the randomized design a linear design (see page 60) because we
used the %MktEx macro to create it optimizing D-efficiency for a linear model. We will use the macro
%MktRoll to “roll out” the linear design into the choice design, which is in the proper form for analysis.
First, we must create a data set that describes how the design will be processed. We call this data set
the design key.

In this example, we want a choice design with two factors, Brand and Price. Brand has levels Sploosh,
Plumbbob, Platter, Moosey, and Another. Price has levels $1.49, $1.99, and $2.49. Brand and Price
are created by different processes. The Price factor will be constructed from the factors of the linear
design matrix. In contrast, there is no Brand factor in the linear design. Each brand is a bin into which
its factors are collected. The variable Brand will be named on the alt= option of the %MktRoll macro
as the alternative variable, so its values will be read directly out of the Key data set. Price will not be
named on the alt= macro option, so its values in the Key data set are variable names from the linear
design data set. The values of Price in the final choice design will be read from the named variables in
the linear design data set. The Price factor in the choice design is created from the four linear design
factors (x1 for Sploosh, x2 for Plumbbob, x3 for Platter, x4 for Moosey, and no attribute for Another,
the constant alternative). Here is how the Key data set is created. The Brand factor levels and the
Price linear design factors are stored in the Key data set.

title2 ’Key Data Set’;

data key;
input Brand $ Price $;
datalines;

Sploosh x1
Plumbbob x2
Platter x3
Moosey x4
Another .
;

proc print; run;
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Choice of Fabric Softener
Key Data Set

Obs Brand Price

1 Sploosh x1
2 Plumbbob x2
3 Platter x3
4 Moosey x4
5 Another

Note that the value of Price for alternative Another in the Key data set is blank (character missing).
The period in the in-stream data set is simply a place holder, used with list input to read both character
and numeric missing data. A period is not stored with the data. Next, we use the %MktRoll macro to
process the design.

%mktroll(design=sasuser.Softener_LinDes, key=key, alt=brand,
out=sasuser.Softener_ChDes)

The %MktRoll step processes the design=sasuser.Softener LinDes linear design data set using the
rules specified in the key=key data set, naming the alt=brand variable as the alternative name variable,
and creating an output SAS data set called out=sasuser.Softener ChDes, which contains the choice
design. The input design=sasuser.Softener LinDes data set has 18 observations, one per choice
set, and the output out=sasuser.Softener ChDes data set has 5× 18 = 90 observations, one for each
alternative of each choice set. Here are the first three observations of the linear design data set.

title2 ’Linear Design (First 3 Sets)’;

proc print data=sasuser.Softener_LinDes(obs=3); run;

Choice of Fabric Softener
Linear Design (First 3 Sets)

Obs x1 x2 x3 x4

1 $1.99 $1.99 $1.99 $2.49
2 $2.49 $1.49 $1.49 $1.99
3 $1.49 $2.49 $2.49 $1.49

These observations define the first three choice sets. Here are those same observations, arrayed for
analysis in the choice design data set.

title2 ’Choice Design (First 3 Sets)’;

proc print data=sasuser.Softener_ChDes(obs=15);
format price price.;
id set; by set;
run;
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Choice of Fabric Softener
Choice Design (First 3 Sets)

Set Brand Price

1 Sploosh $1.99
Plumbbob $1.99
Platter $1.99
Moosey $2.49
Another $1.99

2 Sploosh $2.49
Plumbbob $1.49
Platter $1.49
Moosey $1.99
Another $1.99

3 Sploosh $1.49
Plumbbob $2.49
Platter $2.49
Moosey $1.49
Another $1.99

The choice design data set has a choice set variable Set, an alternative name variable Brand, and a
price variable Price. The prices come from the linear design, and the price for Another is a constant
$1.99. Recall that the prices are assigned by the following format.

proc format; /* create a format for the price */
value price 1 = ’$1.49’ 2 = ’$1.99’ 3 = ’$2.49’ . = ’$1.99’;
run;

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%choiceff(data=sasuser.Softener_ChDes, init=sasuser.Softener_ChDes(keep=set),
nsets=&n, nalts=&m, beta=zero, intiter=0,
model=class(brand price / zero=’Another’ ’$1.99’)

/ lprefix=0 cprefix=0%str(;)
format price price.)

The %ChoicEff macro has two uses. You can use it to search for an efficient choice design, or you can
use it to evaluate a choice design including designs that were generated using other methods such as
the %MktEx macro. It is this latter use that is illustrated here.

The way you check a design like this is to first name it on the data= option. This will be the candidate
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set that contains all of the choice sets that we will consider. In addition, the same design is named
on the init= option. The full specification is init=sasuser.Softener ChDes(keep=set). Just the
variable Set is kept. It will be used to bring in just the indicated choice sets from the data= design,
which in this case is all of them. The option nsets=&n specifies that there are &n=18 choice sets,
and nalts=&m specifies that there are &m=5 alternatives. The option beta=zero specifies that we are
assuming for design evaluation purposes the null hypothesis that all of the betas or part-worth utilities
are zero. You can evaluate the design for other parameter vectors by specifying a list of numbers after
beta=. This will change the variances and standard errors. We also specify intiter=0 which specifies
zero internal iterations. We use zero internal iterations when we want to evaluate an initial design, but
not attempt to improve it. The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Some of these options will be familiar from the previous example. The
specification class(brand price / zero=’Another’ ’$1.99’) names the brand and price variable
as a classification variables and asks for coded variables for every level except ’Another’ for brand and
’$1.99’ for price. The levels ’Another’ and ’$1.99’ are the reference levels for the two attributes.
In a p-level factor, there are at most p− 1 nonzero parameters.

The lprefix=0 option specifies that when labels are created for the binary variables, zero characters of
the original variable name should be used as a prefix. This means that the labels are created only from
the level values. For example, ’Sploosh’ and ’Plumbbob’ are created as labels not ’Brand Sploosh’
and ’Brand Plumbbob’. The cprefix=0 option specifies that when names are created for the binary
variables, zero characters of the original variable name should be used as a prefix. This means that the
names are created only from the level values. The c in cprefix stands for class.

The code following the cprefix= specification is a bit of a trick. The %ChoicEff macro generates a
model statement for PROC TRANSREG using the specified value like this:

model &model;

By adding a semicolon, enclosed in %str( ) and a format statement, we can send a format statement
to the PROC TRANSREG coding step. The semicolon must be in the %str( ) macro function so
that it is passed into the macro and is not treated as the end of the macro specification. The model
specification adds these two statements to PROC TRANSREG in the %ChoicEff macro.

model class(brand price / zero=’Another’ ’$1.99’) / lprefix=0 cprefix=0;
format price price.;

Alternatively, we could have just created a separate data set and added the format statement that way.

Here are the results from this step.

Choice of Fabric Softener
Evaluate the Choice Design

n Name Beta Label

1 Moosey 0 Moosey
2 Platter 0 Platter
3 Plumbbob 0 Plumbbob
4 Sploosh 0 Sploosh
5 _1_49 0 $1.49
6 _2_49 0 $2.49
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Choice of Fabric Softener
Evaluate the Choice Design

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 2.342234 0.426943

Choice of Fabric Softener
Evaluate the Choice Design

Final Results

Design 1
Choice Sets 18
Alternatives 5
D-Efficiency 2.342234
D-Error 0.426943

Choice of Fabric Softener
Evaluate the Choice Design

Variable Standard
n Name Label Variance DF Error

1 Moosey Moosey 0.72917 1 0.85391
2 Platter Platter 0.72917 1 0.85391
3 Plumbbob Plumbbob 0.72917 1 0.85391
4 Sploosh Sploosh 0.72917 1 0.85391
5 _1_49 $1.49 0.52083 1 0.72169
6 _2_49 $2.49 0.52083 1 0.72169

==
6

The first table provides the name, specified value, and label for each parameter. The second table is the
iteration history. There is just one line in the table since zero internal iterations were requested. The
third table summarizes the design. The first design has 18 choice sets, 5 alternatives, a D-efficiency of
2.34 and a D-error of 0.43. D-error = 1 / D-efficiency. Note that D-efficiency and D-error are computed
on a scale with an unknown maximum, so unlike the values that come out of the %MktEx macro, are
not on a percentage or zero to 100 scale. When the 9.2 release of SAS is available, there will be new
options for orthogonal coding in TRANSREG, and this will no longer always be the case. For now,
the D-efficiency is not what really interests us. We are most interested in the final table. It shows the
names and labels for the parameters as well as their variances, standard errors, and df. We see that
the parameters for all four brands have the same standard errors. Similarly, the standard errors for the
two prices are the same. They are different for the two attributes since both have a different number of
levels. In both sets, however, they are all approximately the same order of magnitude. Sometimes you
will see wildly varying parameters. This is usually a sign of a problematic design, perhaps one with
too few choice sets for the number of parameters. This design looks good.

It is a really good idea to perform this step before designing the questionnaire and collecting data. Data
collection is expensive, so it is good to make sure that the design can be used for the most complicated
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model that you intend to fit. Much more will be said on evaluating the standard errors in the later
and more complicated examples.

Generating the Questionnaire

A questionnaire based on the design is printed using the DATA step. The statement array brands[&m]
$ temporary (’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’ ’Another’) creates a constant array
so that brands[1] accesses the string ’Sploosh’, brands[2] accesses the string ’Plumbbob’, and so
on. The temporary specification means that no output data set variables are created for this array.
The linesleft= specification in the file statement creates the variable ll, which contains the number
of lines left on a page. This ensures that each choice set is not split over two pages.

options ls=80 ps=60 nonumber nodate;
title;

data _null_; /* print questionnaire */
array brands[&m] $ _temporary_ (’Sploosh’ ’Plumbbob’ ’Platter’

’Moosey’ ’Another’);
array x[&m] x1-x&m;
file print linesleft=ll;
set sasuser.Softener_LinDes;

x&m = 2; /* constant alternative */
format x&m price.;

if _n_ = 1 or ll < 12 then do;
put _page_;
put @60 ’Subject: _________’ //;
end;

put _n_ 2. ’) Circle your choice of ’
’one of the following fabric softeners:’ /;

do brnds = 1 to &m;
put ’ ’ brnds 1. ’) ’ brands[brnds] ’brand at ’

x[brnds] +(-1) ’.’ /;
end;

run;

In the interest of space, only the first two choice sets are printed. The questionnaire is printed, copied,
and the data are collected.
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Subject: _________

1) Circle your choice of one of the following fabric softeners:

1) Sploosh brand at $1.99.

2) Plumbbob brand at $1.99.

3) Platter brand at $1.99.

4) Moosey brand at $2.49.

5) Another brand at $1.99.

2) Circle your choice of one of the following fabric softeners:

1) Sploosh brand at $2.49.

2) Plumbbob brand at $1.49.

3) Platter brand at $1.49.

4) Moosey brand at $1.99.

5) Another brand at $1.99.

In practice, data collection will typically be much more elaborate than this. It may involve art work
or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.
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Entering the Data

The data consist of a subject number followed by 18 integers in the range 1 to 5. These are the
alternatives that were chosen for each choice set. For example, the first subject chose alternative 3
(Platter brand at $1.99) in the first choice set, alternative 3 (Platter brand at $1.49) in the second
choice set, and so on. In the interest of space, data from three subjects appear on one line.

title ’Choice of Fabric Softener’;

data results; /* read choice data set */
input Subj (choose1-choose&n) (1.) @@;
datalines;

1 334533434233312433 2 334213442433333325 3 333333333333313333
4 334431444434412453 5 335431434233512423 6 334433434433312433
7 334433434433322433 8 334433434433412423 9 334433332353312433
10 325233435233332433 11 334233434433313333 12 334331334433312353
13 534333334333312323 14 134421444433412423 15 334333435433312335
16 334433435333315333 17 534333432453312423 18 334435544433412543
19 334333335433313433 20 331431434233315533 21 334353534433512323
22 334333452233312523 23 334333332333312433 24 525221444233322423
25 354333434433312333 26 334435545233312323 27 334353534233352323
28 334333332333332333 29 334433534335352423 30 334453434533313433
31 354333334333312433 32 354331332233332423 33 334424432353312325
34 334433434433312433 35 334551444453412325 36 334234534433312433
37 334431434433512423 38 354333334433352523 39 334351334333312533
40 324433334433412323 41 334433444433412443 42 334433434433312423
43 334434454433332423 44 334433434233312423 45 334451544433412424
46 434431435433512423 47 524434534433412433 48 335453334433322453
49 334533434133312433 50 334433332333312423
;

Processing the Data

The next step merges the choice data with the choice design using the %MktMerge macro.

proc format;
value price 1 = ’$1.49’ 2 = ’$1.99’ 3 = ’$2.49’ . = ’$1.99’;
run;

%mktmerge(design=sasuser.Softener_ChDes, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

This step reads the design=sasuser.Softener ChDes choice design and the data=results data set
and creates the out=res2 output data set. The data are from an experiment with nsets=&n choice
sets, nalts=&m alternatives, with variables setvars=choose1-choose&n containing the numbers of the
chosen alternatives. Here are the first 15 observations.
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title2 ’Choice Design and Data (First 3 Sets)’;

proc print data=res2(obs=15);
id subj set; by subj set;
run;

Choice of Fabric Softener
Choice Design and Data (First 3 Sets)

Subj Set Brand Price c

1 1 Sploosh 2 2
Plumbbob 2 2
Platter 2 1
Moosey 3 2
Another . 2

1 2 Sploosh 3 2
Plumbbob 1 2
Platter 1 1
Moosey 2 2
Another . 2

1 3 Sploosh 1 2
Plumbbob 3 2
Platter 3 2
Moosey 1 1
Another . 2

The data set contains the subject ID variable Subj from the data=results data set, the Set, Brand,
and Price variables from the design=sasuser.Softener ChDes data set, and the variable c, which
indicates which alternative was chosen. The variable c contains: 1 for first choice and 2 for second or
subsequent choice. This subject chose the third alternative, Platter in the first choice set, Platter in
the second, and Moosey in the third. This data set has 4500 observations: 50 subjects times 18 choice
sets times 5 alternatives.

Since we did not specify a format, we see in the design the raw design values for Price: 1, 2, 3 and
missing for the constant alternative. If we were going to treat Price as a categorical variable for
analysis, this would be fine. We would simply assign our price format to Price and designate it as a
class variable. However, in this analysis we are going to treat price as quantitative and use the actual
prices in the analysis. Hence, we must convert our design values from 1, 2, 3, and . to 1.49, 1.99, 2.49,
and 1.99. We cannot do this by simply assigning a format. Formats create character strings that are
printed in place of the original value. We need to convert a numeric variable from one set of numeric
values to another. We could use if and assignment statements. We could also use the %MktLab macro,
which is used in later examples. However, instead we will use the put function to write the formatted
value into a character string, then we read it back using a dollar format and the input function. For
example, the expression put(price, price.) converts a number, say 2, into a string (in this case
’$1.99’), then the input function reads the string and converts it to a numeric 1.99. This step also
assigns a label to the variable Price.
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data res3; /* Create a numeric actual price */
set res2;
price = input(put(price, price.), dollar5.);
label price = ’Price’;
run;

Binary Coding

One more thing must be done to these data before they can be analyzed. The factors must be coded.
In this example, we use a binary or zero-one coding for the brand effect. This can be done with PROC
TRANSREG.

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(brand / zero=none order=data)

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id subj set c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design.
When design is specified, dependent variables are not required. Optionally, design can be followed by
“=n” where n is the number of observations to process at one time. By default, PROC TRANSREG
codes all observations in one big group. For very large data sets, this can consume large amounts
of memory and time. Processing blocks of smaller numbers of observations is more computationally
efficient. The option design=5000 processes observations in blocks of 5000. For smaller computers,
try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example, but they are
included here, because sometimes they are very helpful in coding choice models. The nozeroconstant
option specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant
option should always be specified when you specify design=n because the last group of observations
may be small and may contain constant variables. The nozeroconstant option is also important if
you do something like coding by subj set because sometimes an attribute is constant within a choice
set. The norestoremissing option specifies that missing values should not be restored when the out=
data set is created. By default, the coded class variable contains a row of missing values for observa-
tions in which the class variable is missing. When you specify the norestoremissing option, these
observations contain a row of zeros instead. This option is useful when there is a constant alternative
indicated by missing values. Both of these options, like almost all options in PROC TRANSREG, can
be abbreviated to three characters (noz and nor).

The model statement names the variables to code and provides information about how they should
be coded. The specification class(brand / ...) specifies that the variable Brand is a classification
variable and requests a binary coding. The zero=none option creates binary variables for all categories.
In contrast, by default, a binary variable is not created for the last category−the parameter for the
last category is a structural zero. The zero=none option is used when there are no structural zeros
or when you want to see the structural zeros in the multinomial logit parameter estimates table.
The order=data option sorts the levels into the order that they were first encountered in the data
set. Alternatively, the levels could be sorted based on the formatted or unformatted values. The
specification identity(price) specifies that Price is a quantitative factor that should be analyzed as
is (not expanded into indicator variables).
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The lprefix=0 option specifies that when labels are created for the binary variables, zero characters
of the original variable name should be used as a prefix.

An output statement names the output data set and drops variables that are not needed. These
variables do not have to be dropped. However, since they are variable names that are often found in
special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables
prevents the warnings. Finally, the id statement names the additional variables that we want copied
from the input to the output data set. The next steps print the first three coded choice sets.

proc print data=coded(obs=15) label;
title2 ’First 15 Observations of Analysis Data Set’;
id subj set c;
by subj set;
run;

Choice of Fabric Softener
First 15 Observations of Analysis Data Set

Subj Set c Sploosh Plumbbob Platter Moosey Another Price Brand

1 1 2 1 0 0 0 0 1.99 Sploosh
2 0 1 0 0 0 1.99 Plumbbob
1 0 0 1 0 0 1.99 Platter
2 0 0 0 1 0 2.49 Moosey
2 0 0 0 0 1 1.99 Another

1 2 2 1 0 0 0 0 2.49 Sploosh
2 0 1 0 0 0 1.49 Plumbbob
1 0 0 1 0 0 1.49 Platter
2 0 0 0 1 0 1.99 Moosey
2 0 0 0 0 1 1.99 Another

1 3 2 1 0 0 0 0 1.49 Sploosh
2 0 1 0 0 0 2.49 Plumbbob
2 0 0 1 0 0 2.49 Platter
1 0 0 0 1 0 1.49 Moosey
2 0 0 0 0 1 1.99 Another

Fitting the Multinomial Logit Model

The next step fits the discrete choice, multinomial logit model.

proc phreg data=coded outest=betas brief;
title2 ’Discrete Choice Model’;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;
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The brief option requests a brief summary for the strata. As with the candy example, c*c(2)
designates the chosen and unchosen alternatives in the model statement. We specify the & trgind
macro variable for the model statement independent variable list. PROC TRANSREG automatically
creates this macro variable. It contains the list of coded independent variables generated by the
procedure. This is so you do not have to figure out what names TRANSREG created and specify
them. In this case, PROC TRANSREG sets & trgind to contain the following list.

BrandSploosh BrandPlumbbob BrandPlatter BrandMoosey BrandAnother Price

The ties=breslow option specifies a PROC PHREG model that has the same likelihood as the multi-
nomial logit model for discrete choice. The strata statement specifies that the combinations of Set
and Subj indicate the choice sets. This data set has 4500 observations consisting of 18 × 50 = 900
strata and five observations per stratum.

Each subject rated 18 choice sets, but the multinomial logit model assumes each stratum is independent.
That is, the multinomial logit model assumes each person makes only one choice. The option of
collecting only one datum from each subject is too expensive to consider for many problems, so multiple
choices are collected from each subject, and the repeated measures aspect of the problem is ignored.
This practice is typical, and it usually works well.

Multinomial Logit Model Results

The output is shown next. (Recall that we used %phchoice(on) on page 143 to customize the output
from PROC PHREG.)

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 4500
Number of Observations Used 4500

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 900 5 1 4
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Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2896.988 1439.457
AIC 2896.988 1449.457
SBC 2896.988 1473.469

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1457.5310 5 <.0001
Score 1299.7889 5 <.0001
Wald 635.9093 5 <.0001

Choice of Fabric Softener
Discrete Choice Model

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Sploosh 1 -1.30565 0.21097 38.3017 <.0001
Plumbbob 1 -0.49090 0.18035 7.4091 0.0065
Platter 1 2.08485 0.14592 204.1402 <.0001
Moosey 1 0.62183 0.15503 16.0884 <.0001
Another 0 0 . . .
Price 1 -4.60150 0.21608 453.5054 <.0001

The procedure output begins with information about the data set, variables, options, and number
of observations read. This is followed by information about the 900 strata. Since the brief option
was specified, this table contains one row for each stratum pattern. In contrast, the default table
would have 900 rows, one for each choice set and subject combination. Each subject and choice set
combination consists of a total of five observations, one that was chosen and four that were not chosen.
This pattern was observed 900 times. This table provides a check on data entry. Unless we have an
availability or allocation study (page 334) or a nonconstant number of alternatives in different choice
sets, we would expect to see one pattern of results where one of the m alternatives was chosen for each
choice set. If you do not observe this for a study like this, there was probably a mistake in the data
entry or processing.
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The most to least preferred brands are: Platter, Moosey, Another, Plumbbob, and Sploosh. Increases in
price have a negative utility. For example, the predicted utility of Platter brand at $1.99 is xiβ which is
(0 0 1 0 0 $1.99) (−1.31 −0.49 2.08 0.62 0 −4.60)′ = 2.08 + 1.99 × −4.60 = −7.07
Since Price was analyzed as a quantitative factor, we can see for example that the utility of Platter at
$1.89, which was not in any choice set, is 2.08 + 1.89×−4.60 = −6.61, which is a $0.10× 4.60 = 0.46
increase in utility.

Probability of Choice

These next steps compute the expected probability that each alternative is chosen within each choice
set. This code could easily be modified to compute expected market share for hypothetical marketplaces
that do not directly correspond to the choice sets. Note however, that a term like “expected market
share,” while widely used, is a misnomer. Without purchase volume data, it is unlikely that these
numbers would mirror true market share.

First, PROC SCORE is used to compute the predicted utility for each alternative.

proc score data=coded(where=(subj=1) drop=c)
score=betas type=parms out=p;

var &_trgind;
run;

The data set to be scored is named with the data= option, and the coefficients are specified in the option
score=beta. Note that we only need to read all of the choice sets once, since the parameter estimates
were computed in an aggregate analysis. This is why we specified where=(subj=1). We do not need
xjβ̂ for each of the different subjects. We dropped the variable c from the Coded data set since this
name will be used by PROC SCORE for the results (xjβ̂). The option type=parms specifies that the
score= data set contains the parameters in TYPE = ’PARMS’ observations. The output data set with
the predicted utilities is named P. Scoring is based on the coded variables from PROC TRANSREG,
whose names are contained in the macro variable & trgind. The next step exponentiates xjβ̂.

data p2;
set p;
p = exp(c);
run;

Next, exp(xjβ̂) is summed for each choice set.

proc means data=p2 noprint;
output out=s sum(p) = sp;
by set;
run;

Finally, each xjβ̂ is divided by
∑m

j=1 xjβ̂.

data p;
merge p2 s(keep=set sp);
by set;
p = p / sp;
keep brand set price p;
run;
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Here are the results for the first three choice sets.
proc print data=p(obs=15);

title2 ’Choice Probabilities for the First 3 Choice Sets’;
run;

Choice of Fabric Softener
Choice Probabilities for the First 3 Choice Sets

Obs Price Brand Set p

1 1.99 Sploosh 1 0.02680
2 1.99 Plumbbob 1 0.06052
3 1.99 Platter 1 0.79535
4 2.49 Moosey 1 0.01845
5 1.99 Another 1 0.09888
6 2.49 Sploosh 2 0.00030
7 1.49 Plumbbob 2 0.06843
8 1.49 Platter 2 0.89921
9 1.99 Moosey 2 0.02086
10 1.99 Another 2 0.01120
11 1.49 Sploosh 3 0.11679
12 2.49 Plumbbob 3 0.00265
13 2.49 Platter 3 0.03479
14 1.49 Moosey 3 0.80260
15 1.99 Another 3 0.04318

Custom Questionnaires

In this part of the example, a custom questionnaire is printed for each person. Previously, each subject
saw the same questionnaire, with the same choice sets, each containing the same alternatives, with
everything in the same order. In this example, the order of the choice sets and all alternatives within
choice sets are randomized for each subject. Randomizing avoids any systematic effects due to the
order of the alternatives and choice sets. The constant alternative is always printed last. If you have
no interest in custom questionnaires, you can skip ahead to page 184.

First, the macro variable &forms is created. It contains the number of separate questionnaires (or
forms or subjects, in this case 50). We can use the %MktEx macro to create a data set with one
observation for each alternative of each choice set for each person. The specification %mktex(&forms
&n &mm1, n=&forms * &n * &mm1) is %mktex(50 18 4, n=50 * 18 * 4) and creates a 50 × 18 × 4
full-factorial design. Note that the n= specification allows expressions. The macro %MktLab is then
used to assign the variable names Form, Set, and Alt instead of the default x1 - x3. The data set is
sorted by Form. Within Form, the choice sets are sorted into a random order, and within choice set, the
alternatives are sorted into a random order. The 72 observations for each choice set contain 18 blocks
of 4 observations−one block per choice set in a random order and the 4 alternatives within each choice
set, again in a random order. Note that we store these in a permanent SAS data set so they will be
available after the data are collected. See page 163 for more information on permanent SAS data sets.
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%let forms = 50;
title2 ’Create 50 Custom Questionnaires’;

*---Make the design---;
%mktex(&forms &n &mm1, n=&forms * &n * &mm1)

*---Assign Factor Names---;
%mktlab(data=design, vars=Form Set Alt)

*---Set up for Random Ordering---;
data sasuser.orders;

set final;
by form set;
retain r1;
if first.set then r1 = uniform(17);
r2 = uniform(17);
run;

*---Random Sort---;
proc sort out=sasuser.orders(drop=r:); by form r1 r2; run;

proc print data=sasuser.orders(obs=16); run;

The first 16 observations in this data set are shown next.

Choice of Fabric Softener
Create 50 Custom Questionnaires

Obs Form Set Alt

1 1 4 3
2 1 4 1
3 1 4 2
4 1 4 4
5 1 8 2
6 1 8 3
7 1 8 1
8 1 8 4
9 1 16 1

10 1 16 2
11 1 16 3
12 1 16 4
13 1 1 3
14 1 1 1
15 1 1 4
16 1 1 2
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The data set is transposed, so the resulting data set contains 50 × 18 = 900 observations, one per
subject per choice set. The alternatives are in the variables Col1-Col4. The first 18 observations,
which contain the ordering of the choice sets for the first subject, are shown next.

proc transpose data=sasuser.orders out=sasuser.orders(drop=_name_);
by form notsorted set;
run;

proc print data=sasuser.orders(obs=18);
run;

Choice of Fabric Softener
Create 50 Custom Questionnaires

Obs Form Set COL1 COL2 COL3 COL4

1 1 4 3 1 2 4
2 1 8 2 3 1 4
3 1 16 1 2 3 4
4 1 1 3 1 4 2
5 1 6 2 4 1 3
6 1 7 4 1 3 2
7 1 12 3 2 1 4
8 1 2 2 4 1 3
9 1 17 3 4 1 2
10 1 15 4 2 3 1
11 1 14 1 2 3 4
12 1 10 2 4 3 1
13 1 5 1 4 2 3
14 1 9 2 4 1 3
15 1 13 3 2 1 4
16 1 3 3 4 2 1
17 1 18 4 2 1 3
18 1 11 3 1 4 2

The following DATA step prints the 50 custom questionnaires.

options ls=80 ps=60 nodate nonumber;
title;

data _null_;
array brands[&mm1] $ _temporary_

(’Sploosh’ ’Plumbbob’ ’Platter’ ’Moosey’);
array x[&mm1] x1-x&mm1;
array c[&mm1] col1-col&mm1;
format x1-x&mm1 price.;
file print linesleft=ll;
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do frms = 1 to &forms;
do choice = 1 to &n;

if choice = 1 or ll < 12 then do;
put _page_;
put @60 ’Subject: ’ frms //;
end;

put choice 2. ’) Circle your choice of ’
’one of the following fabric softeners:’ /;

set sasuser.orders;
set sasuser.Softener_LinDes point=set;
do brnds = 1 to &mm1;

put ’ ’ brnds 1. ’) ’ brands[c[brnds]] ’brand at ’
x[c[brnds]] +(-1) ’.’ /;

end;
put ’ 5) Another brand at $1.99.’ /;
end;

end;
stop;
run;

The loop do frms = 1 to &forms creates the 50 questionnaires. The loop do choice = 1 to &n
creates the alternatives within each choice set. On the first choice set and when there is not enough
room for the next choice set, we skip to a new page (put page ) and print the subject (forms)
number. The data set sasuser.Orders is read and the Set variable is used to read the relevant
observation from sasuser.Softener LinDes using the point= option in the set statement. The or-
der of the alternatives is in the c array and variables col1-col&mm1 from the sasuser.Orders data
set. In the first observation of sasuser.Orders, Set=4, Col1=3, Col2=1, Col3=2, and Col4=4. The
first brand, is c[brnds] = c[1] = col1 = 3, so brands[c[brnds]] = brands[c[1]] = brands[3]
= ’Platter’, and the price, from observation Set=4 of sasuser.Softener LinDes, is x[c[brnds]] =
x[3] = $2.49. The second brand, is c[brnds] = c[2] = col2 = 1, so brands[c[brnds]] =
brands[c[2]] = brands[1] = ’Sploosh’, and the price, from observation Set=4 of
sasuser.Softener LinDes, is x[c[brnds]] = x[1] = $2.49.

In the interest of space, only the first two choice sets are printed. Note that the subject number is
printed on the form. This information is needed to restore all data to the original order.

Subject: 1

1) Circle your choice of one of the following fabric softeners:

1) Platter brand at $2.49.

2) Sploosh brand at $2.49.

3) Plumbbob brand at $1.99.

4) Moosey brand at $1.99.

5) Another brand at $1.99.
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2) Circle your choice of one of the following fabric softeners:

1) Plumbbob brand at $2.49.

2) Platter brand at $1.49.

3) Sploosh brand at $2.49.

4) Moosey brand at $1.49.

5) Another brand at $1.99.

Processing the Data for Custom Questionnaires

Here are the data. (Actually, these are the data that would have been collected if the same people
as in the previous situation made the same choices, without error and uninfluenced by order effects.)
Before these data are analyzed, the original order must be restored.

title ’Choice of Fabric Softener’;

data results; /* read choice data set */
input Subj (choose1-choose&n) (1.) @@;
datalines;
1 524141141211421241 2 532234223321321311 3 223413221434144231
4 424413322222544331 5 123324312534444533 6 233114423441143321
7 123243224422433312 8 312432241121112412 9 315432222144111124

10 511432445343442414 11 331244123342421432 12 323234114312123245
13 312313434224435334 14 143433332142334114 15 234423133531441145
16 425441421454434414 17 234431535341441432 18 235224352241523311
19 134331342432542243 20 335331253334232433 21 513453254214134224
22 212241213544214125 23 133444341431414432 24 453424142151142322
25 324424431252444221 26 244145452131443415 27 553254131423323121
28 233423242432231424 29 322454324541433543 30 323433433135133542
31 412422434342513222 32 243144343352123213 33 441113141133454445
34 131114113312342312 35 325222444355122522 36 342133254432124342
37 511322324114234222 38 522153113442344541 39 211542232314512412
40 244432222212213211 41 241411341323123213 42 314334342111232114
43 422351321313343332 44 124243444234124432 45 141251113314352121
46 414215225442424413 47 333452434454311222 48 334325341342552344
49 335124122444243112 50 244412331342433332
;

The data set is transposed, and the original order is restored.

proc transpose data=results /* create one obs per choice set */
out=res2(rename=(col1=choose) drop=_name_);

by subj;
run;
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data res3(keep=subj set choose);
array c[&mm1] col1-col&mm1;
merge sasuser.orders res2;
if choose < 5 then choose = c[choose];
run;

proc sort; by subj set; run;

The actual choice number, stored in Choose, indexes the alternative numbers from sasuser.Orders to
restore the original alternative orders. For example, for the first subject, the first choice was 5, which
is the Another constant alternative. Since the first subject saw the fourth choice set first, the fourth
data value for the first subject in the processed data set will have a value of 5. The choice in the second
choice set for the first subject was 2, and the second alternative the subject saw was Platter. The data
set sasuser.Orders shows in the second observation that this choice of 2 corresponds to the third
(original) alternative (in the second column variable, Col2 = 3) of choice set Set= 8. In the original
ordering, Platter is the third alternative. Hence the eighth data value in the processed data set will
have a value of 3. This DATA step writes out the data after the original order has been restored. It
matches the data on page 171.

data _null_;
set res3;
by subj;
if first.subj then do;

if mod(subj, 3) eq 1 then put;
put subj 4. +1 @@;
end;

put choose 1. @@;
run;

1 334533434233312433 2 334213442433333325 3 333333333333313333
4 334431444434412453 5 335431434233512423 6 334433434433312433
7 334433434433322433 8 334433434433412423 9 334433332353312433
10 325233435233332433 11 334233434433313333 12 334331334433312353
13 534333334333312323 14 134421444433412423 15 334333435433312335
16 334433435333315333 17 534333432453312423 18 334435544433412543
19 334333335433313433 20 331431434233315533 21 334353534433512323
22 334333452233312523 23 334333332333312433 24 525221444233322423
25 354333434433312333 26 334435545233312323 27 334353534233352323
28 334333332333332333 29 334433534335352423 30 334453434533313433
31 354333334333312433 32 354331332233332423 33 334424432353312325
34 334433434433312433 35 334551444453412325 36 334234534433312433
37 334431434433512423 38 354333334433352523 39 334351334333312533
40 324433334433412323 41 334433444433412443 42 334433434433312423
43 334434454433332423 44 334433434233312423 45 334451544433412424
46 434431435433512423 47 524434534433412433 48 335453334433322453
49 334533434133312433 50 334433332333312423

The data can be combined with the design and analyzed as in the previous example.
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Vacation Example

This example illustrates the design and analysis for a larger choice experiment. We will discuss designing
a choice experiment, evaluating the design, generating the questionnaire, processing the data, binary
coding, generic attributes, quantitative price effects, quadratic price effects, effects coding, alternative-
specific effects, analysis, and interpretation of the results. In this example, a researcher is interested in
studying choice of vacation destinations. There are five destinations (alternatives) of interest: Hawaii,
Alaska, Mexico, California, and Maine. Here are two summaries of the design, one with factors first
grouped by attribute and one grouped by destination.

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel

X6 Hawaii Scenery Mountains, Lake, Beach
X7 Alaska Scenery Mountains, Lake, Beach
X8 Mexico Scenery Mountains, Lake, Beach
X9 California Scenery Mountains, Lake, Beach
X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $999, $1249, $1499
X12 Alaska Price $999, $1249, $1499
X13 Mexico Price $999, $1249, $1499
X14 California Price $999, $1249, $1499
X15 Maine Price $999, $1249, $1499

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach
X11 Price $999, $1249, $1499

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach
X12 Price $999, $1249, $1499

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach
X13 Price $999, $1249, $1499

X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach
X14 Price $999, $1249, $1499

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach
X15 Price $999, $1249, $1499
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Each alternative is composed of three factors: package cost ($999, $1,249, $1,499), scenery (mountains,
lake, beach), and accommodations (cabin, bed & breakfast, and hotel). There are five destinations,
each with three attributes, for a total of 15 factors. This problem requires a design with 15 three-level
factors, denoted 315. Each row of the design matrix contains the description of the five alternatives in
one choice set. Note that the levels do not have to be the same for all destinations. For example, the
cost for Hawaii and Alaska could be different from the other destinations. However, for this example,
each destination will have the same attributes.

Set Up

We can use the %MktRuns autocall macro to suggest design sizes. (All of the autocall macros used in
this book are documented starting on page 597.) To use this macro, you specify the number of levels
for each of the factors. With 15 attributes each with three prices, you specify fifteen 3’s (3 3 3 3 3 3
3 3 3 3 3 3 3 3 3), or you can use the more compact syntax of 3 ** 15.

title ’Vacation Example’;

%mktruns( 3 ** 15 )

The output tells us the size of the saturated design, which is the number of parameters in the linear
design, and suggests design sizes.

Vacation Example

Design Summary

Number of
Levels Frequency

3 15

Vacation Example

Saturated = 31
Full Factorial = 14,348,907

Some Reasonable Cannot Be
Design Sizes Violations Divided By

36 0
45 0
54 * 0
63 0
72 * 0
33 105 9
39 105 9
42 105 9
48 105 9
51 105 9

* - 100% Efficient Design can be made with the MktEx Macro.
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Vacation Example

n Design Reference

54 2 ** 1 3 ** 25 Orthogonal Array
54 2 ** 1 3 ** 21 9 ** 1 Orthogonal Array
54 3 ** 24 6 ** 1 Orthogonal Array
54 3 ** 20 6 ** 1 9 ** 1 Orthogonal Array
54 3 ** 18 18 ** 1 Orthogonal Array
72 2 ** 23 3 ** 24 Orthogonal Array
72 2 ** 22 3 ** 20 6 ** 1 Orthogonal Array
72 2 ** 21 3 ** 16 6 ** 2 Orthogonal Array
72 2 ** 20 3 ** 24 4 ** 1 Orthogonal Array
72 2 ** 19 3 ** 20 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 18 3 ** 16 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 16 3 ** 25 Orthogonal Array
72 2 ** 15 3 ** 21 6 ** 1 Orthogonal Array
72 2 ** 14 3 ** 24 6 ** 1 Orthogonal Array
72 2 ** 14 3 ** 17 6 ** 2 Orthogonal Array
72 2 ** 13 3 ** 25 4 ** 1 Orthogonal Array
72 2 ** 13 3 ** 20 6 ** 2 Orthogonal Array
72 2 ** 12 3 ** 24 12 ** 1 Orthogonal Array
72 2 ** 12 3 ** 21 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 12 3 ** 16 6 ** 3 Orthogonal Array
72 2 ** 11 3 ** 24 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 11 3 ** 20 6 ** 1 12 ** 1 Orthogonal Array
72 2 ** 11 3 ** 17 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 10 3 ** 20 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 10 3 ** 16 6 ** 2 12 ** 1 Orthogonal Array
72 2 ** 9 3 ** 16 4 ** 1 6 ** 3 Orthogonal Array
72 3 ** 25 8 ** 1 Orthogonal Array
72 3 ** 24 24 ** 1 Orthogonal Array

In this design, there are 15 × (3− 1) + 1 = 31 parameters, so at least 31 choice sets must be created.
With all three-level factors, the number of choice sets in all orthogonal and balanced designs must
be divisible by 3 × 3 = 9. Hence, optimal designs for this problem have at least 36 choice sets (the
smallest number ≥ 31 and divisible by 9). Note however, that zero violations does not guarantee that
a 100% D-efficient design exists. It just means that 100% D-efficiency is not precluded by unequal cell
frequencies. In fact, the %MktEx orthogonal design catalog does not include orthogonal designs for this
problem in 36, 45, and 63 runs (because they do not exist).

Thirty-six would be a good design size (2 blocks of size 18) as would 54 (3 blocks of size 18). Fifty-four
would probably be the best choice, and that is what we would recommend for this study. However,
we will instead create a D-efficient experimental design with 36 choice sets using the %MktEx macro.
In practice, with more difficult designs, an orthogonal design is not available, and using 36 choice sets
will allow us to see an example of using the %Mkt family of macros to get a nonorthogonal design.
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We can see what orthogonal designs with three-level factors are available in 36 runs as follows. The
%MktOrth macro creates a data set with information about the orthogonal designs that the %MktEx
macro knows how to make. This macro produces a data set called MktDesLev that contains variables
n, the number of runs; Design, a description of the design; and Reference, which contains the type of
the design. In addition, there are variables: x1, the number of 1-level factors (which is always zero); x2,
the number of 2-level factors; x3, the number of 3-level factors; and so on. We specify that %MktOrth
only output n=36 run designs and sort this list so that designs with the most three-level factors are
printed first.

%mktorth(range=n=36)

proc sort data=mktdeslev out=list(drop=x:);
by descending x3;
where x3;
run;

proc print; run;

Vacation Example

Obs n Design Reference

1 36 2 ** 4 3 ** 13 Orthogonal Array
2 36 3 ** 13 4 ** 1 Orthogonal Array
3 36 2 ** 11 3 ** 12 Orthogonal Array
4 36 2 ** 2 3 ** 12 6 ** 1 Orthogonal Array
5 36 3 ** 12 12 ** 1 Orthogonal Array
6 36 2 ** 3 3 ** 9 6 ** 1 Orthogonal Array
7 36 2 ** 10 3 ** 8 6 ** 1 Orthogonal Array
8 36 2 ** 1 3 ** 8 6 ** 2 Orthogonal Array
9 36 3 ** 7 6 ** 3 Orthogonal Array
10 36 2 ** 2 3 ** 5 6 ** 2 Orthogonal Array
11 36 2 ** 16 3 ** 4 Orthogonal Array
12 36 2 ** 9 3 ** 4 6 ** 2 Orthogonal Array
13 36 2 ** 1 3 ** 3 6 ** 3 Orthogonal Array
14 36 2 ** 20 3 ** 2 Orthogonal Array
15 36 2 ** 11 3 ** 2 6 ** 1 Orthogonal Array
16 36 2 ** 3 3 ** 2 6 ** 3 Orthogonal Array
17 36 2 ** 27 3 ** 1 Orthogonal Array
18 36 2 ** 18 3 ** 1 6 ** 1 Orthogonal Array
19 36 2 ** 10 3 ** 1 6 ** 2 Orthogonal Array
20 36 2 ** 4 3 ** 1 6 ** 3 Orthogonal Array

There are 13 two-level factors available in 36 runs, and we need 15, only two more, so we would expect
to make a pretty good nonorthogonal design.
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Designing the Choice Experiment

The following code creates a design.

%let m = 6; /* m alts including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 18; /* number of choice sets per person */
%let blocks = 2; /* number of blocks */

%mktex(3 ** 15 2, n=&n * &blocks, seed=151)

The specification 3 ** 15 requests a design with 15 factors, x1−x15, each with three levels. This
specification also requests a two-level factor (the 2 following the 3 ** 15). This is because 36 choice
sets may be too many for one person to rate, so we may want to block the design into two blocks, and
we can use a two-level factor to do this. A design with 18× 2 = 36 runs is requested, which will mean
36 choice sets. A random number seed is explicitly specified so we will be able to reproduce these exact
results.∗

Here are some of the log messages.

NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 81 candidates, full-factorial=28,697,814.
NOTE: Generating the orthogonal array design, n=36.

The macro searches a fractional-factorial candidate set of 81 runs, and it also generates a tabled design
in 36 runs to try as part of the design. This will be explained in more detail on page 191.

Here are some of the results from the %MktEx macro.

Vacation Example

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 82.2544 82.2544 Can
1 End 82.2544

∗By specifying a random number seed, results should be reproducible within a SAS release for a particular operating
system and for a particular version of the macro. However, due to machine and macro differences, some results may not
be exactly reproducible everywhere. For most orthogonal and balanced designs, the results should be reproducible. When
computerized searches are done, it is likely that you will not get the same design as the one in the book, although you
would expect the efficiency differences to be slight.
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2 Start 78.8337 Tab,Ran
2 3 15 82.7741 82.7741
2 4 14 83.2440 83.2440
2 4 15 83.6041 83.6041
2 4 15 83.8085 83.8085
2 6 14 84.0072 84.0072
.
.
.
2 End 98.8567

.

.

.

5 Start 78.5222 Tab,Ran
5 11 14 98.8567 98.8567
5 End 98.8567

.

.

.

8 Start 77.5829 Tab,Ran
8 10 15 98.9438 98.9438
8 End 98.9438

.

.

.

21 Start 48.8411 Ran,Mut,Ann
21 End 93.1010

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 98.9438 98.9438 Ini

1 Start 77.8094 Tab,Ran
1 End 98.6368

2 Start 77.9170 Tab,Ran
2 End 98.5516

.

.

.

78 Start 79.9023 Tab,Ran
78 24 15 98.9438 98.9438
78 End 98.9438
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.

.

.

87 Start 74.7014 Tab,Ran
87 4 15 98.9438 98.9438
87 End 98.9438

.

.

.

146 Start 78.3794 Tab,Ran
146 19 15 98.9438 98.9438
146 End 98.9438

.

.

.

200 Start 84.1995 Tab,Ran
200 End 98.6368

Vacation Example

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 98.9438 98.9438 Ini

1 Start 96.5678 Pre,Mut,Ann
1 1 8 98.9438 98.9438
1 26 14 98.9438 98.9438
1 30 11 98.9438 98.9438
1 1 12 98.9438 98.9438
1 32 5 98.9438 98.9438
1 18 6 98.9438 98.9438
1 End 98.9438

.

.

.

6 Start 97.2440 Pre,Mut,Ann
6 33 7 98.9438 98.9438
6 4 3 98.9438 98.9438
6 16 12 98.9438 98.9438
6 3 14 98.9438 98.9438
6 20 15 98.9438 98.9438
6 End 98.6958

NOTE: Stopping since it appears that no improvement is possible.
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Vacation Example

The OPTEX Procedure

Class Level Information

Class Levels Values

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 3 1 2 3
x5 3 1 2 3
x6 3 1 2 3
x7 3 1 2 3
x8 3 1 2 3
x9 3 1 2 3
x10 3 1 2 3
x11 3 1 2 3
x12 3 1 2 3
x13 3 1 2 3
x14 3 1 2 3
x15 3 1 2 3
x16 2 1 2

Vacation Example
Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 98.9437 97.9592 98.9743 0.9428

The %MktEx macro used 30 seconds and found a design that is almost 99% D-efficient. (Differences in
the fourth decimal place between the iteration history and the final table, in this case 98.9438 versus
98.9437, are due to rounding error and differences in ridging strategies between the macro code the
generates the design and PROC OPTEX, which evaluates the design, and are nothing to worry about.)

The %MktEx Macro Algorithm

The %MktEx macro creates D-efficient linear experimental designs using several approaches. The macro
will try to create a tabled design, it will search a set of candidate runs (rows of the design), and it
will use a coordinate-exchange algorithm using both random initial designs and also a partial tabled
design initialization. The macro stops if at any time it finds a perfect, 100% D-efficient, orthogonal
and balanced design. This first phase is the algorithm search phase. In it, the macro tries a number of
methods for this problem. At the end of this phase, the macro chooses the method that has produced
the best design and performs another set of iterations using exclusively the chosen approach. Finally,
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the macro performs a third set of iterations, where it takes the best design it found so far and tries to
improve it.

The %MktEx macro can directly generate, without iterations, well over one-hundred thousand different
100% D-efficient, orthogonal and balanced, tabled designs. It does this using its design catalog and
many different general and ad hoc algorithms. The closest design that the macro knows how to make
for this problem is 21313 in 36 runs.

The candidate-set search has two parts. First, either PROC PLAN is run to create a full-factorial
design for small problems, or PROC FACTEX is run to create a fractional-factorial design for large
problems. Either way, this larger design is a candidate set that in the second part is searched by PROC
OPTEX using the modified Fedorov algorithm. A design is built from a selection of the rows of the
candidate set (Fedorov, 1972; Cook and Nachtsheim, 1980). The modified Fedorov algorithm considers
each run in the design and each candidate run. Candidate runs are swapped in and design runs are
swapped out if the swap improves D-efficiency. In this case, since the full-factorial design is large (over
14 million runs), the candidate-set search step calls PROC FACTEX to make the candidate set and
then PROC OPTEX to do the search. The Can line of the iteration history shows that this step found
a design that was 82.2544% D-efficient.

Next, the %MktEx macro uses the coordinate-exchange algorithm, based on Meyer and Nachtsheim
(1995). The coordinate-exchange algorithm considers each level of each factor, and considers the effect
on D-efficiency of changing a level (1 → 2, or 1 → 3, or 2 → 1, or 2 → 3, or 3 → 1, or 3 → 2, and so
on). Exchanges that increase D-efficiency are performed. In this step, the macro first tries to initialize
the design with a tabled design (Tab) and a random design (Ran) both. In this case, 14 of the 16
factors can be initialized with the 13 three-level factors and one two-level factor of 24313, and the other
two factors are randomly initialized. Levels that are not orthogonally initialized may be exchanged for
other levels if the exchange increases D-efficiency. The algorithm search and design search iteration
histories for this example show that the macro exchanged levels in factor 14 and 15 only, the ones that
were randomly initialized.

The initialization may be more complicated in other problems. Say you asked for the design 415134

in 18 runs. The macro would use the tabled design 3661 in 18 runs to initialize the three-level factors
orthogonally, and the five-level factor with the six-level factor coded down to five levels (and hence
unbalanced). The four-level factor would be randomly initialized. The macro would also try the same
initialization but with a random rather than unbalanced initialization of the five-level factor, as a
minor variation on the first initialization. In the next initialization variation, the macro would use a
fully-random initialization. If the number of runs requested were smaller than the number or runs in
the initial tabled design, the macro would initialize the design with just the first n rows of the tabled
design. Similarly, if the number of runs requested were larger than the number or runs in the initial
tabled design, the macro would initialize part of the design with the orthogonal tabled design and the
remaining rows and columns randomly. The coordinate-exchange algorithm considers each level of each
factor that is not orthogonally initialized, and it exchanges a level if the exchange improves D-efficiency.
When the number or runs in the tabled design does not match the number of runs desired, none of the
design is initialized orthogonally.

The coordinate-exchange algorithm is not restricted by having a candidate set and hence can poten-
tially consider any possible design. In practice, however, both the candidate-set-based and coordinate-
exchange algorithms consider only a tiny fraction of the possible designs. When the number of runs
in the full-factorial design is very small (say 100 or 200 runs), the modified Fedorov algorithm and
coordinate-exchange algorithms usually work equally well. When the number of runs in the full-factorial
design is small (up to several thousand), the modified Fedorov algorithm is sometimes superior to co-
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ordinate exchange, particularly for models with interactions. When the full-factorial design is larger,
coordinate exchange is usually the superior approach. However, heuristics like these are sometimes
wrong, which is why the macro tries both methods to see which one is really best for each problem.

In the first attempt at coordinate exchange (Design 2), the macro found a design that is 98.8567%
D-efficient (Design 2, End). In design 3 and subsequent designs, the macro uses this same approach,
but different random initializations of the remaining two factors. In design 8, the %MktEx macro finds
a design that is 98.9438% D-efficient. Designs 12 through 21 use a purely random initialization and
simulated annealing and are not as good as previous designs. During these iterations, the macro is
considering exchanging every level of every factor with every other level, one one row and one factor
at a time. At this point, the %MktEx macro determines that the combination of tabled and random
initialization is working best and tries more iterations using that approach. It starts by printing the
initial (Ini) best D-efficiency of 98.9438. In designs 78, 87, 146, and 197 the macro finds a design that
is 98.9438% D-efficient.

Next, the %MktEx macro tries to improve the best design it found previously. Using the previous
best design as an initialization (Pre), and random mutations of the initialization (Mut) and simulated
annealing (Ann), the macro uses the coordinate-exchange algorithm to try to find a better design. This
step is important because the best design that the macro found may be an intermediate design, and
it may not be the final design at the end of an iteration. Sometimes the iterations deliberately make
the designs less D-efficient, and sometimes, the macro never finds a design as efficient or more efficient
again. Hence it is worthwhile to see if the best design found so far can be improved. In this case, the
macro fails to improve the design. After iteration 6, the macro stops since it keeps finding the same
design over and over. This does not necessarily mean the macro found the optimal design; it means it
found a very attractive (perhaps local) optimum, and it is unlikely it will do better using this approach.
At the end, PROC OPTEX is called to print the levels of each factor and the final D-efficiency.

Random mutations add random noise to the initial design before the iterations start (levels are randomly
changed). This may eliminate the perfect balance that will often be in the initial design. By default,
random mutations are used with designs with fully-random initializations and in the design refinement
step; orthogonal initial designs are not mutated.

Simulated annealing allows the design to get worse occasionally but with decreasing probability as
the number of exchanges increases. For design 1, for the first level of the first factor, by default, the
macro may execute an exchange (say change a 2 to a 1), that makes the design worse, with probability
0.05. As more and more exchanges occur, this probability decreases so at the end of the processing of
design 1, exchanges that decrease D-efficiency are hardly ever done. For design 2, this same process is
repeated, again starting by default with an annealing probability of 0.05. This often helps the algorithm
overcome local efficiency maxima. To envision this, imagine that you are standing on a molehill next
to a mountain. The only way you can start going up the mountain is to first step down off the molehill.
Once you are on the mountain, you may occasionally hit a dead end, where all you can do is step down
and look for a better place to continue going up. Other analogies include cleaning a garage and painting
a room. Both have steps where you make things look worse so that in the end they may look better.
The solitaire game “Spider,” which is available on many PCs, is another example. Sometimes, you
need to break apart those suits that you so carefully put together in order to make progress. Simulated
annealing, by occasionally stepping down the efficiency function, often allows the macro to go farther
up it than it would otherwise. The simulated annealing is why you will sometimes see designs getting
worse in the iteration history. However, the macro keeps track of the best design, not the final design
in each step. By default, annealing is used with designs with fully-random initializations and in the
design refinement step; simulated annealing is not used with orthogonal initial designs.
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For this example, the %MktEx macro ran in around 30 seconds. If an orthogonal design had been
available, run time would have been a few seconds. If the fully-random initialization method had
been the best method, run time might have been on the order of 10 to 45 minutes. Since the tabled
initialization worked best, run time was much shorter. While it is possible to construct huge problems
that will take much longer, for any design that most marketing researchers are likely to encounter, run
time should be less than one hour. One of the macro options, maxtime=, typically ensures this.

Examining the Design

Before you use a design, you should always look at its characteristics. We will use the %MktEval macro.

%mkteval;

Here are some of the results.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

x1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
x7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
x10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
x13 0 0 0 0 0 0 0 0 0 0 0 0 1 0.25 0.25 0
x14 0 0 0 0 0 0 0 0 0 0 0 0 0.25 1 0.25 0
x15 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 1 0
x16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Vacation Example
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

x1 12 12 12
x2 12 12 12
x3 12 12 12
x4 12 12 12
x5 12 12 12
x6 12 12 12
x7 12 12 12



Vacation Example 195

x8 12 12 12
x9 12 12 12
x10 12 12 12
x11 12 12 12
x12 12 12 12
x13 12 12 12
x14 12 12 12
x15 12 12 12
x16 18 18
x1 x2 4 4 4 4 4 4 4 4 4
x1 x3 4 4 4 4 4 4 4 4 4
x1 x4 4 4 4 4 4 4 4 4 4
x1 x5 4 4 4 4 4 4 4 4 4
x1 x6 4 4 4 4 4 4 4 4 4
x1 x7 4 4 4 4 4 4 4 4 4
x1 x8 4 4 4 4 4 4 4 4 4
x1 x9 4 4 4 4 4 4 4 4 4
x1 x10 4 4 4 4 4 4 4 4 4
x1 x11 4 4 4 4 4 4 4 4 4
x1 x12 4 4 4 4 4 4 4 4 4
x1 x13 4 4 4 4 4 4 4 4 4
x1 x14 4 4 4 4 4 4 4 4 4
x1 x14 4 4 4 4 4 4 4 4 4
x1 x15 4 4 4 4 4 4 4 4 4
x1 x16 6 6 6 6 6 6
.
.
.

* x13 x14 3 6 3 6 3 3 3 3 6
* x13 x15 3 3 6 3 6 3 6 3 3

x13 x16 6 6 6 6 6 6
* x14 x15 3 6 3 3 3 6 6 3 3

x14 x16 6 6 6 6 6 6
x15 x16 6 6 6 6 6 6
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This design looks great! The factors x1-x13 form an orthogonal design, x14 and x15 are slightly
correlated with each other and with x13. The blocking factor x16 is orthogonal to all the other factors.
All of the factors are perfectly balanced. The N-Way frequencies show that each choice set appears
once.

What if there had been some larger canonical correlations? Would this be a problem? That depends.
You have to decide this for yourself based on your particular study. You do not want large correlations
between your most important factors. If you have high correlations between the wrong factors, you
can swap them with other factors with the same number of levels, or try to make a new design with
a different seed, or change the number of choice sets, and so on. While this design looks great, we
should make one minor adjustment based on these results. Since our correlations are in the factors we
originally planned to make price factors, we should change our plans slightly and use those factors for
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less important attributes like scenery.

You can run the %MktEx macro to provide additional information about a design, for example asking to
examine the information matrix (I) and its inverse (V), which is the variance matrix of the parameter
estimates. You hope to see that all of the off-diagonal elements of the variance matrix, the covariances,
are small relative to the variances on the diagonal. When options=check is specified, the macro
evaluates an initial design instead of generating a design. The option init=randomized names the
design to evaluate, and the examine= option displays the information and variance matrices. The
blocking variable was dropped.

%mktex(3 ** 15, n=&n * &blocks, init=randomized(drop=x16),
options=check, examine=i v)

Here is a small part of the output.

Vacation Example

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 98.9099 97.8947 98.9418 0.9280

Vacation Example
Information Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 36.000 0 0 0 0 0 0 0
x11 0 36.000 0 0 0 0 0 0
x12 0 0 36.000 0 0 0 0 0
x21 0 0 0 36.000 0 0 0 0
x22 0 0 0 0 36.000 0 0 0
x31 0 0 0 0 0 36.000 0 0
x32 0 0 0 0 0 0 36.000 0
x41 0 0 0 0 0 0 0 36.000

.

.

.

x122 36.000 0 0 0 0 0 0
x131 0 36.000 0 9.000 0 -4.500 -7.794
x132 0 0 36.000 0 9.000 -7.794 4.500
x141 0 9.000 0 36.000 0 -4.500 -7.794
x142 0 0 9.000 0 36.000 -7.794 4.500
x151 0 -4.500 -7.794 -4.500 -7.794 36.000 0
x152 0 -7.794 4.500 -7.794 4.500 0 36.000
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Vacation Example
Variance Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 0.028 0 0 0 0 0 0 0
x11 0 0.028 0 0 0 0 0 0
x12 0 0 0.028 0 0 0 0 0
x21 0 0 0 0.028 0 0 0 0
x22 0 0 0 0 0.028 0 0 0
x31 0 0 0 0 0 0.028 0 0
x32 0 0 0 0 0 0 0.028 0
x41 0 0 0 0 0 0 0 0.028

.

.

.

x122 0.028 0 0 0 0 0 0
x131 0 0.031 0 -0.006 0 0.003 0.005
x132 0 0 0.031 0 -0.006 0.005 -0.003
x141 0 -0.006 0 0.031 0 0.003 0.005
x142 0 0 -0.006 0 0.031 0.005 -0.003
x151 0 0.003 0.005 0.003 0.005 0.031 0
x152 0 0.005 -0.003 0.005 -0.003 0 0.031

This design still looks good. The D-efficiency for the design excluding the blocking factor is 98.9099%.
We can see that the nonorthogonality between x13-x15 makes their variances larger than the other
factors (0.031 versus 0.028).

These next steps use the %MktLab macro to reassign the variable names, store the design in a permanent
SAS data set, sasuser.Vacation LinDesBlckd, and then use the %MktEx macro to check the results.
See page 163 for more information on permanent SAS data sets. We need to make the correlated
variables correspond to the least important attributes in different alternatives (in this case the scenery
factors for Alaska, Mexico, and Maine). The vars= option provides the new variable names: the first
variable (originally x1) becomes x1 (still), ..., the fifth variable (originally x5) becomes x5 (still), the
sixth variable (originally x6) becomes x11, ... the tenth variable (originally x10) becomes x15, the
eleventh through fifteenth original variables become x6, x9, x7, x8, x10, and finally the last variable
becomes Block. The PROC SORT step sorts the design into blocks.

%mktlab(data=randomized, vars=x1-x5 x11-x15 x6 x9 x7 x8 x10 Block,
out=sasuser.Vacation_LinDesBlckd)

proc sort data=sasuser.Vacation_LinDesBlckd; by block; run;

%mkteval(blocks=block)

Here is the output from the %MktLab macro, which shows the correspondence between the original and
new variable names.
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Variable Mapping:
x1 : x1
x2 : x2
x3 : x3
x4 : x4
x5 : x5
x6 : x11
x7 : x12
x8 : x13
x9 : x14
x10 : x15
x11 : x6
x12 : x9
x13 : x7
x14 : x8
x15 : x10
x16 : Block

Here is some of the output from the %MktEval macro.

Vacation Example
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Block x1 x2 x3 x4 x5 x11 x12 x13 x14 x15 x6 x9 x7 x8 x10

Block 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x13 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
x14 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
x9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.25 0.25
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 1 0.25
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0.25 1



Vacation Example 199

Vacation Example
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

Block 18 18
x1 12 12 12
x2 12 12 12
x3 12 12 12
x4 12 12 12
x5 12 12 12
x11 12 12 12
x12 12 12 12
x13 12 12 12
x14 12 12 12
x15 12 12 12
x6 12 12 12
x9 12 12 12
x7 12 12 12
x8 12 12 12
x10 12 12 12
Block x1 6 6 6 6 6 6
Block x2 6 6 6 6 6 6
Block x3 6 6 6 6 6 6
Block x4 6 6 6 6 6 6
Block x5 6 6 6 6 6 6
Block x11 6 6 6 6 6 6
Block x12 6 6 6 6 6 6
Block x13 6 6 6 6 6 6
Block x14 6 6 6 6 6 6
Block x15 6 6 6 6 6 6
Block x6 6 6 6 6 6 6
Block x9 6 6 6 6 6 6
Block x7 6 6 6 6 6 6
Block x8 6 6 6 6 6 6
Block x10 6 6 6 6 6 6
x1 x2 4 4 4 4 4 4 4 4 4
x1 x3 4 4 4 4 4 4 4 4 4
x1 x4 4 4 4 4 4 4 4 4 4
x1 x5 4 4 4 4 4 4 4 4 4
.
.
.
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* x7 x8 6 3 3 3 6 3 3 3 6
* x7 x10 3 3 6 3 6 3 6 3 3
* x8 x10 3 3 6 3 6 3 6 3 3

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

From a Linear Design to a Choice Design

These next steps prepare the design for analysis and further evaluation. We need to covert our linear
design into a choice design.† We need to create a data set Key that describes how the factors in our
linear design will be used to make the choice design for analysis. The Key data set will contain all of
the factor names, x1, x2, x3, ... x15. We can run the %MktKey macro to get these names, for cutting
and pasting into the program without typing them. This requests 5 rows, 3 columns and the results
transposed so names progress down each column instead of across each row.

%mktkey(5 3 t)

The %MktKey macro produced the following data set.

x1 x2 x3

x1 x6 x11
x2 x7 x12
x3 x8 x13
x4 x9 x14
x5 x10 x15

This code makes the Key data set and processes the design.

title ’Vacation Example’;

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11
Alaska x2 x7 x12
Mexico x3 x8 x13
California x4 x9 x14
Maine x5 x10 x15
Home . . .
;

%mktroll(design=sasuser.Vacation_LinDesBlckd, key=key, alt=place,
out=sasuser.Vacation_ChDes)

†See page 60 for an explanation of linear versus choice designs.
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For analysis, the design will have four factors as shown by the variables in the data set Key. Place is
the alternative name; its values are directly read from the Key in-stream data. Lodge is an attribute
whose values will be constructed from the sasuser.Vacation LinDesBlckd data set. Lodge is created
from x1 for Hawaii, x2 for Alaska, ..., x5 for Maine, and no attribute for Home. Similarly, Scene is
created from x6-x10, and Price is created from x11-x15. The macro %MktRoll is used to create the
data set sasuser.Vacation ChDes from sasuser.Vacation LinDesBlckd using the mapping in Key
and using the variable Place as the alternative ID variable.

The macro warns us:
WARNING: The variable BLOCK is in the DESIGN= data set but not

the KEY= data set.

While this message could indicate a problem, in this case it does not. The variable Block in the
design=sasuser.Vacation LinDesBlckd data set will not appear in the final design. The purpose
of the variable Block (sorting the design into blocks) has already been achieved. You can specify
options=nowarn if you want to suppress this warning.

These next steps show the results for the first two choice sets. The data set is converted from a design
matrix with one row per choice set to a design matrix with one row per alternative per choice set.

proc print data=sasuser.Vacation_LinDesBlckd(obs=2);
id Block;
var x1-x15;
run;

proc print data=sasuser.Vacation_ChDes(obs=12);
id set; by set;
run;

Vacation Example

Block x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

1 1 3 3 1 1 3 1 3 2 1 1 1 2 2 2
1 1 2 1 2 3 3 2 2 1 3 1 3 1 1 2

Vacation Example

Set Place Lodge Scene Price

1 Hawaii 1 3 1
Alaska 3 1 1
Mexico 3 3 2
California 1 2 2
Maine 1 1 2
Home . . .
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2 Hawaii 1 3 1
Alaska 2 2 3
Mexico 1 2 1
California 2 1 1
Maine 3 3 2
Home . . .

The next steps assign formats, convert the variable Price to contain actual prices, and recode the
constant alternative.

proc format;
value price 1 = ’ 999’ 2 = ’1249’

3 = ’1499’ 0 = ’ 0’;
value scene 1 = ’Mountains’ 2 = ’Lake’

3 = ’Beach’ 0 = ’Home’;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’

3 = ’Hotel’ 0 = ’Home’;
run;

data sasuser.Vacation_ChDes;
set sasuser.Vacation_ChDes;
if place = ’Home’ then do; lodge = 0; scene = 0; price = 0; end;
price = input(put(price, price.), 5.);
format scene scene. lodge lodge.;
run;

proc print data=sasuser.Vacation_ChDes(obs=12);
id set; by set;
run;

Vacation Example

Set Place Lodge Scene Price

1 Hawaii Cabin Beach 999
Alaska Hotel Mountains 999
Mexico Hotel Beach 1249
California Cabin Lake 1249
Maine Cabin Mountains 1249
Home Home Home 0

2 Hawaii Cabin Beach 999
Alaska Bed & Breakfast Lake 1499
Mexico Cabin Lake 999
California Bed & Breakfast Mountains 999
Maine Hotel Beach 1249
Home Home Home 0
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It is not necessary to recode the missing values for the constant alternative. In practice, we usually will
not do this step. However, for this first analysis, we will want all nonmissing values of the attributes so
we can see all levels in the final printed output. We also recode Price so that for a later analysis, we can
analyze Price as a quantitative effect. For example, the expression put(price, price.) converts a
number, say 2, into a string (in this case ’1249’), then the input function reads the string and converts
it to a numeric 1249.

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%choiceff(data=sasuser.Vacation_ChDes, init=sasuser.Vacation_ChDes(keep=set),
nsets=36, nalts=6, beta=zero, intiter=0,
model=class(place / zero=none order=data)

class(place * price place * scene place * lodge /
zero=’Home’ ’0’ ’Home’ ’Home’ order=formatted) /

lprefix=0 cprefix=0 separators=’ ’ ’, ’)

The %ChoicEff macro has two uses. You can use it to search for an efficient choice design, or you can
use it to evaluate a choice design including designs that were generated using other methods such as
the %MktEx macro. It is this latter use that is illustrated here.

The way you check a design like this is to first name it on the data= option. This will be the candidate
set that contains all of the choice sets that we will consider. In addition, the same design is named
on the init= option. Just the variable Set is kept. It will be used to bring in just the indicated
choice sets from the data= design, which in this case is all of them. The option nsets= specifies that
there are 36 choice sets, and nalts= specifies that there are 6 alternatives. The option beta=zero
specifies that we are assuming for design evaluation purposes the null hypothesis that all of the betas
or part-worth utilities are zero. You can evaluate the design for other parameter vectors by specifying
a list of numbers after beta=. This will change the variances and standard errors. We also specify
intiter=0 which specifies zero internal iterations. We use zero internal iterations when we want to
evaluate an initial design, but not attempt to improve it. The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Some of these options will be familiar from the previous example. The
specification class(place / zero=none order=data) names the place variable as a classification
variables and asks for coded variables for every level including the constant, stay-at-home alterna-
tive. The specification class(place * price place * scene place * lodge / zero=’Home’ ’0’
’Home’ ’Home’ order=formatted) asks for alternative-specific effects for price, lodging, and scenery.
The alternative-specific effects allow the part-worth utilities to be different for each of the destinations.
This is accomplished by requesting interactions between the destination and the attributes. Class levels
are sorted by their formatted values, and for all factors, the reference level is the stay-at-home level.
The factors, ignoring second and subsequent appearances in the class specification, are place price
scene lodge and the values in the zero= option apply to the factors in order: place with ’Home’,
price with ’0’, scene with ’Home’, and lodge with ’Home’.
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The lprefix=0 option specifies that when labels are created for the binary variables, zero characters
of the original variable name should be used as a prefix. The cprefix=0 option specifies that when
names are created for the binary variables, zero characters of the original variable name should be used
as a prefix. The separators=’’ ’, ’ option provides two strings (one null and the other a comma
followed by a blank) that allow you to specify label component separators for the main effect and
interaction terms. By specifying a comma and a blank for the second value, we request labels for the
side trip effects like ’Alaska, 999’ instead of the default ’Alaska * 999’. This option is explained
in more detail on page 265.

Here is the last table from the %ChoicEff macro, which is the one in which we are most interested.

Vacation Example
Evaluate the Choice Design

Standard
n Variable Name Label Variance DF Error

1 Hawaii Hawaii 1.53333 1 1.23828
2 Alaska Alaska 1.53545 1 1.23913
3 Mexico Mexico 1.53545 1 1.23913
4 California California 1.53333 1 1.23828
5 Maine Maine 1.53545 1 1.23913
6 Home Home . 0 .
7 Alaska_999 Alaska, 999 1.20000 1 1.09545
8 Alaska_1249 Alaska, 1249 1.20000 1 1.09545
9 Alaska_1499 Alaska, 1499 . 0 .

10 California_999 California, 999 1.20000 1 1.09545
11 California_1249 California, 1249 1.20000 1 1.09545
12 California_1499 California, 1499 . 0 .

13 Hawaii_999 Hawaii, 999 1.20000 1 1.09545
14 Hawaii_1249 Hawaii, 1249 1.20000 1 1.09545
15 Hawaii_1499 Hawaii, 1499 . 0 .

16 Maine_999 Maine, 999 1.20000 1 1.09545
17 Maine_1249 Maine, 1249 1.20000 1 1.09545
18 Maine_1499 Maine, 1499 . 0 .

19 Mexico_999 Mexico, 999 1.20000 1 1.09545
20 Mexico_1249 Mexico, 1249 1.20000 1 1.09545
21 Mexico_1499 Mexico, 1499 . 0 .

22 AlaskaBeach Alaska, Beach 1.20635 1 1.09834
23 AlaskaLake Alaska, Lake 1.20635 1 1.09834
24 AlaskaMountains Alaska, Mountains . 0 .

25 CaliforniaBeach California, Beach 1.20000 1 1.09545
26 CaliforniaLake California, Lake 1.20000 1 1.09545
27 CaliforniaMountains California, Mountains . 0 .

28 HawaiiBeach Hawaii, Beach 1.20000 1 1.09545
29 HawaiiLake Hawaii, Lake 1.20000 1 1.09545
30 HawaiiMountains Hawaii, Mountains . 0 .
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31 MaineBeach Maine, Beach 1.20635 1 1.09834
32 MaineLake Maine, Lake 1.20635 1 1.09834
33 MaineMountains Maine, Mountains . 0 .

34 MexicoBeach Mexico, Beach 1.20635 1 1.09834
35 MexicoLake Mexico, Lake 1.20635 1 1.09834
36 MexicoMountains Mexico, Mountains . 0 .

37 AlaskaBed___Breakfast Alaska, Bed & Breakfast 1.20000 1 1.09545
38 AlaskaCabin Alaska, Cabin 1.20000 1 1.09545
39 AlaskaHotel Alaska, Hotel . 0 .

40 CaliforniaBed___Breakfast California, Bed & Breakfast 1.20000 1 1.09545
41 CaliforniaCabin California, Cabin 1.20000 1 1.09545
42 CaliforniaHotel California, Hotel . 0 .

43 HawaiiBed___Breakfast Hawaii, Bed & Breakfast 1.20000 1 1.09545
44 HawaiiCabin Hawaii, Cabin 1.20000 1 1.09545
45 HawaiiHotel Hawaii, Hotel . 0 .

46 MaineBed___Breakfast Maine, Bed & Breakfast 1.20000 1 1.09545
47 MaineCabin Maine, Cabin 1.20000 1 1.09545
48 MaineHotel Maine, Hotel . 0 .

49 MexicoBed___Breakfast Mexico, Bed & Breakfast 1.20000 1 1.09545
50 MexicoCabin Mexico, Cabin 1.20000 1 1.09545
51 MexicoHotel Mexico, Hotel . 0 .

==
35

We see estimable parameters for the five destinations, but not for the stay at home alternative. For
each destination/attribute combination, which are the alternative-specific effects, we see two estimable
parameters. In some sense, each class variable in a choice model with a constant alternative has two
reference levels or two levels that will always have a zero coefficient: the level corresponding to the
constant alternative (mostly not shown here) and the level corresponding to the last level. More will
be said on this throughout the analysis. The standard errors for most of the alternative-specific effects
are 1.09545, but a few are a bit higher. They correspond scenery attributes for Alaska, Maine, and
Mexico, which are our nonorthogonal factors. This design looks quite good. Everything that should
be estimable in an alternative-specific effects model is estimable, and all of the standard errors are of
a similar magnitude.
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Generating the Questionnaire

This next DATA step prints the questionnaires. They are then copied and the data are collected.

title;
proc sort data=sasuser.Vacation_LinDesBlckd; by block; run;

options ls=80 ps=60 nodate nonumber;

data _null_;
array dests[&mm1] $ 10 _temporary_ (’Hawaii’ ’Alaska’ ’Mexico’

’California’ ’Maine’);
array prices[3] $ 5 _temporary_ (’$999’ ’$1249’ ’$1499’);
array scenes[3] $ 13 _temporary_

(’the Mountains’ ’a Lake’ ’the Beach’);
array lodging[3] $ 15 _temporary_

(’Cabin’ ’Bed & Breakfast’ ’Hotel’);
array x[15];
file print linesleft=ll;

set sasuser.Vacation_LinDesBlckd;
by block;

if first.block then do;
choice = 0;
put _page_;
put @50 ’Form: ’ block ’ Subject: ________’ //;
end;

choice + 1;

if ll < 19 then put _page_;
put choice 2. ’) Circle your choice of ’

’vacation destinations:’ /;
do dest = 1 to &mm1;

put ’ ’ dest 1. ’) ’ dests[dest]
+(-1) ’, staying in a ’ lodging[x[dest]]
’near ’ scenes[x[&mm1 + dest]] +(-1) ’,’ /
’ with a package cost of ’
prices[x[2 * &mm1 + dest]] +(-1) ’.’ /;

end;
put " &m) Stay at home this year." /;
run;

In this design, there are five destinations, and each destination has three attributes. Each destination
name is accessed from the array dests. Note that destination is not a factor in the design; it is a
bin into which the attributes are grouped. The factors in the design are named in the statement
array x[15], which is a short-hand notation for array x[15] x1-x15. The first five factors are used
for the lodging attribute of the five destinations. The actual descriptions of lodging are accessed by
lodging[x[dest]]. The variable Dest varies from 1 to 5 destinations, so x[dest] extracts the levels
for the Dest destination. Similarly for scenery, scenes[x[&mm1 + dest]] extracts the descriptions of
the scenery. The index &mm1 + dest accesses factors 6 through 10, and x[&mm1 + dest] indexes the
scenes array. For prices, prices[x[2 * &mm1 + dest]], the index 2 * &mm1 + dest accesses the
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factors 11 through 15. Here are the first two choice sets.

Vacation Example
Form: 1 Subject: ________

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Cabin near the Beach,
with a package cost of $999.

2) Alaska, staying in a Hotel near the Mountains,
with a package cost of $999.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $1249.

4) California, staying in a Cabin near a Lake,
with a package cost of $1249.

5) Maine, staying in a Cabin near the Mountains,
with a package cost of $1249.

6) Stay at home this year.

2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Cabin near the Beach,
with a package cost of $999.

2) Alaska, staying in a Bed & Breakfast near a Lake,
with a package cost of $1499.

3) Mexico, staying in a Cabin near a Lake,
with a package cost of $999.

4) California, staying in a Bed & Breakfast near the Mountains,
with a package cost of $999.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1249.

6) Stay at home this year.

In practice, data collection will typically be much more elaborate than this. It may involve art work
or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.
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Entering and Processing the Data

Here are some of the input data. Data from a total of 200 subjects were collected, 100 per form.

1 1 111353313351554151 2 2 344113155513111413 3 1 132353331151534151
4 2 341133131523331143 5 1 142153111151334143 6 2 344114111543131151
7 1 141343111311154154 8 2 344113111343121111 9 1 141124131151342155

10 2 344113131523131141 11 1 311423131353524144 12 2 332123151413331151
13 1 311244331352134155 14 2 341114111543131153 15 1 141253111351344151
16 2 344135131323331143 17 1 142123313154132141 18 2 542113151323131141
19 1 145314111311144111 20 2 344111131313431143 21 1 133343131313432145
.
.
.
;

Next, we use the macro %MktMerge to combine the data and design and create the variable c, indicating
whether each alternative was a first choice or a subsequent choice.

%mktmerge(design=sasuser.Vacation_ChDes, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2(obs=12);
id subj form set; by subj form set;
run;

This macro takes the design=sasuser.Vacation ChDes experimental design, merges it with the data=
result data set, creating the out=res2 output data set. The Results data set contains the variable
Form that contains the block number. Since there are two blocks, this variable must have values of 1
and 2. This variable must be specified in the blocks= option. The experiment has nsets=&n choice
sets, nalts=6 alternatives, and the variables setvars=choose1-choose&n contain the numbers of the
chosen alternatives. The output data set Res2 has 21,600 observations (200 subjects who each saw 18
choice sets with 6 alternatives). Here are the first two choice sets.

Vacation Example

Subj Form Set Place Lodge Scene Price c

1 1 1 Hawaii Cabin Beach 999 1
Alaska Hotel Mountains 999 2
Mexico Hotel Beach 1249 2
California Cabin Lake 1249 2
Maine Cabin Mountains 1249 2
Home Home Home 0 2

1 1 2 Hawaii Cabin Beach 999 1
Alaska Bed & Breakfast Lake 1499 2
Mexico Cabin Lake 999 2
California Bed & Breakfast Mountains 999 2
Maine Hotel Beach 1249 2
Home Home Home 0 2
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Binary Coding

One more thing must be done to these data before they can be analyzed. The binary design matrix is
coded for each effect. This can be done with PROC TRANSREG.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(price scene lodge / zero=none order=formatted) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

The design option specifies that no model is fit; the procedure is just being used to code a design.
When design is specified, dependent variables are not required. Optionally, design can be followed by
“=n” where n is the number of observations to process at one time. By default, PROC TRANSREG
codes all observations in one big group. For very large data sets, this can consume large amounts
of memory and time. Processing blocks of smaller numbers of observations is more computationally
efficient. The option design=5000 processes observations in blocks of 5000. For smaller computers,
try something like design=1000.

The nozeroconstant and norestoremissing options are not necessary for this example but are in-
cluded here because sometimes they are very helpful in coding choice models. The nozeroconstant op-
tion specifies that if the coding creates a constant variable, it should not be zeroed. The nozeroconstant
option should always be specified when you specify design=n because the last group of observations
may be small and may contain constant variables. The nozeroconstant option is also important if you
do something like coding by subj set because sometimes an attribute is constant within a choice set.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. By default, the coded class variable contains a row of missing values for observations in
which the class variable is missing. With the norestoremissing option, these observations contain
a row of zeros instead. This option is useful when there is a constant alternative indicated by missing
values. Both of these options, like almost all options in PROC TRANSREG, can be abbreviated to
three characters (noz and nor).

The model statement names the variables to code and provides information about how they should
be coded. The specification class(place / ...) specifies that the variable Place is a classification
variable and requests a binary coding. The zero=none option creates binary variables for all categories.
The order=data option sorts the levels into the order they were first encountered in the data set.
It is specified so ’Home’ will be the last destination in the analysis, as it is in the data set. The
class(price scene lodge / ...) specification names the variables Price, Scene, and Lodge as
categorical variables and creates binary variables for all of the levels of all of the variables. The levels
are sorted into order based on their formatted values. The lprefix=0 option specifies that when
labels are created for the binary variables, zero characters of the original variable name should be
used as a prefix. This means that the labels are created only from the level values. For example,
’Mountains’ and ’Bed & Breakfast’ are created as labels not ’Scene Mountains’ and ’Lodge Bed
& Breakfast’.

An output statement names the output data set and drops variables that are not needed. These
variables do not have to be dropped. However, since they are variable names that are often found in
special data set types, PROC PHREG prints warnings when it finds them. Dropping the variables
prevents the warnings. Finally, the id statement names the additional variables that we want copied
from the input to the output data set. The next steps print the first coded choice set.
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proc print data=coded(obs=6);
id place;
var subj set form c price scene lodge;
run;

proc print data=coded(obs=6) label;
var pl:;
run;

proc print data=coded(obs=6) label;
id place;
var sc:;
run;

proc print data=coded(obs=6) label;
id place;
var lo: pr:;
run;

Vacation Example

Place Subj Set Form c Price Scene Lodge

Hawaii 1 1 1 1 999 Beach Cabin
Alaska 1 1 1 2 999 Mountains Hotel
Mexico 1 1 1 2 1249 Beach Hotel
California 1 1 1 2 1249 Lake Cabin
Maine 1 1 1 2 1249 Mountains Cabin
Home 1 1 1 2 0 Home Home

Vacation Example

Obs Hawaii Alaska Mexico California Maine Home Place

1 1 0 0 0 0 0 Hawaii
2 0 1 0 0 0 0 Alaska
3 0 0 1 0 0 0 Mexico
4 0 0 0 1 0 0 California
5 0 0 0 0 1 0 Maine
6 0 0 0 0 0 1 Home

Vacation Example

Place Beach Home Lake Mountains Scene

Hawaii 1 0 0 0 Beach
Alaska 0 0 0 1 Mountains
Mexico 1 0 0 0 Beach
California 0 0 1 0 Lake
Maine 0 0 0 1 Mountains
Home 0 1 0 0 Home
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Vacation Example

Bed &
Place Breakfast Cabin Home Hotel Lodge 0 999 1249 1499 Price

Hawaii 0 1 0 0 Cabin 0 1 0 0 999
Alaska 0 0 0 1 Hotel 0 1 0 0 999
Mexico 0 0 0 1 Hotel 0 0 1 0 1249
California 0 1 0 0 Cabin 0 0 1 0 1249
Maine 0 1 0 0 Cabin 0 0 1 0 1249
Home 0 0 1 0 Home 1 0 0 0 0

The coded design consists of binary variables for destinations Hawaii − Home, scenery Beach − Moun-
tains, lodging Bed & Breakfast − Hotel, and price 0 − 1499. For example, in the last printed panel of
the first choice set, the Cabin column has a 1 for Hawaii since Hawaii has Cabin lodging in this choice
set. The Cabin column has a 0 for Alaska since Alaska does not have Cabin lodging in this choice set.
These binary variables will form the independent variables in the analysis.

Note that we are fitting a model with generic attributes. Generic attributes are assumed to be the same
for all alternatives. For example, our model is structured so that the part-worth utility for being on a
lake will be the same for Hawaii, Alaska, and all of the other destinations. Similarly, the part-worth
utilities for the different prices will not depend on the destinations. In contrast, on page 222, using the
same data, we will code alternative-specific effects where the part-worth utilities are allowed by the
model to be different for each of the destinations.

PROC PHREG is run in the usual way to fit the choice model.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

We specify the & trgind macro variable for the model statement independent variable list. PROC
TRANSREG automatically creates this macro variable. It contains the list of coded independent
variables generated by the procedure. This is so you do not have to figure out what names TRANSREG
created and specify them. In this case, PROC TRANSREG sets & trgind to contain the following list.

PlaceHawaii PlaceAlaska PlaceMexico PlaceCalifornia PlaceMaine PlaceHome
Price0 Price999 Price1249 Price1499 SceneBeach SceneHome SceneLake
SceneMountains LodgeBed___Breakfast LodgeCabin LodgeHome LodgeHotel

The analysis is stratified by subject and choice set. Each stratum consists of a set of alternatives from
which a subject made one choice. In this example, each stratum consists of six alternatives, one of
which was chosen and five of which were not chosen. (Recall that we used %phchoice(on) on page
143 to customize the output from PROC PHREG.) The full table of the strata would be quite large
with one line for each of the 3600 strata, so the brief option was specified on the PROC PHREG
statement. This option produces a brief summary of the strata. In this case, we see there were 3600
choice sets that all fit one response pattern. Each consisted of 6 alternatives, 1 of which was chosen
and 5 of which were not chosen. There should be one pattern for all choice sets in an example like this
one−the number of alternatives, number of chosen alternatives, and the number not chosen should be
constant.
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Vacation Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.50429 0.45819 58.4934 <.0001
Alaska 1 0.62029 0.46624 1.7699 0.1834
Mexico 1 2.81487 0.45955 37.5193 <.0001
California 1 2.13549 0.46027 21.5263 <.0001
Maine 1 1.53470 0.46220 11.0253 0.0009
Home 0 0 . . .

0 0 0 . . .
999 1 3.56656 0.08849 1624.2978 <.0001

1249 1 1.40145 0.08293 285.6189 <.0001
1499 0 0 . . .
Beach 1 1.34191 0.06410 438.2880 <.0001
Home 0 0 . . .
Lake 1 0.67993 0.06981 94.8542 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.64972 0.05363 146.7874 <.0001
Cabin 1 -1.41463 0.07581 348.1654 <.0001
Home 0 0 . . .
Hotel 0 0 . . .

The destinations, from most preferred to least preferred, are Hawaii, Mexico, California, Maine, Alaska,
and then stay at home. The utility for lower price is greater than the utility for higher price. The
beach is preferred over a lake, which is preferred over the mountains. A bed & breakfast is preferred
over a hotel, which is preferred over a cabin. Notice that the coefficients for the constant alternative
(home and zero price) are all zero. Also notice that for each factor, destination, price, scenery and
accommodations, the coefficient for the last level is always zero. This will always occur when we code
with zero=none. The last level of each factor is a reference level, and the other coefficients will have
values relative to this zero. For example, all of the coefficients for the destination are positive relative
to the zero for staying at home. For scenery, all of the coefficients are positive relative to the zero for
the mountains. For accommodations, the coefficient for cabin is less than the zero for hotel, which is
less than the coefficient for bed & breakfast. In some sense, each class variable in a choice model with
a constant alternative has two reference levels or two levels that will always have a zero coefficient: the
level corresponding to the constant alternative and the level corresponding to the last level. At first,
it is reassuring to run the model with all levels represented to see that all the right levels get zeroed.
Later, we will see ways to eliminate these levels from the output.

Quantitative Price Effect

These data can also be analyzed in a different way. The Price variable can be specified directly as a
quantitative variable, instead of with indicator variables for a qualitative price effect. You could print
the independent variable list and copy and edit it, removing the Price indicator variables and adding
Price.
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%put &_trgind;

Alternatively, you could run PROC TRANSREG again with the new coding. We use this latter
approach, because it is easier, and it will allow us to illustrate other options. In the previous analysis,
there were a number of structural-zeros in the parameter estimate results due to the usage of the
zero=none option in the PROC TRANSREG coding. This is a good thing, particularly for a first
attempt at the analysis. It is good to specify zero=none and check the results and make sure you have
the right pattern of zeros and nonzeros. Later, you can run again excluding some of the structural zeros.
This time, we will explicitly specify the ’Home’ level in the zero= option as the reference level so it will
be omitted from the & trgind variable list. The first class specification specifies zero=’Home’ since
there is one variable. The second class specification specifies zero=’Home’ ’Home’ specifying the
reference level for each of the two variables. The variable Price is designated as an identity variable.
The identity transformation is the no-transformation option, which is used for variables that need
to enter the model with no further manipulations. The identity variables are simply copied into the
output data set and added to the & trgind variable list. The statement label price = ’Price’ is
specified to explicitly set a label for the identity variable price. This is because we explicitly modified
PROC PHREG output using %phchoice(on) so that the rows of the parameter estimate table would
be labeled only with variable labels not variable names. A label for Price must be explicitly specified
in order for the output to contain a label for the price effect.

proc transreg design data=res2 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data) identity(price)

class(scene lodge / zero=’Home’ ’Home’ order=formatted) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set form c;
run;

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Here are the results.

Vacation Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 21600
Number of Observations Used 21600
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6295.152
AIC 12900.668 6315.152
SBC 12900.668 6377.039

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6605.5164 10 <.0001
Score 5750.9220 10 <.0001
Wald 2483.9241 10 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 14.27118 0.50198 808.2623 <.0001
Alaska 1 11.44532 0.49063 544.1855 <.0001
Mexico 1 13.56216 0.49955 737.0457 <.0001
California 1 12.94025 0.49430 685.3359 <.0001
Maine 1 12.36405 0.49553 622.5618 <.0001
Price 1 -0.00740 0.0001770 1747.2333 <.0001
Beach 1 1.33978 0.06458 430.4561 <.0001
Lake 1 0.71161 0.07131 99.5777 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.66233 0.05319 155.0604 <.0001
Cabin 1 -1.33467 0.07353 329.4356 <.0001
Hotel 0 0 . . .
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The results of the two different analyses are similar. The coefficients for the destinations all increase
by a nonconstant amount (approximately 10.8) but the pattern is the same. There is still a negative
effect for price. Also, the fit of this model is slightly worse, Chi-Square = 6605.5164, compared to the
previous value of 6642.9164 (bigger values mean better fit), because price has one fewer parameter.

Quadratic Price Effect

Previously, we saw price treated as a qualitative factor with two parameters and two df, then we saw
price treated as a quantitative factor with one parameter and one df. Alternatively, we could treat price
as quantitative and add a quadratic price effect (price squared). Like treating price as a qualitative
factor, there are two parameters and two df for price. First, we create PriceL, the linear price term by
centering the original price and dividing by the price increment (250). This maps (999, 1249, 1499) to
(-1, 0, 1). Next, we run PROC TRANSREG and PROC PHREG with the new price variables.

data res3;
set res2;
PriceL = price;
if price then pricel = (price - 1249) / 250;
run;

proc transreg design=5000 data=res3 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data)

pspline(pricel / degree=2)
class(scene lodge / zero=’Home’ ’Home’ order=formatted) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;

The pspline or polynomial spline expansion with the degree=2 option replaces the variable PriceL
with two coded variables, PriceL 1 (which is the same as the original PriceL) and PriceL 2 (which
is PriceL squared). A degree=2 spline with no knots (neither knots= nor nknots= were specified)
simply expands the variable into a quadratic polynomial.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

This step produced the following results.



Vacation Example 217

Vacation Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 4.90574 0.45379 116.8713 <.0001
Alaska 1 2.02174 0.46010 19.3081 <.0001
Mexico 1 4.21633 0.45427 86.1476 <.0001
California 1 3.53695 0.45507 60.4085 <.0001
Maine 1 2.93615 0.45761 41.1683 <.0001
Price 1 1 -1.78328 0.04425 1624.2978 <.0001
Price 2 1 0.38183 0.06263 37.1732 <.0001
Beach 1 1.34191 0.06410 438.2880 <.0001
Lake 1 0.67993 0.06981 94.8542 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.64972 0.05363 146.7874 <.0001
Cabin 1 -1.41463 0.07581 348.1654 <.0001
Hotel 0 0 . . .

The fit is exactly the same as when price was treated as qualitative, Chi-Square = 6642.9164. This is
because both models are the same except for the different but equivalent 2 df codings of price. The
coefficients for the destinations in the two models differ by a constant 1.40145. The coefficients for the
factors after price are unchanged. The part-worth utility for $999 is −1.78328 × (999 − 1249)/250 +
0.38183 × ((999 − 1249)/250)2 = 2.16511, the part-worth utility for $1249 is −1.78328 × (1249 −
1249)/250 + 0.38183 × ((1249 − 1249)/250)2 = 0, and the part-worth utility for $1499 is −1.78328 ×
(1499−1249)/250+0.38183×((1499−1249)/250)2 = −1.40145, which differ from the coefficients when
price was treated as qualitative, by a constant -1.40145.

Effects Coding

In the previous analyses, binary (1, 0) codings were used for the variables. The next analysis illustrates
effects (1, 0, -1) coding. The two codings differ in how the final reference level is coded. In binary
coding, the reference level is coded with zeros. In effects coding, the reference level is coded with minus
ones.

Binary Coding Effects Coding

Levels One Two One Two
1 1 0 1 0
2 0 1 0 1
3 0 0 -1 -1

In this example, we will use a binary coding for the destinations and effects codings for the attributes.

PROC TRANSREG can be used for effects coding. The effects option used inside the parentheses
after class asks for a (0, 1, -1) coding. The zero= option specifies the levels that receive the -1’s.
PROC PHREG is run with almost the same variable list as before, except now the variables for the
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reference levels, those whose parameters are structural zeros are omitted. Refer back to the parameter
estimates table on page 212, a few select lines of which are reproduced next:

(Some Lines in the)
Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Home 0 0 . . .
0 0 0 . . .

1499 0 0 . . .
Home 0 0 . . .
Mountains 0 0 . . .
Home 0 0 . . .
Hotel 0 0 . . .

Notice that the coefficients for the constant alternative (home and zero price) are all zero. Also notice
that for each factor, destination, price, scenery and accommodations, the coefficient for the last level
is always zero. In some sense, each class variable in a choice model with a constant alternative has
two reference levels or two levels that will always have a zero coefficient: the level corresponding to the
constant alternative and the level corresponding to the last level. In some of the preceding examples,
we eliminated the ’Home’ levels by specifying zero=Home. Now we will see how to eliminate all of the
structural zeros from the parameter estimate table.

First, for each classification variable, we change the level for the constant alternative to missing. (Recall
that they were originally missing and we only made them nonmissing to deliberately produce the zero
coefficients.) This will cause PROC TRANSREG to ignore those levels when constructing indicator
variables. When you use this strategy, you must specify the norestoremissing option in the PROC
TRANSREG statement. During the first stage of design matrix creation, PROC TRANSREG puts
zeros in the indicator variables for observations with missing class levels. At the end, it replaces the
zeros with missings, “restoring the missing values.” When the norestoremissing option is specified,
missing values are not restored and we get zeros in the indicator variables for missing class levels,
which is usually what we want. The DATA step if statements recode the constant levels to missing.
Next, in PROC TRANSREG, the reference levels ’Mountains’ and ’Hotel’ are listed in the zero=
option in the class specification.

data res4;
set res3;
if scene = 0 then scene = .;
if lodge = 0 then lodge = .;
run;
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proc transreg design=5000 data=res4 nozeroconstant norestoremissing;
model class(place / zero=’Home’ order=data)

pspline(pricel / degree=2)
class(scene lodge /

effects zero=’Mountains’ ’Hotel’ order=formatted) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label pricel = ’Price’;
id subj set form c;
run;

Next, the coded data and design matrix are printed for the first choice set. The coded design matrix
begins with five binary columns for the destinations, ’Hawaii’ through ’Maine’. There is not a column
for the stay-at-home destination and the row for stay at home has all zeros in the coded variables. Next
is the linear price effect, ’Price 1’, consisting of 0, 1, and -1. It is followed by the quadratic price
effect, ’Price 2’, which is ’Price 1’ squared. Next are the scenery terms, effects coded. ’Beach’
and ’Lake’ have values of 0 and 1; -1’s in the fourth row for the reference level, ’Mountains’; and zeros
in the last row for the stay-at-home alternative. Next are the lodging terms, effects coded. ’Bed &
Breakfast’ and ’Cabin’ have values of 0 and 1; -1’s in the first, third and fourth row for the reference
level, ’Hotel’; and zeros in the last row for the stay-at-home alternative.

proc print data=coded(obs=6) label; run;

Vacation Example

Price Price Bed &
Obs Hawaii Alaska Mexico California Maine 1 2 Beach Lake Breakfast Cabin

1 1 0 0 0 0 -1 1 1 0 0 1
2 0 1 0 0 0 -1 1 -1 -1 -1 -1
3 0 0 1 0 0 0 0 1 0 -1 -1
4 0 0 0 1 0 0 0 0 1 0 1
5 0 0 0 0 1 0 0 -1 -1 0 1
6 0 0 0 0 0 0 0 0 0 0 0

Obs Place Price Scene Lodge Subj Set Form c

1 Hawaii -1 Beach Cabin 1 1 1 1
2 Alaska -1 Mountains Hotel 1 1 1 2
3 Mexico 0 Beach Hotel 1 1 1 2
4 California 0 Lake Cabin 1 1 1 2
5 Maine 0 Mountains Cabin 1 1 1 2
6 Home 0 . . 1 1 1 2

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;



Vacation Example 221

Vacation Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6257.752
AIC 12900.668 6279.752
SBC 12900.668 6347.827

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6642.9164 11 <.0001
Score 5858.3798 11 <.0001
Wald 2482.5118 11 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 5.32472 0.44985 140.1076 <.0001
Alaska 1 2.44072 0.45690 28.5360 <.0001
Mexico 1 4.63531 0.45052 105.8613 <.0001
California 1 3.95593 0.45176 76.6803 <.0001
Maine 1 3.35513 0.45381 54.6610 <.0001
Price 1 1 -1.78328 0.04425 1624.2978 <.0001
Price 2 1 0.38183 0.06263 37.1732 <.0001
Beach 1 0.66796 0.03582 347.7320 <.0001
Lake 1 0.00599 0.03922 0.0233 0.8787
Bed & Breakfast 1 0.90469 0.03471 679.2342 <.0001
Cabin 1 -1.15966 0.04650 621.9367 <.0001

It is instructive to compare the results of this analysis to the previous analysis on page 217. First, the
model fit and chi-square statistics are the same indicating the models are equivalent. The coefficients for
the destinations differ by a constant -0.41898, the price coefficients are the same, the scenery coefficients
differ by a constant 0.67395, and the lodging coefficients differ by a constant -0.25497. Notice that
−0.41898+0+0.67395+−0.25497 = 0, so the utility for each alternative is unchanged by the different
but equivalent codings.

Alternative-Specific Effects

In all of the analyses presented so far in this example, we have assumed that the effects for price,
scenery, and accommodations are generic or constant across the different destinations. Equivalently,
we assumed that destination does not interact with the attributes. Next, we show a model with
alternative-specific effects that does not make this assumption. The alternative-specific model allows
for different price, scenery and lodging effects for each destination. The coding can be done with PROC
TRANSREG using its syntax for interactions. Before we do the coding, let’s go back to the design
preparation stage and redo it in a more normal fashion so reference levels will be omitted from the
analysis.

We start by creating the data set Key. This step differs from the one we saw on page 200 only in that
now we have a missing value for Place for the constant alternative.

data key;
input Place $ 1-10 (Lodge Scene Price) ($);
datalines;

Hawaii x1 x6 x11
Alaska x2 x7 x12
Mexico x3 x8 x13
California x4 x9 x14
Maine x5 x10 x15
. . . .
;
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Next, we use the %MktRoll macro to process the design and the %MktMerge macro to merge the design
and data.

%mktroll(design=sasuser.Vacation_LinDesBlckd, key=key, alt=place,
out=sasuser.Vacation_ChDes)

%mktmerge(design=sasuser.Vacation_ChDes, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n,
stmts=%str(price = input(put(price, price.), 5.);

format scene scene. lodge lodge.;))

proc print data=res2(obs=12); run;

The usage of the %MktRoll macro is exactly the same as we saw on page 200. The %MktMerge macro
usage differs from page 208 in that instead of assigning labels and recoding price in a separate DATA
step, we now do it directly in the macro. The stmts= option is used to add a price = assignment
statement and format statement to the DATA step that merges the two data sets. The statements
were included in a %str( ) macro since they contain semicolons. Here are the first two choice sets.

Vacation Example

Obs Subj Form Set Place Lodge Scene Price c

1 1 1 1 Hawaii Cabin Beach 999 1
2 1 1 1 Alaska Hotel Mountains 999 2
3 1 1 1 Mexico Hotel Beach 1249 2
4 1 1 1 California Cabin Lake 1249 2
5 1 1 1 Maine Cabin Mountains 1249 2
6 1 1 1 . . . 2
7 1 1 2 Hawaii Cabin Beach 999 1
8 1 1 2 Alaska Bed & Breakfast Lake 1499 2
9 1 1 2 Mexico Cabin Lake 999 2
10 1 1 2 California Bed & Breakfast Mountains 999 2
11 1 1 2 Maine Hotel Beach 1249 2
12 1 1 2 . . . 2

Notice that the attributes for the constant alternative are all missing. Next, we code with PROC
TRANSREG. Since we are using missing values for the constant alternative, we must specify the
norestoremissing option in the PROC TRANSREG statement. With the norestoremissing option,
the indicator variables created for missing class variable values contain all zeros instead of all missings.
First, we specify the variable Place as a class variable. Next, we interact Place with all of the
attributes, Price, Scene, and Lodge, to create the alternative-specific effects.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(place * price place * scene place * lodge /
zero=none order=formatted) / lprefix=0 sep=’ ’ ’, ’;

output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;
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proc print data=coded(obs=6) label noobs; run;

The coded design matrix consists of:

• five binary columns, ’Hawaii’ through ’Maine’, for the five destinations,

• fifteen binary columns (5 destinations times 3 prices), ’Alaska, 999’ through ’Mexico, 1499’,
for the alternative-specific price effects,

• fifteen binary columns (5 destinations times 3 sceneries), ’Alaska, Beach’ through ’Mexico,
Mountains’, for the alternative-specific scenery effects,

• fifteen binary columns (5 destinations times 3 lodgings), ’Alaska, Bed & Breakfast’ through
’Mexico, Hotel’, for the alternative-specific lodging effects.

The entire sixth row of the coded design matrix, the stay-at-home alternative, consists of zeros.

Vacation Example

Alaska, Alaska, Alaska,
Hawaii Alaska Mexico California Maine 999 1249 1499

1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0

California, California, California, Hawaii, Hawaii, Hawaii,
999 1249 1499 999 1249 1499

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Maine, Maine, Maine, Mexico, Mexico, Mexico, Alaska, Alaska, Alaska,
999 1249 1499 999 1249 1499 Beach Lake Mountains

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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California, California, California, Hawaii, Hawaii, Hawaii,
Beach Lake Mountains Beach Lake Mountains

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Alaska,
Maine, Maine, Maine, Mexico, Mexico, Mexico, Bed & Alaska, Alaska,
Beach Lake Mountains Beach Lake Mountains Breakfast Cabin Hotel

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

California, Hawaii,
Bed & California, California, Bed & Hawaii, Hawaii,

Breakfast Cabin Hotel Breakfast Cabin Hotel

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Maine, Mexico,
Bed & Maine, Maine, Bed & Mexico, Mexico,
Breakfast Cabin Hotel Breakfast Cabin Hotel Place

0 0 0 0 0 0 Hawaii
0 0 0 0 0 0 Alaska
0 0 0 0 0 1 Mexico
0 0 0 0 0 0 California
0 1 0 0 0 0 Maine
0 0 0 0 0 0
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Price Scene Lodge Subj Set Form c

999 Beach Cabin 1 1 1 1
999 Mountains Hotel 1 1 1 2
1249 Beach Hotel 1 1 1 2
1249 Lake Cabin 1 1 1 2
1249 Mountains Cabin 1 1 1 2

. . . 1 1 1 2

Analysis proceeds by running PROC PHREG as before.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Vacation Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 21600
Number of Observations Used 21600

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 3600 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 12900.668 6239.870
AIC 12900.668 6309.870
SBC 12900.668 6526.474
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Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 6660.7982 35 <.0001
Score 6601.7928 35 <.0001
Wald 2448.1475 35 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.49208 0.47222 54.6856 <.0001
Alaska 1 0.17527 0.67139 0.0682 0.7940
Mexico 1 2.93013 0.47932 37.3706 <.0001
California 1 2.17915 0.49725 19.2058 <.0001
Maine 1 1.27770 0.54587 5.4787 0.0192
Alaska, 999 1 4.02423 0.46534 74.7858 <.0001
Alaska, 1249 1 1.81200 0.49473 13.4147 0.0002
Alaska, 1499 0 0 . . .

California, 999 1 3.38438 0.19965 287.3498 <.0001
California, 1249 1 1.22372 0.22445 29.7251 <.0001
California, 1499 0 0 . . .

Hawaii, 999 1 3.61016 0.14157 650.2879 <.0001
Hawaii, 1249 1 1.45415 0.13050 124.1725 <.0001
Hawaii, 1499 0 0 . . .

Maine, 999 1 3.80918 0.26060 213.6577 <.0001
Maine, 1249 1 1.53370 0.27050 32.1475 <.0001
Maine, 1499 0 0 . . .

Mexico, 999 1 3.45924 0.15495 498.4209 <.0001
Mexico, 1249 1 1.41406 0.15693 81.1907 <.0001
Mexico, 1499 0 0 . . .

Alaska, Beach 1 1.01542 0.21881 21.5355 <.0001
Alaska, Lake 1 0.48168 0.22639 4.5269 0.0334
Alaska, Mountains 0 0 . . .

California, Beach 1 1.47681 0.15536 90.3528 <.0001
California, Lake 1 0.84358 0.16138 27.3244 <.0001
California, Mountains 0 0 . . .

Hawaii, Beach 1 1.29573 0.12493 107.5692 <.0001
Hawaii, Lake 1 0.61301 0.12299 24.8444 <.0001
Hawaii, Mountains 0 0 . . .

Maine, Beach 1 1.59739 0.20874 58.5584 <.0001
Maine, Lake 1 0.64984 0.20203 10.3468 0.0013
Maine, Mountains 0 0 . . .

Mexico, Beach 1 1.26780 0.13744 85.0857 <.0001
Mexico, Lake 1 0.67632 0.13589 24.7716 <.0001
Mexico, Mountains 0 0 . . .
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Alaska, Bed & Breakfast 1 1.00195 0.18862 28.2169 <.0001
Alaska, Cabin 1 -1.33747 0.31958 17.5146 <.0001
Alaska, Hotel 0 0 . . .

California, Bed & Breakfast 1 0.67004 0.13195 25.7875 <.0001
California, Cabin 1 -1.50239 0.16734 80.6060 <.0001
California, Hotel 0 0 . . .

Hawaii, Bed & Breakfast 1 0.63585 0.11523 30.4508 <.0001
Hawaii, Cabin 1 -1.41004 0.13462 109.7155 <.0001
Hawaii, Hotel 0 0 . . .

Maine, Bed & Breakfast 1 0.58532 0.15999 13.3848 0.0003
Maine, Cabin 1 -1.50967 0.22377 45.5166 <.0001
Maine, Hotel 0 0 . . .

Mexico, Bed & Breakfast 1 0.54835 0.11802 21.5891 <.0001
Mexico, Cabin 1 -1.40762 0.15033 87.6707 <.0001
Mexico, Hotel 0 0 . . .

There are zero coefficients for the reference level. Do we need this more complicated model instead
of the simpler model? To answer this, first look at the coefficients. Are they similar across different
destinations? In this case, they seem to be. This suggests that the simpler model may be sufficient.

More formally, the two models can be statistically compared. You can test the null hypothesis that the
two models are not significantly different by comparing their likelihoods. The difference between two
−2 log(LC)’s (the number reported under ’With Covariates’ in the output) has a chi-square distribution.
We can get the df for the test by subtracting the two df for the two likelihoods. The difference
6257.752 − 6239.870 = 17.882 is distributed χ2 with 35 − 11 = 24 df (p < 0.80869). This more
complicated model does not account for significantly more variance than the simpler model.
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Vacation Example

with Alternative-Specific Attributes

This example discusses choosing the number of choice sets, designing the choice experiment, ensuring
that certain key interactions are estimable, examining the design, blocking an existing design, evaluating
the design, generating the questionnaire, generating artificial data, reading, processing, and analyzing
the data, binary coding, generic attributes, alternative-specific effects, aggregating the data, analysis,
and interpretation of the results. In this example, a researcher is interested in studying choice of
vacation destinations. This page and the next page contain two summaries of the design, one with
factors grouped by attribute and one grouped by destination.

This example is a modification of the previous example. Now, all alternatives do not have the same
factors, and all factors do not have the same numbers of levels. There are still five destinations of
interest: Hawaii, Alaska, Mexico, California, and Maine. Each alternative is composed of three factors
like before: package cost, scenery, and accommodations, only now they do not all have the same levels,
and the Hawaii and Mexico alternatives are composed of one additional attribute. For Hawaii and
Alaska, the costs are $1,249, $1,499, and $1,749; for California, the prices are $999, $1,249, $1,499, and
$1,749; and for Mexico and Maine, the prices are $999, $1,249, and $1,499. Scenery (mountains, lake,
beach) and accommodations (cabin, bed & breakfast, and hotel) are the same as before. The Mexico
trip now has the option of a side trip to sites of archaeological significance, via bus, for an additional
cost of $100. The Hawaii trip has the option of a side trip to an active volcano, via helicopter, for an
additional cost of $200. This is typical of the problems that marketing researchers face. We have lots
of factors and asymmetry−each alternative is not composed of the same factors, and the factors do not
all have the same numbers of levels.

Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel

X6 Hawaii Scenery Mountains, Lake, Beach
X7 Alaska Scenery Mountains, Lake, Beach
X8 Mexico Scenery Mountains, Lake, Beach
X9 California Scenery Mountains, Lake, Beach
X10 Maine Scenery Mountains, Lake, Beach

X11 Hawaii Price $1249, $1499, $1749
X12 Alaska Price $1249, $1499, $1749
X13 Mexico Price $999, $1249, $1499
X14 California Price $999, $1249, $1499, $1749
X15 Maine Price $999, $1249, $1499

X16 Hawaii Side Trip Yes, No
X17 Mexico Side Trip Yes, No
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Factor Destination Attribute Levels
X1 Hawaii Accommodations Cabin, Bed & Breakfast, Hotel
X6 Scenery Mountains, Lake, Beach
X11 Price $1249, $1499, $1749
X16 Side Trip Yes, No

X2 Alaska Accommodations Cabin, Bed & Breakfast, Hotel
X7 Scenery Mountains, Lake, Beach
X12 Price $1249, $1499, $1749

X3 Mexico Accommodations Cabin, Bed & Breakfast, Hotel
X8 Scenery Mountains, Lake, Beach
X13 Price $999, $1249, $1499
X17 Side Trip Yes, No

X4 California Accommodations Cabin, Bed & Breakfast, Hotel
X9 Scenery Mountains, Lake, Beach
X14 Price $999, $1249, $1499, $1749

X5 Maine Accommodations Cabin, Bed & Breakfast, Hotel
X10 Scenery Mountains, Lake, Beach
X15 Price $999, $1249, $1499

Choosing the Number of Choice Sets

We can use the %MktRuns autocall macro to suggest experimental design sizes. (All of the autocall
macros used in this book are documented starting on page 597.) As before, we specify a list containing
the number of levels of each factor.

title ’Vacation Example with Asymmetry’;

%mktruns( 3 ** 14 4 2 2 )

The output tells us the size of the saturated design, which is the number of parameters in the linear
design, and suggests design sizes.

Vacation Example with Asymmetry

Design Summary

Number of
Levels Frequency

2 2
3 14
4 1
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Vacation Example with Asymmetry

Saturated = 34
Full Factorial = 76,527,504

Some Reasonable Cannot Be
Design Sizes Violations Divided By

72 * 0
144 * 0
36 2 8
108 2 8
54 18 4 8 12
90 18 4 8 12
126 18 4 8 12
45 48 2 4 6 8 12
63 48 2 4 6 8 12
81 48 2 4 6 8 12

* - 100% Efficient Design can be made with the MktEx Macro.

Vacation Example with Asymmetry

n Design Reference

72 2 ** 20 3 ** 24 4 ** 1 Orthogonal Array
72 2 ** 19 3 ** 20 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 18 3 ** 16 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 13 3 ** 25 4 ** 1 Orthogonal Array
72 2 ** 12 3 ** 21 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 11 3 ** 24 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 11 3 ** 17 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 10 3 ** 20 4 ** 1 6 ** 2 Orthogonal Array
72 2 ** 9 3 ** 16 4 ** 1 6 ** 3 Orthogonal Array
144 2 ** 92 3 ** 24 4 ** 1 Orthogonal Array
144 2 ** 91 3 ** 20 4 ** 1 6 ** 1 Orthogonal Array
144 2 ** 90 3 ** 16 4 ** 1 6 ** 2 Orthogonal Array
144 2 ** 85 3 ** 25 4 ** 1 Orthogonal Array
144 2 ** 84 3 ** 21 4 ** 1 6 ** 1 Orthogonal Array
144 2 ** 83 3 ** 24 4 ** 1 6 ** 1 Orthogonal Array
144 2 ** 83 3 ** 17 4 ** 1 6 ** 2 Orthogonal Array
144 2 ** 82 3 ** 20 4 ** 1 6 ** 2 Orthogonal Array
144 2 ** 81 3 ** 16 4 ** 1 6 ** 3 Orthogonal Array
.
.
.
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We need at least 34 choice sets, as shown by (Saturated=34) in the listing. Any size that is a multiple
of 72 would be optimal. We would recommend 72 choice sets, four blocks of size 18. However, like the
previous vacation example, we will use fewer choice sets so that we can illustrate getting an efficient
but nonorthogonal design. A design with 36 choice sets is pretty good. Thirty-six is not divisible by
8 = 2× 4, so we cannot have equal frequencies in the California price and Mexico and Hawaii side trip
combinations. This should not pose any problem. This leaves only 2 error df for the linear model, but
in the choice model, we will have adequate error df.

Designing the Choice Experiment

This problem requires a design with 1 four-level factor for price and 4 three-level factors for price. There
are 10 three-level factors for scenery and accommodations as before. Also, we need 2 two-level factors
for the two side trips. Note that we do not need a factor for the price or mode of transportation of the
side trips since they are constant within each trip. With the %MktEx macro, making an asymmetric
design is no more difficult than making a symmetric design.‡

%mktex(3 ** 13 4 3 2 2, n=36, seed=205)
%mkteval;

Here is the last part of the results.

Vacation Example with Asymmetry

The OPTEX Procedure

Class Level Information

Class Levels Values

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 3 1 2 3
x5 3 1 2 3
x6 3 1 2 3
x7 3 1 2 3
x8 3 1 2 3
x9 3 1 2 3
x10 3 1 2 3
x11 3 1 2 3
x12 3 1 2 3
x13 3 1 2 3
x14 4 1 2 3 4
x15 3 1 2 3
x16 2 1 2
x17 2 1 2

‡Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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Vacation Example with Asymmetry

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 98.8874 97.5943 97.4925 0.9718

Vacation Example with Asymmetry
Canonical Correlations Between the Factors

There are 2 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

x1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
x6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
x7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
x8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
x9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
x10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
x12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.25 0 0
x14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.33 0.33
x15 0 0 0 0 0 0 0 0 0 0 0 0 0.25 0 1 0 0
x16 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 1 0
x17 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 1

The macro found a very nice, almost orthogonal and almost 99% D-efficient design in 40 seconds.
However, we will not use this design. Instead, we will make a larger design with interactions.

Ensuring that Certain Key Interactions are Estimable

Next, we will ensure that certain key interactions are estimable. Specifically, it would be good if in
the aggregate, the interactions between price and accommodations were estimable for each destination.
We would like the following interactions to be estimable: x1*x11 x2*x12 x3*x13 x4*x15 x5*x15. We
will again use the %MktEx macro.

%mktex(3 ** 13 4 3 2 2, n=36,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15,
seed=205)
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We immediately get this message.

ERROR: More parameters than runs.
If you really want to do this, specify RIDGE=.
There are 36 runs with 56 parameters.

ERROR: The MKTEX macro ended abnormally.

If we want interactions to be estimable, we will need more choice sets. The number of parameters is
1 for the intercept, 14 × (3 − 1) + (4 − 1) + 2 × (2 − 1) = 33 for main effects, and 4 × (3 − 1) × (3 −
1) + (4− 1)× (3− 1) = 22 for interactions for a total of 1 + 33 + 22 = 56 parameters. This means we
need at least 56 choice sets, and ideally for this design with 2, 3, and 4 level factors, we would like the
number of sets to be divisible by 2× 2, 2× 3, 2× 4, 3× 3, and 3× 4. Sixty is divisible by 2, 3, 4, 6, and
12 so is a reasonable design size. Sixty choice sets could be divided into three blocks of size 20, four
blocks of size 15, or five blocks of size 12. Seventy-two choice sets would be better, since unlike 60, 72
can be divided by 9. Unfortunately, 72 would require one more block.

We can use the %MktRuns macro to help us choose the number of choice sets. We also specified a
keyword option max= to consider only the 45 design sizes from the minimum of 56 up to 100.

title ’Vacation Example with Asymmetry’;
%mktruns(3 ** 13 4 3 2 2, interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15, max=45)

Vacation Example with Asymmetry

Design Summary

Number of
Levels Frequency

2 2
3 14
4 1

Vacation Example with Asymmetry

Saturated = 56
Full Factorial = 76,527,504

Some Reasonable Cannot Be
Design Sizes Violations Divided By

72 58 27 81 108
81 79 2 4 6 8 12 18 24 36 108
90 95 4 8 12 24 27 36 81 108
63 133 2 4 6 8 12 18 24 27 36 81 108
99 133 2 4 6 8 12 18 24 27 36 81 108
96 174 9 18 27 36 81 108
60 178 8 9 18 24 27 36 81 108
84 178 8 9 18 24 27 36 81 108
66 194 4 8 9 12 18 24 27 36 81 108
78 194 4 8 9 12 18 24 27 36 81 108
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We see that 72 cannot be divided by 27 = 9 × 3 so for example the Maine accommodation/price
combinations cannot occur with equal frequency with each of the three-level factors. We see that 72
cannot be divided by 81 = 9×9 so for example the Mexico accommodation/price combinations cannot
occur with equal frequency with each of the Hawaii accommodation/price combinations. We see that
72 cannot be divided by 108 = 9×12 so for example the California accommodation/price combinations
cannot occur with equal frequency with each of the Maine accommodation/price combinations. With
interactions, there are many higher-order opportunities for nonorthogonality. However, usually we
will not be overly concerned about potential unequal cell frequencies on combinations of attributes in
different alternatives.

The smallest number of runs in the table is 60. While 72 is better in that it can be divided by more
numbers, either 72 or 60 should work fine. We will pick the larger number and run the %MktEx macro
again with n=72 specified.

%mktex(3 ** 13 4 3 2 2, n=72, seed=368,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)

Here is the final D-efficiency table.

Vacation Example with Asymmetry
Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 89.8309 79.7751 94.4393 0.8819

Sometimes, particularly in models with two-way interactions, we can do better by having %MktEx do
pair-wise exchanges in the coordinate-exchange algorithm instead of working on a single column at a
time. You can always specify exchange=2 and order=sequential to get all possible pairs, but this
can be very time consuming. Alternatively, you can use the order=matrix=SAS-data-set option and
tell %MktEx exactly which pairs of columns to work on. That approach is illustrated in the next steps.

data mat;
do a = 1 to 17;

b = .;
output;
end;

do a = 1 to 5;
b = 10 + a;
output;
end;

run;

proc print; run;

%mktex(3 ** 13 4 3 2 2, n=72, seed=368, order=matrix=mat,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)

Here is the data set Mat.
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Vacation Example with Asymmetry

Obs a b

1 1 .
2 2 .
3 3 .
4 4 .
5 5 .
6 6 .
7 7 .
8 8 .
9 9 .

10 10 .
11 11 .
12 12 .
13 13 .
14 14 .
15 15 .
16 16 .
17 17 .
18 1 11
19 2 12
20 3 13
21 4 14
22 5 15

It has two columns. The values in the data set indicate the pairs of columns that %MktEx should work
on together. Missing values are replaced by a random column number for every row and for every
pass through the design. This data set instructs %MktEx to sequentially go through every column each
time paired with some other random column, then work through all of the interaction pairs, x1*x11,
x2*x12, and so on. This performs 22 pair-wise exchanges in every row, which is many fewer exchanges
than the 17× 16/2 = 136 that would be required with exchange=2 and order=sequential. There are
many other combinations that you might consider. Here are a few examples.
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One Two Three Four Five
1 . 1 11 1 1 1 11 1 . .
2 . 2 12 2 2 2 12 2 . .
3 . 3 13 3 3 3 13 3 . .
4 . 4 14 4 4 4 14 4 . .
5 . 5 15 5 5 5 15 5 . .
6 . 6 . 6 6 6 6 6 . .
7 . 7 . 7 7 7 7 7 . .
8 . 8 . 8 8 8 8 8 . .
9 . 9 . 9 9 9 9 9 . .

10 . 10 . 10 10 10 10 10 . .
11 . 11 11 11 . .
12 . 12 12 12 . .
13 . 13 13 13 . .
14 . 14 14 14 . .
15 . 15 15 15 . .
16 . 16 16 16 . .
17 . 17 17 17 . .
1 11 1 11 1 11 .
2 12 2 12 2 12 .
3 13 3 13 3 13 .
4 14 4 14 4 14 .
5 15 5 15 5 15 .

Set one is the set we just used. Each column is paired with a random column and every interaction pair
is mentioned. Set two is like set one except it consists of only 10 pairs and the interaction columns are
only paired with the other columns in its interaction term. Set three names each factor twice and then
has the usual pairs for interactions. This requests 17 single-column exchanges followed by 5 pair-wise
exchanges. When a column is repeated, all but the first instance is ignored. %MktEx does not consider
all pairs of a factor with itself. Set four is similar to set 3 but the interaction columns are only paired
with the other columns in its interaction term. Set five is like set one except three-way exchanges are
performed and a random column is added to each exchange. There are many other possibilities. It
is impossible to know what will work best, but often, expending some effort to consider exchanges in
pairs for two-way interactions or in triples for three-way interactions is rewarded with a small gain in
D-efficiency.

The macro printed these notes to the log.

NOTE: Generating the candidate set.
NOTE: Performing 20 searches of 243 candidates, full-factorial=76,527,504.
NOTE: Generating the orthogonal array design, n=72.

The candidate-set search is using a fractional-factorial candidate set with 35 = 243 candidates. The
two-level factors in the candidate set are made from three-level factors by coding down. Coding down
replaces an m-level factor with a factor with fewer than m levels, for example a two-level factor could be
created from a three-level factor: ((1 2 3) ⇒ (1 2 1)). The four-level factor in the candidate set is made
from 2 three-level factors and coding down. ((1 2 3)×(1 2 3) ⇒ (1 2 3 4 5 6 7 8 9) ⇒ (1 2 3 4 1 2 3 4 1)).
The tabled design used for the partial initialization in the coordinate-exchange steps has 72 runs. Here
are some of the results.
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Vacation Example with Asymmetry

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 84.8774 84.8774 Can
1 End 84.8774

2 Start 41.1012 Tab
2 8 5 84.9292 84.9292
2 16 2 84.9450 84.9450
2 17 15 85.0008 85.0008
2 18 3 85.0423 85.0423
.
.
.
2 42 14 87.3823 87.3823
2 66 5 87.4076 87.4076
2 2 13 87.4113 87.4113
2 End 87.4113
.
.
.
11 Start 41.1012 Tab
11 End 87.2914

12 Start 55.7719 Ran,Mut,Ann
12 53 16 87.4195 87.4195
12 48 9 87.4355 87.4355
12 49 6 87.4688 87.4688
12 50 1 87.4688 87.4688
.
.
.
12 9 4 90.3157 90.3157
12 End 90.3157

.

.

.

17 Start 58.3436 Ran,Mut,Ann
17 End 90.5685

NOTE: Quitting the algorithm search step after 10.03 minutes and 17 designs.
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Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 90.7877 90.7877 Ini

1 Start 59.2298 Ran,Mut,Ann
1 End 90.3158

.

.

.

14 Start 58.8515 Ran,Mut,Ann
14 End 90.3433

NOTE: Quitting the design search step after 20.17 minutes and 14 designs.

Vacation Example with Asymmetry

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 90.7877 90.7877 Ini

1 Start 88.9486 Pre,Mut,Ann
1 End 90.6106

2 Start 87.6249 Pre,Mut,Ann
2 64 4 90.7886 90.7886
2 End 90.7803

.

.

.

5 Start 89.3771 Pre,Mut,Ann
5 End 90.5049

NOTE: Quitting the refinement step after 5.60 minutes and 5 designs.
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Vacation Example with Asymmetry

The OPTEX Procedure

Class Level Information

Class Levels Values

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 3 1 2 3
x5 3 1 2 3
x6 3 1 2 3
x7 3 1 2 3
x8 3 1 2 3
x9 3 1 2 3
x10 3 1 2 3
x11 3 1 2 3
x12 3 1 2 3
x13 3 1 2 3
x14 4 1 2 3 4
x15 3 1 2 3
x16 2 1 2
x17 2 1 2

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 90.7886 81.5474 93.3553 0.8819

The macro ran in approximately 36 minutes. The algorithm search history shows that the candidate-
set approach (Can) used in design 1 found a design that was 84.8774% D-efficient. The macro makes
no attempt to improve on this design, unless there are restriction on the design, until the end in the
design refinement step, and only if it is the best design found.

Designs 2 through 11 used the coordinate-exchange algorithm with a tabled design initialization (Tab).
For this problem, the tabled design initialization initializes all 72 rows; For other problems, when the
number of runs in the design is greater than the number of runs in the nearest tabled design, the
remaining rows would be randomly initialized. The tabled design initialization usually works very well
when all but at most a very few rows and columns are left uninitialized and there are no interactions or
restrictions. That is not the case in this problem, and when the algorithm switches to a fully-random
initialization in design 12, it immediately does better.

The algorithm search phase picked the coordinate-exchange algorithm with a random initialization,
random mutations, and simulated annealing as the algorithm to use in the next step, the design search
step. The design search history is initialized with the best design (D-efficiency = 90.7877) found so far.
The design search phase starts out with the initial design (Ini) found in the algorithm search phase.
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The macro finds a design with D-efficiency = 90.3433.

The final set of iterations tries to improve the best design found so far. Random mutations (Ran),
simulated annealing (Ann), and level exchanges are used on the previous best (Pre) design. The
random mutations are responsible for making the D-efficiency of the starting design worse than the
previous best D-efficiency. In this case, the design refinement step found a very slight improvement on
the best design found by the design search step.

Each stage ended before the maximum number of iterations and printed a note. All three notes appear
next.

NOTE: Quitting the algorithm search step after 10.03 minutes and 17 designs.
NOTE: Quitting the design search step after 20.17 minutes and 14 designs.
NOTE: Quitting the refinement step after 5.60 minutes and 5 designs.

The default values for maxtime=10 20 5 constrain the three steps to run in an approximate maximum
time of 10, 20, and 5 minutes. Fewer iterations are performed with order=matrix than with the
default single-column exchanges because each pair of exchanges takes longer than a single exchange.
For example, with two three-level factors, a pair-wise exchange considers 3× 3 = 9 exchanges, whereas
a single exchange considers 3 exchanges. However, a single design with a random initialization and
annealing, would have been faster and better than the full %MktEx run with a single-column exchange.
This could be requested as follows.

data mat;
do a = 1 to 17;

b = .;
output;
end;

do a = 1 to 5;
b = 10 + a;
output;
end;

run;

proc print; run;

%mktex(3 ** 13 4 3 2 2, n=72, seed=368, order=matrix=mat,
optiter=0, tabiter=0, maxdesigns=1,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)

These steps were not run, and we will use the design created with the previous steps.
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Examining the Design

We can use the %MktEval macro to evaluate the goodness of this design.

%mkteval(data=design);

Here are some of the results.

Vacation Example with Asymmetry
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1 0.11 0.09 0.17 0.14 0.03 0.09 0.11 0.09
x2 0.11 1 0.18 0.13 0.09 0.14 0.09 0.07 0.15
x3 0.09 0.18 1 0.20 0.11 0.09 0.09 0.13 0.09
x4 0.17 0.13 0.20 1 0.13 0.11 0.07 0.09 0.15
x5 0.14 0.09 0.11 0.13 1 0.03 0.12 0.05 0.13
x6 0.03 0.14 0.09 0.11 0.03 1 0.10 0.04 0.11
x7 0.09 0.09 0.09 0.07 0.12 0.10 1 0.08 0.09
x8 0.11 0.07 0.13 0.09 0.05 0.04 0.08 1 0.07
x9 0.09 0.15 0.09 0.15 0.13 0.11 0.09 0.07 1
.
.
.

Vacation Example with Asymmetry
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

* x1 25 24 23
* x2 24 25 23

x3 24 24 24
* x4 25 24 23
* x5 25 23 24
* x6 26 22 24
* x7 22 26 24
* x8 23 26 23
* x9 23 27 22
* x10 24 26 22
* x11 23 24 25
* x12 23 25 24
* x13 25 23 24
* x14 19 17 19 17

x15 24 24 24
x16 36 36

* x17 37 35
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* x1 x2 7 9 9 8 8 8 9 8 6
* x1 x3 9 9 7 7 8 9 8 7 8
* x1 x4 7 9 9 11 7 6 7 8 8
* x1 x5 8 8 9 10 8 6 7 7 9
* x1 x6 9 8 8 9 7 8 8 7 8
* x1 x7 8 10 7 6 9 9 8 7 8
* x1 x8 9 8 8 8 8 8 6 10 7
* x1 x9 7 9 9 8 9 7 8 9 6
* x1 x10 9 8 8 8 10 6 7 8 8
* x1 x11 8 8 9 7 8 9 8 8 7
* x1 x12 7 8 10 9 8 7 7 9 7
* x1 x13 9 9 7 7 8 9 9 6 8
* x1 x14 7 6 7 5 7 4 6 7 5 7 6 5
* x1 x15 10 7 8 8 8 8 6 9 8
* x1 x16 12 13 12 12 12 11
* x1 x17 12 13 14 10 11 12
.
.
.
* x12 x13 6 9 8 10 6 9 9 8 7
* x12 x14 5 5 6 7 8 6 6 5 6 6 7 5
* x12 x15 7 9 7 9 7 9 8 8 8
* x12 x16 12 11 13 12 11 13
* x12 x17 12 11 13 12 12 12
.
.
.

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can use the %MktEx macro to check the design and print the information matrix and variance
matrix.

%mktex(3 ** 13 4 3 2 2, n=72, examine=i v, options=check, init=randomized,
interact=x1*x11 x2*x12 x3*x13 x4*x14 x5*x15)

Here is a small part of the results.
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Vacation Example with Asymmetry
Information Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 72.000 2.121 -1.225 2.121 1.225 0 0 2.121
x11 2.121 73.500 0.866 1.500 -6.062 -6.000 0 -7.500
x12 -1.225 0.866 70.500 0.866 4.500 -1.732 -3.000 -9.526
x21 2.121 1.500 0.866 73.500 -0.866 -6.000 0 -3.000
x22 1.225 -6.062 4.500 -0.866 70.500 -3.464 -12.000 1.732
x31 0 -6.000 -1.732 -6.000 -3.464 72.000 0 -1.500
x32 0 0 -3.000 0 -12.000 0 72.000 2.598
x41 2.121 -7.500 -9.526 -3.000 1.732 -1.500 2.598 73.500
.
.
.

Vacation Example with Asymmetry
Variance Matrix

Intercept x11 x12 x21 x22 x31 x32 x41

Intercept 0.015 -0.001 0.000 -0.001 -0.001 -0.000 -0.000 -0.001
x11 -0.001 0.017 -0.001 0.001 0.002 0.001 0.001 0.002
x12 0.000 -0.001 0.017 -0.001 -0.001 0.001 0.000 0.002
x21 -0.001 0.001 -0.001 0.017 0.000 0.002 0.000 0.001
x22 -0.001 0.002 -0.001 0.000 0.018 0.001 0.003 0.000
x31 -0.000 0.001 0.001 0.002 0.001 0.016 0.000 -0.000
x32 -0.000 0.001 0.000 0.000 0.003 0.000 0.018 -0.001
x41 -0.001 0.002 0.002 0.001 0.000 -0.000 -0.001 0.017
.
.
.

Blocking an Existing Design

An existing design is blocked using the %MktBlock macro. The macro takes the observations in an
existing design and optimally sorts them into blocks. Here, we are seeing how to block the linear
version of the choice design, but the macro can also be used directly on the choice design.

%mktblock(data=randomized, nblocks=4, out=sasuser.AsymVac_LinDesBlckd, seed=114)

This step took 2 seconds. Here are some of the results including the one-way frequencies within blocks.
They should be examined to ensure that each level is well represented in each block. The design is
nearly balanced in most of the factors and blocks.
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Vacation Example with Asymmetry
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Block x1 x2 x3 x4 x5 x6 x7 x8

Block 1 0.08 0.06 0.10 0.06 0.08 0.08 0.08 0.06
x1 0.08 1 0.11 0.09 0.17 0.14 0.03 0.09 0.11
x2 0.06 0.11 1 0.18 0.13 0.09 0.14 0.09 0.07
x3 0.10 0.09 0.18 1 0.20 0.11 0.09 0.09 0.13
x4 0.06 0.17 0.13 0.20 1 0.13 0.11 0.07 0.09
x5 0.08 0.14 0.09 0.11 0.13 1 0.03 0.12 0.05
x6 0.08 0.03 0.14 0.09 0.11 0.03 1 0.10 0.04
x7 0.08 0.09 0.09 0.09 0.07 0.12 0.10 1 0.08
x8 0.06 0.11 0.07 0.13 0.09 0.05 0.04 0.08 1
.
.
.

Vacation Example with Asymmetry
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

Block 18 18 18 18
* x1 25 23 24
* x2 25 24 23

x3 24 24 24
* x4 25 24 23
* x5 25 24 23
* x6 22 26 24
* x7 24 26 22
* x8 26 23 23
* x9 23 22 27
* x10 24 26 22
* x11 23 24 25
* x12 24 23 25
* x13 24 23 25
* x14 17 19 19 17

x15 24 24 24
x16 36 36

* x17 37 35
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* Block x1 6 6 6 6 5 7 6 6 6 7 6 5
* Block x2 6 6 6 6 6 6 7 6 5 6 6 6
* Block x3 6 6 6 6 6 6 6 7 5 6 5 7
* Block x4 7 6 5 6 6 6 6 6 6 6 6 6
* Block x5 6 6 6 7 5 6 6 7 5 6 6 6
* Block x6 6 7 5 6 6 6 5 7 6 5 6 7
* Block x7 6 7 5 5 7 6 7 6 5 6 6 6
* Block x8 6 6 6 7 5 6 7 6 5 6 6 6
* Block x9 7 5 6 5 5 8 6 6 6 5 6 7
* Block x10 5 7 6 6 6 6 6 7 5 7 6 5
* Block x11 4 7 7 7 5 6 5 6 7 7 6 5
* Block x12 5 6 7 7 6 5 5 6 7 7 5 6
* Block x13 6 6 6 6 5 7 6 6 6 6 6 6
* Block x14 3 5 4 6 5 5 5 3 4 5 6 3 5 4 4 5
* Block x15 6 6 6 6 5 7 5 7 6 7 6 5

Block x16 9 9 9 9 9 9 9 9
* Block x17 9 9 9 9 10 8 9 9

.

.

.

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Collecting data is time consuming and expensive. Before collecting data, it is a good practice to convert
your linear design into a choice design and evaluate it in the context of a choice model. We start by
creating some formats for the factor levels and the key to converting the linear design into a choice
design.§

proc format;
value price 1 = ’ 999’ 2 = ’1249’ 3 = ’1499’ 4 = ’1749’ . = ’ ’;
value scene 1 = ’Mountains’ 2 = ’Lake’ 3 = ’Beach’ . = ’ ’;
value lodge 1 = ’Cabin’ 2 = ’Bed & Breakfast’ 3 = ’Hotel’ . = ’ ’;
value side 1 = ’Side Trip’ 2 = ’No’ . = ’ ’;
run;

data key;
input Place $ 1-10 (Lodge Scene Price Side) ($);
datalines;

Hawaii x1 x6 x11 x16
Alaska x2 x7 x12 .
Mexico x3 x8 x13 x17
California x4 x9 x14 .
Maine x5 x10 x15 .
. . . . .
;

§See page 60 for an explanation of linear versus choice designs.



Vacation Example with Alternative-Specific Attributes 247

For analysis, the design will have five attributes. Place is the alternative name. Lodge, Scene, Price
and Side are created from the design using the indicated factors. See page 200 for more information
on creating the design key. Notice that Side only applies to some of the alternatives and hence has
missing values for the others. Processing the design and merging it with the data are similar to what
was done on pages 200 and 208. One difference is now there are asymmetries in Price. For Hawaii’s
price, x11, we need to change 1, 2, and 3 to $1249, $1499, and $1749. For Alaska’s price, x12, we need
to change 1, 2, and 3 to $1249, $1499, and $1749. For Mexico’s price, x13, we need to change 1, 2,
and 3 to $999, $1249, and $1499. For California’s price, x14, we need to change 1, 2, 3, and 4 to $999,
$1249, $1499, and $1749. For Maine’s price, x11, we need to change 1, 2, and 3 to $999, $1249, and
$1499. We can simplify the problem by adding 1 to x11 and x12, which are the factors that start at
$1249 instead of $999. This will allow us to use a common format to set the price. See pages 311 and
622 for examples of handling more complicated asymmetries.

data temp;
set sasuser.AsymVac_LinDesBlckd(rename=(block=Form));
x11 + 1;
x12 + 1;
run;

%mktroll(design=temp, key=key, alt=place, out=sasuser.AsymVac_ChDes,
options=nowarn, keep=form)

data sasuser.AsymVac_ChDes;
set sasuser.AsymVac_ChDes;
format scene scene. lodge lodge. side side. price price.;
run;

proc print data=sasuser.AsymVac_ChDes(obs=12);
by form set; id form set;
run;

Here are the first two choice sets. Notice that each has six alternatives, one of which is printing in this
format as all blank.

Vacation Example with Asymmetry

Form Set Place Lodge Scene Price Side

1 1 Hawaii Bed & Breakfast Lake 1499 No
Alaska Bed & Breakfast Mountains 1249
Mexico Cabin Lake 999 No
California Cabin Lake 1249
Maine Hotel Beach 1249
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1 2 Hawaii Hotel Lake 1749 Side Trip
Alaska Hotel Lake 1499
Mexico Hotel Beach 1249 No
California Cabin Beach 999
Maine Cabin Lake 1249

Testing the Design Before Data Collection

Collecting data is time consuming and expensive. It is always good practice to make sure that the
design will work with the most complicated model that we anticipate fitting. The following code
evaluates the choice design.

title2 ’Evaluate the Choice Design’;

%choiceff(data=sasuser.AsymVac_ChDes, init=sasuser.AsymVac_ChDes(keep=set),
nsets=72, nalts=6, beta=zero, intiter=0,
model=class(place / zero=none order=data)

class(place * price place * scene place * lodge /
zero=none order=formatted separators=’’ ’ ’)

class(place * side / zero=’ ’ ’No’ separators=’’ ’ ’) /
lprefix=0 cprefix=0)

We use the %ChoicEff macro to evaluate our choice design. Normally, you would use this macro to
search a candidate set for an efficient choice design. You can also use it to evaluate a design created by
other means. The way you check a design like this is to first name it on the data= option. This will be
the candidate set that contains all of the choice sets that we will consider. In addition, the same design
is named on the init= option. The full specification is init=sasuser.AsymVac ChDes(keep=set).
Just the variable Set is kept. It will be used to bring in just the indicated choice sets from the data=
design, which in this case is all of them. The option nsets=72 specifies the number of choice sets, and
nalts=6 specifies the number of alternatives. The option beta=zero specifies that we are assuming for
design evaluation purpose that all of the betas or part-worth utilities are zero. You can evaluate the
design for other parameter vectors by specifying a list of numbers after beta=. This will change the
variances and standard errors. We also specify intiter=0 which specifies zero internal iterations. We
use zero internal iterations when we want to evaluate an initial design, but not attempt to improve it.
The last option specifies the model.

The model specification contains everything that appears on the TRANSREG procedure’s model state-
ment for coding the design. Many of these options should be familiar from previous examples. The
specification class(place / zero=none order=data) names the place variable as a classification
variable and asks for coded variables for every nonmissing level (zero=none). The order of the levels
on output matches the order that the levels are first encountered in the input data set. This specification
creates the alternative effects or alternative-specific intercepts.

The next specification, class(place * price place * scene place * lodge / zero=none order=
formatted separators=’’ ’ ’) requests alternative-specific effects for all of the attributes except the
side trip. The alternative-specific effects are requested by interacting the alternative-specific intercepts,
in this case the destination, with the attributes. The zero=none option creates binary variables for
all categories. In contrast, by default, a variable is not created for the last category−the parameter
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for the last category is a structural zero. The zero=none option is used when you want to see the
structural zeros in the results. The separators=’’ ’ ’ option (separators= quote quote space quote
space quote, which provides two strings (one null and the other blank), allows you to specify two label
component separators for the main effect and interaction terms, respectively. By specifying a blank
for the second value, we request labels for the side trip effects like ’Mexico Side Trip’ instead of the
default ’Mexico * Side Trip’. This option is explained in more detail on page 265.

The last part of the model specification consists of class(place * side / zero=’ ’ ’No’ separators
=’’ ’ ’) and creates the alternative-specific side trip effects with all levels for place and ’No’ as the
reference level for the side trip factor. The last part of the model specification is followed by a slash
and some options: / lprefix=0 cprefix=0). The cprefix=0 option specifies that when names are
created for the binary variables, zero characters of the original variable name should be used as a prefix.
This means that the names are created only from the level values. The lprefix=0 option specifies that
when labels are created for the binary variables, zero characters of the original variable name should
be used as a prefix. This means that the labels are created only from the level values.

Here is the last part of the output.

Vacation Example with Asymmetry
Evaluate the Choice Design

Standard
n Variable Name Label Variance DF Error

1 Hawaii Hawaii 0.91061 1 0.95426
2 Alaska Alaska 0.70276 1 0.83831
3 Mexico Mexico 0.79649 1 0.89246
4 California California 0.89577 1 0.94645
5 Maine Maine 0.82172 1 0.90649
6 Alaska_999 Alaska 999 . 0 .
7 Alaska_1249 Alaska 1249 0.59635 1 0.77223
8 Alaska_1499 Alaska 1499 0.60551 1 0.77814
9 Alaska_1749 Alaska 1749 . 0 .
10 California_999 California 999 0.85492 1 0.92462
11 California_1249 California 1249 0.81130 1 0.90072
12 California_1499 California 1499 0.82552 1 0.90858
13 California_1749 California 1749 . 0 .
14 Hawaii_999 Hawaii 999 . 0 .
15 Hawaii_1249 Hawaii 1249 0.60792 1 0.77969
16 Hawaii_1499 Hawaii 1499 0.59679 1 0.77252
17 Hawaii_1749 Hawaii 1749 . 0 .
18 Maine_999 Maine 999 0.60676 1 0.77894
19 Maine_1249 Maine 1249 0.61109 1 0.78172
20 Maine_1499 Maine 1499 . 0 .
21 Maine_1749 Maine 1749 . 0 .
22 Mexico_999 Mexico 999 0.59178 1 0.76927
23 Mexico_1249 Mexico 1249 0.60604 1 0.77849
24 Mexico_1499 Mexico 1499 . 0 .
25 Mexico_1749 Mexico 1749 . 0 .
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26 AlaskaBeach Alaska Beach 0.63778 1 0.79861
27 AlaskaLake Alaska Lake 0.58330 1 0.76374
28 AlaskaMountains Alaska Mountains . 0 .
29 CaliforniaBeach California Beach 0.59453 1 0.77106
30 CaliforniaLake California Lake 0.67196 1 0.81973
31 CaliforniaMountains California Mountains . 0 .
32 HawaiiBeach Hawaii Beach 0.63923 1 0.79952
33 HawaiiLake Hawaii Lake 0.61115 1 0.78176
34 HawaiiMountains Hawaii Mountains . 0 .
35 MaineBeach Maine Beach 0.63688 1 0.79805
36 MaineLake Maine Lake 0.58479 1 0.76471
37 MaineMountains Maine Mountains . 0 .
38 MexicoBeach Mexico Beach 0.59462 1 0.77111
39 MexicoLake Mexico Lake 0.59710 1 0.77272
40 MexicoMountains Mexico Mountains . 0 .
41 AlaskaBed___Breakfast Alaska Bed & Breakfast 0.62130 1 0.78823
42 AlaskaCabin Alaska Cabin 0.61012 1 0.78110
43 AlaskaHotel Alaska Hotel . 0 .
44 CaliforniaBed___Breakfast California Bed & Breakfast 0.62122 1 0.78817
45 CaliforniaCabin California Cabin 0.60866 1 0.78016
46 CaliforniaHotel California Hotel . 0 .
47 HawaiiBed___Breakfast Hawaii Bed & Breakfast 0.61876 1 0.78661
48 HawaiiCabin Hawaii Cabin 0.59145 1 0.76906
49 HawaiiHotel Hawaii Hotel . 0 .
50 MaineBed___Breakfast Maine Bed & Breakfast 0.61592 1 0.78480
51 MaineCabin Maine Cabin 0.60681 1 0.77898
52 MaineHotel Maine Hotel . 0 .
53 MexicoBed___Breakfast Mexico Bed & Breakfast 0.61050 1 0.78134
54 MexicoCabin Mexico Cabin 0.61670 1 0.78530
55 MexicoHotel Mexico Hotel . 0 .
56 AlaskaSide_Trip Alaska Side Trip . 0 .
57 CaliforniaSide_Trip California Side Trip . 0 .
58 HawaiiSide_Trip Hawaii Side Trip 0.40413 1 0.63572
59 MaineSide_Trip Maine Side Trip . 0 .
60 MexicoSide_Trip Mexico Side Trip 0.40622 1 0.63735

==
38

It consists of a table with the name and label for each parameter along with its variance, df, and
standard error. It needs to be carefully evaluated to see if the zeros and nonzeros are in all of the
right places. We see one parameter for five of the six destinations, with the constant stay-at-home
alternative in all cases excluded from the table. This is followed by four terms for the Alaska price
effect. The Alaska at $999 parameter is zero since $999 does not apply to Alaska. The Alaska at $1749
parameter is the reference level and hence is zero. The other two Alaska price parameters are nonzero.
Similary, each of the alternative-specific price effects have two or three parameters (the number of
applicable prices minus one). For the scenery and accomodations attributes, each alternative has two
nonzero parameters and a reference level. There are two nonzero parameters for the side trips for the
two applicable destinations. The pattern of zeros and nonzeros looks perfect. There are 38 parameters
in the alternative-specific model.
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You should also note that the variances and standard errors. They are all apprioximately the same
order of magnitude. Sometimes you will see wildly varying parameters. This is usually a sign of a
problematic design, perhaps one with too few choice sets for the number of parameters. This design
looks good. Note one difference between these results and the results that we see in the previous
example on page 204. Here, our standard errors are not constant within an attribute, although they
are similar. This is because none of our factors are orthogonal, although they are close.

Generating the Questionnaire

These next steps print the questionnaire.

%let m = 6; /* m alts including constant */
%let mm1 = %eval(&m - 1); /* m - 1 */
%let n = 18; /* number of choice sets */
%let blocks = 4; /* number of blocks */

title;
options ls=80 ps=60 nonumber nodate;

data _null_;
array dests[&mm1] $ 10 _temporary_ (’Hawaii’ ’Alaska’ ’Mexico’

’California’ ’Maine’);
array scenes[3] $ 13 _temporary_

(’the Mountains’ ’a Lake’ ’the Beach’);
array lodging[3] $ 15 _temporary_

(’Cabin’ ’Bed & Breakfast’ ’Hotel’);
array x[15];

array p[&mm1];
length price $ 6;
file print linesleft=ll;

set sasuser.AsymVac_LinDesBlckd;
by block;

p1 = 1499 + (x[11] - 2) * 250;
p2 = 1499 + (x[12] - 2) * 250;
p3 = 1249 + (x[13] - 2) * 250;
p4 = 1374 + (x[14] - 2.5) * 250;
p5 = 1249 + (x[15] - 2) * 250;

if first.block then do;
choice = 0;
put _page_;
put @50 ’Form: ’ block ’ Subject: ________’ //;
end;

choice + 1;

if ll < (19 + (x16 = 1) + (x17 = 1)) then put _page_;
put choice 2. ’) Circle your choice of ’

’vacation destinations:’ /;
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do dest = 1 to &mm1;
price = left(put(p[dest], dollar6.));
put ’ ’ dest 1. ’) ’ dests[dest]

+(-1) ’, staying in a ’ lodging[x[dest]]
’near ’ scenes[x[&mm1 + dest]] +(-1) ’,’ /
+7 ’with a package cost of ’ price +(-1) @@;

if dest = 3 and x16 = 1 then
put ’, and an optional visit’ / +7

’to archaeological sites for an additional $100’ @@;
else if dest = 1 and x17 = 1 then

put ’, and an optional helicopter’ / +7
’flight to an active volcano for an additional $200’ @@;

put ’.’ /;
end;

put " &m) Stay at home this year." /;
run;

Here are the first two choice sets for the first subject.

Form: 1 Subject: ________

1) Circle your choice of vacation destinations:

1) Hawaii, staying in a Bed & Breakfast near a Lake,
with a package cost of $1,499.

2) Alaska, staying in a Bed & Breakfast near the Mountains,
with a package cost of $1,249.

3) Mexico, staying in a Cabin near a Lake,
with a package cost of $999.

4) California, staying in a Cabin near a Lake,
with a package cost of $1,249.

5) Maine, staying in a Hotel near the Beach,
with a package cost of $1,249.

6) Stay at home this year.
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2) Circle your choice of vacation destinations:

1) Hawaii, staying in a Hotel near a Lake,
with a package cost of $1,749.

2) Alaska, staying in a Hotel near a Lake,
with a package cost of $1,499.

3) Mexico, staying in a Hotel near the Beach,
with a package cost of $1,249, and an optional visit
to archaeological sites for an additional $100.

4) California, staying in a Cabin near the Beach,
with a package cost of $999.

5) Maine, staying in a Cabin near a Lake,
with a package cost of $1,249.

6) Stay at home this year.

In practice, data collection will typically be much more elaborate than this. It may involve art work
or photographs, and the choice sets may be presented and the data may be collected through personal
interview or over the web. However the choice sets are presented and the data are collected, the
essential elements remain the same. Subjects are shown a set of alternatives and are asked to make a
choice, then they go on to the next set.

Generating Artificial Data

This next step generates an artificial set of data. Collecting data is time consuming and expensive.
Generating some artificial data before the data are collected to test your code and make sure the
analysis will run is a good idea. It helps avoid the “How am I going to analyze this?” question from
occurring after the data have already been collected. This step generates data for 400 subjects, 100
per block.

data _null_;
array dests[&mm1] _temporary_ (5 -1 4 3 2);
array scenes[3] _temporary_ (-1 0 1);
array lodging[3] _temporary_ (0 3 2);
array u[&m];
array x[15];

do rep = 1 to 100;
n = 0;
do i = 1 to &blocks;

k + 1;
if mod(k,3) = 1 then put;
put k 3. +1 i 1. +2 @@;
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do j = 1 to &n; n + 1;
set sasuser.AsymVac_LinDesBlckd point=n;
do dest = 1 to &mm1;

u[dest] = dests[dest] + lodging[x[dest]] +
scenes[x[&mm1 + dest]] -
x[2 * &mm1 + dest] +
2 * normal(17);

end;

u[1] = u[1] + (x16 = 1);
u[3] = u[3] + (x17 = 1);
u&m = -3 + 3 * normal(17);
m = max(of u1-u&m);
if abs(u1 - m) < 1e-4 then c = 1;
else if abs(u2 - m) < 1e-4 then c = 2;
else if abs(u3 - m) < 1e-4 then c = 3;
else if abs(u4 - m) < 1e-4 then c = 4;
else if abs(u5 - m) < 1e-4 then c = 5;
else c = 6;
put +(-1) c @@;
end;

end;
end;

stop;
run;

The dests, scenes, and lodging arrays are initialized with part-worth utilities for each level. The
utilities for each of the destinations are computed and stored in the array u in the statement u[dest]
= ..., which includes an error term 2 * normal(17). The utilities for the side trips are added in sep-
arately with u[1] = u[1] + (x16 = 1) and u[3] = u[3] + (x17 = 1). The utility for the stay-at-
home alternative is -3 + 3 * normal(17). The maximum utility is computed, m = max(of u1-u&m)
and the alternative with the maximum utility is chosen. The put statement writes out the results to
the log.

Reading, Processing, and Analyzing the Data

The results from the previous step are pasted into a DATA step and run to mimic reading real input
data.

title ’Vacation Example with Asymmetry’;

data results;
input Subj Form (choose1-choose&n) (1.) @@;
datalines;

1 1 413414111315351335 2 2 115311141441134121 3 3 331451344433513341
4 4 113111143133311314 5 1 113413531545431313 6 2 145131111414331511
7 3 313413113111313331 8 4 415143311133541321 9 1 133314111133431113
.
.
.

;
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The analysis proceeds in a fashion similar to before as in the simpler vacation example on page 208.
%mktmerge(design=sasuser.AsymVac_ChDes, data=results, out=res2, blocks=form,

nsets=&n, nalts=&m, setvars=choose1-choose&n,
stmts=%str(price = input(put(price, price.), 5.);

format scene scene. lodge lodge. side side.;))

proc print data=res2(obs=18);
id form subj set; by form subj set;
run;

Here are the first three choice sets for the first subject.

Vacation Example with Asymmetry

Form Subj Set Place Lodge Scene Price Side c

1 1 1 Hawaii Bed & Breakfast Lake 1499 No 2
Alaska Bed & Breakfast Mountains 1249 2
Mexico Cabin Lake 999 No 2
California Cabin Lake 1249 1
Maine Hotel Beach 1249 2

2
1 1 2 Hawaii Hotel Lake 1749 Side Trip 1

Alaska Hotel Lake 1499 2
Mexico Hotel Beach 1249 No 2
California Cabin Beach 999 2
Maine Cabin Lake 1249 2

2
1 1 3 Hawaii Hotel Mountains 1749 Side Trip 2

Alaska Hotel Mountains 1749 2
Mexico Bed & Breakfast Beach 1249 Side Trip 1
California Cabin Lake 1249 2
Maine Bed & Breakfast Mountains 999 2

2

Indicator variables and labels are created using PROC TRANSREG like before.

proc transreg design=5000 data=res2 nozeroconstant norestoremissing;
model class(place / zero=none order=data)

class(price scene lodge / zero=none order=formatted)
class(place * side / zero=’ ’ ’No’ separators=’’ ’ ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id subj set form c;
run;

proc print data=coded(obs=6) label;
run;

The design=5000 option specifies that no model is fit; the procedure is just being used to code a design
in blocks of 5000 observations at a time. The nozeroconstant option specifies that if the coding creates



256 TS-722F − Discrete Choice

a constant variable, it should not be zeroed. The norestoremissing option specifies that missing values
should not be restored when the out= data set is created. The model statement names the variables
to code and provides information about how they should be coded. The specification class(place /
...) specifies that the variable Place is a classification variable and requests a binary coding. The
zero=none option creates binary variables for all categories. The order=data option sorts the levels
into the order they were first encountered in the data set. Similarly, the variables Price, Scene, and
Lodge are classification variables. The specification class(place * side / ...) creates alternative-
specific side trip effects. The option zero=’ ’ ’No’ specifies that indicator variables should be created
for all levels of Place except blank, and all levels of Side except ’No’. The specification zero=’ ’
is almost the same as zero=none. The zero=’ ’ specification names a missing level as the reference
level creating indicator variables for all nonmissing levels of the class variables, just like zero=none.
The difference is zero=none applies to all of the variables named in the class specification. When you
want zero=none to apply to only some variables, then you must use zero=’ ’, as in zero=’ ’ ’No’
instead. In this case, zero=none applies to the first variable and zero=’No’ applies to the second.
With zero=’ ’, TRANSREG prints the following warning, which can be safely ignored.

WARNING: Reference level ZERO=’’ was not found for variable Place.

The separators=’’ ’ ’ option (separators= quote quote space quote space quote) allows you to
specify two label component separators for the main effect and interaction terms, respectively. By
specifying a blank for the second value, we request labels for the side trip effects like ’Mexico Side
Trip’ instead of the default ’Mexico * Side Trip’. This option is explained in more detail on page
265.

The lprefix=0 option specifies that when labels are created for the binary variables, zero characters
of the original variable name should be used as a prefix. This means that the labels are created only
from the level values. An output statement names the output data set and drops variables that are
not needed. Finally, the id statement names the additional variables that we want copied from the
input to the output data set.

Vacation Example with Asymmetry

Obs Hawaii Alaska Mexico California Maine 999 1249 1499 1749 Beach Lake

1 1 0 0 0 0 0 0 1 0 0 1
2 0 1 0 0 0 0 1 0 0 0 0
3 0 0 1 0 0 1 0 0 0 0 1
4 0 0 0 1 0 0 1 0 0 0 1
5 0 0 0 0 1 0 1 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0

Alaska Hawaii Maine Mexico
Bed & Side California Side Side Side

Obs Mountains Breakfast Cabin Hotel Trip Side Trip Trip Trip Trip

1 0 1 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
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Obs Place Price Scene Lodge Side Subj Set Form c

1 Hawaii 1499 Lake Bed & Breakfast No 1 1 1 2
2 Alaska 1249 Mountains Bed & Breakfast 1 1 1 2
3 Mexico 999 Lake Cabin No 1 1 1 2
4 California 1249 Lake Cabin 1 1 1 1
5 Maine 1249 Beach Hotel 1 1 1 2
6 1 1 1 2

The PROC PHREG specification is the same as we have used before. (Recall that we used %phchoice(on)
on page 143 to customize the output from PROC PHREG.)

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Here are the results.

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 43200
Number of Observations Used 43200

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 7200 6 1 5

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 25801.336 12603.247
AIC 25801.336 12631.247
SBC 25801.336 12727.593

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13198.0891 14 <.0001
Score 12223.0125 14 <.0001
Wald 5081.3295 14 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Hawaii 1 3.61141 0.22224 264.0701 <.0001
Alaska 1 -0.94997 0.26364 12.9836 0.0003
Mexico 1 2.26877 0.22776 99.2247 <.0001
California 1 1.54548 0.22760 46.1102 <.0001
Maine 1 0.74153 0.23210 10.2074 0.0014
999 1 2.10214 0.07298 829.7619 <.0001
1249 1 1.44298 0.06078 563.6949 <.0001
1499 1 0.72311 0.05936 148.4188 <.0001
1749 0 0 . . .
Beach 1 1.42021 0.04635 938.8384 <.0001
Lake 1 0.72019 0.04472 259.3676 <.0001
Mountains 0 0 . . .
Bed & Breakfast 1 0.65045 0.04079 254.3369 <.0001
Cabin 1 -1.42317 0.04809 875.8795 <.0001
Hotel 0 0 . . .
Alaska Side Trip 0 0 . . .
California Side Trip 0 0 . . .
Hawaii Side Trip 1 0.71850 0.05753 155.9801 <.0001
Maine Side Trip 0 0 . . .
Mexico Side Trip 1 0.65550 0.06293 108.4863 <.0001

You would not expect the part-worth utilities to match those that were used to generate the data,
but you would expect a similar ordering within each factor, and in fact that does occur. These data
can also be analyzed with quantitative price effects and destination by attribute interactions, as in the
previous vacation example.
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Aggregating the Data

This data set is rather large with 43,200 observations. You can make the analysis run faster and with
less memory by aggregating. Instead of stratifying on each choice set and subject combination, you
can stratify just on choice set and specify the number of times each alternative was chosen and the
number of times it was not chosen. First, use PROC SUMMARY to count the number of times each
observation occurs. Specify all the analysis variables, and in this example, also specify Form. The
variable Form was added to the list because Set designates choice set within form. It is the Form and
Set combinations that identify the choice sets. (In the previous PROC PHREG step, since the Subj *
Set combinations uniquely identified each stratum, Form was not needed.) PROC SUMMARY stores
the number of times each unique observation appears in the variable freq . PROC PHREG is then
run with a freq statement. Now, instead of analyzing a data set with 43,200 observations and 7200
strata, we analyze a data set with at most 2 × 6 × 72 = 864 observations and 72 strata. For each of
the 6 alternatives and 72 choice sets, there are typically 2 observations in the aggregate data set: one
that contains the number of times it was chosen and one that contains the number of times it was not
chosen. When one of those counts is zero, there will be one observation. In this case, the aggregate
data set has 724 observations.

proc summary data=coded nway;
class form set c &_trgind;
output out=agg(drop=_type_);
run;

proc phreg data=agg;
model c*c(2) = &_trgind / ties=breslow;
freq _freq_;
strata form set;
run;

PROC SUMMARY ran in three seconds, and PROC PHREG ran in less than one second. The
parameter estimates and Chi-Square statistics (not shown) are the same as before. The summary table
shows the results of the aggregation, 100 out of 600 alternatives were chosen in each stratum. The
log likelihood statistics are different, but that does not matter since the Chi-Square statistics are the
same. Page 282 provides more information about this.

Vacation Example with Asymmetry

The PHREG Procedure

Model Information

Data Set WORK.AGG
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable _FREQ_
Ties Handling BRESLOW
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Number of Observations Read 724
Number of Observations Used 724
Sum of Frequencies Read 43200
Sum of Frequencies Used 43200

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Form Set Alternatives Alternatives Chosen

1 1 1 600 100 500
2 1 2 600 100 500
3 1 3 600 100 500
4 1 4 600 100 500
.
.
.
71 4 71 600 100 500
72 4 72 600 100 500

---------------------------------------------------------------------------
Total 43200 7200 36000
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Brand Choice Example with Aggregate Data

In this next example, subjects were presented with brands of a product at different prices. There
were four brands and a constant alternative, eight choice sets, and 100 subjects. This example shows
how to handle data that come to you already aggregated. It also illustrates comparing the fits of two
competing models, the mother logit model, cross effects, IIA, and techniques for handling large data
sets. The choice sets, with the price of each alternative and the number of times it was chosen, are
shown next.

Set Brand 1 Brand 2 Brand 3 Brand 4 Other
1 $3.99 4 $5.99 29 $3.99 16 $5.99 42 $4.99 9
2 $5.99 12 $5.99 19 $5.99 22 $5.99 33 $4.99 14
3 $5.99 34 $5.99 26 $3.99 8 $3.99 27 $4.99 5
4 $5.99 13 $3.99 37 $5.99 15 $3.99 27 $4.99 8
5 $5.99 49 $3.99 1 $3.99 9 $5.99 37 $4.99 4
6 $3.99 31 $5.99 12 $5.99 6 $3.99 18 $4.99 33
7 $3.99 37 $3.99 10 $5.99 5 $5.99 35 $4.99 13
8 $3.99 16 $3.99 14 $3.99 5 $3.99 51 $4.99 14

The first choice set consists of Brand 1 at $3.99, Brand 2 at $5.99, Brand 3 at $3.99, Brand 4 at $5.99,
and Other at $4.99. From this choice set, Brand 1 was chosen 4 times, Brand 2 was chosen 29 times,
Brand 3 was chosen 16 times, Brand 4 was chosen 42 times, and Other was chosen 9 times.

Processing the Data

As in the previous examples, we will process the data to create a data set with one stratum for each
choice set within each subject and m alternatives per stratum. This example will have 100 people
times 5 alternatives times 8 choice sets equals 4000 observations. The first five observations are for the
first subject and the first choice set, the next five observations are for the second subject and the first
choice set, ..., the next five observations are for the one-hundredth subject and the first choice set, the
next five observations are for the first subject and the second choice set, and so on. Subject 1 in the
first choice set is almost certainly not the same as subject 1 in subsequent choice sets since we were
given aggregate data. However, that is not important. What is important is that we have a subject
and choice set variable whose unique combinations identify each choice set within each subject. In
previous examples, we specified strata Subj Set with PROC PHREG, and our data were sorted by
choice set within subject. We can still use the same specification even though our data are now sorted
by subject within choice set. This next step reads and prepares the data.

%let m = 5; /* Number of Brands in Each Choice Set */
/* (including Other) */

title ’Brand Choice Example, Multinomial Logit Model’;

proc format;
value brand 1 = ’Brand 1’ 2 = ’Brand 2’ 3 = ’Brand 3’

4 = ’Brand 4’ 5 = ’Other’;
run;
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data price;
array p[&m] p1-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice */

input p1-p&m f1-f&m;
keep subj set brand price c p1-p&m;

* Store choice set and subject number to stratify;
Set = _n_; Subj = 0;

do i = 1 to &m; /* Loop over the &m frequencies */
do ci = 1 to f[i]; /* Loop frequency of choice times */

subj + 1; /* Subject within choice set */
do Brand = 1 to &m; /* Alternatives within choice set */

Price = p[brand];

* Output first choice: c=1, unchosen: c=2;
c = 2 - (i eq brand); output;
end;

end;
end;

format brand brand.;

datalines;
3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14
;

proc print data=price(obs=15);
var subj set c price brand;
run;

The inner loop do Brand = 1 to &m creates all of the observations for the m alternatives within a
person/choice set combination. Within a choice set (row of input data), the outer two loops, do i =
1 to &m and do ci = 1 to f[i] execute the code inside 100 times, the variable Subj goes from 1 to
100. In the first choice set, they first create the data for the four subjects that chose Brand 1, then the
data for the 29 subjects that chose Brand 2, and so on. Here are the first 15 observations of the data
set.
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Brand Choice Example, Multinomial Logit Model

Obs Subj Set c Price Brand

1 1 1 1 3.99 Brand 1
2 1 1 2 5.99 Brand 2
3 1 1 2 3.99 Brand 3
4 1 1 2 5.99 Brand 4
5 1 1 2 4.99 Other
6 2 1 1 3.99 Brand 1
7 2 1 2 5.99 Brand 2
8 2 1 2 3.99 Brand 3
9 2 1 2 5.99 Brand 4

10 2 1 2 4.99 Other
11 3 1 1 3.99 Brand 1
12 3 1 2 5.99 Brand 2
13 3 1 2 3.99 Brand 3
14 3 1 2 5.99 Brand 4
15 3 1 2 4.99 Other

Note that the data set also contains the variables p1-p5 which contain the prices of each of the
alternatives. These variables, which are used in constructing the cross effects, will be discussed in more
detail on page 268.

proc print data=price(obs=5); run;

Brand Choice Example, Multinomial Logit Model

Obs p1 p2 p3 p4 p5 Set Subj Brand Price c

1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

Simple Price Effects

The data are coded using PROC TRANSREG.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set c;
run;
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The design option specifies that no model is fit; the procedure is just being used to code a design. The
nozeroconstant option specifies that if the coding creates a constant variable, it should not be zeroed.
The norestoremissing option specifies that missing values should not be restored when the out= data
set is created. The model statement names the variables to code and provides information about how
they should be coded. The specification class(brand / zero=none) specifies that the variable Brand
is a classification variable and requests a binary coding. The zero=none option creates binary variables
for all categories. The specification identity(price) specifies that the variable Price is quantitative
and hence should directly enter the model without coding. The lprefix=0 option specifies that when
labels are created for the binary variables, zero characters of the original variable name should be used
as a prefix. This means that the labels are created only from the level values. An output statement
names the output data set and drops variables that are not needed. Finally, the id statement names
the additional variables that we want copied from the input to the output data set.

proc phreg data=coded brief;
title2 ’Discrete Choice with Common Price Effect’;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Here are the results. (Recall that we used %phchoice(on) on page 143 to customize the output from
PROC PHREG.)

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.



Brand Choice Example with Aggregate Data 265

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2425.214
AIC 2575.101 2435.214
SBC 2575.101 2458.637

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Other 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

Alternative-Specific Price Effects

In the next step, the data are coded for fitting a multinomial logit model with brand by price effects.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) |

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id subj set c;
run;

The PROC TRANSREG model statement has a vertical bar, “|”, between the class specification and
the identity specification. Since the zero=none option is specified with class, the vertical bar creates
two sets of variables: five indicator variables for the brand effects and five more variables for the brand
by price interactions. The separators= option allows you to specify two label component separators
as quoted strings. The specification separators=’’ ’ ’ (separators= quote quote space quote space
quote) specifies a null string (quote quote) and a blank (quote space quote). The separators=’’ ’ ’
option in the class specification specifies the separators that are used to construct the labels for the
main effect and interaction terms, respectively. By default, the alternative-specific price effects−the
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brand by price interactions−would have labels like ’Brand 1 * Price’ since the default second value
for separators= is ’ * ’ (a quoted space asterisk space). Specifying ’ ’ (a quoted space) as the second
value creates labels of the form ’Brand 1 Price’. Since lprefix=0, the main-effects separator, which
is the first separators= value, ’’ (quote quote), is ignored. Zero name or input variable label characters
are used to construct the label. The label is simply the formatted value of the class variable. The
next steps print the first two coded choice sets and perform the analysis.

proc print data=coded(obs=10) label;
title2 ’Discrete Choice with Brand by Price Effects’;
var subj set c brand price &_trgind;
run;

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

title2;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

Brand Brand Brand Brand
Obs Subj Set c Brand Price 1 2 3 4

1 1 1 1 Brand 1 3.99 1 0 0 0
2 1 1 2 Brand 2 5.99 0 1 0 0
3 1 1 2 Brand 3 3.99 0 0 1 0
4 1 1 2 Brand 4 5.99 0 0 0 1
5 1 1 2 Other 4.99 0 0 0 0
6 2 1 1 Brand 1 3.99 1 0 0 0
7 2 1 2 Brand 2 5.99 0 1 0 0
8 2 1 2 Brand 3 3.99 0 0 1 0
9 2 1 2 Brand 4 5.99 0 0 0 1
10 2 1 2 Other 4.99 0 0 0 0

Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs Other Price Price Price Price Price

1 0 3.99 0.00 0.00 0.00 0.00
2 0 0.00 5.99 0.00 0.00 0.00
3 0 0.00 0.00 3.99 0.00 0.00
4 0 0.00 0.00 0.00 5.99 0.00
5 1 0.00 0.00 0.00 0.00 4.99
6 0 3.99 0.00 0.00 0.00 0.00
7 0 0.00 5.99 0.00 0.00 0.00
8 0 0.00 0.00 3.99 0.00 0.00
9 0 0.00 0.00 0.00 5.99 0.00
10 1 0.00 0.00 0.00 0.00 4.99
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Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2424.812
AIC 2575.101 2440.812
SBC 2575.101 2478.288

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 150.2891 8 <.0001
Score 154.2563 8 <.0001
Wald 143.1425 8 <.0001
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Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0 . . .

The likelihood for this model is essentially the same as for the simpler, common-price-slope model fit
previously, −2 log(LC) = 2425.214 compared to 2424.812. You can test the null hypothesis that the
two models are not significantly different by comparing their likelihoods. The difference between two
−2 log(LC)’s (the number reported under ’With Covariates’ in the output) has a chi-square distribution.
We can get the df for the test by subtracting the two df for the two likelihoods. The difference
2425.214− 2424.812 = 0.402 is distributed χ2 with 8− 5 = 3 df and is not statistically significant.

Mother Logit Model

This next step fits the so-called “mother logit” model. This step creates the full design matrix, including
the brand, price, and cross effects. A cross effect represents the effect of one alternative on the utility
of another alternative. First, let’s look at the input data set for the first choice set.

proc print data=price(obs=5) label;
run;

Brand Choice Example, Multinomial Logit Model

Obs p1 p2 p3 p4 p5 Set Subj Brand Price c

1 3.99 5.99 3.99 5.99 4.99 1 1 Brand 1 3.99 1
2 3.99 5.99 3.99 5.99 4.99 1 1 Brand 2 5.99 2
3 3.99 5.99 3.99 5.99 4.99 1 1 Brand 3 3.99 2
4 3.99 5.99 3.99 5.99 4.99 1 1 Brand 4 5.99 2
5 3.99 5.99 3.99 5.99 4.99 1 1 Other 4.99 2

The input consists of Set, Subj, Brand, Price, and a choice time variable c. In addition, it contains five
variables p1 through p5. The first observation of the Price variable shows us that the first alternative
costs $3.99; p1 contains the cost of alternative 1, $3.99, which is the same for all alternatives. It does
not matter which alternative you are looking at, p1 shows that alternative 1 costs $3.99. Similarly, the
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second observation of the Price variable shows us that the second alternative costs $5.99; p2 contains
the cost of alternative 2, $5.99, which is the same for all alternatives. There is one price variable, p1
through p5, for each of the five alternatives.

In all of the previous examples, we have used models that were coded so that the utility of an alternative
only depended on the attributes of that alternative. For example, the utility of Brand 1 would only
depend on the Brand 1 name and its price. In contrast, p1-p5 contain information about each of
the other alternatives’ attributes. We will construct cross effects using the interaction of p1-p5 and
the Brand variable. In a model with cross effects, the utility for an alternative depends on both that
alternative’s attributes and the other alternatives’ attributes. The IIA (independence from irrelevant
alternatives) property states that utility only depends on an alternative’s own attributes. Cross effects
add other alternative’s attributes to the model, so they can be used to test for violations of IIA. (See
pages 275, 283, 476, and 480 for other discussions of IIA.) Here is the PROC TRANSREG code for
the cross-effects model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) | identity(price)

identity(p1-p&m) *
class(brand / zero=none lprefix=0 separators=’’ ’ on ’) /

lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’ p5 = ’Other’;

id subj set c;
run;

The class(brand / ...) | identity(price) specification in the model statement is the same as
the previous analysis. The additional terms, identity(p1-p&m) * class(brand / ...) create the
cross effects. The second value of the separators= option, ’ on’ is used to create labels like ’Brand
1 on Brand 2’ instead of the default ’Brand 1 * Brand 2’. It is important to note that you must
specify the cross effect by specifying identity with the price factors, followed by the asterisk, followed
by class and the brand effect, in that order. The order of the specification determines the order in
which brand names are added to the labels. Do not specify the brand variable first; doing so will create
incorrect labels.

With m alternatives, there are m ×m cross effects, but as we will see, many of them are zero. The
first coded choice set is printed with the following PROC PRINT steps. Multiple steps are used to
facilitate explaining the coding.

title2 ’Discrete Choice with Cross Effects, Mother Logit’;
proc format; value zer 0 = ’ 0’ 1 = ’ 1’; run;
proc print data=coded(obs=5) label; var subj set c brand price; run;
proc print data=coded(obs=5) label; var Brand:;

format brand: zer5.2 brand brand.; run;
proc print data=coded(obs=5) label; var p1B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p2B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p3B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p4B:; format p: zer5.2; id brand; run;
proc print data=coded(obs=5) label; var p5B:; format p: zer5.2; id brand; run;

The coded data set contains the strata variable Subj and Set, choice time variable c, and Brand and
Price. Brand and Price were used to create the coded independent variables but they are not used
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in the analysis with PROC PHREG.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Obs Subj Set c Brand Price

1 1 1 1 Brand 1 3.99
2 1 1 2 Brand 2 5.99
3 1 1 2 Brand 3 3.99
4 1 1 2 Brand 4 5.99
5 1 1 2 Other 4.99

The effects ’Brand 1’ through ’Other’ in the next output are the binary brand effect variables. They
indicate the brand for each alternative. The effects ’Brand 1 Price’ through ’Other Price’ are
alternative-specific price effects. They indicate the price for each alternative. All ten of these variables
are independent variables in the analysis, and their names are part of the & trgind macro variable list,
as are all of the cross effects that are described next.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand Brand 1 Brand 2 Brand 3 Brand 4 Other
Obs 1 2 3 4 Other Price Price Price Price Price Brand

1 1 0 0 0 0 3.99 0 0 0 0 Brand 1
2 0 1 0 0 0 0 5.99 0 0 0 Brand 2
3 0 0 1 0 0 0 0 3.99 0 0 Brand 3
4 0 0 0 1 0 0 0 0 5.99 0 Brand 4
5 0 0 0 0 1 0 0 0 0 4.99 Other

The effects ’Brand 1 on Brand 1’ through ’Brand 1 on Other’ in the next output are the first five
cross effects.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
1 on 1 on 1 on 1 on Brand 1

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 3.99 0 0 0 0
Brand 2 0 3.99 0 0 0
Brand 3 0 0 3.99 0 0
Brand 4 0 0 0 3.99 0
Other 0 0 0 0 3.99
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They represent the effect of Brand 1 at its price on the utility of each alternative. The label ’Brand
n on Brand m’ is read as ’the effect of Brand n at its price on the utility of Brand m.’ For the first
choice set, these first five cross effects consist entirely of zeros and $3.99’s, where $3.99 is the price of
Brand 1 in this choice set. The nonzero value is constant across all of the alternatives in each choice
set since Brand 1 has only one price in each choice set. Notice the ’Brand 1 on Brand 1’ term, which
is the effect of Brand 1 at its price on the utility of Brand 1. Also notice the ’Brand 1 Price’ effect,
which is shown in the previous output. The description “the effect of Brand 1 at its price on the utility
of Brand 1” is just a convoluted way of describing the Brand 1 price effect. The ’Brand 1 on Brand
1’ cross effect is the same as the Brand 1 price effect, hence when we do the analysis, we will see that
the coefficient for the ’Brand 1 on Brand 1’ cross effect is zero.

The effects ’Brand 2 on Brand 1’ through ’Brand 2 on Other’ in the next output are the next five
cross effects.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
2 on 2 on 2 on 2 on Brand 2

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 5.99 0 0 0 0
Brand 2 0 5.99 0 0 0
Brand 3 0 0 5.99 0 0
Brand 4 0 0 0 5.99 0
Other 0 0 0 0 5.99

They represent the effect of Brand 2 at its price on the utility of each alternative. For the first choice
set, these five cross effects consist entirely of zeros and $5.99’s, where $5.99 is the price of Brand 2
in this choice set. The nonzero value is constant across all of the alternatives in each choice set since
Brand 2 has only one price in each choice set. Notice the ’Brand 2 on Brand 2’ term, which is the
effect of Brand 2 at its price on the utility of Brand 2. The description “the effect of Brand 2 at its
price on the utility of Brand 2” is just a convoluted way of describing the Brand 2 price effect. The
’Brand 2 on Brand 2’ cross effect is the same as the Brand 2 price effect, hence when we do the
analysis, we will see that the coefficient for the ’Brand 2 on Brand 2’ cross effect is zero.

The effects ’Brand 3 on Brand 1’ through ’Brand 3 on Other’ in the next output are the next five
cross effects.
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Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
3 on 3 on 3 on 3 on Brand 3

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 3.99 0 0 0 0
Brand 2 0 3.99 0 0 0
Brand 3 0 0 3.99 0 0
Brand 4 0 0 0 3.99 0
Other 0 0 0 0 3.99

They represent the effect of Brand 3 at its price on the utility of each alternative. For the first choice
set, these five cross effects consist entirely of zeros and $3.99’s, where $3.99 is the price of Brand 3 in
this choice set. Notice that the ’Brand 3 on Brand 3’ term is the same as the Brand 3 price effect,
hence when we do the analysis, we will see that the coefficient for the ’Brand 3 on Brand 3’ cross
effect is zero.

Here are the remaining cross effects. They follow the same pattern that was described for the previous
cross effects.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Brand Brand Brand Brand
4 on 4 on 4 on 4 on Brand 4

Brand Brand 1 Brand 2 Brand 3 Brand 4 on Other

Brand 1 5.99 0 0 0 0
Brand 2 0 5.99 0 0 0
Brand 3 0 0 5.99 0 0
Brand 4 0 0 0 5.99 0
Other 0 0 0 0 5.99

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

Other on Other on Other on Other on Other on
Brand Brand 1 Brand 2 Brand 3 Brand 4 Other

Brand 1 4.99 0 0 0 0
Brand 2 0 4.99 0 0 0
Brand 3 0 0 4.99 0 0
Brand 4 0 0 0 4.99 0
Other 0 0 0 0 4.99
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We have been describing variables by their labels. While it is not necessary to look at it, the & trgind
macro variable name list that PROC TRANSREG creates for this problem is as follows:

%put &_trgind;

BrandBrand_1 BrandBrand_2 BrandBrand_3 BrandBrand_4 BrandOther
BrandBrand_1Price BrandBrand_2Price BrandBrand_3Price BrandBrand_4Price
BrandOtherPrice p1BrandBrand_1 p1BrandBrand_2 p1BrandBrand_3 p1BrandBrand_4
p1BrandOther p2BrandBrand_1 p2BrandBrand_2 p2BrandBrand_3 p2BrandBrand_4
p2BrandOther p3BrandBrand_1 p3BrandBrand_2 p3BrandBrand_3 p3BrandBrand_4
p3BrandOther p4BrandBrand_1 p4BrandBrand_2 p4BrandBrand_3 p4BrandBrand_4
p4BrandOther p5BrandBrand_1 p5BrandBrand_2 p5BrandBrand_3 p5BrandBrand_4
p5BrandOther

The analysis proceeds in exactly the same manner as before.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Cross Effects, Mother Logit

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 4000
Number of Observations Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 800 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 2575.101 2349.325
AIC 2575.101 2389.325
SBC 2575.101 2483.018

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 225.7752 20 <.0001
Score 218.4500 20 <.0001
Wald 190.0257 20 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 1.24963 1.31259 0.9064 0.3411
Brand 2 1 -0.16269 1.38579 0.0138 0.9065
Brand 3 1 -3.90179 1.56511 6.2150 0.0127
Brand 4 1 2.49435 1.25537 3.9480 0.0469
Other 0 0 . . .
Brand 1 Price 1 0.51056 0.13178 15.0096 0.0001
Brand 2 Price 1 -0.04920 0.13411 0.1346 0.7137
Brand 3 Price 1 -0.27594 0.15517 3.1623 0.0754
Brand 4 Price 1 0.28951 0.12192 5.6389 0.0176
Other Price 0 0 . . .
Brand 1 on Brand 1 0 0 . . .
Brand 1 on Brand 2 1 0.51651 0.13675 14.2653 0.0002
Brand 1 on Brand 3 1 0.66122 0.15655 17.8397 <.0001
Brand 1 on Brand 4 1 0.32806 0.12664 6.7105 0.0096
Brand 1 on Other 0 0 . . .
Brand 2 on Brand 1 1 -0.39876 0.12832 9.6561 0.0019
Brand 2 on Brand 2 0 0 . . .
Brand 2 on Brand 3 1 -0.01755 0.15349 0.0131 0.9090
Brand 2 on Brand 4 1 -0.33802 0.12220 7.6512 0.0057
Brand 2 on Other 0 0 . . .
Brand 3 on Brand 1 1 -0.43868 0.13119 11.1823 0.0008
Brand 3 on Brand 2 1 -0.31541 0.13655 5.3356 0.0209
Brand 3 on Brand 3 0 0 . . .
Brand 3 on Brand 4 1 -0.54854 0.12528 19.1723 <.0001
Brand 3 on Other 0 0 . . .
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Brand 4 on Brand 1 1 0.24398 0.12781 3.6443 0.0563
Brand 4 on Brand 2 1 -0.01214 0.13416 0.0082 0.9279
Brand 4 on Brand 3 1 0.40500 0.15285 7.0211 0.0081
Brand 4 on Brand 4 0 0 . . .
Brand 4 on Other 0 0 . . .
Other on Brand 1 0 0 . . .
Other on Brand 2 0 0 . . .
Other on Brand 3 0 0 . . .
Other on Brand 4 0 0 . . .
Other on Other 0 0 . . .

The results consist of:

• four nonzero brand effects and a zero for the constant alternative

• four nonzero alternative-specific price effects and a zero for the constant alternative

• 5 × 5 = 25 cross effects, the number of alternatives squared, but only (5 − 1) × (5 − 2) = 12 of
them are nonzero (four brands not counting Other affecting each of the remaining three brands).

• There are three cross effects for the effect of Brand 1 on Brands 2, 3, and 4.

• There are three cross effects for the effect of Brand 2 on Brands 1, 3, and 4.

• There are three cross effects for the effect of Brand 3 on Brands 1, 2, and 4.

• There are three cross effects for the effect of Brand 4 on Brands 1, 2, and 3.

All coefficients for the constant (other) alternative are zero as are the cross effects of a brand on itself.

The mother logit model is used to test for violations of IIA (independence from irrelevant alternatives).
IIA means the odds of choosing alternative ci over cj do not depend on the other alternatives in the
choice set. Ideally, this more general model will not significantly explain more variation in choice than
the restricted models. Also, if IIA is satisfied, few if any of the cross-effect terms should be significantly
different from zero. (See pages 269, 283, 476, and 480 for other discussions of IIA.) In this case, it
appears that IIA is not satisfied (the data are artificial), so the more general mother logit model is
needed. The chi-square statistic is 2424.812− 2349.325 = 75.487 with 20− 8 = 12 df (p < 0.0001).

You could eliminate some of the zero parameters by changing zero=none to zero=’Other’ and elimi-
nating p5 (p&m) from the model.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’Other’ separators=’’ ’ ’) | identity(price)

identity(p1-p4) * class(brand / zero=’Other’ separators=’’ ’ on ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;

id subj set c;
run;
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You could also eliminate the brand by price effects and instead capture brand by price effects as the
cross effect of a variable on itself.

proc transreg design data=price nozeroconstant norestoremissing;
model class(brand / zero=’Other’ separators=’’ ’ ’)

identity(p1-p4) * class(brand / zero=’Other’ separators=’’ ’ on ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’

p1 = ’Brand 1’ p2 = ’Brand 2’ p3 = ’Brand 3’
p4 = ’Brand 4’;

id subj set c;
run;

In both cases, the analysis (not shown) would be run in the usual manner. Except for the elimination
of zero terms, and in the second case, the change to capture the price effects in the cross effects, the
results are identical.

Aggregating the Data

In all examples so far (except the last part of the last vacation example), the data set has been created
for analysis with one stratum for each choice set and subject combination. Such data sets can be large.
The data can also be arrayed with a frequency variable and each choice set forming a separate stratum.
This example illustrates how.

title ’Brand Choice Example, Multinomial Logit Model’;
title2 ’Aggregate Data’;

%let m = 5; /* Number of Brands in Each Choice Set */
/* (including Other) */

proc format;
value brand 1 = ’Brand 1’ 2 = ’Brand 2’ 3 = ’Brand 3’

4 = ’Brand 4’ 5 = ’Other’;
run;

data price2;
array p[&m] p1-p&m; /* Prices for the Brands */
array f[&m] f1-f&m; /* Frequency of Choice */

input p1-p&m f1-f&m;
keep set price brand freq c p1-p&m;

* Store choice set number to stratify;
Set = _n_;
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do Brand = 1 to &m;

Price = p[brand];

* Output first choice: c=1, unchosen: c=2;
Freq = f[brand]; c = 1; output;

* Output number of times brand was not chosen.;
freq = sum(of f1-f&m) - freq; c = 2; output;

end;

format brand brand.;

datalines;
3.99 5.99 3.99 5.99 4.99 4 29 16 42 9
5.99 5.99 5.99 5.99 4.99 12 19 22 33 14
5.99 5.99 3.99 3.99 4.99 34 26 8 27 5
5.99 3.99 5.99 3.99 4.99 13 37 15 27 8
5.99 3.99 3.99 5.99 4.99 49 1 9 37 4
3.99 5.99 5.99 3.99 4.99 31 12 6 18 33
3.99 3.99 5.99 5.99 4.99 37 10 5 35 13
3.99 3.99 3.99 3.99 4.99 16 14 5 51 14
;

proc print data=price2(obs=10);
var set c freq price brand;
run;

Brand Choice Example, Multinomial Logit Model
Aggregate Data

Obs Set c Freq Price Brand

1 1 1 4 3.99 Brand 1
2 1 2 96 3.99 Brand 1
3 1 1 29 5.99 Brand 2
4 1 2 71 5.99 Brand 2
5 1 1 16 3.99 Brand 3
6 1 2 84 3.99 Brand 3
7 1 1 42 5.99 Brand 4
8 1 2 58 5.99 Brand 4
9 1 1 9 4.99 Other
10 1 2 91 4.99 Other

This data set has 5 brands times 2 observations times 8 choice sets for a total of 80 observations,
compared to 100 × 5 × 8 = 4000 using the standard method. Two observations are created for each
alternative within each choice set. The first contains the number of people who chose the alternative,
and the second contains the number of people who did not choose the alternative.
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To analyze the data, specify strata Set and freq Freq.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none) identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Common Price Effect, Aggregate Data’;
model c*c(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

These steps produced the following results.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Common Price Effect, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq
Ties Handling BRESLOW

Number of Observations Read 80
Number of Observations Used 80
Sum of Frequencies Read 4000
Sum of Frequencies Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 500 100 400
2 2 500 100 400
3 3 500 100 400
4 4 500 100 400
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5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400

---------------------------------------------------------------
Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 9943.373 9793.486
AIC 9943.373 9803.486
SBC 9943.373 9826.909

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 149.8868 5 <.0001
Score 153.2328 5 <.0001
Wald 142.9002 5 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 0.66727 0.12305 29.4065 <.0001
Brand 2 1 0.38503 0.12962 8.8235 0.0030
Brand 3 1 -0.15955 0.14725 1.1740 0.2786
Brand 4 1 0.98964 0.11720 71.2993 <.0001
Other 0 0 . . .
Price 1 0.14966 0.04406 11.5379 0.0007

The summary table is small with eight rows, one row per choice set. Each row represents 100 chosen
alternatives and 400 unchosen. The ’Analysis of Maximum Likelihood Estimates’ table exactly matches
the one produced by the standard analysis. The -2 LOG L statistics are different than before: 9793.486
now compared to 2425.214 previously. This is because the data are arrayed in this example so that
the partial likelihood of the proportional hazards model fit by PROC PHREG with the ties=breslow
option is now proportional to−not identical to−the likelihood for the choice model. However, the Model
Chi-Square statistics, df, and p-values are the same as before. The two corresponding pairs of -2 LOG
L’s differ by a constant 9943.373 − 2575.101 = 9793.486 − 2425.214 = 7368.272 = 2 × 800 × log(100).
Since the χ2 is the -2 LOG L without covariates minus -2 LOG L with covariates, the constants cancel
and the χ2 test is correct for both methods.
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The technique of aggregating the data and using a frequency variable can be used for other models as
well, for example with brand by price effects.

proc transreg design data=price2 nozeroconstant norestoremissing;
model class(brand / zero=none separators=’’ ’ ’) |

identity(price) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
label price = ’Price’;
id freq set c;
run;

proc phreg data=coded;
title2 ’Discrete Choice with Brand by Price Effects, Aggregate Data’;
model c*c(2) = &_trgind / ties=breslow;
strata set;
freq freq;
run;

This step produced the following results. The only thing that changes from the analysis with one
stratum for each subject and choice set combination is the likelihood.

Brand Choice Example, Multinomial Logit Model
Discrete Choice with Brand by Price Effects, Aggregate Data

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Freq
Ties Handling BRESLOW

Number of Observations Read 80
Number of Observations Used 80
Sum of Frequencies Read 4000
Sum of Frequencies Used 4000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 500 100 400
2 2 500 100 400
3 3 500 100 400
4 4 500 100 400
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5 5 500 100 400
6 6 500 100 400
7 7 500 100 400
8 8 500 100 400

---------------------------------------------------------------
Total 4000 800 3200

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 9943.373 9793.084
AIC 9943.373 9809.084
SBC 9943.373 9846.561

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 150.2891 8 <.0001
Score 154.2562 8 <.0001
Wald 143.1425 8 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 -0.00972 0.43555 0.0005 0.9822
Brand 2 1 -0.62230 0.48866 1.6217 0.2028
Brand 3 1 -0.81250 0.60318 1.8145 0.1780
Brand 4 1 0.31778 0.39549 0.6456 0.4217
Other 0 0 . . .
Brand 1 Price 1 0.13587 0.08259 2.7063 0.1000
Brand 2 Price 1 0.20074 0.09210 4.7512 0.0293
Brand 3 Price 1 0.13126 0.11487 1.3057 0.2532
Brand 4 Price 1 0.13478 0.07504 3.2255 0.0725
Other Price 0 0 . . .

Previously, with one stratum per choice set within subject, we compared these models as follows: “The
difference 2425.214 − 2424.812 = 0.402 is distributed χ2 with 8 − 5 = 3 df and is not statistically
significant.” The difference between two −2 log(LC)’s equals the difference between two −2 log(LB)’s,
since the constant terms (800× log(100)) cancel, 9793.486− 9793.084 = 2425.214− 2424.812 = 0.402.
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Choice and Breslow Likelihood Comparison

This section explains why the -2 LOG L values differ by a constant with aggregate data versus individual
data. It may be skipped by all but the most dedicated readers.

Consider the choice model with a common price slope. Let x0 represent the price of the brand. Let
x1, x2, x3, and x4 be indicator variables representing the choice of brands. Let x = (x0 x1 x2 x3 x4)
be the vector of alternative attributes. (A sixth element for ’Other’ is omitted, since its parameter is
always zero given the other brands.)

Consider the first choice set. There are five distinct vectors of alternative attributes
x1 = (3.99 1 0 0 0) x2 = (5.99 0 1 0 0) x3 = (3.99 0 0 1 0) x4 = (5.99 0 0 0 1)
x5 = (4.99 0 0 0 0)

The vector x2, for example, represents choice of Brand 2, and x5 represents the choice of Other. One
hundred individuals were asked to choose one of the m = 5 brands from each of the eight sets. Let f1,
f2, f3, f4, and f5 be the number of times each brand was chosen. For the first choice set, f1 = 4, f2 = 29,
f3 = 16, f4 = 42, and f5 = 9. Let N be the total frequency for each choice set, N =

∑5
j=1 fj = 100.

The likelihood LC
1 for the first choice set data is

LC
1 =

exp
((∑5

j=1 fjxj

)
β

)
[∑5

j=1 exp(xjβ)
]N

The joint likelihood for all eight choice sets is the product of the likelihoods

LC =
8∏

k=1

LC
k

The Breslow likelihood for this example, LB
k , for the kth choice set, is the same as the likelihood for

the choice model, except for a multiplicative constant.

LC
k = NNLB

k = 100100LB
k

Therefore, the Breslow likelihood for all eight choice sets is

LB =
8∏

k=1

LB
k = N−8NLC = 100−800LC

The two likelihoods are not exactly the same, because each choice set is designated as a separate
stratum, instead of each choice set within each subject.

The log likelihood for the choice model is

log(LC) = 800× log(100) + log(LB),
log(LC) = 800× log(100) + (−0.5)× 9793.486,

log(LC) = −1212.607

and −2 log(LC) = 2425.214, which matches the earlier output. However, it is usually not necessary to
obtain this value.
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Food Product Example with Asymmetry and
Availability Cross Effects

This example is based on the the choice example from page 111. This example discusses the multinomial
logit model, number of parameters, choosing the number of choice sets, designing the choice experiment,
long design searches, examining the design, examining the subdesigns, examining the aliasing structure,
blocking the design, testing the design before data collection, generating artificial data, processing the
data, coding, cross effects, availability, multinomial logit model results, modeling subject attributes,
results, and interpretation.

Consider the problem of using a discrete choice model to study the effect of introducing a retail food
product. This may be useful, for instance, to refine a marketing plan or to optimize a product prior to
test market. A typical brand team will have several concerns such as knowing the potential market share
for the product, examining the source of volume, and providing guidance for pricing and promotions.
The brand team may also want to know what brand attributes have competitive clout and want to
identify competitive attributes to which they are vulnerable.

To develop this further, assume our client wishes to introduce a line extension in the category of frozen
entrées. The client has one nationally branded competitor, a regional competitor in each of three
regions, and a profusion of private label products at the grocery chain level. The product may come
in two different forms: stove-top or microwaveable. The client believes that the private labels are very
likely to mimic this line extension and to sell it at a lower price. The client suspects that this strategy
on the part of private labels may work for the stove-top version but not for the microwaveable, where
they have the edge on perceived quality. They also want to test the effect of a shelf talker that will
draw attention to their product.

The Multinomial Logit Model

This problem can be set up as a discrete choice model in which a respondent’s choice among brands,
given choice set Ca of available brands, will correspond to the brand with the highest utility. For each
brand i, the utility Ui is the sum of a systematic component Vi and a random component ei. The
probability of choosing brand i from choice set Ca is therefore:

P (i|Ca) = P (Ui > max(Uj)) = P (Vi + ei > max(Vj + ej)) ∀ (j 6= i) ∈ Ca

Assuming that the ei follow an extreme value type I distribution, the conditional probabilities P (i|Ca)
can be found using the multinomial logit (MNL) formulation of McFadden (1974).

P (i|Ca) = exp(Vi)/
∑

j∈Ca
exp(Vj)

One of the consequences of the MNL formulation is the property of independence from irrelevant
alternatives (IIA). Under the assumption of IIA, all cross effects are assumed to be equal, so that if
a brand gains in utility, it draws share from all other brands in proportion to their current shares.
Departures from IIA exist when certain subsets of brands are in more direct competition and tend to
draw a disproportionate amount of share from each other than from other members in the category.
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IIA is frequently described using a transportation example. Say you have three alternatives for getting
to work: bicycle, car, or a blue bus. If a fourth alternative became available, a red bus, then according
to IIA the red bus should draw riders from the other alternatives in proportion to their current usage.
However, in this case, IIA would be violated, and instead the red bus would draw more riders from the
blue bus than from car drivers and bicycle riders.

The mother logit formulation of McFadden (1974) can be used to capture departures from IIA. In
a mother logit model, the utility for brand i is a function of both the attributes of brand i and the
attributes of other brands. The effect of one brand’s attributes on another is termed a cross effect. In the
case of designs in which only subsets Ca of the full shelf set C appear, the effect of the presence/absence
of one brand on the utility of another is termed an availability cross effect. (See pages 269, 275, 476,
and 480 for other discussions of IIA.)

Set Up

In the frozen entrée example, there are five alternatives: the client’s brand, the client’s line extension, a
national branded competitor, a regional brand and a private label brand. Several regional and private
labels can be tested in each market, then aggregated for the final model. Note that the line extension
is treated as a separate alternative rather than as a level of the client brand. This enables us to model
the source of volume for the new entry and to quantify any cannibalization that occurs. Each brand
is shown at either two or three price points. Additional price points are included so that quadratic
models of price elasticity can be tested. The indicator for the presence or absence of a brand in the
shelf set is coded using one level of the Price variable. The layout of factors and levels is given in the
following table.

Factors and Levels

Alternative Factor Levels Brand Description
1 X1 4 Client 1.29, 1.69, 2.09 + absent

2 X2 4 Client Line Extension 1.39, 1.89, 2.39, + absent
X3 2 microwave/stove-top
X4 2 shelf talker yes/no

3 X5 3 Regional 1.99, 2.49 + absent

4 X6 3 Private Label 1.49, 2.29 absent
X7 2 microwave/stove-top

5 X8 3 National 1.99 + 2.39 + absent

In addition to intercepts and main effects, we also require that all two-way interactions within alter-
natives be estimable: x2*x3, x2*x4, x3*x4 for the line extension and x6*x7 for private labels. This
will enable us to test for different price elasticities by form (stove-top versus microwaveable) and to
see if the promotion works better combined with a low price or with different forms. Using a linear
model for x1-x8, the total number of parameters including the intercept, all main effects, and two-way
interactions with brand is 25. This assumes that price is treated as qualitative. The actual number
of parameters in the choice model is larger than this because of the inclusion of cross effects. Using
indicator variables to code availability, the systematic component of utility for brand i can be expressed
as:
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Vi = ai +
∑

k(bik × xik) +
∑

j 6=i zj(dij +
∑

l(gijl × xjl))

where

ai = intercept for brand i
bik = effect of attribute k for brand i, where k = 1, ..,Ki

xik = level of attribute k for brand i
dij = availability cross effect of brand j on brand i

zj = availability code =

{
1 if j ∈ Ca,
0 otherwise

gijl = cross effect of attribute l for brand j on brand i, where l = 1, .., Lj

xjl = level of attribute l for brand j.

The xik and xjl could be expanded to include interaction and polynomial terms. In an availability
design, each brand is present in only a fraction of the choice sets. The size of this fraction or subdesign
is a function of the number of levels of the alternative-specific variable that is used to code availability
(usually price). For instance, if price has three valid levels and a fourth zero level to indicate absence,
then the brand will appear in only three out of four runs. Following Lazari and Anderson (1994), the
size of each subdesign determines how many model equations can be written for each brand in the
discrete choice model. If Xi is the subdesign matrix corresponding to Vi, then each Xi must be full
rank to ensure that the choice set design provides estimates for all parameters.

To create the design, a full-factorial candidate set is generated consisting of 3456 runs. It is then reduced
to 2776 runs that contain between two and four brands so that the respondent is never required to
compare more than four brands at a time. In the model specification, we designate all variables as
classification variables and require that all main effects and two-way interactions within brands be
estimable. The number of runs calculations are based on the number of parameters that we wish
to estimate in the various subdesigns Xi of X. Assuming that there is a None alternative used as
a reference level, the numbers of parameters required for various alternatives are shown in the next
table along with the sizes of the subdesigns (rounded down) for various numbers of runs. Parameters
for quadratic price models are given in parentheses. Note that the effect of private label being in a
microwaveable or stove-top form (stove/micro cross effect) is an explicit parameter under the client
line extension.

The subdesign sizes are computed by taking the floor of the number of runs from the marginal times
the expected proportion of runs in which the alternative will appear. For example, for the client brand
which has three prices and not available and 22 runs, floor(22 × 3/4) = 16; for the competitor and
32 runs, floor(32 × 2/3) = 21. The number of runs chosen was n=26. This number provides adequate
degrees of freedom for the linear price model and will also allow estimation of direct quadratic price
effects. To estimate quadratic cross effects for price would require 32 runs at the very least. Although
the technique of using two-way interactions between nominal level variables will usually guarantee that
all direct and cross effects are estimable, it is sometimes necessary and good practice to check the ranks
of the subdesigns for more complex models (Lazari and Anderson 1994).
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Parameters
Client Private

Effect Client Line Extension Regional Label Competitor
intercept 1 1 1 1 1
availability cross effects 4 4 4 4 4
direct price effect 1 (2) 1 (2) 1 1 1
price cross effects 4 (8) 4 (8) 4 4 4
stove versus microwave - 1 - 1 -
stove/micro cross effects - 1 - - -
shelf talker - 1 - - -
price*stove/microwave - 1 (2) - 1 -
price*shelf talker - 1 (2) - - -
stove/micro*shelf talker - 1 - - -

Total 10 (15) 16 (23) 10 12 10

Subdesign size

22 runs 16 16 14 14 14
26 runs 19 19 17 17 17
32 runs 24 24 21 21 21

Designing the Choice Experiment

This example originated with Kuhfeld, Tobias, and Garratt (1994), long before the %MktRuns macro
existed. At least for now, we will skip the customary step of running the %MktRuns macro to suggest
a design size and instead use the original size of 26 choice sets.

We will use the %MktEx autocall macro to create the design. (All of the autocall macros used in this
book are documented starting on page 597.) To recap, we want to make the design 233342 in 26 runs,
and we want the following interactions to be estimable: x2*x3 x2*x4 x3*x4 x6*x7. Furthermore,
there are restrictions on the design. Each of the price variables, x1, x2, x5, x6, and x8, has one
level−the maximum level−that indicates the alternative is not available in the choice set. We use this
to create choice sets with 2, 3, or 4 alternatives available. If (x1 < 4) then the first alternative is
available, if (x2 < 4) then the second alternative is available, if (x5 < 3) then the third alternative
is available, and so on. A Boolean term such as (x1 < 4) is one when true and zero otherwise. Hence,

((x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3))

is the number of available alternatives. It is simply the sum of some 1’s if available and 0’s if not
available.

We impose restrictions with the %MktEx macro by writing a macro, with IML statements, that quantifies
the badness of each run (or in this case, each choice set). We do this so bad = 0 is good and values
larger than zero are increasingly worse. We write our restrictions using an IML row vector x that
contains the levels (integers beginning with 1) of each of the factors in the ith choice set, the one the
macro is currently seeking to improve. The jth factor is x[j], or we may also use the factor names (for
example, x1, x2). (See pages 403 and 700 for other examples of restrictions.)
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We must use IML logical operators, which do not have all of the same syntax alternatives as DATA
step operators:

Do Not
Specify For Specify
= equals EQ
∧ = or ¬ = not equals NE
< less than LT
<= less than or equal to LE
> greater than GT
>= greater than or equal to GE
& and AND
| or OR
∧ or ¬ not NOT

To restrict the design, we must specify restrictions=macro-name, in this case restrictions=resmac,
that names the macro that quantifies badness. The first statement counts up the number of available
alternatives. The next two set the actual badness value. Note that the else bad = 0 statement is not
necessary sincebad is automatically initialized to zero by the %MktEx macro. If the number available
is less than two or greater than 4, then bad gets set to the absolute difference between the number
available and 3. Hence, zero available corresponds to bad = 3, one available corresponds to bad = 2,
two through four available corresponds to bad = 0, and five available corresponds to bad = 2. Do not
just set bad to zero when everything is fine and one otherwise, but the macro needs to know that when
it switches from zero available to one available, it is going in the right direction. For simple restrictions
like this, it does not matter very much. However, for complicated sets of restrictions, it is critical that
the bad variable is set to a count of the number of current restriction violations. Here is the code.¶

title ’Consumer Food Product Example’;

%macro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad = 0;
%mend;

%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=resmac, seed=377, outr=sasuser.Entree_LinDes1 )

Here are the initial messages the macro prints.

NOTE: Generating the fractional-factorial design, n=27.
NOTE: Generating the candidate set.
NOTE: Performing 60 searches of 2,776 candidates, full-factorial=3,456.

The tabled design initialization part of the coordinate-exchange algorithm iterations will be initialized
with the first 26 rows of a 27 run fractional-factorial design. This design has 13 three-level factors,
ten of which are used to make 233342. The initial design will be unbalanced and one row short of
orthogonal, so we would expect that other methods would be better for this problem. The macro also
tells us that it is performing 60 PROC OPTEX searches of 2776 candidates, and that the full-factorial

¶Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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design has 3456 runs. The macro is searching the full-factorial design minus the excluded choice sets.
Since the full-factorial design is not too large (less than 5000), and since there is no tabled design that
is very good for this problem, this is the kind of problem where we would expect the PROC OPTEX
modified Fedorov algorithm (Fedorov, 1972; Cook and Nachtsheim, 1980) algorithm to work best. The
macro chose 60 OPTEX iterations. In the fabric softener example, the macro did not try any OPTEX
iterations, because it knew it could directly make a 100% D-efficient design. In the vacation examples,
it ran the default minimum of 20 OPTEX iterations because the macro’s heuristics concluded that
OPTEX would probably not be the best approach for those problems. In this example, the macro’s
heuristics tried more iterations, since this is the kind of example where OPTEX works best.

Here is some of the output.

Consumer Food Product Example

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 84.3176 Can
1 2 1 84.3176 84.3176 Conforms
1 End 84.3176

2 Start 27.8626 Tab,Unb,Ran
2 1 1 76.5332 Conforms
2 End 80.4628

.

.

.

11 Start 24.5507 Tab,Ran
11 26 1 78.6100 Conforms
11 End 81.8604

12 Start 26.3898 Ran,Mut,Ann
12 1 1 67.0450 Conforms
12 End 83.0114

.

.

.

21 Start 45.9310 Ran,Mut,Ann
21 15 1 67.1046 Conforms
21 End 82.1657

NOTE: Performing 600 searches of 2,776 candidates.
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Consumer Food Product Example

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 84.3176 84.3176 Ini

1 Start 84.7548 Can
1 2 1 84.7548 84.7548 Conforms
1 End 84.7548

Consumer Food Product Example

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 84.7548 84.7548 Ini

1 Start 84.7548 Pre,Mut,Ann
1 2 1 82.6737 Conforms
1 14 1 84.7548 84.7548
1 End 82.6386

.

.

.

8 Start 84.7548 Pre,Mut,Ann
8 2 1 84.7548 84.7548 Conforms
8 14 1 84.7548 84.7548
8 21 2 84.7548 84.7548
8 12 3 84.7548 84.7548
8 12 6 84.7548 84.7548
8 18 1 84.7548 84.7548
8 2 2 84.7548 84.7548
8 End 84.7548

NOTE: Stopping since it appears that no improvement is possible.
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Consumer Food Product Example

The OPTEX Procedure

Class Level Information

Class Levels -Values-

x1 4 1 2 3 4
x2 4 1 2 3 4
x3 2 1 2
x4 2 1 2
x5 3 1 2 3
x6 3 1 2 3
x7 2 1 2

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 84.7548 71.1686 98.0583 0.9806

Design 1 (Can), which was created by the candidate-set search (using PROC OPTEX), had D-efficiency
or 84.3176, and the macro confirms that the design conforms to our restrictions. The tabled, unbal-
anced, and random initializations do not work as well. For each design, the macro iteration history
states the D-efficiency for the initial design (27.8626 in design 2), the D-efficiency when the restrictions
are met (76.5332, Conforms), and the D-efficiency for the final design (80.4628). The fully-random
initialization tends to work a little better than the tabled initialization for this problem, but not as
well as PROC OPTEX. At the end of the algorithm search phase, the macro decides to use PROC
OPTEX and performs 600 more searches, and it finds a design with 84.7548% D-efficiency. The design
refinement step fails to improve on the best design. This step took 3.5 minutes.
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When You Have a Long Time to Search for an Efficient Design

With a moderate sized candidate set such as this one (2000 to 6000 runs), we might be able to do
better with more iterations. To test this, PROC OPTEX was run 10,000 times over the winter holiday
vacation, from December 22 through January 2, creating a total of 200,000 designs, 20 designs on each
try. (This was many years ago on computers that were much slower than the ones we have today.)
Here is a summary of the results.

PROC
OPTEX Percent

Run D-Efficiency Improvement
1 83.8959
2 83.9890 0.11%
3 84.3763 0.46%
6 84.7548 0.45%

84 85.1561 0.47%
1535 85.3298 0.20%
9576 85.3985 0.08%

This example is interesting, because it shows the diminishing value of increasing the number of it-
erations. Six minutes into the search, in the first six passes through PROC OPTEX (6 × 20 = 120
total iterations), we found a design with reasonably good D-efficiency=84.7548. Over an hour into
the search, with (84 − 6) × 20 = 1560 more iterations, we get a small 0.47% increase in D-efficiency
to 85.1561. About one day into the search, with (1535 − 84) × 20 = 29, 020 more iterations, we get
another small 0.20% increase in D-efficiency, 85.3298. Finally, almost a week into the search, with
(9576 − 1535) × 20 = 160, 820 more iterations, we get another small 0.08% increase in D-efficiency to
85.3985. Our overall improvement over the best design found in 120 iterations was 0.75952%, about
three-quarters of a percent. These numbers will change with other problems and other seeds. However,
as these results show, usually the first few iterations will give you a good, efficient design, and usually,
subsequent iterations will give you slight improvements but with a cost of much greater run times.
Next, we will construct a plot of this table.

data; input n e; datalines;
1 83.8959
2 83.9890
3 84.3763
6 84.7548

84 85.1561
1535 85.3298
9576 85.3985
;

proc gplot;
title h=1 ’Consumer Food Product Example’;
title2 h=1 ’Maximum D-Efficiency Found Over Time’;
plot e * n / vaxis=axis1;
symbol i=join;
axis1 order=(0 to 90 by 10);
run; quit;

The plot of maximum D-efficiency as a function of PROC OPTEX run number clearly shows that the
gain in D-efficiency that comes from a large number of iterations is very slight.
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If you have a lot of time to search for a good design, you can specify some of the time and maximum
number of iteration parameters. Sometimes you will get lucky and find a better design. In this next
example, maxtime=300 300 60 was specified. This gives the macro up to 300 minutes for the algorithm
search step, 300 minutes for the design search step, and 60 minutes for the refinement step. The option
maxiter= increases the number iterations to 10000 for each of the three steps (or the maximum time).
With this specification, you would expect the macro to run overnight. See the macro documentation
(starting on page 667) for more iteration options. Note that you must increase the number of iterations
and the maximum amount of time if you want the macro to run longer. With this specification, the
macro performs 1800 OPTEX iterations initially (compared to 60 by default).

title ’Consumer Food Product Example’;

%macro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad = 0;
%mend;

%mktex( 4 4 2 2 3 3 2 3, n=26, interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=resmac, seed=151,
maxtime=300 300 60, maxiter=10000 )

The results from this step are not shown.

Examining the Design

We can use the %MktEval macro to start to evaluate the design.

%mkteval(data=sasuser.Entree_LinDes1);
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Here are the results.

Consumer Food Product Example
Canonical Correlations Between the Factors

There are 4 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.30 0.20 0.11 0.42 0.26 0.09 0.33
x2 0.30 1 0.10 0.10 0.13 0.17 0.51 0.18
x3 0.20 0.10 1 0.08 0.09 0.30 0 0.10
x4 0.11 0.10 0.08 1 0.09 0.10 0 0.10
x5 0.42 0.13 0.09 0.09 1 0.24 0.05 0.43
x6 0.26 0.17 0.30 0.10 0.24 1 0.14 0.13
x7 0.09 0.51 0 0 0.05 0.14 1 0.14
x8 0.33 0.18 0.10 0.10 0.43 0.13 0.14 1

Consumer Food Product Example
Canonical Correlations > 0.316 Between the Factors

There are 4 Canonical Correlations Greater Than 0.316

r r Square

x2 x7 0.51 0.26
x5 x8 0.43 0.18
x1 x5 0.42 0.18
x1 x8 0.33 0.11

Consumer Food Product Example
Summary of Frequencies

There are 4 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

* x1 7 8 6 5
* x2 6 7 7 6

x3 13 13
x4 13 13

* x5 9 8 9
* x6 7 10 9
* x7 12 14
* x8 7 9 10
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* x1 x2 2 2 1 2 2 2 2 2 1 1 2 2 1 2 2 0
* x1 x3 3 4 4 4 4 2 2 3
* x1 x4 4 3 4 4 3 3 2 3
* x1 x5 4 2 1 2 1 5 2 2 2 1 3 1
* x1 x6 2 3 2 2 4 2 2 1 3 1 2 2
* x1 x7 3 4 4 4 3 3 2 3
* x1 x8 1 2 4 2 4 2 2 1 3 2 2 1
* x2 x3 3 3 3 4 4 3 3 3
* x2 x4 3 3 3 4 4 3 3 3
* x2 x5 2 2 2 3 2 2 2 2 3 2 2 2
* x2 x6 2 2 2 2 3 2 2 2 3 1 3 2
* x2 x7 1 5 4 3 2 5 5 1
* x2 x8 2 2 2 1 3 3 2 2 3 2 2 2
* x3 x4 7 6 6 7
* x3 x5 5 4 4 4 4 5
* x3 x6 2 5 6 5 5 3
* x3 x7 6 7 6 7
* x3 x8 4 4 5 3 5 5
* x4 x5 4 4 5 5 4 4
* x4 x6 4 5 4 3 5 5
* x4 x7 6 7 6 7
* x4 x8 4 4 5 3 5 5
* x5 x6 2 4 3 2 2 4 3 4 2
* x5 x7 4 5 4 4 4 5
* x5 x8 1 2 6 4 2 2 2 5 2
* x6 x7 3 4 4 6 5 4
* x6 x8 2 2 3 2 4 4 3 3 3
* x7 x8 4 4 4 3 5 6

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1

Some of the canonical correlations are bigger than we would like. They all involve attributes in
different alternatives, so they should not pose huge problems. Still, they are large enough to make
some researchers uncomfortable. The frequencies are pretty close to balanced. Perfect balance is not
possible with 26 choice sets and this design. If we were willing to consider blocking the design, we
might do better with more choice sets.

Designing the Choice Experiment, More Choice Sets

Let’s run the %MktRuns macro to see what design size looks good. For now, we will ignore the interac-
tions.

%mktruns( 4 4 2 2 3 3 2 3 )
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Consumer Food Product Example

Design Summary

Number of
Levels Frequency

2 3
3 3
4 2

Consumer Food Product Example

Saturated = 16
Full Factorial = 3,456

Some Reasonable Cannot Be
Design Sizes Violations Divided By

144 * 0
72 1 16
48 3 9
96 3 9
192 3 9
24 4 9 16
120 4 9 16
168 4 9 16
36 7 8 16
108 7 8 16

* - 100% Efficient Design can be made with the MktEx Macro.

Consumer Food Product Example

n Design Reference

144 2 ** 48 3 ** 3 4 ** 2 Orthogonal Array
144 2 ** 44 3 ** 3 4 ** 3 Orthogonal Array
144 2 ** 41 3 ** 4 4 ** 2 Orthogonal Array
144 2 ** 39 3 ** 3 4 ** 2 6 ** 1 Orthogonal Array
144 2 ** 37 3 ** 4 4 ** 3 Orthogonal Array
144 2 ** 37 3 ** 3 4 ** 2 12 ** 1 Orthogonal Array
144 2 ** 35 3 ** 3 4 ** 3 6 ** 1 Orthogonal Array

.

.

.
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The smallest suggestion larger than 26 is 36. With this mix of factor levels, we would have to have
144 runs to get an orthogonal design (ignoring interactions), so we will definitely want to stick with a
nonorthogonal design. Balance will be possible in 36 runs, but 36 cannot be divided by 2× 4 = 8 and
4 × 4 = 16. With 36 runs, a blocking factor will be required (2 blocks of 18 or 3 blocks of 12). We
would like the shelf talker to appear in half of the choice sets within block, so with two blocks, we will
want the number of choice sets to be divisible by 2 × 2 = 4, and 36 can be divided by 4. Now let’s
specify the interactions.

%mktruns( 4 4 2 2 3 3 2 3, interact=x2*x3 x2*x4 x3*x4 x6*x7 )

Here is the output.

Consumer Food Product Example

Design Summary

Number of
Levels Frequency

2 3
3 3
4 2

Consumer Food Product Example

Saturated = 25
Full Factorial = 3,456

Some Reasonable Cannot Be
Design Sizes Violations Divided By

144 2 32
96 5 9 18
192 5 9 18
48 7 9 18 32
72 9 16 32 48
216 9 16 32 48
120 14 9 16 18 32 48
168 14 9 16 18 32 48
36 25 8 16 24 32 48
108 25 8 16 24 32 48

Thirty-six runs is still in our list of possibilities, but now we see that not only can it not be divided by
8 and 16, it also cannot be divided by 24, 32, 48. We will try making a design in 36 runs, and see how
it looks.

In the previous try in 26 runs, the PROC OPTEX modified Fedorov algorithm worked best. There
are two reasons why this probably happened. First, the full-factorial design was small enough to use
as a candidate set. After imposing restrictions, the candidate set had 2,776 runs, and any size under
5000 or 10,000 is very manageable. Second, the design has interactions. The coordinate exchange
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algorithm by default considers only a single factor at a time, which is just one part of an interaction
term. Modified Fedorov in contrast, considers exchanges involving all of the factors. For this problem,
Modified Fedorov is invariably superior to the default coordinate-exchange algorithm. However, we can
make coordinate exchange better, by having it perform multiple-column exchanges taking into account
the interactions, just as we did in the vacation example on page 235. We will use order=matrix=SAS-
data-set approach to looping over the columns of the design with the coordinate-exchange algorithm.
In this case, coordinate exchange will pair columns 1, 5, and 8 with a randomly chosen column, it will
consider every possible triple in columns 2, 3, and 4, and it will pair columns 6 and 7 with a randomly
chosen column.

title ’Consumer Food Product Example’;

%macro resmac;
navail = (x1 < 4) + (x2 < 4) + (x5 < 3) + (x6 < 3) + (x8 < 3);
if (navail < 2) | (navail > 4) then bad = abs(navail - 3);
else bad = 0;
%mend;

data mat;
input a b c;
datalines;

1 1 .
2 3 4
5 5 .
6 7 .
8 8 .
;

%mktex( 4 4 2 2 3 3 2 3, n=36, order=matrix=mat,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=resmac, seed=377, outr=sasuser.Entree_LinDes2 )

%mkteval;

Here is a small part of the output from the %MktEx macro.

Consumer Food Product Example 1

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 94.0517 Can
1 2 1 94.0517 94.0517 Conforms
1 End 94.0517

.

.

.
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12 Start 71.6955 Ran,Mut,Ann
12 1 1 78.5418 Conforms
12 30 5 94.1433 94.1433
12 33 5 94.1507 94.1507
12 31 1 94.1532 94.1532
12 23 6 94.1553 94.1553
12 End 94.1553

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 94.1553 94.1553 Ini

.

.

.

3 Start 68.5288 Ran,Mut,Ann
3 29 1 75.9029 Conforms
3 22 5 94.1682 94.1682
3 34 5 94.1683 94.1683
3 35 6 94.2926 94.2926
3 16 8 94.3718 94.3718
3 24 6 94.3718 94.3718
3 9 1 94.4572 94.4572
3 End 94.2846

.

.

.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 94.4571 88.7104 94.0740 0.8333

The order=matrix= option apparently helped. The coordinate exchange algorithm was in fact chosen
over the modified Fedorov algorithm.

D-efficiency at 94.46% looks good. Here is part of the %MktEval results.
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Consumer Food Product Example
Canonical Correlations Between the Factors

There is 1 Canonical Correlation Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.13 0.10 0.11 0.11 0.17 0.10 0.12
x2 0.13 1 0.12 0.08 0.23 0.39 0.06 0.18
x3 0.10 0.12 1 0.06 0.10 0.04 0.00 0.10
x4 0.11 0.08 0.06 1 0.07 0.07 0.06 0.18
x5 0.11 0.23 0.10 0.07 1 0.13 0.04 0.15
x6 0.17 0.39 0.04 0.07 0.13 1 0.04 0.13
x7 0.10 0.06 0.00 0.06 0.04 0.04 1 0.04
x8 0.12 0.18 0.10 0.18 0.15 0.13 0.04 1

Consumer Food Product Example
Canonical Correlations > 0.316 Between the Factors
There is 1 Canonical Correlation Greater Than 0.316

r r Square

x2 x6 0.39 0.15

Consumer Food Product Example
Summary of Frequencies

There is 1 Canonical Correlation Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

x1 9 9 9 9
* x2 8 9 10 9
* x3 19 17

x4 18 18
* x5 11 11 14
* x6 12 13 11
* x7 17 19
* x8 11 12 13

The correlations are better, although one is still not as good as we would like. The balance looks
pretty good, however it would be nice if the balance, for example, in x5 were better. It is often the
case that improving balance requires some sacrifice of D-efficiency. We can run the macro again, this
time specifying balance=2, which forces better balance. The specification of 2 allows the maximum
frequency for a level in a factor to be no more than two greater than the minimum frequency. You
should always specify mintry= with balance=. This allows %MktEx to at first increase D-efficiency
while ignoring the balance restrictions. Then, after mintry=m rows have been processed, the balance
restrictions are considered. Typically you will specify an expression that is a function of the number of
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rows for mintry=, for example, mintry=5 * n. The balance= option works best when its restrictions
are imposed on a reasonably efficient design not an inefficient initial design.

This example also uses a somewhat more involved order=matrix data set. To understand why, you
need to understand how the balance= option works. Here is some of the code that %MktEx uses to
impose balance.

__bbad = 1;
if try > &balancetry & j1 then do;

acol = xmat[,j1];
acol[i,] = x[,j1];
acol = design(acol)[+,];
__bbad = max(0, max(acol) - min(acol) - &balance);
end;

It checks the balance restrictions based on the first column index, j1. If we are doing multiple exchanges,
the exchanges in the second or subsequent columns could degrade the balance without it registering
as a violation in the code above. For example, in the order=matrix=mat data set used previously, the
last line is: 8 8 .. The column index j3 could change any of the columns and it would not register in
the balance-checking code, because it is only looking at column 8. For this reason, we add eight more
lines so the last thing the restrictions macro does in each row is check every column for the balance
constraints.

data mat;
input a b c;
datalines;

1 1 .
2 3 4
5 5 .
6 7 .
8 8 .
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
;

%mktex( 4 4 2 2 3 3 2 3, n=36, order=matrix=mat,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=resmac, seed=368, outr=sasuser.Entree_LinDes3,
balance=2, mintry=5 * n )

Here is the last part of the output from the %MktEx macro.
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Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 93.9552 87.8357 92.9627 0.8333

The D-efficiency looks good. It is a little lower than before, but not much. Next, we will look at the
canonical correlations and frequencies.

%mkteval;

Here is the first part of the output from the %MktEval macro.

Consumer Food Product Example
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.17 0.08 0.08 0.16 0.12 0.18 0.16
x2 0.17 1 0.08 0.08 0.16 0.31 0.27 0.16
x3 0.08 0.08 1 0.11 0.12 0.07 0 0.12
x4 0.08 0.08 0.11 1 0.12 0.07 0 0.07
x5 0.16 0.16 0.12 0.12 1 0.13 0.07 0.10
x6 0.12 0.31 0.07 0.07 0.13 1 0.07 0.19
x7 0.18 0.27 0 0 0.07 0.07 1 0.12
x8 0.16 0.16 0.12 0.07 0.10 0.19 0.12 1

The canonical correlations look good. Here is the last part of the output from the %MktEval macro.
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Consumer Food Product Example
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

* x1 9 8 9 10
* x2 8 9 10 9

x3 18 18
x4 18 18

* x5 12 11 13
* x6 11 12 13

x7 18 18
* x8 11 12 13
* x1 x2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 4 2
* x1 x3 5 4 4 4 4 5 5 5
* x1 x4 4 5 4 4 5 4 5 5
* x1 x5 3 3 3 2 2 4 3 3 3 4 3 3
* x1 x6 3 3 3 3 2 3 2 3 4 3 4 3
* x1 x7 4 5 5 3 5 4 4 6
* x1 x8 3 3 3 2 2 4 2 4 3 4 3 3
* x2 x3 4 4 4 5 5 5 5 4
* x2 x4 4 4 5 4 5 5 4 5
* x2 x5 3 3 2 3 2 4 3 3 4 3 3 3
* x2 x6 2 2 4 3 2 4 2 4 4 4 4 1
* x2 x7 2 6 5 4 6 4 5 4
* x2 x8 2 2 4 3 3 3 4 3 3 2 4 3
* x3 x4 8 10 10 8
* x3 x5 7 5 6 5 6 7
* x3 x6 5 6 7 6 6 6

x3 x7 9 9 9 9
* x3 x8 6 5 7 5 7 6
* x4 x5 5 6 7 7 5 6
* x4 x6 6 6 6 5 6 7

x4 x7 9 9 9 9
* x4 x8 6 6 6 5 6 7
* x5 x6 4 4 4 3 3 5 4 5 4
* x5 x7 6 6 6 5 6 7
* x5 x8 3 4 5 4 3 4 4 5 4
* x6 x7 5 6 6 6 7 6
* x6 x8 2 4 5 4 4 4 5 4 4
* x7 x8 5 7 6 6 5 7

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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This design looks much better. It is possible to get designs with better balance by specifying balance=1,
however, since this gives %MktEx much less freedom, the balance=1 option may cause D-efficiency to
go down. Because balance=1 is a tough restriction, we will try this without order=matrix.

%mktex( 4 4 2 2 3 3 2 3, n=36,
interact=x2*x3 x2*x4 x3*x4 x6*x7,
restrictions=resmac, seed=472, outr=sasuser.Entree_LinDes4,
balance=1, mintry=5 * n )

%mkteval;

Here is the D-efficiency, which is a lower than we saw previously.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 90.4983 79.9621 87.0176 0.8333

More troubling is the fact that the balance restrictions have increased the correlations between factors.

Consumer Food Product Example
Canonical Correlations Between the Factors

There are 2 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.22 0.11 0.11 0.19 0.33 0.11 0.30
x2 0.22 1 0.11 0.11 0.44 0.29 0.11 0
x3 0.11 0.11 1 0 0.14 0 0 0.14
x4 0.11 0.11 0 1 0.14 0 0.11 0.14
x5 0.19 0.44 0.14 0.14 1 0.14 0 0.17
x6 0.33 0.29 0 0 0.14 1 0.14 0
x7 0.11 0.11 0 0.11 0 0.14 1 0.14
x8 0.30 0 0.14 0.14 0.17 0 0.14 1



304 TS-722F − Discrete Choice

Consumer Food Product Example
Canonical Correlations > 0.316 Between the Factors

There are 2 Canonical Correlations Greater Than 0.316

r r Square

x2 x5 0.44 0.20
x1 x6 0.33 0.11

The balance, however, is perfect.

Consumer Food Product Example
Summary of Frequencies

There are 2 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

x1 9 9 9 9
x2 9 9 9 9
x3 18 18
x4 18 18
x5 12 12 12
x6 12 12 12
x7 18 18
x8 12 12 12

Having balance in all of the factors is nice, but for this design, we only need to ensure that x4, the
shelf-talker factor is balanced, since we will be dividing the design into two parts depending on whether
the shelf talker is there or not. All things considered, it looks like the design that was created with
balance=2 is the best design for our situation. It is balanced in x4, it is either balanced or reasonably
close to balanced in the other factors, and it has good D-efficiency and is reasonably close to orthogonal.
If our design had not been balanced in x4, we could have tried again with a different seed, or we could
have tried again with different values for mintry=. If the interactions had not been requested, we also
could have switched it with another two-level factor, or added it after the fact by blocking (running
the %MktBlock macro as if we were adding a blocking factor), or we could have used the init= option
to constrain the factor to be balanced.

The balance= option in the %MktEx macro works by adding restrictions to the design. The approach
it uses often works quite well, but sometimes it does not. Forcing balance gives the macro much less
freedom in its search, and makes it easy for the macro to get stuck in suboptimal designs. If perfect
balance is critical and there are no interactions or restrictions, you can also try the %MktBal macro.
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Examining the Subdesigns

As we mentioned previously, “it is sometimes necessary and good practice to check the ranks of the
subdesigns for more complex models (Lazari and Anderson 1994).” Here is a way to do that with PROC
OPTEX. This is the only usage of PROC OPTEX in this book that is too specialized to be run from
one of the %Mkt macros (because not all variables are designated as class variables). For convenience,
we call PROC OPTEX from an ad hoc macro, since it must be run five times, once per alternative, with
only a change in the where statement. We need to evaluate the design when the client’s alternative
is available (x1 ne 4), when the client line extension alternative is available (x2 ne 4), when the
regional competitor is available (x5 ne 3), when the private label competitor is available (x6 ne 3),
and when the national competitor is available (x8 ne 3). We need to use a model statement that lists
all of the main effects and interactions. We do not designate all of the variables on the class statement
because we only have enough runs to consider linear price effects within each availability group. The
statement generate method=sequential initdesign=desv specifies that we will be evaluating the
initial design desv, using the sequential algorithm, which ensures no swaps between the candidate set
and the initial design. The other option of note here appears on the class statement, and that is
param=orthref. This specifies an orthogonal parameterization of the effects that gives us a nice 0 to
100 scale for the D-efficiencies.

%macro evaleff(where);
data desv / view=desv; set sasuser.Entree_LinDes3(where=(&where)); run;

proc optex data=desv;
class x3 x4 x7 / param=orthref;
model x1-x8 x2*x3 x2*x4 x3*x4 x6*x7;
generate method=sequential initdesign=desv;
run; quit;

%mkteval(data=desv)
%mend;

%evaleff(x1 ne 4)
%evaleff(x2 ne 4)
%evaleff(x5 ne 3)
%evaleff(x6 ne 3)
%evaleff(x8 ne 3)

Each step took just over two seconds. We hope to not see any efficiencies of zero, and we hope to not get
the message WARNING: Can’t estimate model parameters in the final design. Here are some
of the results.

Consumer Food Product Example

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 69.7007 61.6709 80.8872 0.7071
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Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 72.7841 64.9939 87.5576 0.6939

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 66.1876 50.8651 81.2554 0.7518

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 71.8655 59.8208 86.6281 0.7518

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 65.2313 50.1059 84.1610 0.7518

Examining the Aliasing Structure

It is also good to look at the aliasing structure of the design. We use PROC GLM to do this, so we must
create a dependent variable. We will use a constant y=1. The first PROC GLM step just checks the
model to make sure none of the specified effects are aliased with each other. This step is not necessary
since our D-efficiency value greater than zero already guarantees this.

data temp;
set sasuser.Entree_LinDes3;
y = 1;
run;

proc glm data=temp;
model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7 / e aliasing;
run; quit;
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Here are the results, ignoring the ANOVA and regression tables, which are not of interest. Each of
these lines is a linear combination that is estimable. It is simply a list of the effects.

Intercept
x1
x2
x3
x4
x5
x6
x7
x8
x2*x3
x2*x4
x3*x4
x6*x7

Contrast this with a specification that includes all simple effects and two-way and three-way interac-
tions. We specify the model of interest first, x1-x8 x2*x3 x2*x4 x3*x4 x6*x7, so all of those terms
will be listed first, then we specify all main effects and two-way and three-way interactions using the
notation x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8@3. It is not a problem that some of the terms
were both explicitly specified and also generated by the x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8@3
list since PROC GLM automatically eliminates duplicate terms.

proc glm data=temp;
model y = x1-x8 x2*x3 x2*x4 x3*x4 x6*x7

x1|x2|x3|x4|x5|x6|x7|x8@3 / e aliasing;
run; quit;

Intercept - 20.008*x4*x6 - 9.8483*x1*x4*x6 - 42.279*x2*x4*x6 - 9.0597*x3*x4*x6 +
57.417*x5*x6 + 151.23*x1*x5*x6 + 186.61*x2*x5*x6 + 80.158*x3*x5*x6 +
90.545*x4*x5*x6 - 50.89*x1*x7 + 4.2117*x2*x7 - 159.53*x1*x2*x7 + 12.566*x3*x7 -
52.475*x1*x3*x7 + 43.269*x2*x3*x7 + 0.3801*x4*x7 - 71.5*x1*x4*x7 +
36.725*x2*x4*x7 + 24.297*x3*x4*x7 + 21.563*x5*x7 - 27.16*x1*x5*x7 +
75.528*x2*x5*x7 + 62.984*x3*x5*x7 + 39.224*x4*x5*x7 - 85.333*x1*x6*x7 -
10.566*x2*x6*x7 + 15.818*x3*x6*x7 - 31.415*x4*x6*x7 + 123.51*x5*x6*x7 -
24.144*x1*x8 + 6.6197*x2*x8 - 12.153*x1*x2*x8 - 38.1*x3*x8 - 133.06*x1*x3*x8 -
135.02*x2*x3*x8 + 39.148*x4*x8 + 101.08*x1*x4*x8 + 149.27*x2*x4*x8 -
15.467*x3*x4*x8 - 30.981*x5*x8 - 157.71*x1*x5*x8 - 130.69*x2*x5*x8 -
107.69*x3*x5*x8 + 19.478*x4*x5*x8 - 40.116*x6*x8 - 116.84*x1*x6*x8 -
61.852*x2*x6*x8 - 97.721*x3*x6*x8 - 23.772*x4*x6*x8 + 44.985*x5*x6*x8 -
5.0186*x7*x8 - 171.5*x1*x7*x8 + 12.071*x2*x7*x8 - 2.9687*x3*x7*x8 +
44.468*x4*x7*x8 + 8.5765*x5*x7*x8 - 52.648*x6*x7*x8
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x1 + 9.1371*x4*x6 + 7.8312*x1*x4*x6 + 17.618*x2*x4*x6 + 9.7563*x3*x4*x6 -
21.745*x5*x6 - 69.803*x1*x5*x6 - 73.705*x2*x5*x6 - 39.359*x3*x5*x6 -
25.304*x4*x5*x6 + 22.962*x1*x7 - 2.9296*x2*x7 + 71.792*x1*x2*x7 - 4.9586*x3*x7 +
26.888*x1*x3*x7 - 12.562*x2*x3*x7 - 7.8969*x4*x7 + 11.379*x1*x4*x7 -
35.377*x2*x4*x7 - 21.468*x3*x4*x7 - 12.723*x5*x7 + 10.604*x1*x5*x7 -
43.808*x2*x5*x7 - 32.655*x3*x5*x7 - 32.497*x4*x5*x7 + 31.754*x1*x6*x7 +
6.8554*x2*x6*x7 - 4.0467*x3*x6*x7 + 1.6149*x4*x6*x7 - 46.784*x5*x6*x7 -
1.133*x1*x8 + 7.3858*x2*x8 + 2.0538*x1*x2*x8 + 4.336*x3*x8 + 3.3233*x1*x3*x8 +
39.854*x2*x3*x8 - 5.3094*x4*x8 - 28.994*x1*x4*x8 - 5.5582*x2*x4*x8 +
7.6916*x3*x4*x8 + 6.3495*x5*x8 + 15.979*x1*x5*x8 + 58.815*x2*x5*x8 +
16.519*x3*x5*x8 + 11.175*x4*x5*x8 + 7.3054*x6*x8 + 13.278*x1*x6*x8 +
29.443*x2*x6*x8 + 14.09*x3*x6*x8 + 18.767*x4*x6*x8 - 34.202*x5*x6*x8 +
5.8152*x7*x8 + 65.231*x1*x7*x8 + 14.788*x2*x7*x8 - 3.885*x3*x7*x8 -
15.536*x4*x7*x8 - 6.816*x5*x7*x8 + 18.202*x6*x7*x8
.
.
.

Again, we have a list of linear combinations that are estimable. This shows that the Intercept cannot
be estimated independently of the x4*x6 interaction and a bunch of others including four-way though
eight-way interactions which were not specified and hence not shown. Similarly, x1 is confounded with
a bunch of interactions, and so on. This is why we want to be estimable the two-way interactions
between factors that are combined to create an alternative. We did not want something like x2*x3, the
client-line extension’s price and microwave/stove top interaction to be confounded with say another
brand’s price.

Blocking the Design

At 36 choice sets, this design is a bit large, so we will block it into two blocks of 18 choice sets. Within
each block we will want the shelf talker to be on half the time.

%mktblock(data=sasuser.Entree_LinDes3, out=sasuser.Entree_LinDes,
nblocks=2, seed=448)

The first attempt (not shown) produced a design where x4, the shelf talker did not occur equally often
within each block. Changing the seed took care of the problem. Here are the canonical correlations.
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Consumer Food Product Example
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Block x1 x2 x3 x4 x5 x6 x7 x8

Block 1 0.08 0.08 0 0 0.07 0.07 0 0.07
x1 0.08 1 0.17 0.08 0.08 0.16 0.12 0.18 0.16
x2 0.08 0.17 1 0.08 0.08 0.16 0.31 0.27 0.16
x3 0 0.08 0.08 1 0.11 0.12 0.07 0 0.12
x4 0 0.08 0.08 0.11 1 0.12 0.07 0 0.07
x5 0.07 0.16 0.16 0.12 0.12 1 0.13 0.07 0.10
x6 0.07 0.12 0.31 0.07 0.07 0.13 1 0.07 0.19
x7 0 0.18 0.27 0 0 0.07 0.07 1 0.12
x8 0.07 0.16 0.16 0.12 0.07 0.10 0.19 0.12 1

The blocking variable is not highly correlated with any of the factors. Here are some of the frequencies.

Consumer Food Product Example
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

Block 18 18
* x1 9 8 9 10
* x2 8 9 10 9

x3 18 18
x4 18 18

* x5 12 11 13
* x6 11 12 13

x7 18 18
* x8 11 12 13
* Block x1 5 5 4 4 4 4 5 5
* Block x2 4 5 4 5 4 4 5 5
* Block x3 8 10 9 9

Block x4 9 9 9 9
* Block x1 5 4 4 5 4 4 5 5
* Block x2 4 4 5 5 4 5 5 4

Block x3 9 9 9 9
Block x4 9 9 9 9

* Block x5 6 6 6 6 5 7
* Block x6 5 6 7 6 6 6

Block x7 9 9 9 9
* Block x8 5 6 7 6 6 6
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.

.

.

The blocking variable is perfectly balanced, as it is guaranteed to be if the number of blocks divides the
number of runs. Balance within blocks, that is the cross-tabulations of the factors with the blocking
variable, looks good. The macro also prints canonical correlations within blocking variables. These
can sometimes be quite high, even 1.0, but that is not a problem.‖ Here is the design, as it is printed
by the %MktBlock macro.

Consumer Food Product Example

Block Run x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 3 1 1 1 3 1 1
2 3 1 2 2 1 3 2 1
3 2 4 2 2 3 1 1 3
4 4 3 1 2 2 2 1 1
5 1 2 2 1 3 3 2 3
6 4 3 1 1 3 2 2 3
7 2 3 1 2 1 1 1 3
8 1 1 2 1 2 2 2 3
9 4 2 1 2 1 3 2 3
10 3 1 1 1 1 1 2 3
11 4 4 2 1 3 2 1 1
12 4 3 2 2 3 3 1 2
13 1 4 1 1 2 1 1 2
14 2 2 1 1 2 3 1 1
15 1 4 2 2 2 1 2 2
16 3 4 2 1 1 2 2 2
17 2 1 1 2 3 2 2 2
18 3 2 2 2 2 3 1 2

‖Ideally, each subject would only make one choice, since the choice model is based on this assumption (which is almost
always ignored). As the number of blocks increases, the correlations will mostly go to one, and ultimately be undefined
when there is only one choice set per block.
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Consumer Food Product Example

Block Run x1 x2 x3 x4 x5 x6 x7 x8

2 1 4 2 2 1 1 1 2 2
2 1 3 2 2 3 2 2 1
3 1 2 1 2 3 1 2 1
4 4 1 1 1 2 3 2 1
5 3 4 1 2 2 3 1 3
6 2 4 1 1 3 1 2 3
7 2 2 2 2 1 2 1 3
8 2 1 2 1 3 3 1 2
9 3 2 1 1 3 2 1 2

10 1 4 1 2 1 2 1 2
11 1 1 1 2 1 3 1 3
12 3 2 2 1 3 1 1 1
13 4 3 2 1 1 1 1 2
14 3 3 2 1 2 2 1 3
15 4 4 1 2 1 2 2 1
16 2 3 2 1 2 3 2 1
17 4 1 2 2 2 1 2 3
18 3 3 1 2 3 3 2 2

The Final Design

The next steps create the final choice design, stored in sasuser.Entree ChDes, sorted by the blocking
and shelf-talker variable. We will use the %MktLab macro to assign values, formats, and labels to
the design. Previously, we have used the %MktLab macro to reassign factor names when we wanted
something more descriptive than the default, x1, x2, and so on, and when we wanted to reassign the
names of two m-level factors to minimize the problems associated with correlated factors. This time,
we will use the %MktLab macro primarily to deal with the asymmetry in the price factors. Recall our
factor levels.

Factors and Levels

Alternative Factor Levels Brand Description
1 X1 4 Client 1.29, 1.69, 2.09, absent

2 X2 4 Client Line Extension 1.39, 1.89, 2.39, absent
X3 2 microwave/stove-top
X4 2 shelf-talker yes/no

3 X5 3 Regional 1.99, 2.49, absent

4 X6 3 Private Label 1.49, 2.29, absent
X7 2 microwave/stove-top

5 X8 3 National 1.99 + 2.39, absent
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The choice design will need a quantitative price factor, made from all five of the linear price factors,
that contains the prices of each of the alternatives. At this point, our factor x1 contains 1, 2, 3, 4, and
not 1.29, 1.69, 2.09, and absent, which is different from x2 and from all of the other factors. A 1 in x1
will need to become a price of 1.29 in the choice design, a 1 in x2 will need to become a price of 1.39 in
the choice design, a 1 in x3 will need to become a price of 1.99 in the choice design, and so on. Before
we use the %MktRoll macro to turn the linear design into a choice design, we need to use the %MktLab
macro to assign the actual prices to the price factors.

The %MktLab macro is like the %MktRoll macro in the sense that it can use as input a key= data set
that contains the rules for customizing a design for our particular usage. In the %MktRoll macro, the
key= data set provides the rules for turning a linear design into a choice design. In contrast, in the
%MktLab macro, the key= data set contains the rules for turning a linear design into another linear
design, changing one or more of the following: factor names, factor levels, factor types (numeric to
character), level formats, and factor labels.

We could use the %MktLab macro to change the names of the variables and their types, but we will not
do that for this example. Ultimately, we will use the %MktRoll macro to assign all of the price factors
to a variable called Price and similarly provide meaningful names for all of the factors in the choice
design, just as we have in previous examples. We could also change a variable like x3 with values of
1 and 2 to something like Stove with values ’Stove’ and ’Micro’. We will not do that because we
want to make a design with a simple list of numeric factors, with simple names like x1-x8 that we can
run through the %MktRoll macro to get the final choice design. We will assign formats and labels, so
we can print the design in a meaningful way, but ultimately, our only goal at this step is to handle the
price asymmetries by assigning the actual price values to the factors.

The key= data set contains the rules for customizing our design. The data set has as many rows as
the maximum number of levels, in this case four. Each variable is one of the factors in the design, and
the values are the factor levels that we want in the final design. The first factor, x1, is the price factor
for the client brand. Its levels are 1.29, 1.69, and 2.09. In addition, one level is ’not available’, which
is flagged by the SAS special missing value .N. In order to read special missing values in an input data
set, you must use the missing statement and name the expected missing values. The factor x2 has
the same structure as x1, but with different levels. The factor x3 has two levels, hence the key= data
set has missing values in the third and fourth row. Since the design has only 1’s and 2’s for x3, this
missing values will never be used. Notice that we are keeping x3 as a numeric variable with values 1
and 2 using a format to supply the character levels ’micro’ and ’stove’. The other factors are created
in a similar fashion. By default, ordinary missing values ’.’ are not permitted as levels. By default,
you may only use ordinary missing values as place holders for factors that have fewer levels than the
maximum. If you want missing values in the levels, you must use one of the special missing values .A,
.B, ..., .Z, and . ∗∗ or the cfill= or nfill= options.

The %MktLab macro specification names the input SAS data set with the design and the key data set.
By default, it creates an output SAS data set called Final. The data set is sorted by block and shelf
talker and printed.

proc format;
value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;
run;

∗∗Note that the ’.’ in ’.N’ is not typed in the data, nor is it typed in the missing statement. Furthermore, it
does not appear in the printed output. However, you need to type it if you ever refer to a special missing value in code:
if x1 eq .N then ....
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data key;
missing N;
input x1-x8;
format x1 x2 x5 x6 x8 dollar5.2

x4 yn. x3 x7 micro.;

label x1 = ’Client Brand’
x2 = ’Client Line Extension’
x3 = ’Client Micro/Stove’
x4 = ’Shelf Talker’

x5 = ’Regional Brand’
x6 = ’Private Label’
x7 = ’Private Micro/Stove’
x8 = ’National Competitor’;

datalines;
1.29 1.39 1 1 1.99 1.49 1 1.99
1.69 1.89 2 2 2.49 2.29 2 2.39
2.09 2.39 . . N N . N
N N . . . . . .
;

%mktlab(data=sasuser.Entree_LinDes, key=key)

proc sort out=sasuser.Entree_LinDesLab(drop=run); by block x4; run;

proc print label; id block x4; by block x4; run;

The %MktLab macro prints the variable mapping that it uses, old names followed by new names. In this
case, none of the names change, but it is good to make sure that you have the expected correspondence.

Variable Mapping:
x1 : x1
x2 : x2
x3 : x3
x4 : x4
x5 : x5
x6 : x6
x7 : x7
x8 : x8

Here is the design.
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Consumer Food Product Example

Client Client Private
Shelf Client Line Micro/ Regional Private Micro/ National

Block Talker Brand Extension Stove Brand Label Stove Competitor

1 No $1.29 $2.39 Micro $1.99 N Micro $1.99
$1.29 $1.89 Stove N N Stove N
N $2.39 Micro N $2.29 Stove N

$1.29 $1.39 Stove $2.49 $2.29 Stove N
$2.09 $1.39 Micro $1.99 $1.49 Stove N
N N Stove N $2.29 Micro $1.99

$1.29 N Micro $2.49 $1.49 Micro $2.39
$1.69 $1.89 Micro $2.49 N Micro $1.99
$2.09 N Stove $1.99 $2.29 Stove $2.39

1 Talker $2.09 $1.39 Stove $1.99 N Stove $1.99
$1.69 N Stove N $1.49 Micro N
N $2.39 Micro $2.49 $2.29 Micro $1.99

$1.69 $2.39 Micro $1.99 $1.49 Micro N
N $1.89 Micro $1.99 N Stove N
N $2.39 Stove N N Micro $2.39

$1.29 N Stove $2.49 $1.49 Stove $2.39
$1.69 $1.39 Micro N $2.29 Stove $2.39
$2.09 $1.89 Stove $2.49 N Micro $2.39

2 No N $1.89 Stove $1.99 $1.49 Stove $2.39
N $1.39 Micro $2.49 N Stove $1.99

$1.69 N Micro N $1.49 Stove N
$1.69 $1.39 Stove N N Micro $2.39
$2.09 $1.89 Micro N $2.29 Micro $2.39
$2.09 $1.89 Stove N $1.49 Micro $1.99
N $2.39 Stove $1.99 $1.49 Micro $2.39

$2.09 $2.39 Stove $2.49 $2.29 Micro N
$1.69 $2.39 Stove $2.49 N Stove $1.99

2 Talker $1.29 $2.39 Stove N $2.29 Stove $1.99
$1.29 $1.89 Micro N $1.49 Stove $1.99
$2.09 N Micro $2.49 N Micro N
$1.69 $1.89 Stove $1.99 $2.29 Micro N
$1.29 N Micro $1.99 $2.29 Micro $2.39
$1.29 $1.39 Micro $1.99 N Micro N
N N Micro $1.99 $2.29 Stove $1.99
N $1.39 Stove $2.49 $1.49 Stove N

$2.09 $2.39 Micro N N Stove $2.39
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In contrast, here are the actual values without formats and labels.

proc print data=sasuser.Entree_LinDesLab; format _numeric_; run;

Consumer Food Product Example

Obs x1 x2 x3 x4 x5 x6 x7 x8 Block

1 1.29 2.39 1 1 1.99 N 1 1.99 1
2 1.29 1.89 2 1 N N 2 N 1
3 N 2.39 1 1 N 2.29 2 N 1
4 1.29 1.39 2 1 2.49 2.29 2 N 1
5 2.09 1.39 1 1 1.99 1.49 2 N 1
6 N N 2 1 N 2.29 1 1.99 1
7 1.29 N 1 1 2.49 1.49 1 2.39 1
8 1.69 1.89 1 1 2.49 N 1 1.99 1
9 2.09 N 2 1 1.99 2.29 2 2.39 1

10 2.09 1.39 2 2 1.99 N 2 1.99 1
11 1.69 N 2 2 N 1.49 1 N 1
12 N 2.39 1 2 2.49 2.29 1 1.99 1
13 1.69 2.39 1 2 1.99 1.49 1 N 1
14 N 1.89 1 2 1.99 N 2 N 1
15 N 2.39 2 2 N N 1 2.39 1
16 1.29 N 2 2 2.49 1.49 2 2.39 1
17 1.69 1.39 1 2 N 2.29 2 2.39 1
18 2.09 1.89 2 2 2.49 N 1 2.39 1
19 N 1.89 2 1 1.99 1.49 2 2.39 2
20 N 1.39 1 1 2.49 N 2 1.99 2
21 1.69 N 1 1 N 1.49 2 N 2
22 1.69 1.39 2 1 N N 1 2.39 2
23 2.09 1.89 1 1 N 2.29 1 2.39 2
24 2.09 1.89 2 1 N 1.49 1 1.99 2
25 N 2.39 2 1 1.99 1.49 1 2.39 2
26 2.09 2.39 2 1 2.49 2.29 1 N 2
27 1.69 2.39 2 1 2.49 N 2 1.99 2
28 1.29 2.39 2 2 N 2.29 2 1.99 2
29 1.29 1.89 1 2 N 1.49 2 1.99 2
30 2.09 N 1 2 2.49 N 1 N 2
31 1.69 1.89 2 2 1.99 2.29 1 N 2
32 1.29 N 1 2 1.99 2.29 1 2.39 2
33 1.29 1.39 1 2 1.99 N 1 N 2
34 N N 1 2 1.99 2.29 2 1.99 2
35 N 1.39 2 2 2.49 1.49 2 N 2
36 2.09 2.39 1 2 N N 2 2.39 2
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One issue remains to be resolved regarding this design, and that concerns the role of the shelf talker
when the client line extension is not available. The second part of each block of the design consists of
choice sets in which the shelf talker is present and calls attention to the client line extension. However,
in some of those choice sets, the client line extension is unavailable. This problem can be handled in
several ways. Here are a few:

• Rerun the design creation and evaluation programs excluding all choice sets with shelf talker
present and client line extension unavailable. However, this requires changing the model because
the excluded cell will make inestimable the interaction between client-line-extension price and
shelf talker. Furthermore, the shelf-talker variable will almost certainly no longer be balanced.

• Move the choice sets with client line extension unavailable to the no-shelf-talker block and reran-
domize. The shelf talker is then on for all of the last nine choice sets.

• Let the shelf talker go on and off as needed.

• Let the shelf talker call attention to a brand that happens to be out of stock. It is easy to imagine
this happening in a real store.

Other options are available as well. No one approach is obviously superior to the alternatives. For this
example, we will take the latter approach and allow the shelf talker to be on even when the client line
extension is not available. Note that if the shelf talker is turned off when the client line extension is
not available then the design must be manually modified to reflect this fact.

Testing the Design Before Data Collection

This is a complicated design that will be used to fit a complicated model with alternative-specific effects,
price cross effects, and availability cross effects. Collecting data is time consuming and expensive. It is
always good practice, and particularly when there are cross effects, to make sure that the design will
work with the most complicated model that we anticipate fitting. Before we collect any data, we will
convert the linear design to a choice design∗ and use the %ChoicEff macro to evaluate its efficiency for
a multinomial logit model with both price and availability cross effects.

For analysis, the design will have four factors, Brand, Price, Micro, Shelf. We will use the %MktRoll
macro and a key= data set (although not the same one as before) to make the choice design. Brand is the
alternative name; its values are directly read from the key=Key in-stream data. Price is an attribute
whose values will be constructed from the factors x1, x2, x5, x6, and x8 in sasuser.Entree LinDesLab
data set. Micro, the microwave factor, is constructed from x3 for the client line extension and x7 for
the private label. Shelf, the shelf-talker factor, is created from x4 for the extension. The keep= option
on the %MktRoll macro is used to keep the original price factors in the design, since we will need them
for the price cross effects. Normally, they would be dropped.

∗See page 60 for an explanation of linear versus choice designs.
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data key;
input Brand $ 1-10 (Price Micro Shelf) ($);
datalines;

Client x1 . .
Extension x2 x3 x4
Regional x5 . .
Private x6 x7 .
National x8 . .
None . . .
;

%mktroll(design=sasuser.Entree_LinDesLab, key=key, alt=brand, out=rolled,
keep=x1 x2 x5 x6 x8)

proc print data=sasuser.Entree_LinDesLab(obs=2); run;

proc print data=rolled(obs=12);
format price dollar5.2 shelf yn. micro micro.;
id set; by set;
run;

Consider the first two choice sets in the linear design.

Consumer Food Product Example

Obs x1 x2 x3 x4 x5 x6 x7 x8 Block

1 $1.29 $2.39 Micro No $1.99 N Micro $1.99 1
2 $1.29 $1.89 Stove No N N Stove N 1

Here they are in the rolled out choice design.

Consumer Food Product Example

Set Brand Price Micro Shelf x1 x2 x5 x6 x8

1 Client $1.29 . . $1.29 $2.39 $1.99 N $1.99
Extension $2.39 Micro No $1.29 $2.39 $1.99 N $1.99
Regional $1.99 . . $1.29 $2.39 $1.99 N $1.99
Private N Micro . $1.29 $2.39 $1.99 N $1.99
National $1.99 . . $1.29 $2.39 $1.99 N $1.99
None . . . $1.29 $2.39 $1.99 N $1.99
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2 Client $1.29 . . $1.29 $1.89 N N N
Extension $1.89 Stove No $1.29 $1.89 N N N
Regional N . . $1.29 $1.89 N N N
Private N Stove . $1.29 $1.89 N N N
National N . . $1.29 $1.89 N N N
None . . . $1.29 $1.89 N N N

Set 1, Alternative 1

Brand = ’Client’ the brand for this alternative
Price = x1 = $1.29 the price of this alternative
Micro = . does not apply to this brand
Shelf = . does not apply to this brand
x1 = $1.29 the price of the client brand in this choice set
x2 = $2.39 the price of the extension in this choice set
x5 = $1.99 the price of the regional competitor in this choice set
x6 = N the private label unavailable in this choice set
x8 = $1.99 national competitor unavailable in this choice set

Set 1, Alternative 2

Brand = ’Extension’ the brand for this alternative
Price = x2 = $2.39 the price of this alternative
Micro = Micro Microwave version
Shelf = No Shelf Talker, No
x1 = $1.29 the price of the client brand in this choice set
x2 = $2.39 the price of the extension in this choice set
x5 = $1.99 the price of the regional competitor in this choice set
x6 = N the private label unavailable in this choice set
x8 = $1.99 national competitor unavailable in this choice set

The factors x1 through x8 will be used to make the price cross effects. Notice that x1 through x8 are
constant within each choice set. The variable x1 is the price of alternative one, which is the same no
matter which alternative it is stored with. The factors x1 through x8 will also be used to make five
other factors that will be used to make the availability cross effects. Here is how the prices will be
recoded for those factors.

x1 → a1 x2 → a2 x5 → a5 x6 → a6 x8 → a8
1.29 1 1.39 1 1.99 1 1.49 1 1.99 1
1.69 1 1.89 1 2.49 1 2.29 1 2.39 1
2.09 1 2.39 1 N -2 N -2 N -2

N -3 N -3

This is a contrast coding. Within each factor, the coding sums to zero. Each availability factor
has a coding that contrasts unavailable with the remaining available prices. When an alternative is
unavailable, the a variable is set to minus the number of available price points. The coding for available
alternatives is 1. A -3 is used for the first two alternatives that have three prices, and a -2 is used for
the remaining alternatives that have two prices.
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We need to do a few more things to this design before we are ready to use it. We need to convert the
missings for when Micro and Shelf do not apply to 2 for ’Stove’ and 1 for ’No’. We need to do the
contrast coding for making the availability cross effects. More will be said about this after the code is
shown. Since we will be treating all of the price factors as a quantitative (not as class variables), we
need to convert the missing prices to zero. Eventually, we will also need to output just the alternatives
that are available (those with a nonzero price and also the none alternative). For now, we will just
make a variable w that flags the available alternatives (w = 1). We can do this using a weight or flag
variable: w = 1 means available and w = 0 means not available. We also need to assign labels and
formats.

data sasuser.Entree_ChDes(drop=i);
set rolled;
array x[6] price x1 -- x8;
array a[5] a1 a2 a5 a6 a8;
if nmiss(micro) then micro = 2; /* stove if not a factor in alt */
if nmiss(shelf) then shelf = 1; /* not talker if not a factor in alt */

a1 = -3 * nmiss(x1) + n(x1); /* alt1: -3 - not avail, 1 - avail */
a2 = -3 * nmiss(x2) + n(x2); /* alt2: -3 - not avail, 1 - avail */
a5 = -2 * nmiss(x5) + n(x5); /* alt3: -2 - not avail, 1 - avail */
a6 = -2 * nmiss(x6) + n(x6); /* alt4: -2 - not avail, 1 - avail */
a8 = -2 * nmiss(x8) + n(x8); /* alt5: -2 - not avail, 1 - avail */
i = mod(_n_ - 1, 6) + 1; /* alternative number */
if i le 5 then a[i] = 0; /* 0 effect of an alt on itself */

do i = 1 to 6; if nmiss(x[i]) then x[i] = 0; end; /* missing price -> 0 */
w = brand eq ’None’ or price ne 0; /* 1 - avail, 0 not avail*/
format price dollar5.2 shelf yn. micro micro.;
label x1 = ’CE, Client’ a1 = ’AE, Client’

x2 = ’CE, Extension’ a2 = ’AE, Extension’
x5 = ’CE, Regional’ a5 = ’AE, Regional’
x6 = ’CE, Private’ a6 = ’AE, Private’
x8 = ’CE, National’ a8 = ’AE, National’;

run;

proc print data=sasuser.Entree_ChDes(obs=18); by set; id set; run;

The statements in the middle of the data step, from a1 = ... through if i ... create the variables
that will be used to make the availability effects. When alternative 1 is unavailable (x1 is missing), a1
is set to -3, otherwise a1 is set to 1; when alternative 2 is unavailable (x2 is missing), a2 is set to -3,
otherwise a2 is set to 1; when alternative 3 is unavailable (x5 is missing), a5 is set to -3, otherwise a5
is set to 1; and so on. Each of these statements could have been written in if else form. Here for
example is the first assignment statement rewritten: if nmiss(x1) then a1 = -3; else a1 = 1;.
The variables x1, x2, x5, x6, and x8 are the five price factors, and the “a” factors use the same
numbering scheme, although this is not a requirement. The if i and i = statements then set the
variable to zero when the variable will be used to construct the effect of an alternative on itself. For
example, the first alternative is the client brand, so a1 in the first alternative is set to zero. Here are
the first three choice sets.
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Consumer Food Product Example

Set Brand Price Micro Shelf x1 x2 x5 x6 x8 a1 a2 a5 a6 a8 w

1 Client $1.29 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 0 1 1 -2 1 1
Extension $2.39 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 1 1
Regional $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 0 -2 1 1
Private $0.00 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 0 1 0
National $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 0 1
None $0.00 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 1 1

2 Client $1.29 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 0 1 -2 -2 -2 1
Extension $1.89 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 0 -2 -2 -2 1
Regional $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 0 -2 -2 0
Private $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 0 -2 0
National $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 0 0
None $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 -2 1

3 Client $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 0 1 -2 1 -2 0
Extension $2.39 Micro No $0.00 $2.39 $0.00 $2.29 $0.00 -3 0 -2 1 -2 1
Regional $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 0 1 -2 0
Private $2.29 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 0 -2 1
National $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 1 0 0
None $0.00 Stove No $0.00 $2.39 $0.00 $2.29 $0.00 -3 1 -2 1 -2 1

In the first choice set, for example, since alternative 1 is available, a1 is 1, for all alternatives except
the first, where a1 is 0. Also in the first choice set, since alternative 4 is not available and there are
two price levels, a6 is -2 for all alternatives except the fourth, where a6 is 0. In the third choice set,
since alternative 1 is not available and there are three price levels, a1 is -3, for all alternatives except
the first, where a2 is 0. In general, the coding stores a zero in the ith effect for the ith alternative,
otherwise a 1 if the alternative is available, otherwise -(the number of price levels) if the alternative is
unavailable.

Now our choice design is done except for the final coding for the analysis. We can now use the
%ChoicEff macro to evaluate our choice design. Here is some sample code, omitting for now the
details of the model (indicated by model= ...). The complicated part of this is the model due to the
alternative-specific price effects and the cross effects. For now, let’s concentrate on everything else.

%choiceff(data=sasuser.Entree_ChDes,
model= ..., /* model specification skipped for now */
nsets=36, nalts=6, weight=w,
beta=zero, init=sasuser.Entree_ChDes(keep=set),
intiter=0)

The way you check the efficiency of a design like this is to first name it on the data= option. This will be
the candidate set that contains all of the choice sets that we will consider. In addition, the same design
is named on the init= option. The full specification is init=sasuser.Entree ChDes(keep=set). Just
the variable Set is kept. It will be used to bring in just the indicated choice sets from the data= design,
which in this case is all of them. The option nsets=36 specifies the number of choice sets, and nalts=6
specifies the number of alternatives. This macro requires a constant number of alternatives in each
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choice set for ease of data management. However, not all of the alternatives have to be used. In this
case, we have an availability study. We need to keep the unavailable alternatives in the design for
this step, but we do not want them to contribute to the analysis, so we specify a weight variable with
weight=w and flag the available alternatives with w=1 and the unavailable alternatives with w=0. The
option beta=zero specifies that we are assuming for design evaluation purpose all zero betas. We can
specify other values and get other results for the variances and standard errors. Finally, we specify
intiter=0 which specifies zero internal iterations. We use zero internal iterations when we want to
evaluate an initial design, but not attempt to improve it. Here is the actual specification we will use,
complete with the model specification.

%choiceff(data=sasuser.Entree_ChDes,
model=class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) *
identity(price)

class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’)
identity(x1 x2 x5 x6 x8) *

class(brand / zero=’None’ separators=’ ’ ’ on ’)
identity(a1 a2 a5 a6 a8) *

class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0 order=data,

nsets=36, nalts=6, weight=w,
beta=zero, init=sasuser.Entree_ChDes(keep=set),
intiter=0)

The specification class(brand / zero=’None’) specifies the brand effects. This specification will
create indicator variables for brand with the constant alternative being the reference brand. The option
zero=’None’ ensures that the reference level will be ’None’ instead of the default last sorted level
(’Regional’). Indicator variables will be created for the brands Client, Extension, Regional, Private,
and National, but not None. The zero=’None’ option, like zero=’Home’ and other zero=’literal-string’
options we have used in previous examples, names the actual formatted value of the class variable
that should be excluded from the coded variables because the coefficient will be zero. Do not confuse
zero=none and zero=’None’. The zero=none option specifies that you want all indicator variables to
be created, even including one for the last level. In contrast, the option zero=’None’ (or zero= any
quoted string) names a specific formatted value, in this case ’None’, for which indicator variables are
not to be created.

The specification class(brand / ...) * identity(price) creates the alternative-specific price ef-
fects. They are specified as an interaction between a categorical variable Brand and a quantitative
factor Price. The separators=’’ ’ ’ option in the class specification specifies the separators that
are used to construct the labels for the main effect and interaction terms. The main-effects separator,
which is the first separators= value, ’’, is ignored since lprefix=0. Specifying ’ ’ as the second
value creates labels of the form brand-blank-price instead of the default brand-blank-asterisk-blank-price.

The specification class(shelf micro / ...) names the shelf-talker and microwave variables as cat-
egorical variables and creates indicator variables for the ’Talker’ category, not the ’No’ category and
the ’Micro’ category not the ’Stove’ category. In zero=’No’ ’Stove’, the ’No’ applies to the first
variable, Shelf and the second value, ’Stove’, applies to second variable, Micro.

The specification identity(x1 x2 x5 x6 x8) * class(brand / ...) creates the linear price cross
effects. The separators= option is specified with a second value of ’ on ’ to create cross effect
labels like ’Client on Extension’. The specification identity(a1 a2 a5 a6 a8) * class(brand
/ ...) creates the availability cross effects. Note that the order of the transformation specification is
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important. Make sure you specify identity followed by class in order to get the right labels. More
will be said on the cross effects when we look at the actual coded values in the next few pages.

Note that PROC TRANSREG produces the following warning.

WARNING: This usage of * sets one group’s slope to zero. Specify |
to allow all slopes and intercepts to vary. Alternatively,
specify CLASS(vars) * identity(vars) identity(vars) for
separate within group functions and a common intercept.
This is a change from Version 6.

This is because class was interacted with identity using the asterisk instead of the vertical bar. In
a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero=’constant-alternative-level’, you can safely ignore
it. Still, it is always good to print out one or more coded choice sets to check the coding as we will do
later. Here is the last part of the output from the %ChoicEff macro.

Consumer Food Product Example

Standard
n Variable Name Label Variance DF Error

1 BrandClient Client 69.807 1 8.3551
2 BrandExtension Extension 75.688 1 8.6999
3 BrandRegional Regional 121.147 1 11.0067
4 BrandPrivate Private 104.058 1 10.2009
5 BrandNational National 110.456 1 10.5098
6 BrandClientPrice Client Price 3.255 1 1.8042
7 BrandExtensionPrice Extension Price 2.233 1 1.4942
8 BrandRegionalPrice Regional Price 6.599 1 2.5688
9 BrandPrivatePrice Private Price 2.604 1 1.6138

10 BrandNationalPrice National Price 11.071 1 3.3273
11 ShelfTalker Shelf Talker 0.928 1 0.9636

12 MicroMicro Micro 0.562 1 0.7493
13 x1BrandClient CE, Client on Client . 0 .
14 x1BrandExtension CE, Client on Extension 4.689 1 2.1655
15 x1BrandRegional CE, Client on Regional 4.462 1 2.1124
16 x1BrandPrivate CE, Client on Private 5.627 1 2.3720
17 x1BrandNational CE, Client on National 5.374 1 2.3182

18 x2BrandClient CE, Extension on Client 3.040 1 1.7435
19 x2BrandExtension CE, Extension on Extension . 0 .
20 x2BrandRegional CE, Extension on Regional 3.038 1 1.7431
21 x2BrandPrivate CE, Extension on Private 3.666 1 1.9146
22 x2BrandNational CE, Extension on National 3.130 1 1.7691

23 x5BrandClient CE, Regional on Client 8.961 1 2.9935
24 x5BrandExtension CE, Regional on Extension 9.824 1 3.1343
25 x5BrandRegional CE, Regional on Regional . 0 .
26 x5BrandPrivate CE, Regional on Private 10.496 1 3.2398
27 x5BrandNational CE, Regional on National 10.360 1 3.2188
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28 x6BrandClient CE, Private on Client 3.965 1 1.9912
29 x6BrandExtension CE, Private on Extension 4.195 1 2.0482
30 x6BrandRegional CE, Private on Regional 4.429 1 2.1046
31 x6BrandPrivate CE, Private on Private . 0 .
32 x6BrandNational CE, Private on National 4.453 1 2.1102

33 x8BrandClient CE, National on Client 18.098 1 4.2541
34 x8BrandExtension CE, National on Extension 16.311 1 4.0387
35 x8BrandRegional CE, National on Regional 22.372 1 4.7299
36 x8BrandPrivate CE, National on Private 18.271 1 4.2745
37 x8BrandNational CE, National on National . 0 .

38 a1BrandClient AE, Client on Client . 0 .
39 a1BrandExtension AE, Client on Extension 0.981 1 0.9904
40 a1BrandRegional AE, Client on Regional 0.892 1 0.9447
41 a1BrandPrivate AE, Client on Private 1.071 1 1.0347
42 a1BrandNational AE, Client on National 1.031 1 1.0155

43 a2BrandClient AE, Extension on Client 0.766 1 0.8755
44 a2BrandExtension AE, Extension on Extension . 0 .
45 a2BrandRegional AE, Extension on Regional 0.880 1 0.9381
46 a2BrandPrivate AE, Extension on Private 0.990 1 0.9952
47 a2BrandNational AE, Extension on National 0.999 1 0.9995

48 a5BrandClient AE, Regional on Client 5.128 1 2.2644
49 a5BrandExtension AE, Regional on Extension 5.530 1 2.3516
50 a5BrandRegional AE, Regional on Regional . 0 .
51 a5BrandPrivate AE, Regional on Private 5.860 1 2.4208
52 a5BrandNational AE, Regional on National 5.887 1 2.4263

53 a6BrandClient AE, Private on Client 1.796 1 1.3402
54 a6BrandExtension AE, Private on Extension 1.843 1 1.3577
55 a6BrandRegional AE, Private on Regional 2.116 1 1.4547
56 a6BrandPrivate AE, Private on Private . 0 .
57 a6BrandNational AE, Private on National 1.964 1 1.4015

58 a8BrandClient AE, National on Client 10.135 1 3.1836
59 a8BrandExtension AE, National on Extension 8.720 1 2.9529
60 a8BrandRegional AE, National on Regional 12.021 1 3.4671
61 a8BrandPrivate AE, National on Private 10.188 1 3.1919
62 a8BrandNational AE, National on National . 0 .

==
52

First we see estimable brand effects for each of the five brands, excluding the constant alternative
’None’. Next, we see quantitative alternative-specific price effects for each of the brands. The next
two effects that are single df effects for the shelf-talker and the microwave option. Then we see five sets
of linear price cross effects (those whose label begins with “CE”), each consisting of four effects of a
brand on another brand, plus one more zero df cross effect of a brand on itself. The zero df and missing
variances and standard errors are correct since the cross effect of an alternative on itself is perfectly
aliased with its alternative-specific price effect. After that we see five sets of availability cross effects
(those whose label begins with “AE”), each consisting of four effects of a brand on another brand, plus
one more zero df cross effect of a brand on itself. The zero df and missing variances and standard errors
are correct since the cross effect of an alternative on itself is zero. These results look fine. Everything
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that should be estimable is estimable, and everything that should not be estimable is not.

Next, we will run some further checks by looking at the coded design. Before we look at the coded
design, recall that the design for the first five choice sets is as follows.

Consumer Food Product Example

Client Client Private
Shelf Client Line Micro/ Regional Private Micro/ National

Block Talker Brand Extension Stove Brand Label Stove Competitor

1 No $1.29 $2.39 Micro $1.99 N Micro $1.99
$1.29 $1.89 Stove N N Stove N
N $2.39 Micro N $2.29 Stove N

$1.29 $1.39 Stove $2.49 $2.29 Stove N
$2.09 $1.39 Micro $1.99 $1.49 Stove N

The coded design that the %ChoicEff macro creates is called TMP CAND. We will look at the coded
data set in several ways. First, here are the Brand, Price, microwave and shelf-talker factors, for just
the available alternatives for the first five choice sets.

proc print data=tmp_cand(obs=24) label;
var Brand Price Shelf Micro;
where w;
run;

Consumer Food Product Example

Obs Brand Price Shelf Micro

1 Client $1.29 No Stove
2 Extension $2.39 No Micro
3 Regional $1.99 No Stove
5 National $1.99 No Stove
6 None $0.00 No Stove

7 Client $1.29 No Stove
8 Extension $1.89 No Stove

12 None $0.00 No Stove
14 Extension $2.39 No Micro
16 Private $2.29 No Stove
18 None $0.00 No Stove

19 Client $1.29 No Stove
20 Extension $1.39 No Stove
21 Regional $2.49 No Stove
22 Private $2.29 No Stove
24 None $0.00 No Stove
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25 Client $2.09 No Stove
26 Extension $1.39 No Micro
27 Regional $1.99 No Stove
28 Private $1.49 No Stove
30 None $0.00 No Stove

34 Private $2.29 No Micro
35 National $1.99 No Stove
36 None $0.00 No Stove

Unlike all previous examples, the number of alternatives is not the same in all of the choice sets due
to differing subsets of brands being unavailable in each choice set.

Here are the coded factors for the brand effects and alternative-specific price effects for the first choice
set.

proc print data=tmp_cand(obs=5) label;
id Brand;
var BrandClient -- BrandNational;
where w;
run;

proc format; value zer 0 = ’ 0’; run;

proc print data=tmp_cand(obs=5) label;
id Brand Price;
var BrandClientPrice -- BrandNationalPrice;
format BrandClientPrice -- BrandNationalPrice zer5.2;
where w;
run;

Consumer Food Product Example

Brand Client Extension Regional Private National

Client 1 0 0 0 0
Extension 0 1 0 0 0
Regional 0 0 1 0 0
National 0 0 0 0 1
None 0 0 0 0 0
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Consumer Food Product Example

Client Extension Regional Private National
Brand Price Price Price Price Price Price

Client $1.29 1.29 0 0 0 0
Extension $2.39 0 2.39 0 0 0
Regional $1.99 0 0 1.99 0 0
National $1.99 0 0 0 0 1.99
None $0.00 0 0 0 0 0

The brand effects and alternative-specific price effect codings are similar to those we have used previ-
ously. The difference is the presence of all zero columns for unavailable alternatives, in this case the
private label and national brands. Note that Brand Price are just ID variables and do not enter into
the analysis.

Here are the shelf-talker and microwave coded factors (along with the Brand, Price, Shelf, and Micro
factors).

proc print data=tmp_cand(obs=5) label;
id Brand Price Shelf Micro;
var shelftalker micromicro;
where w;
run;

Consumer Food Product Example

Shelf
Brand Price Shelf Micro Talker Micro

Client $1.29 No Stove 0 0
Extension $2.39 No Micro 0 1
Regional $1.99 No Stove 0 0
National $1.99 No Stove 0 0
None $0.00 No Stove 0 0

The following code prints the price cross effects along with Brand and Price for the first choice set.

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x1Brand:; format x1Brand: zer5.2;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x2Brand:; format x2Brand: zer5.2;
where w;
run;
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proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x5Brand:; format x5Brand: zer5.2;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x6Brand:; format x6Brand: zer5.2;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var x8Brand:; format x8Brand: zer5.2;
where w;
run;

The cross effects are printed in panels. This first panel shows the terms that capture the effect of the
client brand on the utility of the other brands. The second panel shows the terms that capture the
effect of the line extension on the other alternatives, and so on. An unavailable brand has no effect on
any other brand’s utility in that choice set.

Consumer Food Product Example

CE, Client CE, Client CE, Client
CE, Client on on CE, Client on

Brand Price on Client Extension Regional on Private National

Client $1.29 1.29 0 0 0 0
Extension $2.39 0 1.29 0 0 0
Regional $1.99 0 0 1.29 0 0
National $1.99 0 0 0 0 1.29

CE, CE, CE,
CE, Extension Extension CE, Extension

Extension on on Extension on
Brand Price on Client Extension Regional on Private National

Client $1.29 2.39 0 0 0 0
Extension $2.39 0 2.39 0 0 0
Regional $1.99 0 0 2.39 0 0
National $1.99 0 0 0 0 2.39
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CE, CE, CE,
CE, Regional Regional CE, Regional

Regional on on Regional on
Brand Price on Client Extension Regional on Private National

Client $1.29 1.99 0 0 0 0
Extension $2.39 0 1.99 0 0 0
Regional $1.99 0 0 1.99 0 0
National $1.99 0 0 0 0 1.99

CE, CE, CE, CE, CE,
Private on Private on Private on Private on Private on

Brand Price Client Extension Regional Private National

Client $1.29 0 0 0 0 0
Extension $2.39 0 0 0 0 0
Regional $1.99 0 0 0 0 0
National $1.99 0 0 0 0 0

CE, CE, CE,
CE, National National CE, National

National on on National on
Brand Price on Client Extension Regional on Private National

Client $1.29 1.99 0 0 0 0
Extension $2.39 0 1.99 0 0 0
Regional $1.99 0 0 1.99 0 0
National $1.99 0 0 0 0 1.99

A column like ’CE, Client on Extension’ in the first panel, for example, captures the effect of the
client brand at $1.29 on the utility of the extension. In the next panel, ’CE, Extension on Client’
captures the effect of the extension at $2.39 on the utility of the client brand.

The following steps prints the availability cross effects along with Brand and Price for the first choice
set.

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a1Brand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a2Brand:;
where w;
run;
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proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a5Brand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a6Brand:;
where w;
run;

proc print data=tmp_cand(obs=4) label;
id Brand Price;
var a8Brand:;
where w;
run;

The availability cross effects are printed in panels. The first panel shows the terms that capture the
effect of the client brand which on the other available alternatives, and so on. Panels with 1’s in
them show the effects of the available brands and panels with negative numbers show the effects of the
unavailable brands.

Consumer Food Product Example

AE, Client AE, Client AE, Client
AE, Client on on AE, Client on

Brand Price on Client Extension Regional on Private National

Client $1.29 0 0 0 0 0
Extension $2.39 0 1 0 0 0
Regional $1.99 0 0 1 0 0
National $1.99 0 0 0 0 1

AE, AE, AE,
AE, Extension Extension AE, Extension

Extension on on Extension on
Brand Price on Client Extension Regional on Private National

Client $1.29 1 0 0 0 0
Extension $2.39 0 0 0 0 0
Regional $1.99 0 0 1 0 0
National $1.99 0 0 0 0 1
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AE, AE, AE,
AE, Regional Regional AE, Regional

Regional on on Regional on
Brand Price on Client Extension Regional on Private National

Client $1.29 1 0 0 0 0
Extension $2.39 0 1 0 0 0
Regional $1.99 0 0 0 0 0
National $1.99 0 0 0 0 1

AE, AE, AE, AE, AE,
Private on Private on Private on Private on Private on

Brand Price Client Extension Regional Private National

Client $1.29 -2 0 0 0 0
Extension $2.39 0 -2 0 0 0
Regional $1.99 0 0 -2 0 0
National $1.99 0 0 0 0 -2

AE, AE, AE,
AE, National National AE, National

National on on National on
Brand Price on Client Extension Regional on Private National

Client $1.29 1 0 0 0 0
Extension $2.39 0 1 0 0 0
Regional $1.99 0 0 1 0 0
National $1.99 0 0 0 0 0

The design looks good, it has reasonably good balance and correlations, it can be used to estimate all
of the effects of interest, and we have shown that we know how to code all of the factors for a model
with cross effects and availability cross effects. We are ready to collect data.

Generating Artificial Data

We will not illustrate questionnaire generation for this example since we have done it several times
before in previous examples. Instead we will go straight to data processing and analysis. This DATA
step generates some artificial data. Creating artificial data and trying the analysis before collecting
real data is another way to test the design before going to the expense of data collection.

%let m = 6;
%let mm1 = %eval(&m - 1);
%let n = 36;

proc format;
value yn 1 = ’No’ 2 = ’Talker’;
value micro 1 = ’Micro’ 2 = ’Stove’;
run;
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data _null_;
array brands[&m] _temporary_ (5 7 1 2 3 -2);
array u[&m];
array x[&mm1] x1 x2 x5 x6 x8;
do rep = 1 to 300;

if mod(rep, 2) then put;
put rep 3. +2 @@;
do j = 1 to &n;

set sasuser.Entree_LinDesLab point=j;
do brand = 1 to &m; u[brand] = brands[brand] + 2 * normal(17); end;
do brand = 1 to &mm1;

if n(x[brand]) then u[brand] + -x[brand]; else u[brand] = .;
end;

if n(u2) and x4 = 2 then u2 + 1; /* shelf talker */
if n(u2) and x3 = 1 then u2 + 1; /* microwave */
if n(u4) and x7 = 1 then u4 + 1; /* microwave */
* Choose the most preferred alternative.;
m = max(of u1-u&m);
do brand = 1 to &m;

if n(u[brand]) then if abs(u[brand] - m) < 1e-4 then c = brand;
end;

put +(-1) c @@;
end;

end;
stop;
run;

This DATA step reads the data.

data results;
input Subj (choose1-choose&n) (1.) @@;
datalines;

1 222224155212222522221221222221212522 2 222225421242222122221212222221211322
3 212224521545222122221222221121112522 4 212125121212222122221222421221212522
5 222225125212222122521212222221212422 6 222125523112222122224221212111242522
.
.
.

297 222225521212222422224222522121151622 298 222224121242122422221222512221212522
299 112225121212122121521222212211212622 300 122225123242122122221211222123212322
;

Processing the Data

The analysis proceeds in a fashion similar to before. We have already made the choice design, so we just
have to merge it with the data. The data and design are merged in the usual way using the %MktMerge
macro. Notice at this point that the unavailable alternatives are still in the design. The %MktMerge
macro has an nalts= option and expects a constant number of alternatives in each choice set.
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%mktmerge(design=sasuser.Entree_ChDes, data=results, out=res2,
nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2(obs=12); id subj set; by subj set; run;

Here are the data and design for the first two choice sets for the first subject, including the unavailable
alternatives.

Consumer Food Product Example

B P M S
S r r i h
u S a i c e
b e n c r l x x x x x a a a a a
j t d e o f 1 2 5 6 8 1 2 5 6 8 w c

1 1 Client $1.29 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 0 1 1 -2 1 1 2
Extension $2.39 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 1 1 1
Regional $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 0 -2 1 1 2
Private $0.00 Micro No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 0 1 0 2
National $1.99 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 0 1 2
None $0.00 Stove No $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 1 1 2

1 2 Client $1.29 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 0 1 -2 -2 -2 1 2
Extension $1.89 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 0 -2 -2 -2 1 1
Regional $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 0 -2 -2 0 2
Private $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 0 -2 0 2
National $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 0 0 2
None $0.00 Stove No $1.29 $1.89 $0.00 $0.00 $0.00 1 1 -2 -2 -2 1 2

These next steps aggregate the data. The data set is fairly large at 64,800 observations, and aggregating
greatly reduces its size, which makes both the TRANSREG and the PHREG steps run in just a few
seconds. This step also excludes the unavailable alternatives. When w is 1 (true) the alternative is
available and counted, otherwise when w is 0 (false) the alternative is unavailable and excluded by the
where clause and not counted. There is nothing in subsequent steps that assumes a fixed number of
alternatives.

proc summary data=res2 nway;
class set brand price shelf micro x1 x2 x5 x6 x8 a1 a2 a5 a6 a8 c;
output out=agg(drop=_type_);
where w; /* exclude unavailable, w = 0 */
run;

proc print; where set = 1; run;

All of the variables used in the analysis are named as class variables in PROC SUMMARY, which
reduces the data set from 64,800 observations to 286. Here are the aggregated data for the first choice
set.
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Consumer Food Product Example

_
B P S M F
r r h i R

O S a i e c E
b e n c l r x x x x x a a a a a Q
s t d e f o 1 2 5 6 8 1 2 5 6 8 c _

1 1 Client $1.29 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 0 1 1 -2 1 1 74
2 1 Client $1.29 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 0 1 1 -2 1 2 226
3 1 Extension $2.39 No Micro $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 1 1 220
4 1 Extension $2.39 No Micro $1.29 $2.39 $1.99 $0.00 $1.99 1 0 1 -2 1 2 80
5 1 National $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 0 1 6
6 1 National $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 0 2 294
7 1 None $0.00 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 1 -2 1 2 300
8 1 Regional $1.99 No Stove $1.29 $2.39 $1.99 $0.00 $1.99 1 1 0 -2 1 2 300

In the first choice set, the client brand was chosen (c = 1) a total of freq = 74 times and not chosen
(c = 2) a total of freq = 226 times. Each alternative was chosen and not chosen a total of 300 times,
which is the number of subjects. These next steps code and run the analysis.

Cross Effects

This next step codes the design for analysis. This coding was discussed on page 321. PROC TRANS-
REG is run like before, except now the data set Agg is specified and the ID variable includes freq
(the frequency variable) but not Subj (the subject number variable).

proc transreg data=agg design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’)
identity(x1 x2 x5 x6 x8) *

class(brand / zero=’None’ separators=’ ’ ’ on ’)
identity(a1 a2 a5 a6 a8) *

class(brand / zero=’None’ separators=’ ’ ’ on ’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id set c _freq_;
label shelf = ’Shelf Talker’

micro = ’Microwave’;
run;
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Note that like we saw in the %ChoicEff macro, PROC TRANSREG produces the following warning.

WARNING: This usage of * sets one group’s slope to zero. Specify |
to allow all slopes and intercepts to vary. Alternatively,
specify CLASS(vars) * identity(vars) identity(vars) for
separate within group functions and a common intercept.
This is a change from Version 6.

This is because class was interacted with identity using the asterisk instead of the vertical bar. In
a linear model, this may be a sign of a coding error, so the procedure prints a warning. If you get this
warning while coding a choice model specifying zero=’constant-alternative-level’, you can safely ignore
it.

The analysis is the same as we have done previously with aggregate data. PROC PHREG is run to fit
the mother logit model, complete with availability cross effects.

proc phreg data=coded;
strata set;
model c*c(2) = &_trgind / ties=breslow;
freq _freq_;
run;

Multinomial Logit Model Results

These steps produced the following results. (Recall that we used %phchoice(on) on page 143 to
customize the output from PROC PHREG.)

Consumer Food Product Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable _FREQ_
Ties Handling BRESLOW

Number of Observations Read 284
Number of Observations Used 284
Sum of Frequencies Read 47400
Sum of Frequencies Used 47400
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 1500 300 1200
2 2 900 300 600
3 3 900 300 600
4 4 1500 300 1200
5 5 1500 300 1200
6 6 900 300 600
7 7 1500 300 1200
8 8 1500 300 1200
9 9 1500 300 1200
10 10 1500 300 1200
11 11 900 300 600
12 12 1500 300 1200
13 13 1500 300 1200
14 14 900 300 600
15 15 900 300 600
16 16 1500 300 1200
17 17 1500 300 1200
18 18 1500 300 1200
19 19 1500 300 1200
20 20 1200 300 900
21 21 900 300 600
22 22 1200 300 900
23 23 1500 300 1200
24 24 1500 300 1200
25 25 1500 300 1200
26 26 1500 300 1200
27 27 1500 300 1200
28 28 1500 300 1200
29 29 1500 300 1200
30 30 900 300 600
31 31 1500 300 1200
32 32 1500 300 1200
33 33 1200 300 900
34 34 1200 300 900
35 35 1200 300 900
36 36 1200 300 900

---------------------------------------------------------------
Total 47400 10800 36600

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 154710.28 134305.63
AIC 154710.28 134409.63
SBC 154710.28 134788.57

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 20404.6461 52 <.0001
Score 22883.7078 52 <.0001
Wald 6444.0844 52 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Client 1 8.16629 3.96395 4.2442 0.0394
Extension 1 10.30298 4.13379 6.2119 0.0127
National 1 5.41386 4.90468 1.2184 0.2697
Private 1 4.90773 4.06749 1.4558 0.2276
Regional 1 4.96459 5.93423 0.6999 0.4028

Client Price 1 -1.11653 0.77149 2.0945 0.1478
Extension Price 1 -0.99948 1.21987 0.6713 0.4126
National Price 1 1.25938 1.74132 0.5231 0.4695
Private Price 1 -1.33471 0.76283 3.0614 0.0802
Regional Price 1 -1.22852 1.48246 0.6867 0.4073

Shelf Talker 1 0.66941 0.07828 73.1204 <.0001

Micro 1 0.59645 0.06746 78.1706 <.0001
CE, Client on Client 0 0 . . .
CE, Client on Extension 1 -0.31640 0.78240 0.1635 0.6859
CE, Client on National 1 -0.50555 0.80031 0.3990 0.5276
CE, Client on Private 1 -0.25802 0.82061 0.0989 0.7532
CE, Client on Regional 1 1.15121 1.03011 1.2489 0.2638

CE, Extension on Client 1 -0.52993 1.22364 0.1876 0.6650
CE, Extension on Extension 0 0 . . .
CE, Extension on National 1 -0.55507 1.24852 0.1977 0.6566
CE, Extension on Private 1 0.20613 1.25789 0.0269 0.8698
CE, Extension on Regional 1 -0.54337 1.43547 0.1433 0.7050

CE, Regional on Client 1 -1.14955 1.07675 1.1398 0.2857
CE, Regional on Extension 1 -1.43726 1.08276 1.7620 0.1844
CE, Regional on National 1 -1.81230 1.13204 2.5629 0.1094
CE, Regional on Private 1 -1.20206 1.09592 1.2031 0.2727
CE, Regional on Regional 0 0 . . .
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CE, Private on Client 1 -0.42457 0.75836 0.3134 0.5756
CE, Private on Extension 1 -0.35800 0.75937 0.2223 0.6373
CE, Private on National 1 -0.68966 0.79742 0.7480 0.3871
CE, Private on Private 0 0 . . .
CE, Private on Regional 1 -1.11543 1.08771 1.0516 0.3051

CE, National on Client 1 1.42556 1.75683 0.6584 0.4171
CE, National on Extension 1 1.03538 1.75043 0.3499 0.5542
CE, National on National 0 0 . . .
CE, National on Private 1 1.46740 1.78874 0.6730 0.4120
CE, National on Regional 1 -0.28269 2.28193 0.0153 0.9014

AE, Client on Client 0 0 . . .
AE, Client on Extension 1 0.12477 0.38019 0.1077 0.7428
AE, Client on National 1 0.10606 0.38579 0.0756 0.7834
AE, Client on Private 1 -0.04026 0.39633 0.0103 0.9191
AE, Client on Regional 1 -0.57219 0.48525 1.3904 0.2383

AE, Extension on Client 1 0.77428 0.65342 1.4041 0.2360
AE, Extension on Extension 0 0 . . .
AE, Extension on National 1 0.61514 0.67002 0.8429 0.3586
AE, Extension on Private 1 0.18324 0.67377 0.0740 0.7856
AE, Extension on Regional 1 0.38862 0.76269 0.2596 0.6104

AE, Regional on Client 1 0.87692 0.77389 1.2840 0.2572
AE, Regional on Extension 1 1.05490 0.77497 1.8529 0.1734
AE, Regional on National 1 1.29670 0.79530 2.6584 0.1030
AE, Regional on Private 1 0.98393 0.77581 1.6085 0.2047
AE, Regional on Regional 0 0 . . .

AE, Private on Client 1 0.29125 0.48172 0.3655 0.5454
AE, Private on Extension 1 0.26656 0.48436 0.3029 0.5821
AE, Private on National 1 0.49015 0.50341 0.9480 0.3302
AE, Private on Private 0 0 . . .
AE, Private on Regional 1 0.81907 0.74339 1.2140 0.2705

AE, National on Client 1 -1.15849 1.35844 0.7273 0.3938
AE, National on Extension 1 -0.88510 1.35042 0.4296 0.5122
AE, National on National 0 0 . . .
AE, National on Private 1 -1.32585 1.38251 0.9197 0.3376
AE, National on Regional 1 0.31543 1.74206 0.0328 0.8563

Since the number of alternatives is not constant within each choice set, the summary table has non-
constant numbers of alternatives and numbers of alternatives not chosen. The number chosen, 300 (or
one per subject per choice set), is constant, since each subject always chooses one alternative from each
choice set regardless of the number of alternatives. The total number of alternatives ranges from 900
with three alternatives to 1500 with five alternatives.

The cross effects are mostly nonsignificant. Since most of the cross effects are nonsignificant, we can
rerun the analysis with a simpler model.
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proc transreg data=agg design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’) /
lprefix=0;

output out=coded(drop=_type_ _name_ intercept);
id set c _freq_;
label shelf = ’Shelf Talker’

micro = ’Microwave’;
run;

proc phreg data=coded;
strata set;
model c*c(2) = &_trgind / ties=breslow;
freq _freq_;
run;

Here are the parameter estimates for the simpler model.

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Client 1 5.65644 0.20231 781.6872 <.0001
Extension 1 6.42043 0.21086 927.1112 <.0001
National 1 0.77822 0.63713 1.4919 0.2219
Private 1 4.51101 0.30491 218.8745 <.0001
Regional 1 1.71388 0.99673 2.9567 0.0855

Client Price 1 -0.76985 0.09446 66.4224 <.0001
Extension Price 1 -0.50666 0.08350 36.8162 <.0001
National Price 1 0.74444 0.29078 6.5542 0.0105
Private Price 1 -1.33357 0.14151 88.8068 <.0001
Regional Price 1 -0.42010 0.46037 0.8327 0.3615

Shelf Talker 1 0.71984 0.06941 107.5588 <.0001
Micro 1 0.58407 0.05632 107.5642 <.0001

The most to least preferred brands are: client line extension, client brand, private label, the regional
competitor, the national brand, and the none alternative (with an implicit part-worth utility of zero).
The price effects are mostly negative, and the positive effects are only marginally significant. Both the
shelf-talker and the microwaveable option have positive utility.

Modeling Subject Attributes

This example uses the same design and data as we just saw, but this time we have some demographic
information about our respondents that we wish to model. The following DATA step reads a subject
number, the choices, and the respondent age and income (in thousands of dollars).
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data results;
input Subj (choose1-choose&n) (1.) age income;
datalines;

1 222224155212222522221221222221212522 33 109
2 222225421242222122221212222221211322 56 117
3 212224521545222122221222221121112522 56 78
4 212125121212222122221222421221212522 57 107
.
.
.

299 112225121212122121521222212211212622 41 89
300 122225123242122122221211222123212322 38 95
;

Merging the data and design is no different from what we saw previously. To make this analysis simpler,
we will not fit any cross effects or availability cross effects, although we certainly could.

%mktmerge(design=sasuser.Entree_ChDes(drop=x1--x8 a1--a8), data=results,
out=res2, nsets=&n, nalts=&m, setvars=choose1-choose&n)

proc print data=res2;
by subj set; id subj set;
where (subj = 1 and set = 1) or

(subj = 2 and set = 2) or
(subj = 3 and set = 3) or
(subj = 300 and set = 36);

run;

Here is a small sample of the data. Note that like before, the unavailable alternatives are required for
the merge step.

Consumer Food Product Example

Subj Set Age Income Brand Price Micro Shelf w c

1 1 33 109 Client $1.29 Stove No 1 2
33 109 Extension $2.39 Micro No 1 1
33 109 Regional $1.99 Stove No 1 2
33 109 Private $0.00 Micro No 0 2
33 109 National $1.99 Stove No 1 2
33 109 None $0.00 Stove No 1 2

2 2 56 117 Client $1.29 Stove No 1 2
56 117 Extension $1.89 Stove No 1 1
56 117 Regional $0.00 Stove No 0 2
56 117 Private $0.00 Stove No 0 2
56 117 National $0.00 Stove No 0 2
56 117 None $0.00 Stove No 1 2
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3 3 56 78 Client $0.00 Stove No 0 2
56 78 Extension $2.39 Micro No 1 1
56 78 Regional $0.00 Stove No 0 2
56 78 Private $2.29 Stove No 1 2
56 78 National $0.00 Stove No 0 2
56 78 None $0.00 Stove No 1 2

300 36 38 95 Client $2.09 Stove No 1 2
38 95 Extension $2.39 Micro Talker 1 1
38 95 Regional $0.00 Stove No 0 2
38 95 Private $0.00 Stove No 0 2
38 95 National $2.39 Stove No 1 2
38 95 None $0.00 Stove No 1 2

You can see that the demographic information matches the raw data and is constant within each
subject. The rest of the data processing is virtually the same as well. Since we have demographic
information, we will not aggregate. There would have to be ties in both the demographics and choice
for aggregation to have any effect.

We use PROC TRANSREG to code, adding Age and Income to the analysis.

proc transreg data=res2 design=5000 nozeroconstant norestoremissing;
model class(brand / zero=’None’)

identity(age income) * class(brand / zero=’None’ separators=’’ ’, ’)
class(brand / zero=’None’ separators=’’ ’ ’) * identity(price)
class(shelf micro / lprefix=5 0 zero=’No’ ’Stove’) /
lprefix=0 order=data;

output out=code(drop=_type_ _name_ intercept);
id subj set c w;
label shelf = ’Shelf Talker’

micro = ’Microwave’;
run;

data coded(drop=w); set code; where w; run; /* exclude unavailable */

The Age and Income variables are incorporated into the analysis by interacting them with Brand.
Demographic variables must be interacted with product attributes to have any effect. If identity(age
income) had been specified instead of identity(age income) * class(brand / ...) the coefficients
for age and income would be zero. This is because age and income are constant within each choice set
and subject combination, which means they are constant within each stratum. The second separator
’, ’ is used to create names for the brand/demographic interaction terms like ’Age, Client’.

These next steps print the first coded choice set.

proc print data=coded(obs=4) label;
id brand price;
var BrandClient -- BrandPrivate Shelf Micro c;
run;
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proc print data=coded(obs=4 drop=Age) label;
id brand price;
var Age:;
run;

proc print data=coded(obs=4 drop=Income) label;
id brand price;
var Income:;
run;

proc print data=coded(obs=4) label;
id brand price;
var BrandClientPrice -- BrandPrivatePrice;
format BrandClientPrice -- BrandPrivatePrice best4.;
run;

Here is the coded data set for the first subject and choice set. The part that is new is the second and
third panel, which will be used to capture the brand by age and brand by income effects.

Here are the attributes and the brand effects.

Consumer Food Product Example

Shelf
Brand Price Client Extension Regional Private Talker Microwave c

Client $1.29 1 0 0 0 No Stove 2
Extension $2.39 0 1 0 0 No Micro 1
Regional $1.99 0 0 1 0 No Stove 2
National $1.99 0 0 0 0 No Stove 2

Here are the age by brand effects.

Consumer Food Product Example

Age, Age, Age, Age, Age,
Brand Price Client Extension Regional Private National

Client $1.29 33 0 0 0 0
Extension $2.39 0 33 0 0 0
Regional $1.99 0 0 33 0 0
National $1.99 0 0 0 0 33

Here are the income by brand effects.
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Consumer Food Product Example

Income, Income, Income, Income, Income,
Brand Price Client Extension Regional Private National

Client $1.29 109 0 0 0 0
Extension $2.39 0 109 0 0 0
Regional $1.99 0 0 109 0 0
National $1.99 0 0 0 0 109

Here are the alternative-specific price effects.

Consumer Food Product Example

Client Extension Regional Private
Brand Price Price Price Price Price

Client $1.29 1.29 0 0 0
Extension $2.39 0 2.39 0 0
Regional $1.99 0 0 1.99 0
National $1.99 0 0 0 0

The PROC PHREG specification is the same as we have used before with nonaggregated data.

proc phreg data=coded brief;
model c*c(2) = &_trgind / ties=breslow;
strata subj set;
run;

This step took just about one minute and produced the following results.

Consumer Food Product Example

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Ties Handling BRESLOW

Number of Observations Read 47400
Number of Observations Used 47400
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Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Number of Chosen Not
Pattern Choices Alternatives Alternatives Chosen

1 2400 3 1 2
2 1800 4 1 3
3 6600 5 1 4

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 31508.579 10939.139
AIC 31508.579 10983.139
SBC 31508.579 11143.460

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 20569.4401 22 <.0001
Score 21088.4411 22 <.0001
Wald 6947.1766 22 <.0001

Consumer Food Product Example

The PHREG Procedure

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Client 1 2.04997 0.81287 6.3599 0.0117
Extension 1 0.47882 0.81714 0.3434 0.5579
Regional 1 -1.49923 1.51428 0.9802 0.3221
Private 1 3.33861 0.85485 15.2528 <.0001
National 1 -0.62955 1.06206 0.3514 0.5533
Age, Client 1 0.01142 0.00944 1.4655 0.2261
Age, Extension 1 0.00855 0.00949 0.8111 0.3678
Age, Regional 1 0.01114 0.01205 0.8548 0.3552
Age, Private 1 0.00826 0.00970 0.7247 0.3946
Age, National 1 0.00809 0.00964 0.7042 0.4014
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Income, Client 1 0.03227 0.00771 17.4954 <.0001
Income, Extension 1 0.05717 0.00776 54.2991 <.0001
Income, Regional 1 0.02496 0.01014 6.0642 0.0138
Income, Private 1 0.00957 0.00794 1.4521 0.2282
Income, National 1 0.00929 0.00789 1.3858 0.2391

Client Price 1 -0.76510 0.09598 63.5410 <.0001
Extension Price 1 -0.51364 0.08465 36.8207 <.0001
Regional Price 1 -0.27824 0.46406 0.3595 0.5488
Private Price 1 -1.37957 0.14286 93.2538 <.0001
National Price 1 0.82684 0.29260 7.9852 0.0047
Shelf Talker 1 0.74026 0.07033 110.7751 <.0001
Micro 1 0.59312 0.05692 108.6006 <.0001

In previous examples, when we used the brief option to produce a brief summary of the strata, the
table had only one line. In this case, since our choice sets have 3, 4, or 5 alternatives, we have three
rows, one for each choice set size. The coefficients for the age and income variables are generally not
very significant in this analysis except an effect for income on the client brand and particularly on the
extension.
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Allocation of Prescription Drugs

This example discusses an allocation study, which is a technique often used in the area of prescription
drug marketing research. This example discusses designing the allocation experiment, processing the
data, analyzing frequencies, analyzing proportions, coding, analysis, and results. The principles of
designing an allocation study are the same as for designing a first-choice experiment, as is the coding
and final analysis. However, processing the data before analysis is different.

The previous examples have all modeled simple choice. However, sometimes the response of interest is
not simple first choice. For example, in prescription drug marketing, researchers often use allocation
studies where multiple, not single choices are made. Physicians are asked questions like “For the next
ten prescriptions you write for a particular condition, how many would you write for each of these
drugs?” The response, for example, could be “5 for drug 1, none for drug 2, 3 for drug 3, and 2 for
drug 4.”

Designing the Allocation Experiment

In this study, physicians were asked to specify which of ten drugs they would prescribe to their next
ten patients. In this study, ten drugs, Drug 1 − Drug 10, were available each at three different prices,
$50, $75, and $100. In real studies, real brand names would be used and there would probably be more
attributes. Since experimental design has been covered in some detail in other examples, we chose a
simple design for this experiment so that we could concentrate on data processing. First, we use the
%MktRuns autocall macro to suggest a design size. (All of the autocall macros used in this book are
documented starting on page 597.) We specify 3 ** 10 for the 10 three-level factors.

title ’Allocation of Prescription Drugs’;

%mktruns( 3 ** 10 )

Allocation of Prescription Drugs

Design Summary

Number of
Levels Frequency

3 10

Allocation of Prescription Drugs

Saturated = 21
Full Factorial = 59,049

Some Reasonable Cannot Be
Design Sizes Violations Divided By

27 * 0
36 * 0
45 * 0
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54 * 0
21 45 9
24 45 9
30 45 9
33 45 9
39 45 9
42 45 9

* - 100% Efficient Design can be made with the MktEx Macro.

Allocation of Prescription Drugs

n Design Reference

27 3 ** 13 Fractional-Factorial
36 2 ** 11 3 ** 12 Orthogonal Array
36 2 ** 4 3 ** 13 Orthogonal Array
36 2 ** 2 3 ** 12 6 ** 1 Orthogonal Array
36 3 ** 13 4 ** 1 Orthogonal Array
36 3 ** 12 12 ** 1 Orthogonal Array
45 3 ** 10 5 ** 1 Orthogonal Array
54 2 ** 1 3 ** 25 Orthogonal Array
54 2 ** 1 3 ** 21 9 ** 1 Orthogonal Array
54 3 ** 24 6 ** 1 Orthogonal Array
54 3 ** 20 6 ** 1 9 ** 1 Orthogonal Array
54 3 ** 18 18 ** 1 Orthogonal Array

We need at least 21 choice sets and we see the optimal sizes are all divisible by nine. We will use 27
choice sets, which can give us up to 13 three-level factors.

Next, we use the %MktEx macro to create the design.† In addition, one more factor is added to the
design. This factor will be used to block the design into three blocks of size 9.

%let nalts = 10;

%mktex(3 ** &nalts 3, n=27, seed=396)

The macro finds a 100% D-efficient design.

Allocation of Prescription Drugs

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

†Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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Allocation of Prescription Drugs

The OPTEX Procedure

Class Level Information

Class Levels -Values-

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 3 1 2 3
x5 3 1 2 3
x6 3 1 2 3
x7 3 1 2 3
x8 3 1 2 3
x9 3 1 2 3
x10 3 1 2 3
x11 3 1 2 3

Allocation of Prescription Drugs

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.9230

The %MktEx macro always creates factor names of x1, x2, and so on with values of 1, 2, .... You can
create a data set with the names and values you want and use it to rename the factors and reset the
levels. This first step creates a data set with 11 variables, Block and Brand1 - Brand10. Block has
values 1, 2, and 3, and the brand variables have values of 50, 75, and 100 with a dollar format. The
%MktLab macro takes the data=Randomized design data set and uses the names, values, and formats
in the key=Key data set to make the out=Final data set. This data set is sorted by block and printed.
The %MktEval macro is called to check the results.

data key(drop=i);
input Block Brand1;
array Brand[10];
do i = 2 to 10; brand[i] = brand1; end;
format brand: dollar4.;
datalines;

1 50
2 75
3 100
;
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proc print; run;

%mktlab(key=key);

proc sort out=sasuser.DrugAllo_LinDes; by block; run;

proc print; id block; by block; run;

%mkteval(blocks=block)

.

Here is the key= data set.

Allocation of Prescription Drugs

Obs Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

1 1 $50 $50 $50 $50 $50 $50 $50 $50 $50 $50
2 2 $75 $75 $75 $75 $75 $75 $75 $75 $75 $75
3 3 $100 $100 $100 $100 $100 $100 $100 $100 $100 $100

The %MktLab macro prints the following mapping information.

Variable Mapping:
x1 : Block
x2 : Brand1
x3 : Brand2
x4 : Brand3
x5 : Brand4
x6 : Brand5
x7 : Brand6
x8 : Brand7
x9 : Brand8
x10 : Brand9
x11 : Brand10
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Here is the design.

Allocation of Prescription Drugs

Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

1 $50 $75 $50 $75 $100 $100 $100 $100 $50 $100
$100 $50 $100 $75 $75 $75 $100 $50 $100 $75
$50 $50 $75 $100 $50 $75 $50 $75 $50 $75
$75 $50 $50 $50 $100 $75 $75 $100 $75 $75
$75 $75 $100 $100 $75 $100 $50 $50 $75 $100
$50 $100 $100 $50 $75 $50 $75 $50 $50 $50
$100 $75 $75 $50 $50 $100 $75 $75 $100 $100
$100 $100 $50 $100 $100 $50 $50 $100 $100 $50
$75 $100 $75 $75 $50 $50 $100 $75 $75 $50

2 $100 $75 $50 $100 $75 $50 $100 $75 $75 $75
$100 $100 $100 $75 $50 $75 $75 $100 $75 $100
$50 $75 $100 $50 $50 $50 $50 $100 $100 $75
$75 $50 $100 $100 $50 $100 $100 $100 $50 $50
$50 $100 $75 $100 $100 $75 $100 $50 $100 $100
$100 $50 $75 $50 $100 $100 $50 $50 $75 $50
$50 $50 $50 $75 $75 $100 $75 $75 $100 $50
$75 $75 $75 $75 $100 $50 $75 $50 $50 $75
$75 $100 $50 $50 $75 $75 $50 $75 $50 $100

3 $100 $75 $100 $75 $100 $75 $50 $75 $50 $50
$75 $75 $50 $50 $50 $75 $100 $50 $100 $50
$50 $75 $75 $100 $75 $75 $75 $100 $75 $50
$50 $100 $50 $75 $50 $100 $50 $50 $75 $75
$50 $50 $100 $50 $100 $50 $100 $75 $75 $100
$75 $50 $75 $75 $75 $50 $50 $100 $100 $100
$75 $100 $100 $100 $100 $100 $75 $75 $100 $75
$100 $50 $50 $100 $50 $50 $75 $50 $50 $100
$100 $100 $75 $50 $75 $100 $100 $100 $50 $75
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Here are some of the evaluation results.

Allocation of Prescription Drugs
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Block Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

Block 1 0 0 0 0 0 0 0 0 0 0
Brand1 0 1 0 0 0 0 0 0 0 0 0
Brand2 0 0 1 0 0 0 0 0 0 0 0
Brand3 0 0 0 1 0 0 0 0 0 0 0
Brand4 0 0 0 0 1 0 0 0 0 0 0
Brand5 0 0 0 0 0 1 0 0 0 0 0
Brand6 0 0 0 0 0 0 1 0 0 0 0
Brand7 0 0 0 0 0 0 0 1 0 0 0
Brand8 0 0 0 0 0 0 0 0 1 0 0
Brand9 0 0 0 0 0 0 0 0 0 1 0
Brand10 0 0 0 0 0 0 0 0 0 0 1

Allocation of Prescription Drugs
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Block 9 9 9
Brand1 9 9 9
Brand2 9 9 9
Brand3 9 9 9
Brand4 9 9 9
Brand5 9 9 9
Brand6 9 9 9
Brand7 9 9 9
Brand8 9 9 9
Brand9 9 9 9
Brand10 9 9 9
Block Brand1 3 3 3 3 3 3 3 3 3
Block Brand2 3 3 3 3 3 3 3 3 3
Block Brand3 3 3 3 3 3 3 3 3 3
Block Brand4 3 3 3 3 3 3 3 3 3
Block Brand5 3 3 3 3 3 3 3 3 3
Block Brand6 3 3 3 3 3 3 3 3 3
Block Brand7 3 3 3 3 3 3 3 3 3
Block Brand8 3 3 3 3 3 3 3 3 3
Block Brand9 3 3 3 3 3 3 3 3 3
Block Brand10 3 3 3 3 3 3 3 3 3
.
.
.
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N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Processing the Data

Questionnaires are generated and data collected using a minor modification of the methods discussed
in earlier examples. The difference is instead of asking for first choice data, allocation data are collected
instead. Each row of the input data set contains a block, subject, and set number, followed by the
number of times each of the ten alternatives was chosen. If all of the choice frequencies are zero, then
the constant alternative was chosen. The if statement is used to check data entry. For convenience,
choice set number is recoded to run from 1 to 27 instead of consisting of three blocks of nine sets. This
gives us one fewer variable on which to stratify.

data results;
input Block Subject Set @9 (freq1-freq&nalts) (2.);
if not (sum(of freq:) in (0, &nalts)) then put _all_;
set = (block - 1) * 9 + set;
datalines;

1 1 1 0 0 8 0 2 0 0 0 0 0
1 1 2 0 0 8 0 0 0 2 0 0 0
1 1 3 0 0 0 0 0 0 0 010 0
1 1 4 1 0 0 1 3 3 0 0 2 0
1 1 5 2 0 8 0 0 0 0 0 0 0
1 1 6 0 1 3 1 0 0 0 0 1 4
1 1 7 0 1 3 1 1 2 0 0 2 0
1 1 8 0 0 3 0 0 2 1 0 0 4
1 1 9 0 2 5 0 0 0 0 0 3 0
2 210 1 1 0 2 0 3 0 1 1 1
2 211 1 0 3 1 0 1 1 0 2 1
.
.
.
;

In the first step, in creating an analysis data set for an allocation study, we reformat the data from
one row per choice set per block per subject (9× 3× 100 = 2700 observations) to one per alternative
(including the constant) per choice set per block per subject ((10+1)×9×3×100 = 29, 700 observations).
For each choice set, 11 observations are written storing the choice frequency in the variable Count and
the brand in the variable Brand. If no alternative is chosen, then the constant alternative is chosen ten
times, otherwise it is chosen zero times.

data allocs(keep=block set brand count);
set results;

array freq[&nalts];
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* Handle the &nalts alternatives;
do b = 1 to &nalts;

Brand = ’Brand ’ || put(b, 2.);
Count = freq[b];
output;
end;

* Constant alt choice is implied if nothing else is chosen.
brand = ’ ’ is used to flag the constant alternative.;

brand = ’ ’;
count = 10 * (sum(of freq:) = 0);
output;
run;

proc print data=results(obs=3) label noobs; run;
proc print data=allocs(obs=33); id block set; by block set; run;

The PROC PRINT steps show how the first three observations of the Results data set are transposed
into the first 33 observations of the Allocs data set.

Allocation of Prescription Drugs

Block Subject Set Freq1 Freq2 Freq3 Freq4 Freq5 Freq6 Freq7 Freq8 Freq9 Freq10

1 1 1 0 0 8 0 2 0 0 0 0 0
1 1 2 0 0 8 0 0 0 2 0 0 0
1 1 3 0 0 0 0 0 0 0 0 10 0

Allocation of Prescription Drugs

Block Set Brand Count

1 1 Brand 1 0
Brand 2 0
Brand 3 8
Brand 4 0
Brand 5 2
Brand 6 0
Brand 7 0
Brand 8 0
Brand 9 0
Brand 10 0

0
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1 2 Brand 1 0
Brand 2 0
Brand 3 8
Brand 4 0
Brand 5 0
Brand 6 0
Brand 7 2
Brand 8 0
Brand 9 0
Brand 10 0

0

1 3 Brand 1 0
Brand 2 0
Brand 3 0
Brand 4 0
Brand 5 0
Brand 6 0
Brand 7 0
Brand 8 0
Brand 9 10
Brand 10 0

0

The next step aggregates the data. It stores in the variable Count the number of times each alternative
of each choice set was chosen. This creates a data set with 297 observations (3 blocks × 9 sets × 11
alternatives = 297).

* Aggregate, store the results back in count.;

proc summary data=allocs nway missing;
class set brand;
output sum(count)=Count out=allocs(drop=_type_ _freq_);
run;

These next steps prepare the design for analysis. We need to create a data set Key that describes how
the factors in our design will be used for analysis. It will contain all of the factor names, Brand1,
Brand2, ..., Brand10. We can run the %MktKey macro to get these names for cutting and pasting into
the program without typing them.

%mktkey(Brand1-Brand10)

The %MktKey macro produced the following line.

Brand1 Brand2 Brand3 Brand4 Brand5 Brand6 Brand7 Brand8 Brand9 Brand10

The next step rolls out the experimental design data set to match the choice allocations data set. The
data set is transposed from one row per choice set to one row per alternative per choice set. This data
set also has 297 observations. As we saw in many previous examples, the %MktRoll macro can be used
to process the design.
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data key(keep=Brand Price);
input Brand $ 1-8 Price $;
datalines;

Brand 1 Brand1
Brand 2 Brand2
Brand 3 Brand3
Brand 4 Brand4
Brand 5 Brand5
Brand 6 Brand6
Brand 7 Brand7
Brand 8 Brand8
Brand 9 Brand9
Brand 10 Brand10
. .
;

%mktroll(design=sasuser.DrugAllo_LinDes, key=key, alt=brand, out=rolled,
options=nowarn)

proc print data=rolled(obs=11); format price dollar4.; run;

Allocation of Prescription Drugs

Obs Set Brand Price

1 1 Brand 1 $50
2 1 Brand 2 $75
3 1 Brand 3 $50
4 1 Brand 4 $75
5 1 Brand 5 $100
6 1 Brand 6 $100
7 1 Brand 7 $100
8 1 Brand 8 $100
9 1 Brand 9 $50
10 1 Brand 10 $100
11 1 .

Both data sets must be sorted the same way before they can be merged. The constant alternative,
indicated by a missing brand, is last in the design choice set and hence is out of order. Missing must
come before nonmissing for the merge. The order is correct in the Allocs data set since it was created
by PROC SUMMARY with Brand as a class variable.

proc sort data=rolled; by set brand; run;

The data are merged along with error checking to ensure that the merge proceeded properly. Both
data sets should have the same observations and Set and Brand variables, so the merge should be one
to one.
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data allocs2;
merge allocs(in=flag1) rolled(in=flag2);
by set brand;
if flag1 ne flag2 then put ’ERROR: Merge is not 1 to 1.’;
format price dollar4.;
run;

proc print data=allocs2(obs=22);
var brand price count;
sum count;
by notsorted set;
id set;
run;

In the aggregate and combined data set, we see how often each alternative was chosen for each choice
set. For example, in the first choice set, the constant alternative was chosen zero times, Brand 1 at
$100 was chosen 103 times, and so on. The 11 alternatives were chosen a total of 1000 times, 100
subjects times 10 choices each.

Allocation of Prescription Drugs

Set Brand Price Count

1 . 0
Brand 1 $50 103
Brand 2 $75 58
Brand 3 $50 318
Brand 4 $75 99
Brand 5 $100 54
Brand 6 $100 83
Brand 7 $100 71
Brand 8 $100 58
Brand 9 $50 100
Brand 10 $100 56

--- -----
1 1000
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2 . 10
Brand 1 $100 73
Brand 2 $50 76
Brand 3 $100 342
Brand 4 $75 55
Brand 5 $75 50
Brand 6 $75 77
Brand 7 $100 95
Brand 8 $50 71
Brand 9 $100 72
Brand 10 $75 79

--- -----
2 1000

At this point, the data set contains 297 observations (27 choice sets times 11 alternatives) showing the
number of times each alternative was chosen. This data set must be augmented to also include the
number of times each alternative was not chosen. For example, in the first choice set, brand 1 was
chosen 103 times, which means it was not chosen 0+58+318+99+54+83+71+58+100+56 = 897
times. We use a macro, %MktAllo for “marketing allocation study” to process the data. We specify the
input data=allocs2 data set, the output out=allocs3 data set, the number of alternatives including
the constant (nalts=%eval(&nalts + 1)), the variables in the data set except the frequency variable
(vars=set brand price), and the frequency variable (freq=Count). The macro counts how many
times each alternative was chosen and not chosen and writes the results to the out= data set along
with the usual c = 1 for chosen and c = 2 for unchosen.

%mktallo(data=allocs2, out=allocs3, nalts=%eval(&nalts + 1),
vars=set brand price, freq=Count)

proc print data=allocs3(obs=22);
var set brand price count c;
run;

The first 22 records of the allocation data set are shown next.

Allocation of Prescription Drugs

Obs Set Brand Price Count c

1 1 . 0 1
2 1 . 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
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7 1 Brand 3 $50 318 1
8 1 Brand 3 $50 682 2
9 1 Brand 4 $75 99 1
10 1 Brand 4 $75 901 2
11 1 Brand 5 $100 54 1
12 1 Brand 5 $100 946 2
13 1 Brand 6 $100 83 1
14 1 Brand 6 $100 917 2
15 1 Brand 7 $100 71 1
16 1 Brand 7 $100 929 2
17 1 Brand 8 $100 58 1
18 1 Brand 8 $100 942 2
19 1 Brand 9 $50 100 1
20 1 Brand 9 $50 900 2
21 1 Brand 10 $100 56 1
22 1 Brand 10 $100 944 2

In the first choice set, the constant alternative is chosen zero times and not chosen 1000 times, Brand
1 is chosen 103 times and not chosen 1000 − 103 = 897 times, Brand 2 is chosen 58 times and not
chosen 1000− 58 = 942 times, and so on. Note that allocation studies do not always have fixed sums,
so it is important to use the %MktAllo macro or some other approach that actually counts the number
of times each alternative was not chosen. It is not always sufficient to simply subtract from a fixed
constant (in this case, 1000).

Coding and Analysis

The next step codes the design for analysis. Indicator variables are created for Brand and Price. All
of the PROC TRANSREG options have been discussed in other examples.

proc transreg design data=allocs3 nozeroconstant norestoremissing;
model class(brand price / zero=none) / lprefix=0;
output out=coded(drop=_type_ _name_ intercept);
id set c count;
run;

Analysis proceeds like it has in all other examples. We stratify by choice set number. We do not need
to stratify by Block since choice set number does not repeat within block.

proc phreg data=coded;
where count > 0;
model c*c(2) = &_trgind / ties=breslow;
freq count;
strata set;
run;

We used the where statement to exclude observations with zero frequency; otherwise PROC PHREG
complains about them.
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Multinomial Logit Model Results

Here are the results. Recall that we used %phchoice(on) on page 143 to customize the output from
PROC PHREG.

Allocation of Prescription Drugs

The PHREG Procedure

Model Information

Data Set WORK.CODED
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Count
Ties Handling BRESLOW

Number of Observations Read 583
Number of Observations Used 583
Sum of Frequencies Read 297000
Sum of Frequencies Used 297000

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 11000 1000 10000
2 2 11000 1000 10000
3 3 11000 1000 10000
4 4 11000 1000 10000
5 5 11000 1000 10000
6 6 11000 1000 10000
7 7 11000 1000 10000
8 8 11000 1000 10000
9 9 11000 1000 10000
10 10 11000 1000 10000
11 11 11000 1000 10000
12 12 11000 1000 10000
13 13 11000 1000 10000
14 14 11000 1000 10000
15 15 11000 1000 10000
16 16 11000 1000 10000
17 17 11000 1000 10000
18 18 11000 1000 10000
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19 19 11000 1000 10000
20 20 11000 1000 10000
21 21 11000 1000 10000
22 22 11000 1000 10000
23 23 11000 1000 10000
24 24 11000 1000 10000
25 25 11000 1000 10000
26 26 11000 1000 10000
27 27 11000 1000 10000

---------------------------------------------------------------
Total 297000 27000 270000

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 502505.13 489062.66
AIC 502505.13 489086.66
SBC 502505.13 489185.11

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 13442.4676 12 <.0001
Score 18340.8415 12 <.0001
Wald 14087.6778 12 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 2.09906 0.06766 962.5297 <.0001
Brand 2 1 2.09118 0.06769 954.5113 <.0001
Brand 3 1 3.54204 0.06484 2984.4698 <.0001
Brand 4 1 2.09710 0.06766 960.5277 <.0001
Brand 5 1 2.08523 0.06771 948.4791 <.0001
Brand 6 1 2.03530 0.06790 898.6218 <.0001
Brand 7 1 2.06920 0.06777 932.3154 <.0001
Brand 8 1 2.08573 0.06771 948.9824 <.0001
Brand 9 1 2.11705 0.06759 980.9640 <.0001
Brand 10 1 2.06363 0.06779 926.7331 <.0001
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$50 1 0.00529 0.01628 0.1058 0.7450
$75 1 0.0005304 0.01629 0.0011 0.9740

$100 0 0 . . .

The output shows that there are 27 strata, one per choice set, each consisting of 1000 chosen alter-
natives (10 choices by 100 subjects) and 10,000 unchosen alternatives. All of the brand coefficients
are “significant,” with the Brand 3 effect being by far the strongest. (We will soon see that statistical
significance should be ignored with allocation studies.) There is no price effect.

Analyzing Proportions

Recall that we collected data by asking physicians to report which brands they would prescribe the
next ten times they write prescriptions. Alternatively, we could ask them to report the proportion of
time they would prescribe each brand. We can simulate having proportion data by dividing our count
data by 10. This means our frequency variable will no longer contain integers, so we need to specify
the notruncate option on PROC PHREG freq statement to allow “noninteger frequencies.”

data coded2;
set coded;
count = count / 10;
run;

proc phreg data=coded2;
where count > 0;
model c*c(2) = &_trgind / ties=breslow;
freq count / notruncate;
strata set;
run;

When we do this, we see the number of alternatives and the number chosen and not chosen decrease
by a factor of 10 as do all of the Chi-Square tests. The coefficients are unchanged. This implies that
market share calculations are invariant to the different scalings of the frequencies. However, the p-
values are not invariant. The sample size is artificially inflated when counts are used so p-values are
not interpretable in an allocation study. When proportions are used, each subject is contributing 1 to
the number chosen instead of 10, just like a normal choice study, so p-values have meaning.

Allocation of Prescription Drugs

The PHREG Procedure

Model Information

Data Set WORK.CODED2
Dependent Variable c
Censoring Variable c
Censoring Value(s) 2
Frequency Variable Count
Ties Handling BRESLOW
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Number of Observations Read 583
Number of Observations Used 583
Sum of Frequencies Read 29700
Sum of Frequencies Used 29700

Summary of Subjects, Sets, and Chosen and Unchosen Alternatives

Number of Chosen Not
Stratum Set Alternatives Alternatives Chosen

1 1 1100.0 100.0 1000.0
2 2 1100.0 100.0 1000.0
3 3 1100.0 100.0 1000.0
4 4 1100.0 100.0 1000.0
5 5 1100.0 100.0 1000.0
6 6 1100.0 100.0 1000.0
7 7 1100.0 100.0 1000.0
8 8 1100.0 100.0 1000.0
9 9 1100.0 100.0 1000.0
10 10 1100.0 100.0 1000.0
11 11 1100.0 100.0 1000.0
12 12 1100.0 100.0 1000.0
13 13 1100.0 100.0 1000.0
14 14 1100.0 100.0 1000.0
15 15 1100.0 100.0 1000.0
16 16 1100.0 100.0 1000.0
17 17 1100.0 100.0 1000.0
18 18 1100.0 100.0 1000.0
19 19 1100.0 100.0 1000.0
20 20 1100.0 100.0 1000.0
21 21 1100.0 100.0 1000.0
22 22 1100.0 100.0 1000.0
23 23 1100.0 100.0 1000.0
24 24 1100.0 100.0 1000.0
25 25 1100.0 100.0 1000.0
26 26 1100.0 100.0 1000.0
27 27 1100.0 100.0 1000.0

---------------------------------------------------------------
Total 29700.0 2700.0 27000.0

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 37816.553 36472.307
AIC 37816.553 36496.307
SBC 37816.553 36567.119

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 1344.2468 12 <.0001
Score 1834.0841 12 <.0001
Wald 1408.7678 12 <.0001

Multinomial Logit Parameter Estimates

Parameter Standard
DF Estimate Error Chi-Square Pr > ChiSq

Brand 1 1 2.09906 0.21395 96.2530 <.0001
Brand 2 1 2.09118 0.21404 95.4511 <.0001
Brand 3 1 3.54204 0.20503 298.4470 <.0001
Brand 4 1 2.09710 0.21398 96.0528 <.0001
Brand 5 1 2.08523 0.21411 94.8479 <.0001
Brand 6 1 2.03530 0.21470 89.8622 <.0001
Brand 7 1 2.06920 0.21430 93.2315 <.0001
Brand 8 1 2.08573 0.21411 94.8982 <.0001
Brand 9 1 2.11705 0.21375 98.0964 <.0001
Brand 10 1 2.06363 0.21436 92.6733 <.0001

$50 1 0.00529 0.05148 0.0106 0.9181
$75 1 0.0005304 0.05152 0.0001 0.9918

$100 0 0 . . .
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Chair Design with Generic Attributes

This study illustrates creating an experimental design for a purely generic choice model. This example
discusses generic attributes, alternative swapping, choice set swapping, and constant alternatives. In
a purely generic study, there are no brands, just bundles of attributes. Also see page 89 in the
experimental design chapter for examples of how to combinatorially construct optimal generic choice
designs for certain problems.

Say a manufacturer is interested in designing one or more new chairs. The manufacturer can vary the
attributes of the chairs, present subjects with competing chair designs, and model the effects of the
attributes on choice. Here are the attributes of interest.

Factor Attribute Levels
X1 Color 3 Colors
X2 Back 3 Styles
X3 Seat 3 Styles
X4 Arm Rest 3 Styles
X5 Material 3 Materials

Since seeing descriptions of chairs is not the same as seeing and sitting in the actual chairs, the
manufacturer is going to actually make sample chairs for people to try and choose from. Subjects will
be shown groups of three chairs at a time. If we were to make our design using the approach discussed
in previous examples, we would use the %MktEx autocall macro to create a design with 15 factors, five
for the first chair, five for the second chair, and five for the third chair. This design would have to have
at least 15× (3− 1) + 1 = 31 runs and 93 sample chairs. Here is how we could have made the design.‡

title ’Generic Chair Attributes’;

* This design will not be used;
%mktex(3 ** 15, n=36, seed=238)

%mktkey(3 5)

%mktroll(design=randomized, key=key, out=cand)

The %MktEx approach to designing an experiment like this allows you to fit very general models including
models with alternative-specific effects and even mother logit models. However, at analysis time for
this purely generic model, we will fit a model with 10 parameters, two for each of the five factors,
class(x1-x5). Creating a design with over 31× 3 = 93 chairs is way too expensive. In ordinary linear
designs, we need at least as many runs as parameters. In choice designs, we need to count the total
number of alternatives across all choice sets, subtract the number of choice sets, and this number must
be at least as large as the number of parameters. Equivalently, each choice set allows us to estimate
m− 1 parameters, where m is the number of alternatives in that choice set. In this case, we could fit
our purely generic model with as few as 10/(3− 1) = 5 choice sets.

Since we only need a simple generic model for this example, and since our chair manufacturing for our
research will be expensive, we will not use the %MktEx approach for designing our choice experiment.
Instead, we will use a different approach that will allow us to get a smaller design that is adequate for
our model and budget. Recall the discussion of linear design efficiency, choice model design efficiency,
and using linear design efficiency as a surrogate for choice design goodness starting on page 53. Instead

‡Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.
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of using linear design efficiency as a surrogate for choice design goodness, we can directly optimize
choice design efficiency given an assumed model and parameter vector β. This approach uses the
%ChoicEff macro.

Generic Attributes, Alternative Swapping, Large Candidate Set

This part of the example illustrates using the %ChoicEff macro for efficient choice designs, using its
algorithm that builds a design from candidate alternatives (as opposed to candidates consisting of
entire choice sets). First, we will use the %MktRuns macro to suggest a candidate-set size.

%mktruns(3 ** 5)

Here are some of the results.

Generic Chair Attributes

Design Summary

Number of
Levels Frequency

3 5

Saturated = 11
Full Factorial = 243

Some Reasonable Cannot Be
Design Sizes Violations Divided By

18 * 0
27 * 0
36 * 0
12 10 9
15 10 9
21 10 9
24 10 9
30 10 9
33 10 9
11 15 3 9

* - 100% Efficient Design can be made with the MktEx Macro.
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Generic Chair Attributes

n Design Reference

18 2 ** 1 3 ** 7 Orthogonal Array
18 3 ** 6 6 ** 1 Orthogonal Array
27 3 ** 13 Fractional-Factorial
27 3 ** 9 9 ** 1 Fractional-Factorial
36 2 ** 11 3 ** 12 Orthogonal Array
36 2 ** 10 3 ** 8 6 ** 1 Orthogonal Array
36 2 ** 4 3 ** 13 Orthogonal Array
36 2 ** 3 3 ** 9 6 ** 1 Orthogonal Array
36 2 ** 2 3 ** 12 6 ** 1 Orthogonal Array
36 2 ** 2 3 ** 5 6 ** 2 Orthogonal Array
36 2 ** 1 3 ** 8 6 ** 2 Orthogonal Array
36 3 ** 13 4 ** 1 Orthogonal Array
36 3 ** 12 12 ** 1 Orthogonal Array
36 3 ** 7 6 ** 3 Orthogonal Array

We could use candidate sets of size: 18, 27 or 36. Additionally, since this problem is small, we could
try an 81-run fractional-factorial design or the 243-run full-factorial design. We will choose the 243-run
full-factorial design, since it is reasonably small and it will give the macro the most freedom to find a
good design.§

We will use the %MktEx macro to create a candidate set. The candidate set will consist of 5 three-level
factors, one for each of the five generic attributes. We will add three flag variables to the candidate set,
f1-f3, one for each alternative. Since there are three alternatives, the candidate set must contain those
observations that may be used for alternative 1, those observations that may be used for alternative
2, and those observations that may be used for alternative 3. The flag variable for each alternative
consists of ones for those candidates that may be included for that alternative and zeros or missings
for those candidates that may not be included for that alternative. The candidates for the different
alternatives may be all different, all the same, or something in between depending on the problem.
For example, the candidate set may contain one observation that is only used for the last, constant
alternative. In this purely generic case, each flag variable consists entirely of ones indicating that any
candidate can appear in any alternative. The %MktEx macro will not allow you to create constant
or one-level factors. We can instead use the %MktLab macro to add the flag variables, essentially by
specifying that we have multiple intercepts. The option int=f1-f3 creates three variables with values
all one. The default output data set is called Final. The following code creates the candidates.

%mktex(3 ** 5, n=243)
%mktlab(data=design, int=f1-f3)

proc print data=final(obs=27); run;

§Later, we will see we could have chosen 18.
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The columns f1-f3 are the flags, and x1-x5 are the generic attributes. Here is part of the candidate
set.

Generic Chair Attributes

Obs f1 f2 f3 x1 x2 x3 x4 x5

1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 2
3 1 1 1 1 1 1 1 3
4 1 1 1 1 1 1 2 1
5 1 1 1 1 1 1 2 2
6 1 1 1 1 1 1 2 3
7 1 1 1 1 1 1 3 1
8 1 1 1 1 1 1 3 2
9 1 1 1 1 1 1 3 3
10 1 1 1 1 1 2 1 1
11 1 1 1 1 1 2 1 2
12 1 1 1 1 1 2 1 3
13 1 1 1 1 1 2 2 1
14 1 1 1 1 1 2 2 2
15 1 1 1 1 1 2 2 3
16 1 1 1 1 1 2 3 1
17 1 1 1 1 1 2 3 2
18 1 1 1 1 1 2 3 3
19 1 1 1 1 1 3 1 1
20 1 1 1 1 1 3 1 2
21 1 1 1 1 1 3 1 3
22 1 1 1 1 1 3 2 1
23 1 1 1 1 1 3 2 2
24 1 1 1 1 1 3 2 3
25 1 1 1 1 1 3 3 1
26 1 1 1 1 1 3 3 2
27 1 1 1 1 1 3 3 3

Next, we will search that candidate set for an efficient design for the model specification class(x1-x5)
and the assumption β = 0. We will use the %ChoicEff autocall macro to do this. (All of the autocall
macros used in this book are documented starting on page 597.) This approach is based on the
work of Huber and Zwerina (1996) who proposed constructing efficient experimental designs for choice
experiments under an assumed model and β. The %ChoicEff macro uses a modified Fedorov algorithm
(Fedorov, 1972; Cook and Nachtsheim, 1980) to optimize the choice model variance matrix. We will
be using the largest possible candidate set for this problem, the full-factorial design, and we will ask
for more than the default number of iterations, so run time will be slower than it could be. However,
we will be requesting a very small number of choice sets. Building the chairs will be expensive, so we
want to get a really good but small design. This specification requests a generic design with six choice
sets each consisting of three alternatives.

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f3, beta=zero)
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The data=final option names the input data set of candidates. The model=class(x1-x5) option
specifies the most general model that will be considered at analysis time. The nsets=6 option specifies
the number of choice sets. Note that this is considerably smaller than the minimum of 31 that would
be required if we were just using the %MktEx linear-design approach (6 × 3 = 18 chairs instead of
31×3 = 93 chairs). The maxiter=100 option requests 100 designs based on 100 random initial designs
(by default, maxiter=2). The seed=121 option specifies the random number seed. The flags=f1-f3
specifies the flag variables for alternatives 1 to 3. Implicitly, this option also specifies the fact that
there are three alternatives since three flag variables were specified. The beta=zero option specifies
the assumption β = 0. A vector of numbers like beta=-1 0 -1 0 -1 0 -1 0 -1 0 -1 0 could be
specified. (See page 609 for an example of this.) When you wish to assume all parameters are zero,
you can specify beta=zero instead of typing a vector of the zeros. You can also omit the beta= option
if you just want the macro to list the parameters. You can use this list to ensure that you specify the
parameters in the right order.

The first part of the output from the macro is a list of all of the effects generated and the assumed
values of β. It is very important to check this list and make sure it is correct. In particular, when you
are explicitly specifying the β vector, you need to make sure you specified all of the values in the right
order.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Next, the macro produces the iteration history, which is different from the iteration histories we are
used to seeing in the %MktEx macro. The %ChoicEff macro uses PROC IML and a modified Fedorov
algorithm to iteratively improve the efficiency of the choice design given the specified candidates, model,
and β. Note that these efficiencies are not on a 0 to 100 scale. This step took about 12 minutes. Here
are some of the results.

Generic Chair Attributes

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.352304 2.838455
1 0.946001 1.057081
2 1.001164 0.998838
3 1.041130 0.960494
4 1.044343 0.957540
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.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
34 0 0.469771 2.128698

1 0.919074 1.088051
2 1.058235 0.944970
3 1.154701 0.866025
4 1.154701 0.866025

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
100 0 0.456308 2.191501

1 1.006320 0.993719
2 1.042702 0.959046
3 1.042702 0.959046

Next, the macro shows which design it chose and the final D-efficiency and D-error (D-efficiency = 1 /
D-error).

Final Results

Design 34
Choice Sets 6
Alternatives 3
D-Efficiency 1.154701
D-Error 0.866025

Next, it shows the variance, standard error, and df for each effect. It is important to ensure that each
effect is estimable: (df = 1). Usually, when all of the variances are constant, like we see in this table,
it means that the macro has found the optimal design.
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Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1 1 1
2 x12 x1 2 1 1 1
3 x21 x2 1 1 1 1
4 x22 x2 2 1 1 1
5 x31 x3 1 1 1 1
6 x32 x3 2 1 1 1
7 x41 x4 1 1 1 1
8 x42 x4 2 1 1 1
9 x51 x5 1 1 1 1
10 x52 x5 2 1 1 1

==
10

The data set Best contains the final, best design found.

proc print; by set; id set; run;

The data set contains: Design - the number of the design with the maximum D-efficiency, Efficiency
- the D-efficiency of this design, Index - the candidate set observation number, Set - the choice set
number, Prob - the probability that this alternative will be chosen given β, n - the observation number,
x1-x5 - the design, and f1-f3 - the flags.

Generic Chair Attributes

Set Design Efficiency Index Prob n f1 f2 f3 x1 x2 x3 x4 x5

1 34 1.15470 183 0.33333 595 1 1 1 3 1 3 1 3
34 1.15470 62 0.33333 596 1 1 1 1 3 1 3 2
34 1.15470 121 0.33333 597 1 1 1 2 2 2 2 1

2 34 1.15470 217 0.33333 598 1 1 1 3 3 1 1 1
34 1.15470 45 0.33333 599 1 1 1 1 2 2 3 3
34 1.15470 104 0.33333 600 1 1 1 2 1 3 2 2

3 34 1.15470 215 0.33333 601 1 1 1 3 2 3 3 2
34 1.15470 147 0.33333 602 1 1 1 2 3 2 1 3
34 1.15470 4 0.33333 603 1 1 1 1 1 1 2 1

4 34 1.15470 78 0.33333 604 1 1 1 1 3 3 2 3
34 1.15470 178 0.33333 605 1 1 1 3 1 2 3 1
34 1.15470 110 0.33333 606 1 1 1 2 2 1 1 2

5 34 1.15470 90 0.33333 607 1 1 1 2 1 1 3 3
34 1.15470 46 0.33333 608 1 1 1 1 2 3 1 1
34 1.15470 230 0.33333 609 1 1 1 3 3 2 2 2
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6 34 1.15470 195 0.33333 610 1 1 1 3 2 1 2 3
34 1.15470 11 0.33333 611 1 1 1 1 1 2 1 2
34 1.15470 160 0.33333 612 1 1 1 2 3 3 3 1

This design has 18 runs (6 choice sets × 3 alternatives). Notice that in this design, each level occurs
exactly once in each factor and each choice set. To use this design for analysis, you would only need the
variables Set and x1-x5. Since it is already in choice design format, it would not need to be processed
using the %MktRoll macro. Since data collection, processing, and analysis have already been covered
in detail in other examples, this example will concentrate solely on experimental design.

Generic Attributes, Alternative Swapping, Small Candidate Set

In this part of this example, we will try to make an equivalent design to the one we just made, only
this time using a smaller candidate set. Here is the code.

%mktex(3 ** 5, n=18)

%mktlab(data=design, int=f1-f3)

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=20,
seed=121, flags=f1-f3, beta=zero)

proc print; run;

This time, instead of creating a full-factorial candidate set, we asked for 5 three-level factors from the
L18, an orthogonal tabled design in 18 runs. We also asked for fewer iterations in the %ChoicEff macro.
Since the candidate set is much smaller, the macro should be able to find the best design available in
this candidate set fairly easily. Here are some of the results.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2
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Generic Chair Attributes

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0 .
1 0.913290 1.094943
2 1.008888 0.991191
3 1.042878 0.958885
4 1.154701 0.866025
5 1.154701 0.866025

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
20 0 0.364703 2.741954

1 0.851038 1.175036
2 1.008888 0.991191
3 1.042878 0.958885
4 1.154701 0.866025
5 1.154701 0.866025

Final Results

Design 1
Choice Sets 6
Alternatives 3
D-Efficiency 1.154701
D-Error 0.866025

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1 1 1
2 x12 x1 2 1 1 1
3 x21 x2 1 1 1 1
4 x22 x2 2 1 1 1
5 x31 x3 1 1 1 1
6 x32 x3 2 1 1 1
7 x41 x4 1 1 1 1
8 x42 x4 2 1 1 1
9 x51 x5 1 1 1 1
10 x52 x5 2 1 1 1

==
10
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Generic Chair Attributes

Obs Design Efficiency Index Set Prob n f1 f2 f3 x1 x2 x3 x4 x5

1 1 1.15470 11 1 0.33333 1 1 1 1 2 3 1 3 1
2 1 1.15470 13 1 0.33333 2 1 1 1 3 1 2 1 2
3 1 1.15470 4 1 0.33333 3 1 1 1 1 2 3 2 3
4 1 1.15470 3 2 0.33333 4 1 1 1 1 2 1 3 2
5 1 1.15470 12 2 0.33333 5 1 1 1 2 3 2 1 3
6 1 1.15470 14 2 0.33333 6 1 1 1 3 1 3 2 1
7 1 1.15470 5 3 0.33333 7 1 1 1 1 3 2 2 1
8 1 1.15470 8 3 0.33333 8 1 1 1 2 1 3 3 2
9 1 1.15470 15 3 0.33333 9 1 1 1 3 2 1 1 3
10 1 1.15470 9 4 0.33333 10 1 1 1 2 2 2 2 2
11 1 1.15470 1 4 0.33333 11 1 1 1 1 1 1 1 1
12 1 1.15470 18 4 0.33333 12 1 1 1 3 3 3 3 3
13 1 1.15470 10 5 0.33333 13 1 1 1 2 2 3 1 1
14 1 1.15470 17 5 0.33333 14 1 1 1 3 3 1 2 2
15 1 1.15470 2 5 0.33333 15 1 1 1 1 1 2 3 3
16 1 1.15470 6 6 0.33333 16 1 1 1 1 3 3 1 2
17 1 1.15470 7 6 0.33333 17 1 1 1 2 1 1 2 3
18 1 1.15470 16 6 0.33333 18 1 1 1 3 2 2 3 1

Notice that we got the same D-efficiency and variances as before (D-efficiency = 1.1547005384 and all
variances 1). Also notice the Index variable in the design (which is the candidate set row number).
Each candidate appears in the design exactly once. As is shown in the experimental design chaper
starting on page 89, for problems like this (all generic attributes, no brands, no constant alternative,
total number of alternatives equal to the number of runs in an orthogonal design, all factors available
in that orthogonal design, and an assumed β vector of zero) that the optimal design can be created by
optimally sorting the rows of an orthogonal design into choice sets, and the %ChoicEff macro can do
this quite well. More directly, this design could be made from the orthogonal array 3661 in 18 runs by
using the six-level factor as the choice set number.

Six choice sets is a bit small. If you can afford a larger number, it would be good to try a larger design.
In this case, nine choice sets are requested using a fractional-factorial candidate set in 27 runs. Notice
that like before, the number of runs in the candidate set was chosen to be the product of the number
of choice sets and the number of alternatives in each choice set.

%mktex(3 ** 5, n=27, seed=382)

%mktlab(data=design, int=f1-f3)

%choiceff(data=final, model=class(x1-x5), nsets=9, maxiter=20,
seed=121, flags=f1-f3, beta=zero)

proc print; id set; by set; var index prob x:; run;
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Here are the variances and the design.

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.66667 1 0.81650
2 x12 x1 2 0.66667 1 0.81650
3 x21 x2 1 0.66667 1 0.81650
4 x22 x2 2 0.66667 1 0.81650
5 x31 x3 1 0.66667 1 0.81650
6 x32 x3 2 0.66667 1 0.81650
7 x41 x4 1 0.66667 1 0.81650
8 x42 x4 2 0.66667 1 0.81650
9 x51 x5 1 0.66667 1 0.81650
10 x52 x5 2 0.66667 1 0.81650

==
10

Generic Chair Attributes

Set Index Prob x1 x2 x3 x4 x5

1 9 0.33333 1 3 3 1 2
13 0.33333 2 2 1 3 3
20 0.33333 3 1 2 2 1

2 25 0.33333 3 3 1 2 2
5 0.33333 1 2 2 1 3
12 0.33333 2 1 3 3 1

3 6 0.33333 1 2 3 3 1
26 0.33333 3 3 2 1 3
10 0.33333 2 1 1 2 2

4 22 0.33333 3 2 1 1 1
2 0.33333 1 1 2 3 2
18 0.33333 2 3 3 2 3

5 11 0.33333 2 1 2 1 3
4 0.33333 1 2 1 2 2
27 0.33333 3 3 3 3 1

6 8 0.33333 1 3 2 2 1
19 0.33333 3 1 1 3 3
15 0.33333 2 2 3 1 2

7 3 0.33333 1 1 3 2 3
23 0.33333 3 2 2 3 2
16 0.33333 2 3 1 1 1
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8 17 0.33333 2 3 2 3 2
24 0.33333 3 2 3 2 3
1 0.33333 1 1 1 1 1

9 7 0.33333 1 3 1 3 3
14 0.33333 2 2 2 2 1
21 0.33333 3 1 3 1 2

Notice that like before, the variances are constant, but in this case smaller at 2/3, and each candidate
appears once. This is an optimal design in 9 choice sets. More directly, this design could be made from
the orthogonal array 3991 in 27 runs by using the nine-level factor as the choice set number.

Generic Attributes, a Constant Alternative, and Alternative Swapping

Now let’s make a design for the same problem but this time with a constant alternative. We will first
use the %MktEx macro just like before to make a design for the nonconstant alternatives. We will then
use a DATA step to add the flags and a constant alternative.

title ’Generic Chair Attributes’;

%mktex(3 ** 5, n=243, seed=306)

data final(drop=i);
set design end=eof;
retain f1-f3 1 f4 0;
output;
if eof then do;

array x[9] x1-x5 f1-f4;
do i = 1 to 9; x[i] = i le 5 or i eq 9; end;
output;
end;

run;

proc print data=final(where=(x1 eq x3 and x2 eq x4 and x3 eq x5 or f4)); run;

Here is a sample of the observations in the candidate set.

Generic Chair Attributes

Obs x1 x2 x3 x4 x5 f1 f2 f3 f4

1 1 1 1 1 1 1 1 1 0
31 1 2 1 2 1 1 1 1 0
61 1 3 1 3 1 1 1 1 0
92 2 1 2 1 2 1 1 1 0
122 2 2 2 2 2 1 1 1 0
152 2 3 2 3 2 1 1 1 0
183 3 1 3 1 3 1 1 1 0
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213 3 2 3 2 3 1 1 1 0
243 3 3 3 3 3 1 1 1 0
244 1 1 1 1 1 0 0 0 1

The first 243 observations may be used for any of the first three alternatives and the 244th observation
may only be used for fourth or constant alternative. In this example, the constant alternative is
composed solely from the first level of each factor. Of course this could be changed depending on the
situation. The %ChoicEff macro invocation is the same as before, except now we have four flags.

%choiceff(data=final, model=class(x1-x5), nsets=6, maxiter=100,
seed=121, flags=f1-f4, beta=zero)

proc print; by set; id set; run;

You can see in the final design that there are now four alternatives and the last alternative in each
choice set is constant and is always flagged by f4=1. In the interest of space, most of the iteration
histories are omitted.

Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Generic Chair Attributes

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.424723 2.354476
1 0.900662 1.110294
2 0.939090 1.064861
3 0.943548 1.059830

.

.

.



376 TS-722F − Discrete Choice

Design Iteration D-Efficiency D-Error
----------------------------------------------
13 0 0.494007 2.024263

1 0.873818 1.144404
2 0.915135 1.092735
3 0.960392 1.041241
4 0.999769 1.000231
5 1.003398 0.996614

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
100 0 0.528399 1.892509

1 0.883854 1.131408
2 0.924346 1.081846
3 0.939811 1.064044
4 0.942047 1.061518

Generic Chair Attributes

Final Results

Design 13
Choice Sets 6
Alternatives 4
D-Efficiency 1.003398
D-Error 0.996614

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1.14695 1 1.07096
2 x12 x1 2 1.33333 1 1.15470
3 x21 x2 1 1.14695 1 1.07096
4 x22 x2 2 1.33333 1 1.15470
5 x31 x3 1 1.19793 1 1.09450
6 x32 x3 2 1.27439 1 1.12889
7 x41 x4 1 1.19793 1 1.09450
8 x42 x4 2 1.27439 1 1.12889
9 x51 x5 1 1.13102 1 1.06350
10 x52 x5 2 1.27439 1 1.12889

==
10
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Generic Chair Attributes

Set Design Efficiency Index Prob n x1 x2 x3 x4 x5 f1 f2 f3 f4

1 13 1.00340 152 0.25 289 2 3 2 3 2 1 1 1 0
13 1.00340 213 0.25 290 3 2 3 2 3 1 1 1 0
13 1.00340 15 0.25 291 1 1 2 2 3 1 1 1 0
13 1.00340 244 0.25 292 1 1 1 1 1 0 0 0 1

2 13 1.00340 154 0.25 293 2 3 3 1 1 1 1 1 0
13 1.00340 15 0.25 294 1 1 2 2 3 1 1 1 0
13 1.00340 197 0.25 295 3 2 1 3 2 1 1 1 0
13 1.00340 244 0.25 296 1 1 1 1 1 0 0 0 1

3 13 1.00340 108 0.25 297 2 1 3 3 3 1 1 1 0
13 1.00340 220 0.25 298 3 3 1 2 1 1 1 1 0
13 1.00340 38 0.25 299 1 2 2 1 2 1 1 1 0
13 1.00340 244 0.25 300 1 1 1 1 1 0 0 0 1

4 13 1.00340 121 0.25 301 2 2 2 2 1 1 1 1 0
13 1.00340 182 0.25 302 3 1 3 1 2 1 1 1 0
13 1.00340 63 0.25 303 1 3 1 3 3 1 1 1 0
13 1.00340 244 0.25 304 1 1 1 1 1 0 0 0 1

5 13 1.00340 111 0.25 305 2 2 1 1 3 1 1 1 0
13 1.00340 77 0.25 306 1 3 3 2 2 1 1 1 0
13 1.00340 178 0.25 307 3 1 2 3 1 1 1 1 0
13 1.00340 244 0.25 308 1 1 1 1 1 0 0 0 1

6 13 1.00340 228 0.25 309 3 3 2 1 3 1 1 1 0
13 1.00340 52 0.25 310 1 2 3 3 1 1 1 1 0
13 1.00340 86 0.25 311 2 1 1 2 2 1 1 1 0
13 1.00340 244 0.25 312 1 1 1 1 1 0 0 0 1

When there were three alternatives, each alternative had a probability of choice of 1/3, and now with
four alternatives, the probability is 1/4. They are all equal because of the assumption β = 0. With
other assumptions about β, typically the probabilities will not all be equal. To use this design for
analysis, you would only need the variables Set and x1-x5. Since it is already in choice design format
(one row per alternative), it would not need to be processed using the %MktRoll macro. Note that
when you make designs with the %ChoicEff macro, the model statement in PROC TRANSREG should
match or be no more complicated than the model specification that generated the design:

model class(x1-x5);

A model with fewer degrees of freedom is safe, although the design will be suboptimal. For example,
if x1-x5 are quantitative attributes, this would be safe:

model identity(x1-x5);
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However, specifying interactions, or using this design in a branded study and specifying alternative-
specific effects like this could lead to quite a few inestimable parameters.

* Bad idea for this design!!;
model class(x1-x5 x1*x2 x4*x5);

* Another bad idea for this design!!;
model class(brand)

class(brand * x1 brand * x2 brand * x3 brand * x4 brand * x5);

Generic Attributes, a Constant Alternative, and Choice Set Swapping

The %ChoicEff macro can be used in a very different way. Instead of providing a candidate set of
alternatives to swap in and out of the design, you can provide a candidate set of entire choice sets.
For this particular example, swapping alternatives will almost certainly be better (see page 381).
However, sometimes, if you need to impose restrictions on which alternative can appear with which
other alternative, then you must use the set-swapping options. We will start by using the %MktEx
macro to make a candidate design, with one run per choice set and one factor for each attribute of
each alternative (just like we did in the vacation, fabric softener, and food examples). We will then
process the candidates from one row per choice set to one row per alternative per choice set using the
%MktRoll macro.

%mktex(3 ** 15, n=81 * 81, seed=522)

%mktkey(3 5)

data key;
input (x1-x5) ($);
datalines;

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15
. . . . .
;

%mktroll(design=randomized, key=key, out=rolled)

* Code the constant alternative;
data final;

set rolled;
if _alt_ = ’4’ then do; x1 = 1; x2 = 1; x3 = 1; x4 = 1; x5 = 1; end;
run;

proc print; by set; id set; where set in (1, 100, 1000, 5000, 6561); run;
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The %MktKey macro produced the following data set, which we copied, pasted, and augmented to make
the Key data set.

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15

Here are a few of the candidate choice sets.

Generic Chair Attributes

Set _Alt_ x1 x2 x3 x4 x5

1 1 2 1 1 2 3
2 3 3 1 1 1
3 2 2 1 1 3
4 1 1 1 1 1

100 1 1 2 1 2 1
2 2 3 3 2 1
3 2 2 3 3 2
4 1 1 1 1 1

1000 1 2 1 2 1 3
2 2 1 2 1 2
3 1 3 2 2 2
4 1 1 1 1 1

5000 1 3 1 3 2 3
2 3 3 3 3 2
3 1 2 1 2 3
4 1 1 1 1 1

6561 1 1 3 1 2 2
2 3 2 2 2 2
3 1 3 3 1 3
4 1 1 1 1 1

Next, we will then run the %ChoicEff macro, only this time we will specify nalts=4 instead of
flags=f1-f4. Since there are no alternative flag variables to count, we have to tell the macro how
many alternatives are in each choice set. We will also ask for fewer iterations since the candidate set
is large.

%choiceff(data=final, model=class(x1-x5), nsets=6, nalts=4, maxiter=10,
beta=zero, seed=109)
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Generic Chair Attributes

n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2
7 x41 0 x4 1
8 x42 0 x4 2
9 x51 0 x5 1
10 x52 0 x5 2

Generic Chair Attributes

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.536166 1.865093
1 0.848201 1.178966
2 0.872298 1.146398
3 0.872298 1.146398

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------

5 0 0.529592 1.888245
1 0.836422 1.195568
2 0.861051 1.161372
3 0.898936 1.112426
4 0.904411 1.105692
5 0.904411 1.105692

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
10 0 0.539774 1.852627

1 0.820582 1.218648
2 0.846874 1.180814
3 0.869219 1.150458
4 0.869219 1.150458
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Generic Chair Attributes

Final Results

Design 5
Choice Sets 6
Alternatives 4
D-Efficiency 0.904411
D-Error 1.105692

Generic Chair Attributes

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1.14609 1 1.07056
2 x12 x1 2 2.32530 1 1.52489
3 x21 x2 1 1.48741 1 1.21959
4 x22 x2 2 1.95354 1 1.39769
5 x31 x3 1 1.16334 1 1.07858
6 x32 x3 2 1.50116 1 1.22522
7 x41 x4 1 1.34713 1 1.16066
8 x42 x4 2 1.35845 1 1.16552
9 x51 x5 1 1.27405 1 1.12874
10 x52 x5 2 1.54939 1 1.24475

==
10

This design is less D-efficient than we found using the alternative-swapping algorithm, so we will not
use it.

Design Algorithm Comparisons

It is instructive to compare the three approaches outlined in this chapter in the context of this problem.
There are 33×5 = 14, 348, 907 choice sets for this problem (three-level factors and 3 alternatives times 5
factors per alternative). If we were to use the pure linear design approach using the %MktEx macro, we
could never begin to consider all possible candidate choice sets. Similarly, with the choice-set-swapping
algorithm of the %ChoicEff macro, we could never begin to consider all possible candidate choice sets.
Furthermore, with the linear design approach, we could not create a design with six choice sets since
the minimum size is 2×15+1 = 31. Now consider the alternative-swapping algorithm. It uses at most
a candidate set with only 244 observations (35 + 1). From it, every possible choice set can potentially
be constructed, although the macro will only consider a tiny fraction of the possibilities. Hence, the
alternative swapping will usually find a better design, because the candidate set does not limit it.

Both uses of the %ChoicEff macro have the advantage that they are explicitly minimizing the variances
of the parameter estimates given a model and a β vector. They can be used to produce smaller, more
specialized, and better designs. However, if the β vector or model is badly misspecified, the designs
could be horrible. How badly do things have to be misspecified before you will have problems? Who
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knows. More research is needed. In contrast, the linear model %MktEx approach is very conservative
and safe in that it should let you specify a very general model and still produce estimable parameters.
The cost is you may be using many more choice sets than you need, particularly for nonbranded generic
attributes. If you really have some information about your parameters, you should use them to produce
a smaller and better design. However, if you have little or no information about parameters and if you
anticipate specifying very general models like mother logit, then you probably want to use the linear
design approach.
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Initial Designs

This section illustrates some design strategies that involve improving on or augmenting initial designs.
We will not actually use any designs from this section.

Improving an Existing Design

Sometimes, it is useful to try to improve an existing design. In this example, we use the %MktEx macro
to create a design in 80 runs for 25 four-level factors. In the next step, we specify init=, and the macro
goes straight into the design refinement history seeking to refine the input design. You might want to
do this for example whenever you have a good, but not 100% D-efficient design, and you are willing to
wait a few minutes to see if the macro can make it any better.

title ’Try to Improve an Existing Design’;

%mktex(4 ** 25, n=80, seed=368)

%mktex(4 ** 25, n=80, seed=306, init=design, maxtime=20)

Here is the D-efficiency of the final design from the first step.

Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 91.4106 83.9583 97.6073 0.9747

This is a large problem. One in which the maxtime= option may cause the macro to stop before it
reaches the maximum number of iterations. Running a second refinement step might help improve the
design by adding a few more iterations. Here are the results from the second step.

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 91.4106 91.4106 Ini

1 Start 90.0771 Pre,Mut,Ann
1 End 91.3476
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2 Start 88.8927 Pre,Mut,Ann
2 36 12 91.4181 91.4181
2 56 6 91.4285 91.4285
2 7 17 91.4372 91.4372
2 13 10 91.4373 91.4373
2 23 18 91.4404 91.4404
2 17 16 91.4445 91.4445
2 34 6 91.4572 91.4572
2 56 19 91.4673 91.4673
2 56 21 91.4768 91.4768
2 77 1 91.4821 91.4821
2 23 18 91.4827 91.4827
2 48 3 91.4848 91.4848
2 48 9 91.4863 91.4863
2 40 18 91.4863 91.4863
2 End 91.4863

.

.

.

6 Start 90.2194 Pre,Mut,Ann
6 63 19 91.5811 91.5811
6 68 18 91.5835 91.5835
6 End 91.5751

7 Start 89.4607 Pre,Mut,Ann
7 25 4 91.5851 91.5851
7 34 7 91.5902 91.5902
7 47 2 91.5913 91.5913
7 48 14 91.5930 91.5930
7 56 4 91.5955 91.5955
7 56 15 91.5999 91.5999
7 60 6 91.6142 91.6142
7 68 7 91.6172 91.6172
7 78 5 91.6172 91.6172
7 13 21 91.6249 91.6249
7 18 19 91.6249 91.6249
7 43 10 91.6249 91.6249
7 48 14 91.6282 91.6282
7 50 22 91.6408 91.6408
7 61 4 91.6417 91.6417
7 80 15 91.6430 91.6430
7 46 12 91.6430 91.6430
7 48 6 91.6430 91.6430
7 End 91.6430

.

.

.
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10 Start 89.8707 Pre,Mut,Ann
10 End 91.6629

.

.

.

Try to Improve an Existing Design

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 91.7082 83.9853 97.5951 0.9747

The macro skips the normal first steps, algorithm search and design search, and goes straight into
the design refinement search. In this example a small improvement was found, although often, no
improvement is found.

When Some Choice Sets are Fixed in Advance

Sometimes certain runs or choice sets are fixed in advance and must be included in the design. The
%MktEx macro can be used to efficiently augment a starting design with other choice sets. Suppose
that you can make a choice design from the L36 (211312). In addition, you want to optimally add four
more choice sets to use as holdouts. First we will look at how to do this using the fixed= option. This
option can be used for fairly general design augmentation and refinement problems. On page 389, we
will see an easier way to handle this particular problem using the holdouts= option.

You can create the design in 36 runs as before. Next, a DATA step is used to add a flag variable f
that has values of 1 for the original 36 runs. In addition, four more runs are added (just copies of the
last run) but with a flag value of missing. When this variable is specified on the fixed=f option, it
indicates that the first 36 runs of the init=init design are fixed−they may not change. The remaining
4 runs are to be randomly initialized and optimally refined to maximize the D-efficiency of the overall
40-run design. We specified options=nosort so that the additional runs would stay at the end of the
design.

title ’Augment a Design’;

%mktex(n=36, seed=292)

data init;
set randomized end = eof;
f = 1;
output;
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if eof then do;
f = .;
do i = 1 to 4; output; end;
drop i;
end;

run;

proc print; run;

%mktex(2 ** 11 3 ** 12, n=40, init=init, fixed=f, seed=513, options=nosort)

proc print; run;

Here is the initial design.

Augment a Design

O x x x x x x x x x x x x x x
b x x x x x x x x x 1 1 1 1 1 1 1 1 1 1 2 2 2 2
s 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 f

1 2 1 2 2 2 2 1 1 1 2 1 2 3 1 1 1 2 3 2 3 1 3 2 1
2 2 1 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 3 1 2 2 3 1 1
3 2 2 1 1 1 1 1 1 1 2 2 1 2 3 1 1 2 2 3 2 3 3 3 1
4 1 1 1 1 2 1 1 2 2 2 1 1 2 3 2 3 2 3 2 1 2 1 2 1
5 1 2 1 2 2 2 1 2 1 1 2 1 1 2 2 2 1 3 3 3 3 3 2 1
6 2 1 1 2 2 1 2 1 2 1 2 1 2 1 3 2 1 2 2 3 1 1 3 1
7 1 2 2 1 2 1 2 1 1 1 1 3 3 2 2 1 1 2 2 1 2 3 3 1
8 2 2 1 1 1 1 1 1 1 2 2 2 3 2 3 3 1 1 1 3 2 1 2 1
9 2 2 2 2 1 1 1 2 2 1 1 2 2 2 3 3 3 3 3 1 1 3 3 1
10 2 2 2 2 1 1 1 2 2 1 1 1 1 3 1 1 1 1 2 3 2 2 1 1
11 1 1 2 1 1 2 1 1 2 1 2 3 2 2 2 1 2 1 3 3 1 1 1 1
12 2 2 2 1 2 2 2 2 2 2 2 1 3 3 2 3 3 2 1 3 1 3 1 1
13 1 2 1 2 2 2 1 2 1 1 2 3 3 3 3 3 2 1 2 2 1 2 3 1
14 1 1 2 1 1 2 1 1 2 1 2 1 3 1 1 3 1 3 1 1 3 2 3 1
15 2 1 1 1 1 2 2 2 1 1 1 1 3 2 3 1 3 3 2 2 3 1 1 1
16 1 2 2 1 2 1 2 1 1 1 1 2 2 3 3 2 2 3 1 3 3 2 1 1
17 2 1 1 1 1 2 2 2 1 1 1 3 2 3 1 2 1 1 1 1 1 3 2 1
18 1 1 1 1 2 1 1 2 2 2 1 3 1 1 3 1 3 1 1 3 3 3 3 1
19 2 1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 3 1 1 2 2 2 3 1
20 2 1 1 1 1 2 2 2 1 1 1 2 1 1 2 3 2 2 3 3 2 2 3 1
21 1 2 1 2 1 2 2 1 2 2 1 1 3 1 3 2 2 1 3 1 2 3 1 1
22 1 1 2 1 1 2 1 1 2 1 2 2 1 3 3 2 3 2 2 2 2 3 2 1
23 2 2 2 1 2 2 2 2 2 2 2 3 2 1 3 1 1 3 3 2 2 2 2 1
24 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 3 3 1 3 2 1 1 2 1
25 1 1 2 2 1 1 2 2 1 2 2 1 1 2 3 1 2 2 1 1 1 2 2 1
26 1 1 2 2 1 1 2 2 1 2 2 2 2 1 2 3 1 1 2 2 3 3 1 1
27 1 1 2 2 1 1 2 2 1 2 2 3 3 3 1 2 3 3 3 3 2 1 3 1
28 1 2 1 2 2 2 1 2 1 1 2 2 2 1 1 1 3 2 1 1 2 1 1 1
29 2 1 2 2 2 2 1 1 1 2 1 3 1 3 3 3 1 2 3 1 3 1 1 1
30 2 2 1 1 1 1 1 1 1 2 2 3 1 1 2 2 3 3 2 1 1 2 1 1



Initial Designs 387

31 1 2 1 2 1 2 2 1 2 2 1 2 1 3 2 1 1 3 1 2 1 1 3 1
32 2 1 1 2 2 1 2 1 2 1 2 2 3 3 2 1 3 1 3 1 3 2 2 1
33 2 2 2 2 1 1 1 2 2 1 1 3 3 1 2 2 2 2 1 2 3 1 2 1
34 1 2 1 2 1 2 2 1 2 2 1 3 2 2 1 3 3 2 2 3 3 2 2 1
35 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 2 1 2 1 3 1 3 1
36 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 1
37 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 .
38 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 .
39 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 .
40 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 .

Here is the iteration history for the augmentation.

Augment a Design

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 97.0559 97.0559 Ini

1 Start 97.0788 97.0788 Pre,Mut,Ann
1 37 5 97.0805 97.0805
1 37 8 97.0816 97.0816
1 37 9 97.1049 97.1049
1 37 11 97.1133 97.1133
1 37 13 97.1177 97.1177
1 38 1 97.1410 97.1410
1 38 2 97.1605 97.1605
1 38 3 97.1729 97.1729
1 38 4 97.1822 97.1822
1 38 6 97.1905 97.1905
1 38 8 97.1944 97.1944
1 39 2 97.1991 97.1991
1 39 13 97.2007 97.2007
1 39 19 97.2007 97.2007
1 40 9 97.2007 97.2007
1 40 10 97.2007 97.2007
1 37 18 97.2023 97.2023
1 37 3 97.2028 97.2028
1 37 4 97.2028 97.2028
1 37 23 97.2043 97.2043
1 End 97.2043
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2 Start 97.2043 97.2043 Pre,Mut,Ann
2 40 21 97.2043 97.2043
2 38 2 97.2043 97.2043
2 40 9 97.2043 97.2043
2 40 21 97.2043 97.2043
2 End 97.2043

3 Start 97.2043 97.2043 Pre,Mut,Ann
3 End 97.2043

4 Start 97.2002 Pre,Mut,Ann
4 39 12 97.2043 97.2043
4 39 23 97.2043 97.2043
4 39 16 97.2043 97.2043
4 End 97.2043

5 Start 97.2043 97.2043 Pre,Mut,Ann
5 37 3 97.2043 97.2043
5 37 15 97.2043 97.2043
5 End 97.2043

6 Start 97.2043 97.2043 Pre,Mut,Ann
6 40 1 97.2043 97.2043
6 39 16 97.2043 97.2043
6 38 16 97.2043 97.2043
6 End 97.2043

NOTE: Stopping since it appears that no improvement is possible.

Notice that the macro goes straight into the design refinement stage. Also notice that in the iteration
history, only rows 37 through 40 are changed. Here is the design. The last four rows are the holdouts.

Augment a Design

O x x x x x x x x x x x x x x
b x x x x x x x x x 1 1 1 1 1 1 1 1 1 1 2 2 2 2
s 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 f

1 2 1 2 2 2 2 1 1 1 2 1 2 3 1 1 1 2 3 2 3 1 3 2 1
2 2 1 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 3 1 2 2 3 1 1
3 2 2 1 1 1 1 1 1 1 2 2 1 2 3 1 1 2 2 3 2 3 3 3 1
4 1 1 1 1 2 1 1 2 2 2 1 1 2 3 2 3 2 3 2 1 2 1 2 1
5 1 2 1 2 2 2 1 2 1 1 2 1 1 2 2 2 1 3 3 3 3 3 2 1
6 2 1 1 2 2 1 2 1 2 1 2 1 2 1 3 2 1 2 2 3 1 1 3 1
7 1 2 2 1 2 1 2 1 1 1 1 3 3 2 2 1 1 2 2 1 2 3 3 1
8 2 2 1 1 1 1 1 1 1 2 2 2 3 2 3 3 1 1 1 3 2 1 2 1
9 2 2 2 2 1 1 1 2 2 1 1 2 2 2 3 3 3 3 3 1 1 3 3 1
10 2 2 2 2 1 1 1 2 2 1 1 1 1 3 1 1 1 1 2 3 2 2 1 1
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11 1 1 2 1 1 2 1 1 2 1 2 3 2 2 2 1 2 1 3 3 1 1 1 1
12 2 2 2 1 2 2 2 2 2 2 2 1 3 3 2 3 3 2 1 3 1 3 1 1
13 1 2 1 2 2 2 1 2 1 1 2 3 3 3 3 3 2 1 2 2 1 2 3 1
14 1 1 2 1 1 2 1 1 2 1 2 1 3 1 1 3 1 3 1 1 3 2 3 1
15 2 1 1 1 1 2 2 2 1 1 1 1 3 2 3 1 3 3 2 2 3 1 1 1
16 1 2 2 1 2 1 2 1 1 1 1 2 2 3 3 2 2 3 1 3 3 2 1 1
17 2 1 1 1 1 2 2 2 1 1 1 3 2 3 1 2 1 1 1 1 1 3 2 1
18 1 1 1 1 2 1 1 2 2 2 1 3 1 1 3 1 3 1 1 3 3 3 3 1
19 2 1 2 2 2 2 1 1 1 2 1 1 2 2 2 2 3 1 1 2 2 2 3 1
20 2 1 1 1 1 2 2 2 1 1 1 2 1 1 2 3 2 2 3 3 2 2 3 1
21 1 2 1 2 1 2 2 1 2 2 1 1 3 1 3 2 2 1 3 1 2 3 1 1
22 1 1 2 1 1 2 1 1 2 1 2 2 1 3 3 2 3 2 2 2 2 3 2 1
23 2 2 2 1 2 2 2 2 2 2 2 3 2 1 3 1 1 3 3 2 2 2 2 1
24 1 2 2 1 2 1 2 1 1 1 1 1 1 1 1 3 3 1 3 2 1 1 2 1
25 1 1 2 2 1 1 2 2 1 2 2 1 1 2 3 1 2 2 1 1 1 2 2 1
26 1 1 2 2 1 1 2 2 1 2 2 2 2 1 2 3 1 1 2 2 3 3 1 1
27 1 1 2 2 1 1 2 2 1 2 2 3 3 3 1 2 3 3 3 3 2 1 3 1
28 1 2 1 2 2 2 1 2 1 1 2 2 2 1 1 1 3 2 1 1 2 1 1 1
29 2 1 2 2 2 2 1 1 1 2 1 3 1 3 3 3 1 2 3 1 3 1 1 1
30 2 2 1 1 1 1 1 1 1 2 2 3 1 1 2 2 3 3 2 1 1 2 1 1
31 1 2 1 2 1 2 2 1 2 2 1 2 1 3 2 1 1 3 1 2 1 1 3 1
32 2 1 1 2 2 1 2 1 2 1 2 2 3 3 2 1 3 1 3 1 3 2 2 1
33 2 2 2 2 1 1 1 2 2 1 1 3 3 1 2 2 2 2 1 2 3 1 2 1
34 1 2 1 2 1 2 2 1 2 2 1 3 2 2 1 3 3 2 2 3 3 2 2 1
35 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1 2 2 1 2 1 3 1 3 1
36 1 1 1 1 2 1 1 2 2 2 1 2 3 2 1 2 1 2 3 2 1 2 1 1
37 1 2 2 2 2 1 1 2 1 1 1 3 2 3 3 2 1 2 1 3 1 3 1 .
38 2 2 2 1 2 1 2 2 1 1 1 2 2 1 2 3 3 3 1 1 3 2 3 .
39 1 2 2 2 2 2 2 1 2 2 2 3 3 3 1 2 1 3 2 1 3 2 3 .
40 2 1 1 1 1 1 1 2 2 2 1 2 1 2 3 2 1 3 2 1 1 2 1 .

This code does the same thing only using the holdouts=4 option instead.

title ’Augment a Design’;

%mktex(n=36, seed=292)
%mktex(2 ** 11 3 ** 12, n=40, init=randomized,

holdouts=4, seed=513, options=nosort)

proc print data=design(firstobs=37); run;

Here are the holdout observations, which are the same as we saw previously.
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Augment a Design

O x x x x x x x x x x x x x x
b x x x x x x x x x 1 1 1 1 1 1 1 1 1 1 2 2 2 2
s 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 w

37 1 2 2 2 2 1 1 2 1 1 1 3 2 3 3 2 1 2 1 3 1 3 1 .
38 2 2 2 1 2 1 2 2 1 1 1 2 2 1 2 3 3 3 1 1 3 2 3 .
39 1 2 2 2 2 2 2 1 2 2 2 3 3 3 1 2 1 3 2 1 3 2 3 .
40 2 1 1 1 1 1 1 2 2 2 1 2 1 2 3 2 1 3 2 1 1 2 1 .

The %MktEx macro provides another way to use initial designs. The initial design may indicate that
part of the design is fixed and may not change and a different part should be randomly initialized and
may change. The initial design can have three types of values:

• positive integers are fixed and constant and will not change throughout the course of the iterations.

• zero and missing values are replaced by random values at the start of each new design search and
can change throughout the course of the iterations.

• negative values are replaced by their absolute value at the start of each new design attempt and
can change throughout the course of the iterations.

Returning to the example of making the design 425 in 80 runs, we could do it in two steps. The maximum
number of four-level factors in 80 runs is 11. If it is important that some factors be orthogonal, we
could first make an orthogonal array with 11 four-level factors and then append 14 more nonorthogonal-
factors. Here is the code.

title ’Differential Design Initialization’;

%mktex(4 ** 11, n=80)

data init;
set design;
retain x12-x25 .;
run;

%mktex(4 ** 25, n=80, init=init, seed=472)

%mkteval;

The initial design consists of the orthogonal array with 11 columns followed by 14 more columns that
are all missing. When %MktEx sees missing values in the initial design, it holds all the nonmissing
values fixed. Then it randomly replaces the missing values and uses the coordinate-exchange algorithm
to refine the last columns. The final design is slightly less D-efficient than we saw previously, but the
first 11 columns are orthogonal. The remaining columns are all slightly correlated with themselves and
with the first columns. Here is the final efficiency table.
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Differential Design Initialization

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 89.4216 78.9807 97.7767 0.9747

Here are the canonical correlations.

Differential Design Initialization
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

x1 1 0 0 0 0 0 0 0 0 0 0 0.15 0.17
x2 0 1 0 0 0 0 0 0 0 0 0 0.17 0.11
x3 0 0 1 0 0 0 0 0 0 0 0 0.20 0.13
x4 0 0 0 1 0 0 0 0 0 0 0 0.16 0.12
x5 0 0 0 0 1 0 0 0 0 0 0 0.16 0.18
x6 0 0 0 0 0 1 0 0 0 0 0 0.12 0.12
x7 0 0 0 0 0 0 1 0 0 0 0 0.18 0.18
x8 0 0 0 0 0 0 0 1 0 0 0 0.16 0.12
x9 0 0 0 0 0 0 0 0 1 0 0 0.15 0.14
x10 0 0 0 0 0 0 0 0 0 1 0 0.12 0.18
x11 0 0 0 0 0 0 0 0 0 0 1 0.16 0.12
x12 0.15 0.17 0.20 0.16 0.16 0.12 0.18 0.16 0.15 0.12 0.16 1 0.10
x13 0.17 0.11 0.13 0.12 0.18 0.12 0.18 0.12 0.14 0.18 0.12 0.10 1
x14 0.18 0.14 0.10 0.14 0.19 0.20 0.18 0.19 0.14 0.15 0.11 0.16 0.15
x15 0.16 0.25 0.15 0.18 0.17 0.17 0.15 0.12 0.24 0.13 0.16 0.14 0.13
x16 0.10 0.23 0.14 0.15 0.17 0.16 0.15 0.13 0.10 0.16 0.21 0.12 0.11
x17 0.20 0.20 0.15 0.07 0.12 0.17 0.16 0.12 0.13 0.20 0.14 0.12 0.11
x18 0.09 0.18 0.10 0.16 0.15 0.13 0.13 0.17 0.10 0.15 0.14 0.15 0.09
x19 0.17 0.18 0.17 0.16 0.13 0.17 0.19 0.21 0.15 0.15 0.16 0.14 0.15
x20 0.23 0.09 0.11 0.14 0.17 0.21 0.25 0.27 0.06 0.17 0.15 0.14 0.11
x21 0.12 0.09 0.15 0.17 0.17 0.15 0.20 0.14 0.20 0.17 0.16 0.18 0.12
x22 0.17 0.14 0.07 0.18 0.15 0.12 0.11 0.16 0.17 0.09 0.17 0.12 0.16
x23 0.19 0.15 0.15 0.18 0.09 0.10 0.16 0.16 0.12 0.16 0.16 0.13 0.12
x24 0.18 0.16 0.14 0.20 0.09 0.22 0.13 0.13 0.18 0.13 0.18 0.14 0.11
x25 0.14 0.18 0.09 0.13 0.19 0.18 0.17 0.19 0.16 0.20 0.14 0.15 0.12
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x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

x1 0.18 0.16 0.10 0.20 0.09 0.17 0.23 0.12 0.17 0.19 0.18 0.14
x2 0.14 0.25 0.23 0.20 0.18 0.18 0.09 0.09 0.14 0.15 0.16 0.18
x3 0.10 0.15 0.14 0.15 0.10 0.17 0.11 0.15 0.07 0.15 0.14 0.09
x4 0.14 0.18 0.15 0.07 0.16 0.16 0.14 0.17 0.18 0.18 0.20 0.13
x5 0.19 0.17 0.17 0.12 0.15 0.13 0.17 0.17 0.15 0.09 0.09 0.19
x6 0.20 0.17 0.16 0.17 0.13 0.17 0.21 0.15 0.12 0.10 0.22 0.18
x7 0.18 0.15 0.15 0.16 0.13 0.19 0.25 0.20 0.11 0.16 0.13 0.17
x8 0.19 0.12 0.13 0.12 0.17 0.21 0.27 0.14 0.16 0.16 0.13 0.19
x9 0.14 0.24 0.10 0.13 0.10 0.15 0.06 0.20 0.17 0.12 0.18 0.16
x10 0.15 0.13 0.16 0.20 0.15 0.15 0.17 0.17 0.09 0.16 0.13 0.20
x11 0.11 0.16 0.21 0.14 0.14 0.16 0.15 0.16 0.17 0.16 0.18 0.14
x12 0.16 0.14 0.12 0.12 0.15 0.14 0.14 0.18 0.12 0.13 0.14 0.15
x13 0.15 0.13 0.11 0.11 0.09 0.15 0.11 0.12 0.16 0.12 0.11 0.12
x14 1 0.22 0.14 0.12 0.12 0.21 0.13 0.13 0.13 0.20 0.18 0.12
x15 0.22 1 0.12 0.09 0.19 0.09 0.09 0.13 0.10 0.15 0.16 0.13
x16 0.14 0.12 1 0.15 0.14 0.14 0.18 0.13 0.12 0.10 0.17 0.18
x17 0.12 0.09 0.15 1 0.09 0.16 0.18 0.09 0.15 0.12 0.18 0.12
x18 0.12 0.19 0.14 0.09 1 0.14 0.13 0.20 0.15 0.13 0.14 0.17
x19 0.21 0.09 0.14 0.16 0.14 1 0.13 0.11 0.10 0.11 0.16 0.12
x20 0.13 0.09 0.18 0.18 0.13 0.13 1 0.10 0.11 0.11 0.18 0.11
x21 0.13 0.13 0.13 0.09 0.20 0.11 0.10 1 0.21 0.15 0.23 0.09
x22 0.13 0.10 0.12 0.15 0.15 0.10 0.11 0.21 1 0.19 0.18 0.22
x23 0.20 0.15 0.10 0.12 0.13 0.11 0.11 0.15 0.19 1 0.13 0.13
x24 0.18 0.16 0.17 0.18 0.14 0.16 0.18 0.23 0.18 0.13 1 0.12
x25 0.12 0.13 0.18 0.12 0.17 0.12 0.11 0.09 0.22 0.13 0.12 1

Here are the one-way frequencies.

Differential Design Initialization
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

x1 20 20 20 20
x2 20 20 20 20
x3 20 20 20 20
x4 20 20 20 20
x5 20 20 20 20
x6 20 20 20 20
x7 20 20 20 20
x8 20 20 20 20
x9 20 20 20 20
x10 20 20 20 20
x11 20 20 20 20
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* x12 19 22 19 20
* x13 21 19 20 20
* x14 18 20 21 21
* x15 18 21 22 19
* x16 19 18 22 21
* x17 21 19 18 22
* x18 21 20 20 19
* x19 21 18 18 23
* x20 20 20 21 19
* x21 18 20 23 19
* x22 20 18 22 20
* x23 19 20 21 20
* x24 23 17 20 20
* x25 21 19 19 21

We could run one more refinement on this design and force x12-x25 to be balanced. We will need to
make a new initial design using our current design. This time, we will make x12-x25 negative. Then
x1-x11 will not change, the absolute values of x12-x25 will be used as initial values, but x12-x25 will
still be allowed to change. Then we can use the balance=1 option with %MktEx to make a design that is
better balanced. Usually, when you are creating a design, you should specify mintry= with balance=,
however, since we are refining not creating a design it is not necessary. Here is the code.

data init(drop=j);
set design;
array x[25];
do j = 12 to 25; x[j] = -x[j]; end;
run;

%mktex(4 ** 25, n=80, init=init, seed=472, balance=1)

%mkteval;

Here is the final D-efficiency, which again, is a bit lower than we say previously.

Differential Design Initialization

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 86.1917 71.1301 97.9379 0.9747

Here are the canonical correlations.
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Differential Design Initialization
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

x1 1 0 0 0 0 0 0 0 0 0 0 0.20 0.15
x2 0 1 0 0 0 0 0 0 0 0 0 0.15 0.13
x3 0 0 1 0 0 0 0 0 0 0 0 0.15 0.12
x4 0 0 0 1 0 0 0 0 0 0 0 0.20 0.15
x5 0 0 0 0 1 0 0 0 0 0 0 0.20 0.24
x6 0 0 0 0 0 1 0 0 0 0 0 0.13 0.15
x7 0 0 0 0 0 0 1 0 0 0 0 0.17 0.19
x8 0 0 0 0 0 0 0 1 0 0 0 0.13 0.15
x9 0 0 0 0 0 0 0 0 1 0 0 0.12 0.16
x10 0 0 0 0 0 0 0 0 0 1 0 0.13 0.17
x11 0 0 0 0 0 0 0 0 0 0 1 0.20 0.13
x12 0.20 0.15 0.15 0.20 0.20 0.13 0.17 0.13 0.12 0.13 0.20 1 0.14
x13 0.15 0.13 0.12 0.15 0.24 0.15 0.19 0.15 0.16 0.17 0.13 0.14 1
x14 0.20 0.10 0.09 0.13 0.18 0.22 0.17 0.16 0.13 0.16 0.09 0.20 0.15
x15 0.21 0.23 0.22 0.25 0.20 0.24 0.17 0.15 0.22 0.13 0.22 0.18 0.16
x16 0.09 0.20 0.17 0.18 0.12 0.18 0.17 0.17 0.10 0.16 0.20 0.09 0.14
x17 0.20 0.23 0.15 0.15 0.09 0.22 0.20 0.10 0.15 0.17 0.15 0.15 0.15
x18 0.10 0.23 0.10 0.16 0.15 0.15 0.18 0.17 0.10 0.15 0.15 0.15 0.12
x19 0.17 0.20 0.18 0.14 0.17 0.15 0.23 0.16 0.12 0.19 0.17 0.16 0.25
x20 0.26 0.10 0.10 0.17 0.17 0.17 0.24 0.23 0.09 0.17 0.19 0.12 0.10
x21 0.20 0.13 0.20 0.19 0.19 0.19 0.20 0.20 0.15 0.14 0.17 0.14 0.14
x22 0.17 0.16 0.10 0.23 0.14 0.16 0.10 0.16 0.15 0.10 0.14 0.15 0.15
x23 0.24 0.18 0.14 0.18 0.09 0.10 0.15 0.20 0.13 0.22 0.19 0.19 0.12
x24 0.24 0.20 0.27 0.18 0.15 0.29 0.12 0.12 0.18 0.20 0.17 0.20 0.14
x25 0.20 0.16 0.09 0.15 0.23 0.19 0.17 0.18 0.17 0.22 0.15 0.16 0.12
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x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25

x1 0.20 0.21 0.09 0.20 0.10 0.17 0.26 0.20 0.17 0.24 0.24 0.20
x2 0.10 0.23 0.20 0.23 0.23 0.20 0.10 0.13 0.16 0.18 0.20 0.16
x3 0.09 0.22 0.17 0.15 0.10 0.18 0.10 0.20 0.10 0.14 0.27 0.09
x4 0.13 0.25 0.18 0.15 0.16 0.14 0.17 0.19 0.23 0.18 0.18 0.15
x5 0.18 0.20 0.12 0.09 0.15 0.17 0.17 0.19 0.14 0.09 0.15 0.23
x6 0.22 0.24 0.18 0.22 0.15 0.15 0.17 0.19 0.16 0.10 0.29 0.19
x7 0.17 0.17 0.17 0.20 0.18 0.23 0.24 0.20 0.10 0.15 0.12 0.17
x8 0.16 0.15 0.17 0.10 0.17 0.16 0.23 0.20 0.16 0.20 0.12 0.18
x9 0.13 0.22 0.10 0.15 0.10 0.12 0.09 0.15 0.15 0.13 0.18 0.17
x10 0.16 0.13 0.16 0.17 0.15 0.19 0.17 0.14 0.10 0.22 0.20 0.22
x11 0.09 0.22 0.20 0.15 0.15 0.17 0.19 0.17 0.14 0.19 0.17 0.15
x12 0.20 0.18 0.09 0.15 0.15 0.16 0.12 0.14 0.15 0.19 0.20 0.16
x13 0.15 0.16 0.14 0.15 0.12 0.25 0.10 0.14 0.15 0.12 0.14 0.12
x14 1 0.20 0.20 0.12 0.18 0.24 0.10 0.25 0.14 0.18 0.17 0.13
x15 0.20 1 0.15 0.15 0.15 0.12 0.09 0.15 0.14 0.12 0.21 0.18
x16 0.20 0.15 1 0.15 0.15 0.12 0.14 0.13 0.09 0.15 0.23 0.17
x17 0.12 0.15 0.15 1 0.20 0.15 0.19 0.24 0.17 0.14 0.26 0.19
x18 0.18 0.15 0.15 0.20 1 0.17 0.17 0.22 0.15 0.09 0.17 0.22
x19 0.24 0.12 0.12 0.15 0.17 1 0.09 0.15 0.17 0.14 0.15 0.13
x20 0.10 0.09 0.14 0.19 0.17 0.09 1 0.12 0.20 0.18 0.10 0.09
x21 0.25 0.15 0.13 0.24 0.22 0.15 0.12 1 0.15 0.12 0.28 0.12
x22 0.14 0.14 0.09 0.17 0.15 0.17 0.20 0.15 1 0.22 0.17 0.27
x23 0.18 0.12 0.15 0.14 0.09 0.14 0.18 0.12 0.22 1 0.21 0.18
x24 0.17 0.21 0.23 0.26 0.17 0.15 0.10 0.28 0.17 0.21 1 0.14
x25 0.13 0.18 0.17 0.19 0.22 0.13 0.09 0.12 0.27 0.18 0.14 1

Here are the one-way frequencies, which are now all perfect.
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Differential Design Initialization

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

* - Indicates Unequal Frequencies

Frequencies

x1 20 20 20 20
x2 20 20 20 20
x3 20 20 20 20
x4 20 20 20 20
x5 20 20 20 20
x6 20 20 20 20
x7 20 20 20 20
x8 20 20 20 20
x9 20 20 20 20
x10 20 20 20 20
x11 20 20 20 20
x12 20 20 20 20
x13 20 20 20 20
x14 20 20 20 20
x15 20 20 20 20
x16 20 20 20 20
x17 20 20 20 20
x18 20 20 20 20
x19 20 20 20 20
x20 20 20 20 20
x21 20 20 20 20
x22 20 20 20 20
x23 20 20 20 20
x24 20 20 20 20
x25 20 20 20 20

You can initialize any part of the design to positive integers (fixed), any other part to zero or missing
(randomly initialize and change), and any other part to negative (do not reinitialize but change is
allowed). This capability gives you very flexible control over the components of your design.
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Partial Profiles and Restrictions

Partial-profile designs (Chrzan and Elrod, 1995) are used when there are many attributes but no more
than a few of them are allowed to vary at any one time. Chrzan and Elrod show an example where
respondents must choose between vacuum cleaners that vary along 20 different attributes: Brand,
Price, Warranty, Horsepower, and so on. It is difficult for respondents to simultaneously evaluate that
many attributes, so it is better if they are only exposed to a few at a time. Partial-profile designs have
become very popular among some researchers.

Pair-wise Partial-Profile Choice Design

Here for example is a partial-profile design for 20 two-level factors, with 5 varying at a time, with the
factors that are not shown printed with an ordinary missing value.

. . . 2 . . . 1 1 1 . . . . 1 . . . . .
2 . . . 2 . . . . . 1 . . . . . 1 . . 1
2 . 1 . . . . 1 . . . . . 1 . . . . . 2
. . . . . . . 2 . . . . . 2 2 . . 2 2 .
. . . . 2 . . . . 2 . 2 . . . 2 . 2 . .
. . . . . . . . 2 . . . . 1 . . . 2 1 1
. . . . . . . . 1 . 2 . 2 . . . 2 . . 2
1 . . . . 1 . . . . . . . 2 . 2 . . . 1
. . . . . . 2 . . . . 2 1 . 2 . . . . 1
. . 1 . 1 . . . . 2 . . . . . 1 . . . 1
1 . 2 . . . 2 . . . . . . . . . 1 2 . .
. 1 . . . . . . . . 2 . 1 . 1 1 . . . .
2 . . . . . . . 2 . . 2 . . . 1 2 . . .
. . 1 . . . . . . . . 2 2 . 1 . . . 1 .
. . . . 2 . 2 . . . . . . 2 . 1 . . 1 .
. 2 . 1 . . . 1 . . . . . . . . 2 . 2 .
2 2 . . . . 1 . 1 . . 1 . . . . . . . .
. 2 . . . . . . . 1 1 . . . . . . 1 . 2
. 1 . 1 . 2 . 2 . . . . . . . . . 1 . .
. . . 1 1 . . . . . 2 2 . 1 . . . . . .
1 . . . 2 2 1 . . . . . . . 2 . . . . .
. . . . . 1 1 2 . 1 . . . . . . 1 . . .
. . . 2 . . . . . . . 1 2 1 . 1 . . . .
. . . 1 . . . . 2 . . 1 . . 1 . . . . 2
. . 2 . . 1 . . 1 . 1 . . . 2 . . . . .
. . 2 . 1 . . 2 . . . . 1 . . 2 . . . .
. . 2 . . . 1 1 . . 2 . . . . . . 1 . .
. 1 . . 1 . . 1 2 . . . 2 . . . . . . .
1 . . . . . . . 1 . . . 1 . . . . 1 2 .
2 . . 2 1 1 . . . . . . . . . . . 2 . .
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. . . . . . . . . . . . . . 2 2 1 1 1 .

. 1 2 2 . . . . . . . . . . . . . . 2 2

. . 1 1 . . 1 . . . 1 . . . . 2 . . . .

. . . . . 2 . . . 2 . . 1 2 . . 1 . . .

. . . . . . 2 . . 2 . . . 1 1 . 2 . . .
1 . . . . . . 2 . 2 2 . . . . . . . 1 .
2 . 2 1 . . . . . 1 . . 2 . . . . . . .
. 1 1 . . . . . . 1 . 1 . . . . 2 . . .
. 2 1 2 2 . . . 2 . . . . . . . . . . .
. . . . . 2 2 . . . 2 . . . . 2 . . 2 .

A design like this could be used to make a binary choice experiment. For example, the last run has
factors 6, 7, 11, 16, and 19 varying. Assume they are all yes-no factors (1 yes, 2 no). Subjects could
be offered a choice between these two profiles:

x6 = no, x7 = no, x11 = no, x16 = yes, x19 = no
x6 = yes, x7 = yes, x11 = yes, x16 = no, x19 = yes

The first profile came directly from the design and the second came from shifting the design: yes →
no, and no → yes.

Here is the code that generated and printed the partial-profile design.¶

title ’Partial Profiles’;

%mktex(3 ** 20, n=41, partial=5, seed=292, maxdesigns=1)

%mktlab(values=. 1 2, nfill=99)

data _null_; set final(firstobs=2); put (x1-x20) (2.); run;

A 320 design is requested in 41 runs. The three levels are yes, no, and not shown. Forty-one runs will
give us 40 partial profiles and one more run with all attributes not shown (all ones in the original design
before reassigning levels). When we ask for partial profiles, in this case partial=5, we are imposing a
constraint that the number of 2’s and 3’s in each run equals 5 and the number of 1’s equals 15. This
makes the sum of the coded variables constant in each run and hence introduces a linear dependency
(the sum of the coded variables is proportional to the intercept). The way we avoid having the linear
dependency is by adding this additional row where all attributes are set to the not-shown level. The
sum of the coded variables for this row will be different than the constant sum for the other rows and
hence will eliminate the linear dependency we would otherwise have.

The %MktLab macro reassigns the levels (1, 2, 3) to (., 1, 2) where “.” will mean not shown. Normally,
the %MktLab macro complains about using missing values for levels, because missing values are used
in the key= data set as fillers when some factors have more levels than others. Encountering missing
levels normally indicates an error. We can allow for missing levels by specifying nfill=99. Then the
macro considers levels of 99 to be invalid, not missing. A DATA step prints the design excluding the
constant (all not shown) first row.

¶Due to machine, SAS release, and macro differences, you may not get exactly the same design as was used in this
book, but the differences should be slight.



Partial Profiles and Restrictions 399

This next section of code takes this design and turns it into a partial-profile choice design. It reads each
profile in the design, and outputs it. If the level is not missing, the code changes 1 to 2 and 2 to 1 and
outputs the new profile. The next step uses the %ChoicEff macro to evaluate the design. We specified
zero=none for now to see exactly which parameters we can estimate and which ones we cannot. This
usage of the %ChoicEff macro is similar to what we saw in the food product example on page 321.
Our choice design is specified on the data= option and the same data set, with just the Set variable
kept, is specified on the init= option. The number of choice sets, 40 (we drop the constant choice
set), number of alternatives, 2, and assumed betas, a vector of zeros, are also specified. Zero internal
iterations are requested since we want a design evaluation, not an attempt to improve the design.

data des(drop=i);
Set = _n_;
set final(firstobs=2);
array x[20];
output;
do i = 1 to 20;

if n(x[i]) then do; if x[i] = 1 then x[i] = 2; else x[i] = 1; end;
end;

output;
run;

%choiceff(data=des,
model=class(x1-x20 / zero=none),
nsets=40, nalts=2,
beta=zero, init=des(keep=set),
intiter=0)

Here is the last part of the output.

Partial Profiles

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.46962 1 0.68529
2 x12 x1 2 . 0 .
3 x21 x2 1 0.52778 1 0.72648
4 x22 x2 2 . 0 .
5 x31 x3 1 0.42989 1 0.65566
6 x32 x3 2 . 0 .
7 x41 x4 1 0.46230 1 0.67993
8 x42 x4 2 . 0 .
9 x51 x5 1 0.54615 1 0.73902
10 x52 x5 2 . 0 .
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11 x61 x6 1 0.81069 1 0.90038
12 x62 x6 2 . 0 .
13 x71 x7 1 0.50135 1 0.70806
14 x72 x7 2 . 0 .
15 x81 x8 1 0.49753 1 0.70536
16 x82 x8 2 . 0 .
17 x91 x9 1 0.48632 1 0.69737
18 x92 x9 2 . 0 .
19 x101 x10 1 0.54529 1 0.73844
20 x102 x10 2 . 0 .
21 x111 x11 1 0.56975 1 0.75482
22 x112 x11 2 . 0 .
23 x121 x12 1 0.54158 1 0.73592
24 x122 x12 2 . 0 .
25 x131 x13 1 0.54817 1 0.74039
26 x132 x13 2 . 0 .
27 x141 x14 1 0.55059 1 0.74201
28 x142 x14 2 . 0 .
29 x151 x15 1 0.52638 1 0.72552
30 x152 x15 2 . 0 .
31 x161 x16 1 0.44403 1 0.66636
32 x162 x16 2 . 0 .
33 x171 x17 1 0.57751 1 0.75994
34 x172 x17 2 . 0 .
35 x181 x18 1 0.56915 1 0.75442
36 x182 x18 2 . 0 .
37 x191 x19 1 0.58340 1 0.76381
38 x192 x19 2 . 0 .
39 x201 x20 1 0.54343 1 0.73718
40 x202 x20 2 . 0 .

==
20

We see that one parameter is estimable for each factor and that is the parameter for the 1 or yes level.
The %ChoicEff macro prints a list of all redundant variables.

Redundant Variables:

x12 x22 x32 x42 x52 x62 x72 x82 x92 x102 x112 x122 x132 x142 x152 x162 x172 x182
x192 x202

We can cut and paste this list into our program and drop those terms.

%choiceff(data=des,
model=class(x1-x20 / zero=none),
nsets=40, nalts=2,
beta=zero, init=des(keep=set),
intiter=0, drop=x12 x22 x32 x42 x52 x62 x72 x82 x92 x102
x112 x122 x132 x142 x152 x162 x172 x182 x192 x202)
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Here is the last part of the output.

Partial Profiles

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.46962 1 0.68529
2 x21 x2 1 0.52778 1 0.72648
3 x31 x3 1 0.42989 1 0.65566
4 x41 x4 1 0.46230 1 0.67993
5 x51 x5 1 0.54615 1 0.73902
6 x61 x6 1 0.81069 1 0.90038
7 x71 x7 1 0.50135 1 0.70806
8 x81 x8 1 0.49753 1 0.70536
9 x91 x9 1 0.48632 1 0.69737
10 x101 x10 1 0.54529 1 0.73844
11 x111 x11 1 0.56975 1 0.75482
12 x121 x12 1 0.54158 1 0.73592
13 x131 x13 1 0.54817 1 0.74039
14 x141 x14 1 0.55059 1 0.74201
15 x151 x15 1 0.52638 1 0.72552
16 x161 x16 1 0.44403 1 0.66636
17 x171 x17 1 0.57751 1 0.75994
18 x181 x18 1 0.56915 1 0.75442
19 x191 x19 1 0.58340 1 0.76381
20 x201 x20 1 0.54343 1 0.73718

==
20

Linear Partial-Profile Design

Here is another example. Say you would like to make a design in 36 runs with 12 three-level factors,
but you want only four of them to be considered at a time. You would need to create four-level factors
with one of the levels meaning not shown. You also need to ask for a design in 37 runs, because with
partial profiles, one run must be all-constant. Here is a partial-profile request with the %MktEx macro
using the partial= option.

title ’Partial Profiles’;

%mktex(4 ** 12, n=37, partial=4, seed=462, maxdesigns=1)
%mktlab(values=. 1 2 3, nfill=99)

proc print; run;
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The iteration history will proceed like before, so we will not discuss it. Here is the final D-efficiency.

Partial Profiles

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 49.4048 22.4346 100.0000 1.0000

With partial-profile designs, D-efficiency will typically be much less than we are accustomed to seeing
with other types of designs. Here is the design.

Partial Profiles

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 . . . . . . . . . . . .
2 . . 1 1 . . . . . 1 . 1
3 . . 1 . . . 2 . 1 . 2 .
4 . 2 2 . . . . . . 3 . 3
5 . . 3 3 3 . 3 . . . . .
6 . . . . 2 . 1 . . . 3 3
7 1 . . . 2 . . . . 3 1 .
8 . 1 . . 1 . . . 1 2 . .
9 2 . . . . . . 3 . . 1 3
10 . 2 2 . . . . . 3 . 1 .
11 2 2 . 2 . . 1 . . . . .
12 . . . . 3 3 . . . 2 2 .
13 1 . 2 . . 2 1 . . . . .
14 3 3 . 1 3 . . . . . . .
15 3 . 3 . . . . 1 . . . 2
16 . 1 1 3 . 3 . . . . . .
17 2 . . . . 2 . . . 3 3 .
18 . . . . . . 1 3 2 3 . .
19 . . . . 3 1 . 1 . . . 1
20 1 2 . . . . . . 2 . 3 .
21 . . . 3 1 . . 1 . . 2 .
22 . . . . 1 3 2 . . . . 1
23 3 . . . . 1 3 . . 1 . .
24 . . 1 . 1 . . 2 . . . 2
25 . 1 . . . . 2 2 . 1 . .
26 . 3 . . . . 3 1 . 2 . .
27 . . . 1 . 1 2 . . 2 . .
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28 . 1 . . . . 3 . . . 2 2
29 2 . 2 . 2 . . . 2 . . .
30 . . . 3 . . . . 1 1 . 2
31 . . . 2 . 2 . . 2 . 1 .
32 3 . . 3 . . . 2 . . . 1
33 . 2 . . 2 2 . 3 . . . .
34 . 3 3 . . 1 . . . . 2 .
35 . . . 1 . 3 . 2 1 . . .
36 1 . . 2 . . . . 3 . . 3
37 . . 2 2 . . . 3 . . 3 .

Notice that the first run is constant. For all other runs, exactly four factors vary and have levels not
missing.

Choice from Triples; Partial Profiles Constructed Using Restrictions

The approach we just saw, constructing partial profiles using the partial= option, would be fine for
a full-profile conjoint study or a pair-wise choice study with level shifts. However, it would not be
good for a more general choice experiment with more alternatives. For a choice experiment, you would
have to have partial-profile restrictions on each alternative, and you must have the same attributes
varying in every alternative within each choice set. There is currently no automatic way to request
this in the %MktEx macro, so you have to program the restrictions yourself. To specify restrictions for
choice designs, you need to take into consideration the number of attributes that may vary within each
alternative, which ones, and which attributes go with which alternatives. Fortunately, that is not too
difficult. See page 286 for another example of restrictions.

In this section, we will construct a partial-profile design for a purely generic (unbranded) study, with
ten attributes and three alternatives. Each attribute will have three levels, and each alternative will
be a bundle of attributes. Partial-profile designs have the advantage that subjects do not have to
consider all attributes at once. However, this is also a bit of a disadvantage as well in the sense that
the subjects must constantly shift from considering one set of attributes to considering a different set.
For this reason, it can be helpful to get more information out of each choice, and having more than
two alternatives per choice set accomplishes this.

This example will have several parts. As we mentioned in the chair study, we will usually not directly
use the %MktEx macro to generate designs for generic studies. Instead, we will use the %MktEx macro
to generate a candidate set of partial-profile choice sets. Next, the design will be checked and turned
into a candidate set of generic choice sets. Next, the %MktDups macro will be called to ensure there
are no duplicate choice sets. Finally, the %ChoicEff macro will be used to create an efficient generic
partial-profile choice design.

Before we go into any more detail on making this design, let’s skip ahead and look at a couple of
potential choice sets so it will be clear what we are trying to accomplish and why. Here are two
potential choice sets, still in linear design format.

2 2 1 3 1 2 1 2 2 2 2 1 3 2 1 1 2 1 2 2 2 3 2 1 1 3 3 3 2 2
2 2 1 3 2 2 1 3 2 3 3 2 2 3 1 2 1 1 1 1 1 2 3 3 3 2 1 2 3 2
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Here are the same two potential choice sets, but now arrayed in choice design format.

Partial Profiles

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2 2 1 3 1 2 1 2 2 2
2 1 3 2 1 1 2 1 2 2
2 3 2 1 1 3 3 3 2 2

2 2 2 1 3 2 2 1 3 2 3
3 2 2 3 1 2 1 1 1 1
1 2 3 3 3 2 1 2 3 2

Each choice set has 10 three-level factors and three alternatives. Four attributes are constant in each
choice set: x1, x5, x9, and x10 in the first choice set, and x2, x4, x6, and x7 in the second choice
set. We do not need an all-constant choice set like we saw in our earlier partial-profile designs, nor do
we need an extra level for not varying. In this approach, we will simply construct choice sets for four
constant attributes (they may be constant at 1, 2, or 3) and six varying attributes (with levels: 1, 2,
and 3). Respondents will be given a choice task along the lines of “Given a set of products that differ
on these attributes but are identical in all other respects, which one would you choose?”. They would
then be shown a list of differences.

Here is the code for making the candidate set.

title ’Partial Profiles’;

%macro partprof;
sum = 0;
do k = 1 to 10;

sum = sum + (x[k] = x[k+10] & x[k] = x[k+20]);
end;

bad = abs(sum - 4);
%mend;

%mktex(3 ** 30, n=198, optiter=0, tabiter=0, maxtime=0, order=random,
out=sasuser.cand, restrictions=partprof, seed=382)

We requested a design in 198 runs with 30 three-level factors. The 198 was chosen arbitrarily as a
number divisible by 3×3 = 9 that would give us approximately 200 candidate sets. The first ten factors,
x1-x10, will make the first alternative, the next ten, x11-x20, will make the second alternative, and
the last ten, x21-x30, will make the third alternative. We will want six attributes to be nonconstant
at a time. The PartProf macro will count the number of constant attributes: x1 = x11 = x21, x2
= x12 = x22, ..., and x10 = x20 = x30. If the number of constant attributes is four, our choice set
conforms. If it is more or less than four, our choice set is in violation of the restrictions. The badness
is the absolute difference between four and the number of constant attributes.
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We specified order=random, which specifies that the columns are to be looped over in a random order in
the coordinate-exchange algorithm. When partial= is specified, as it was in the previous partial-profile
examples, order=random is the default. Whenever you are imposing partial-profile restrictions without
using the partial= option, you should specify order=random. Without order=random, %MktEx will
tend to put the nonconstant levels close together in each row.

Our goal in this step is to make a candidate set of potential partial-profile choice sets, not to make a
final experimental design. Ideally, it would be nice if we had more than random candidates−it would
be nice if our candidate generation code at least made some attempt to ensure that our attributes
are approximately orthogonal and balanced across attributes both between and within alternatives.
This is a big problem (30 factors and 198 runs) with restrictions, so %MktEx macro will run slowly
by default. It is not critical that we allow the macro to spend a great deal of time optimizing linear
model D-efficiency. For this reason, we use some of the more esoteric number-of-iterations options. We
specify optiter=0, which specifies no OPTEX iterations, since with large partial-profile studies, we
will never have a good candidate set for PROC OPTEX to search. We also specify tabiter=0 since a
tabled initial design will be horrible for this problem. We specified the maxtime=0 option so that the
macro will just create two candidate designs using the coordinate-exchange algorithm with a random
initialization and make one attempt to refine the best one.

Partial Profiles

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 85.1531 Ran,Mut,Ann
1 169 1 93.3863 93.3863 Conforms
1 169 8 93.3892 93.3892
1 169 22 93.3892 93.3892
1 169 12 93.3911 93.3911
1 170 20 93.3954 93.3954

.

.

.
1 123 1 96.5805 96.5805
1 38 21 96.5806 96.5806
1 47 1 96.5811 96.5811
1 End 96.5811

NOTE: Quitting the algorithm search step after 2.07 minutes and 1 designs.

.

.

.



406 TS-722F − Discrete Choice

Partial Profiles

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 96.6394 96.6394 Ini

1 Start 96.0428 Pre,Mut,Ann
1 180 1 95.9063 Conforms
1 End 96.6112

NOTE: Quitting the refinement step after 1.61 minutes and 1 designs.

Partial Profiles

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 96.6394 93.6339 94.9469 0.5551

The macro finds a design that conforms to the restrictions (shown by the Conforms note). This step
took approximately 7 minutes.

Here is the rest of the code for making the partial-profile choice design.

%mktkey(3 10)

%mktroll(design=sasuser.cand, key=key, out=rolled)

%mktdups(generic, data=rolled, out=nodups, factors=x1-x10, nalts=3)

proc print data=nodups(obs=9); id set; by set; run;

%choiceff(data=nodups, model=class(x1-x10), seed=495,
iter=10, nsets=27, nalts=3, options=nodups, beta=zero)

proc print data=best; id set; by notsorted set; var x1-x10; run;

The %MktKey macro is run to generate a Key data set with 3 rows, 10 columns and the variable names
x1 - x30. Here is the Key data set.
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Partial Profiles

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
x21 x22 x23 x24 x25 x26 x27 x28 x29 x30

Then the %MktRoll macro is run to create a generic choice design from the linear candidate design.

The next step runs the %MktDups macro, which we have not used in previous examples. The %MktDups
macro can check a design to see if there are any duplicate runs and output just the unique ones. For
a generic study like this, it can also check to make sure there are no duplicate choice sets taking into
account the fact that two choice sets can be duplicates even if the alternatives are not in the same
order. The %MktDups step names in a positional parameter the type of design as a generic choice
design. It names the input data set and the output data set that will contain the design with any
duplicates removed. It names the factors in the choice design x1-x10 and the number of alternatives.
The result is a data set called NoDups. Here are the first 3 candidate choice sets.

Partial Profiles

Set _Alt_ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 1 1 1 1 1 2 3 2 3 2 2
2 1 3 3 2 2 3 2 1 1 2
3 2 2 2 3 2 3 2 1 3 2

2 1 1 1 1 1 3 2 3 3 2 2
2 2 1 2 1 2 2 2 2 2 1
3 3 1 1 1 2 2 1 1 2 3

3 1 1 1 1 2 2 3 3 2 1 3
2 2 3 1 1 3 3 3 1 1 2
3 3 2 1 3 1 3 3 3 1 1

The %ChoicEff macro is called to search for an efficient choice design. The model specification
class(x1-x10) specifies a generic model with 10 attributes. The option iter=10 specifies more than
the default number of iterations (the default is 2 designs). We ask for a design with 27 sets and 3
alternatives. Furthermore, we ask for no duplicate choice sets and specify an assumed beta vector of
zero. Here are some of the results from the %ChoicEff macro.



408 TS-722F − Discrete Choice

Partial Profiles

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 2.368953 0.422127
1 2.904996 0.344235
2 2.912352 0.343365

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
10 0 2.444770 0.409036

1 2.842701 0.351778
2 2.879135 0.347326
3 2.903779 0.344379
4 2.905142 0.344217

Partial Profiles

Final Results

Design 8
Choice Sets 27
Alternatives 3
D-Efficiency 2.930997
D-Error 0.341181

Partial Profiles

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.44087 1 0.66398
2 x12 x1 2 0.40529 1 0.63662
3 x21 x2 1 0.39964 1 0.63217
4 x22 x2 2 0.40091 1 0.63318
5 x31 x3 1 0.39525 1 0.62869
6 x32 x3 2 0.42408 1 0.65122
7 x41 x4 1 0.41602 1 0.64500
8 x42 x4 2 0.44004 1 0.66335
9 x51 x5 1 0.42818 1 0.65436
10 x52 x5 2 0.42669 1 0.65321
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11 x61 x6 1 0.39914 1 0.63178
12 x62 x6 2 0.39934 1 0.63194
13 x71 x7 1 0.40924 1 0.63972
14 x72 x7 2 0.41546 1 0.64456
15 x81 x8 1 0.45180 1 0.67216
16 x82 x8 2 0.41896 1 0.64727
17 x91 x9 1 0.42344 1 0.65072
18 x92 x9 2 0.41993 1 0.64802
19 x101 x10 1 0.39293 1 0.62684
20 x102 x10 2 0.39998 1 0.63244

==
20

Here is part of the design.

Partial Profiles

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

54 1 3 2 2 2 2 1 1 2 3
2 1 2 2 1 3 1 3 2 1
3 2 2 2 3 1 1 2 2 2

30 1 2 2 1 3 1 2 2 1 1
3 3 2 2 3 3 3 2 1 3
2 1 2 3 3 2 1 2 1 2

.

.

.

163 3 2 1 3 1 3 3 1 1 2
1 2 1 1 2 2 3 1 2 3
2 2 1 2 3 1 3 1 3 1

The design has 27 choice sets. The choice set numbers shown in this output correspond to the original
set numbers in the candidate design not the choice set numbers in the final design.

Six Alternatives; Partial Profiles Constructed Using Restrictions

In this next example, we will construct a partial-profile design with 20 binary attributes and six
alternatives with 15 attributes fixed at the base-line level of 1 for each alternative. Our partial-profile
restriction macro is an obvious modification of the one used in the previous example. Our linear design
will need 6 × 20 = 120 factors. The first attribute will be made from x1, x21, x41, x61, x81, and
x101; the second attribute will be made from x2, x22, x42, x62, x82, and x102; and so on. The do
loop counts the number of times all of the linear factors within an attribute are equal to one and our
badness function increases as the number of constant attributes deviates from 15.
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%macro partprof;
sum = 0;
do k = 1 to 20;

sum = sum + (x[k] = 1 & x[k+20] = 1 & x[k+40] = 1 &
x[k+60] = 1 & x[k+80] = 1 & x[k+100] = 1);

end;
bad = abs(sum - 15);
%mend;

The %MktEx macro is run requesting 120 binary factors and 300 runs. We specify optiter=0 and
tabiter=0 so that only the coordinate-exchange algorithm will be used. With maxtime=0 and maxstages=1,
only one design will be created. Several options are specified with options=. The largedesign option
allows %MktEx to stop as soon as it has imposed all restrictions. The resrep option reports on the
progress of imposing restrictions. We specified order=random, which specifies that the columns are to
be looped over in a random order in the coordinate-exchange algorithm. You should always specify
order=random with partial-profile designs. With a sequential order you will tend to get nonvarying
attributes paired with only nearby attributes.

%mktex(2 ** 120, n=300, optiter=0, tabiter=0, maxtime=0, order=random,
out=cand, restrictions=partprof, seed=424,
maxstages=1, options=largedesign nosort resrep)

Here is the first part of the output.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 79.5699 Ran,Mut,Ann
1 1 79.8384 14 Violations
1 2 80.0541 12 Violations
1 3 80.3047 14 Violations
1 4 80.5649 15 Violations
1 5 80.7840 13 Violations
1 6 81.0383 12 Violations
.
.
.

At the end of the first pass through the design we see the following warning.

WARNING: It may be impossible to meet all restrictions.
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The second pass begins like this:

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 1 95.9591 13 Violations
1 2 95.9655 12 Violations
1 3 95.9772 13 Violations
1 4 95.9897 15 Violations
1 5 95.9684 12 Violations
.
.
.

The macro never gets anywhere in imposing restrictions. Every row of the design has lots of restric-
tions violations as shown by the output from the resrep (restrictions report) option. Always specify
options=resrep with complicated restrictions so you can look for things like this. When the macro is
never succeeding in imposing restrictions, there is something wrong with the restrictions macro. Here
is the macro again.

%macro partprof;
sum = 0;
do k = 1 to 20;

sum = sum + (x[k] = 1 & x[k+20] = 1 & x[k+40] = 1 &
x[k+60] = 1 & x[k+80] = 1 & x[k+100] = 1);

end;
bad = abs(sum - 15);
%mend;

It correctly evaluates in the Boolean expression to determine whether an attribute is all one, and it
correctly counts the number of such attributes. It also correctly sets bad to the absolute difference
between the sum and 15, the desired number of constant attributes. Sometimes you get results like
we just saw when you made a logical mistake in programming the restrictions. For example, you may
have written a set of restrictions that are impossible to satisfy. That is not the problem in this case.
The problem in this case is the quantification of badness is not fine enough. You need to tell the macro
whenever it does something that moves it closer to an acceptable solution. Consider a potential choice
set that almost conforms to the restrictions.

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

1 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1
2 1 2 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 2 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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The problem with this choice set is it has six nonconstant attributes instead of five. So bad = abs(14 -
15) = 1. Now consider what happens when the macro changes the first attribute of the first alternative
from 2 to 1. This is a change in the right direction because it moves the choice set closer to having
one more constant attribute. However, this change has no effect on the badness criterion. It is still
1, because we still have six nonconstant attributes. We are not giving %MktEx enough information
about when it is heading in the right direction. The %MktEx macro, without your restrictions macro to
otherwise guide it, is guided by the goal of maximizing D-efficiency. It does not particularly want to
make partial-profile designs, because imposing all of those ties decreases statistical D-efficiency. Using
the hill climbing analogy, %MktEx wants to climb Mount Everest; your restrictions macro needs to tell
it to find the top of an island in the middle of a river valley. This is not where %MktEx would normally
look. If your restrictions macro is going to overcome the %MktEx macro’s normal goal, you have to
train it and more explicitly tell it where to look.

Training the %MktEx macro to find highly restricted designs is like training a dog. You have to be
persistent and consistent, and you need to watch it every second. You have to reward it whenever it
does the right thing and you have to punish it for even thinking about doing the wrong thing. When
it tears up your favorite slippers, you need to whack it over the head with a rolled up newspaper.‖ It
is eager to please, but it is easily tempted, and it is not smart enough to figure out what to do unless
you very explicitly tell it. It will run wherever it wants unless you keep it on a short leash. With that
in mind, here is a revised partial-profile restrictions macro.

%macro partprof;
sum = 0;
do k = 1 to 20;

sum = sum + (x[k] = 1 & x[k+20] = 1 & x[k+40] = 1 &
x[k+60] = 1 & x[k+80] = 1 & x[k+100] = 1);

end;
bad = abs(sum - 15);
if sum < 15 & x[j1] = 2 then do;

k = mod(j1 - 1, 20) + 1;
c = (x[k] = 1) + (x[k+20] = 1) + (x[k+40] = 1) +

(x[k+60] = 1) + (x[k+80] = 1) + (x[k+100] = 1);
if c >= 3 then bad = bad + (6 - c) / 6;
end;

%mend;

It starts the same way as the old one, but it has some additional fine tuning. Like before, this macro
counts the number of times that all six alternatives equal 1 and stores the result in sum. When sum is
less than 15, we need more constant attributes. When the current level of the current factor, x[j1], is
2, the macro next considers whether it should change the 2 to a 1. First, we compute k, the attribute
number and evaluate the number of ones in that attribute, and store that in c. (For example when
j1, the linear factor number, equals 2, 22, 42, 62, 82, or 102, we are working with attribute k = 2.) If
it looks like this factor is going to be constant (three or more ones), we add the proportion of twos to
the badness function (more twos is worse).

Consider again the first row of the sample choice set shown previously. Badness starts out as 1 since
sum is 14. Since badness is nonzero and since we are looking at a 2 in the first column, badness is
increased by 1/2, which is the proportion of twos. Now consider changing that first two to a one.
Now badness is 1 + 1/3, which is smaller than 1 + 1/2 so changing 2 to 1 moves badness in the right
direction.

‖No actual dogs were harmed in the process of developing any of this software.
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There are many other ways that you could write a restrictions macro for this problem. However
you do it, you need to provide a quantification of badness that guides the macro toward acceptable
designs. Most of the time, for complicated restrictions, you will not be able to sit down and write
a good restrictions macro off of the top of your head.∗∗ It will require some trial and error to get
something that works. For this reason, at least at first, you should specify maxtime=0, maxstages=1,
options=largedesign resrep so you can see if the macro is succeeding in imposing restrictions, and
so the macro stops quickly when it has succeeded. Then you need to carefully check your design. It is
not unusual for the macro to succeed splendidly only to find you gave it the wrong set of restrictions.
We can run the %MktEx macro exactly as before to test our new macro.

%mktex(2 ** 120, n=300, optiter=0, tabiter=0, maxtime=0, order=random,
out=cand, restrictions=partprof, seed=424,
maxstages=1, options=largedesign nosort resrep)

Here is some of the output from the first pass through the design.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 79.5699 Ran,Mut,Ann
1 1 79.5414 0 Violations
1 2 79.6570 1 Violations
1 3 79.7998 4 Violations
1 4 79.7799 2 Violations
1 5 79.7653 0 Violations
.
.
.
1 100 71.3142 0 Violations
1 101 71.2115 3 Violations
1 102 71.1284 4 Violations
.
.
.
1 192 55.9495 2.167 Violations
1 193 55.7292 2 Violations
1 194 55.5926 4 Violations
1 195 55.4194 0 Violations
1 196 55.2477 2 Violations
1 197 55.0915 4.333 Violations
1 198 54.8782 0 Violations
1 199 54.7156 1 Violations
1 200 54.6435 6 Violations
.
.
.

∗∗This one may look simple once you see it, but it took me several tries to get it right. I had previous versions that
worked quite well in spite of some logical flaws that caused them to quantify badness in not quite the way that I intended.
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1 294 37.3778 4.167 Violations
1 295 37.1935 2 Violations
1 296 37.1475 6 Violations
1 297 36.9941 3 Violations
1 298 36.7927 0 Violations
1 299 36.5551 1 Violations
1 300 36.3781 5 Violations

This iteration history looks better. At least some choice sets conform. Most do not however. Notice the
fractional number of violations in some rows. Throughout most of this iteration history, D-efficiency
is steadily going down as more and more restrictions are imposed. Here is part of the iteration history
for the second pass through the design.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 1 36.4174 0 Violations
1 2 36.3885 0 Violations
1 3 36.2906 0 Violations
1 4 36.2632 1 Violations
1 4 36.2683 0 Violations
1 5 36.3141 0 Violations
.
.
.
1 100 34.2618 0 Violations
1 101 34.2198 0 Violations
1 102 34.1519 0 Violations
.
.
.
1 200 32.4079 0 Violations
1 201 32.3571 0 Violations
1 202 32.2518 0 Violations
.
.
.
1 298 30.8243 0 Violations
1 299 30.8499 0 Violations
1 300 30.7717 0 Violations

This part of the iteration history looks much better. The table contains a number of rows like what we
see in row four. The %MktEx macro attempts to impose restrictions and it does not quite succeed, so it
immediately tries again, one or more times, until it succeeds or gives up. In this case, it always succeeds.
D-efficiency is still mostly decreasing. Note that the “0 Violations” that we see in this table tells us
that there are no violations remaining in the indicated row. There may very well still be violations in
other rows. However by the end of this pass, the restrictions are almost certainly completely imposed,
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so we should see D-efficiency start back up. Here is some of the output from the next pass through the
design.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 1 30.7725 0 Violations
1 2 30.8039 0 Violations
1 3 30.8289 0 Violations
.
.
.
1 100 32.1841 0 Violations
1 101 32.2091 0 Violations
1 102 32.2166 0 Violations
.
.
.
1 200 33.1859 0 Violations
1 201 33.2199 0 Violations
1 202 33.2383 0 Violations
.
.
.
1 298 33.8693 0 Violations
1 299 33.8782 0 Violations
1 300 33.8869 0 Violations

Now D-efficiency is increasing. Here is the rest of the iteration history.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 1 1 33.8869 33.8869 Conforms
1 1 45 33.8873 33.8873
1 1 85 33.8909 33.8909
1 1 113 33.8921 33.8921
1 End 33.8872

It is followed by these messages.

NOTE: Stopping early, possibly before convergence, with a large design.
NOTE: Quitting the algorithm search step after 2.25 minutes and 22 designs.

Due to maxtime=0, maxstages=1, options=largedesign, the macro stops after it has completed
one pass through the design without encountering any restriction violations. Our final D-efficiency =
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33.8872 is not very high, but this will just be a candidate set. Furthermore, this is a highly restricted
design, so it is not surprising that D-efficiency is not very high. We may want to iterate more and see if
we can do better, but for now, let’s test the rest of our code. The %MktEx step took under 2.5 minutes.
When the macro completes a full pass through the design without detecting any violations, it prints
“Conforms” and switches from the options=resrep style to the normal iteration history style. These
next steps turn the linear design into a choice design and eliminate duplicate choice sets.

%mktkey(6 20)

%mktroll(design=cand, key=key, out=rolled)

proc print; by set; id set; var x:; where set le 5; run;

%mktdups(generic, data=rolled, out=nodups, factors=x1-x20, nalts=6)

proc print data=nodups(obs=18); id set; by set; run;

The %MktKey macro is run to generate a Key data set with 6 rows, 20 columns and the variable names
x1 - x120. Here is the Key data set, printed in two panels.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
x41 x42 x43 x44 x45 x46 x47 x48 x49 x50
x61 x62 x63 x64 x65 x66 x67 x68 x69 x70
x81 x82 x83 x84 x85 x86 x87 x88 x89 x90
x101 x102 x103 x104 x105 x106 x107 x108 x109 x110

x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
x31 x32 x33 x34 x35 x36 x37 x38 x39 x40
x51 x52 x53 x54 x55 x56 x57 x58 x59 x60
x71 x72 x73 x74 x75 x76 x77 x78 x79 x80
x91 x92 x93 x94 x95 x96 x97 x98 x99 x100
x111 x112 x113 x114 x115 x116 x117 x118 x119 x120

The %MktDups macro eliminated 70 choice sets with duplicate alternatives resulting in a candidate set
with 230 choice sets. Here are the results of the last PROC PRINT, with the first three candidate
choice sets.
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Set _Alt_ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2
2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1
3 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
5 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1 1 1 1 2

2 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1
3 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1
5 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1
6 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1

3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1
2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1
3 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1
4 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1
6 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1

Each choice set has the correct number of nonconstant attributes. This next step runs the %ChoicEff
macro to find a choice design. We set the reference level to the the first level of each factor, which is
the base-line level of 1.

%choiceff(data=nodups, model=class(x1-x20 / zero=first), seed=495,
iter=10, nsets=18, nalts=6, options=nodups, beta=zero)

proc print data=best; id set; by notsorted set; var x1-x20; run;

Here is some of the output.
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n Name Beta Label

1 x12 0 x1 2
2 x22 0 x2 2
3 x32 0 x3 2
4 x42 0 x4 2
5 x52 0 x5 2
6 x62 0 x6 2
7 x72 0 x7 2
8 x82 0 x8 2
9 x92 0 x9 2
10 x102 0 x10 2
11 x112 0 x11 2
12 x122 0 x12 2
13 x132 0 x13 2
14 x142 0 x14 2
15 x152 0 x15 2
16 x162 0 x16 2
17 x172 0 x17 2
18 x182 0 x18 2
19 x192 0 x19 2
20 x202 0 x20 2

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.909928 1.098988
1 1.018467 0.981868
2 1.028127 0.972643
3 1.036325 0.964948
4 1.042916 0.958850
5 1.043576 0.958243

Design Iteration D-Efficiency D-Error
----------------------------------------------

2 0 0.955735 1.046315
1 1.026372 0.974306
2 1.044285 0.957593
3 1.050147 0.952248
4 1.050147 0.952248

.

.

.
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Design Iteration D-Efficiency D-Error
----------------------------------------------
10 0 0 .

1 1.021022 0.979411
2 1.033626 0.967468
3 1.038226 0.963181

Final Results

Design 2
Choice Sets 18
Alternatives 6
D-Efficiency 1.050147
D-Error 0.952248

Variable Standard
n Name Label Variance DF Error

1 x12 x1 2 0.88262 1 0.93948
2 x22 x2 2 0.91343 1 0.95573
3 x32 x3 2 1.12396 1 1.06017
4 x42 x4 2 0.84310 1 0.91821
5 x52 x5 2 1.08252 1 1.04044
6 x62 x6 2 1.11615 1 1.05648
7 x72 x7 2 0.84372 1 0.91854
8 x82 x8 2 0.89847 1 0.94787
9 x92 x9 2 1.06525 1 1.03211
10 x102 x10 2 0.88000 1 0.93808
11 x112 x11 2 0.94155 1 0.97033
12 x122 x12 2 1.09926 1 1.04845
13 x132 x13 2 1.09443 1 1.04615
14 x142 x14 2 0.87119 1 0.93337
15 x152 x15 2 1.13624 1 1.06594
16 x162 x16 2 0.93743 1 0.96821
17 x172 x17 2 1.05015 1 1.02477
18 x182 x18 2 0.89569 1 0.94641
19 x192 x19 2 1.12411 1 1.06024
20 x202 x20 2 1.08256 1 1.04046

==
20

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

223 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 2 1 2 2 1 1 1 2 1 1 1
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128 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1
1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1
1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.

.

.

29 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1
1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Since the %ChoicEff macro did not have any problems, and the results look reasonable, it would appear
that we did everything right. Now we could try again, perhaps with more choice sets (say 400), and
we could iterate longer (say one hour), then we could make our final partial-profile choice design. The
results of this step are not shown.

%mktex(2 ** 120, n=400, optiter=0, tabiter=0, maxtime=60, order=random,
out=cand, restrictions=partprof, seed=424,
maxstages=1, options=largedesign nosort)

To recap, the first restrictions macro correctly differentiated between acceptable and unacceptable
choice sets, but it provided %MktEx with no guidance or direction on how to find acceptable choice sets.
Hence, the first macro did not work. The second macro corrected this problem by “nudging” %MktEx
in the right direction. The restrictions macro looked for attributes that appear to be heading toward
constant and created a penalty function that encouraged %MktEx to make those attributes constant.
Next, we will look at another way of writing a restrictions macro for this problem. There is nothing
subtle about this next approach. This next macro uses the whack-it-over-the-head-with-a-rolled-up-
newspaper approach. Sometimes you need to tell %MktEx that a restriction is really important by
strongly eliminating that source of badness. In this case, our macro strongly eliminates twos from the
design until the restriction violations go away.

%macro partprof;
sum = 0;
do k = 1 to 20;

sum = sum + (x[k] = 1 & x[k+20] = 1 & x[k+40] = 1 &
x[k+60] = 1 & x[k+80] = 1 & x[k+100] = 1);

end;
bad = abs(sum - 15);
if sum < 15 & x[j1] = 2 then bad = bad + 1000;
%mend;

%mktex(2 ** 120, n=300, optiter=0, tabiter=0, maxtime=0, order=random,
out=cand, restrictions=partprof, seed=424,
maxstages=1, options=largedesign nosort resrep)
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Recall that we specified order=random so within each choice set, the columns are traversed in a different
random order. As long as there are violations, within each choice set, this macro turns random twos
into ones until there are so few twos left that the violations go away. Then once all of the violations
go away, it allows twos to be changed back to ones to increase D-efficiency.

Here is the part of the iteration history.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 79.5699 Ran,Mut,Ann
1 1 79.5701 0 Violations
1 2 79.5230 0 Violations
1 3 79.4393 0 Violations
1 4 79.3154 0 Violations
1 5 79.1462 0 Violations

.

.

.

1 100 57.6919 0 Violations
1 101 57.4785 0 Violations
1 102 57.2048 0 Violations

.

.

.

1 200 34.9889 0 Violations
1 201 34.7612 0 Violations
1 202 34.5789 0 Violations

.

.

.

1 298 17.9407 0 Violations
1 299 17.7334 0 Violations
1 300 17.4295 0 Violations
1 1 17.5535 0 Violations
1 2 17.6737 0 Violations
1 3 17.7828 0 Violations

.

.

.

1 100 23.6202 0 Violations
1 101 23.6901 0 Violations
1 102 23.7532 0 Violations
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.

.

.

1 200 28.2418 0 Violations
1 201 28.2855 0 Violations
1 202 28.3235 0 Violations

.

.

.

1 298 31.8558 0 Violations
1 299 31.8751 0 Violations
1 300 31.9007 0 Violations
1 1 1 31.9007 31.9007 Conforms
1 1 27 31.9113 31.9113
1 1 5 31.9119 31.9119
1 1 86 31.9143 31.9143
1 1 6 31.9149 31.9149
1 1 107 31.9188 31.9188
1 1 67 31.9210 31.9210
1 1 73 31.9314 31.9314
1 1 65 31.9321 31.9321
1 1 33 31.9385 31.9385
1 1 23 31.9389 31.9389
1 1 113 31.9397 31.9397
1 1 43 31.9426 31.9426
1 End 31.9426

With this approach, all violations in each row are eliminated in the first pass through the design. The
macro quits after the end of the second pass, when it has completed an entire pass without encountering
any restriction violations.

Call the first approach the “nudge” approach and the second approach the “whack” approach. The
nudge approach starts with D-efficiency on the order of 80% for the random design. After one complete
pass, imposing many but not all restrictions, D-efficiency is down around 36%. After another pass and
imposing all restrictions, it is down to around 31%. Then it creeps back up to 34%. D-efficiency for
the choice design is approximately 1.05. The whack approach starts with the same random design (due
to the same random number seed) and with the same D-efficiency on the order of 80%. Then after one
pass of severe restriction imposition, D-efficiency drops to 17%. The nudge approach asks “are you a
good two or a bad two?”, then it acts accordingly. In contrast, when the whack approach sees a two, it
whacks it–no questions asked. There is no subtle nudging in the whack approach, and initially, it over
corrects to impose restrictions. Hence, the design it makes at the end of the first pass is not very good,
but once all of the restrictions are in place, D-efficiency quickly recovers to 32%. This is not quite as
high as the nudge approach, but the nudge approach had one more complete pass through the design.
D-efficiency for the choice design (not shown) was similar at 1.02.

It is natural to ask, which approach is better? There are lots of ways to get %MktEx to impose the
restrictions. It is not clear that one is better than the other. Our goal here is to use %MktEx to create
a set of candidates for the %ChoicEff macro to search. Any restrictions macro that accomplishes this
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should be fine. Writing a macro that uses the whack approach is probably a bit easier. However, there
is always some worry that the initial over correction may not be a good thing. In contrast, subtle
nudging takes longer to get to the point of all restrictions being met, and you have to be a bit creative
sometimes to write nudges that actually work. Sometimes you need to combine both approaches –
whack it to take care of one set of restrictions then nudge it in the right direction for a secondary set
of restrictions. This is all part of the art of sophisticated experimental design. Note that it is not the
fact that we used a large penalty of 1000 that makes this approach an example of the whack approach.
It is the whack approach because we strongly overcorrected every violation.

Five-Level Factors; Partial Profiles Constructed Using Restrictions

This next example extends what we discussed in the previous example and constructs a somewhat
different style of partial-profile design. This design will have five alternatives and 15 five-level factors,
five of which will vary in each choice set. Unlike the previous example, however, the constant factors
will not all be at the base-line level. The constant factors can have any of the levels, and we use the
first factor within each attribute when we check the restrictions. Here is the partial-profile restrictions
macro along with %MktEx code, which uses the same basic option set that we used in the previous
example.

%macro partprof;
sum = 0;
do k = 1 to 15;

sum = sum + (x[k+15] = x[k] & x[k+30] = x[k] &
x[k+45] = x[k] & x[k+60] = x[k]);

end;
bad = abs(sum - 10);
if sum < 10 & x[j1] ^= x[mod(j1 - 1, 15) + 1] then bad = bad + 1000;
%mend;

%mktex(5 ** 75, n=400, optiter=0, tabiter=0, maxtime=0, order=random,
out=cand, restrictions=partprof, seed=472,
maxstages=1, options=largedesign nosort resrep)

The macro counts the number of times all of the linear factors in a choice set attribute are constant
within choice set, that is they equal the level of the first linear factor in the attribute, then it computes
badness in the customary way. Also like before, when not all restrictions are met, any level that is not
equal to the first factor within its attribute is heavily penalized. The macro uses the “whack” approach
to impose constant attributes. Here is some of the iteration history.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 58.6611 Ran,Mut,Ann
1 1 58.6885 0 Violations
1 2 58.7260 0 Violations
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.

.

.

1 100 55.7959 0 Violations
1 101 55.7391 2 Violations
1 102 55.7100 3 Violations

.

.

.

1 200 47.9268 1 Violations
1 201 47.8219 3 Violations
1 202 47.7466 1 Violations

.

.

.

1 300 38.9361 6 Violations
1 301 38.8744 4 Violations
1 302 38.7843 0 Violations

.

.

.

1 398 30.4707 4 Violations
1 399 30.3975 3 Violations
1 400 30.3355 1 Violations
1 1 30.4083 0 Violations
1 2 30.4790 0 Violations
1 3 30.5447 0 Violations

.

.

.

1 13 30.9147 2 Violations
1 13 30.9579 0 Violations
1 14 30.9680 0 Violations
1 15 31.0077 0 Violations
1 16 31.0868 0 Violations
1 17 31.0344 2 Violations
1 17 31.0535 0 Violations

.

.

.
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1 398 35.1051 0 Violations
1 399 35.1020 0 Violations
1 400 35.1316 0 Violations
1 1 35.1692 0 Violations
1 2 35.1895 0 Violations
1 3 35.2101 0 Violations

.

.

.

1 398 43.3264 0 Violations
1 399 43.3426 0 Violations
1 400 43.3394 0 Violations
1 1 1 43.3394 43.3394 Conforms
1 1 67 43.3422 43.3422
1 1 19 43.3423 43.3423
1 1 56 43.3425 43.3425
1 1 57 43.3450 43.3450
1 End 43.3417

This iteration history has a pattern very similar to what we saw in the previous example with the
nudge approach. In the first pass through the design, not all restrictions are met. Even the whack
approach does not guarantee that all restrictions will be met right away. In the second pass, some rows
are processed more than once until all restrictions are met. We can see that in choice sets 13 and 17.
By the end of the second pass, all restrictions are met (efficiency starts back up), %MktEx realizes all
restrictions are met at the end of the third pass, and then it stops. The %MktEx macro would have
iterated longer if we had not specified options=largedesign, but for now when you are testing a new
restrictions macro, it is good to check the results before %MktEx spends a long time iterating. This
next bit of code creates a choice design from this linear candidate set in the familiar way.

%mktkey(5 15)

%mktroll(design=cand, key=key, out=rolled)

%mktdups(generic, data=rolled, out=nodups, factors=x1-x15, nalts=5)

%choiceff(data=nodups, model=class(x1-x15), seed=513,
iter=10, nsets=15, nalts=5, options=nodups, beta=zero)

proc print data=best(obs=15); id set; by notsorted set; var x1-x15; run;

Here is the key with 5 rows, 15 columns and the variable names x1 - x75.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x45
x46 x47 x48 x49 x50 x51 x52 x53 x54 x55 x56 x57 x58 x59 x60
x61 x62 x63 x64 x65 x66 x67 x68 x69 x70 x71 x72 x73 x74 x75

Skipping the %ChoicEff macro output for a moment, here is part of the choice design.

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

73 3 5 1 5 4 2 2 4 1 2 3 3 3 2 2
3 1 2 5 4 5 2 4 1 2 3 3 1 2 2
3 3 4 5 4 5 2 4 1 1 3 3 2 2 2
3 4 4 5 4 4 2 4 1 1 3 3 1 2 2
3 2 5 5 4 1 2 4 1 4 3 3 5 2 2

131 4 1 4 1 4 5 2 5 1 3 3 1 5 5 5
4 1 1 5 4 5 4 5 1 3 3 1 5 5 3
4 1 2 3 4 5 4 5 1 3 3 1 5 3 1
4 1 5 2 4 5 5 5 1 3 3 1 5 1 4
4 1 3 5 4 5 3 5 1 3 3 1 5 2 2

69 3 3 3 3 5 4 2 2 2 5 4 4 4 1 3
2 3 3 3 5 2 4 2 2 5 4 3 4 1 4
5 3 3 3 5 4 3 2 2 5 4 1 4 1 2
1 3 3 3 5 3 5 2 2 5 4 5 4 1 4
4 3 3 3 5 5 1 2 2 5 4 2 4 1 5

The pattern of constant and nonconstant attributes looks correct: 10 constant and 5 nonconstant
attributes per choice set. Furthermore, the constant attributes have the full range of levels. Here is
the last table from the output from the %ChoicEff macro.
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 30.2557 1 5.50052
2 x12 x1 2 21.1270 1 4.59642
3 x13 x1 3 35.2941 1 5.94089
4 x14 x1 4 9.1106 1 3.01838
5 x21 x2 1 16.9166 1 4.11298
6 x22 x2 2 12.3298 1 3.51139
7 x23 x2 3 9.3354 1 3.05539
8 x24 x2 4 7.8348 1 2.79907
9 x31 x3 1 6.0168 1 2.45291
10 x32 x3 2 13.3475 1 3.65342
11 x33 x3 3 15.2546 1 3.90572
12 x34 x3 4 17.5629 1 4.19081
13 x41 x4 1 11.8263 1 3.43894
14 x42 x4 2 8.8253 1 2.97074
15 x43 x4 3 17.6600 1 4.20239
16 x44 x4 4 17.6338 1 4.19927
17 x51 x5 1 19.3639 1 4.40044
18 x52 x5 2 38.2315 1 6.18316
19 x53 x5 3 32.0957 1 5.66530
20 x54 x5 4 34.3440 1 5.86037
21 x61 x6 1 31.6916 1 5.62953
22 x62 x6 2 7.3134 1 2.70432
23 x63 x6 3 27.6641 1 5.25967
24 x64 x6 4 11.6611 1 3.41484
25 x71 x7 1 30.1417 1 5.49015
26 x72 x7 2 18.7806 1 4.33366
27 x73 x7 3 15.5209 1 3.93966
28 x74 x7 4 32.2130 1 5.67565
29 x81 x8 1 42.3192 1 6.50532
30 x82 x8 2 8.8859 1 2.98093
31 x83 x8 3 36.0899 1 6.00749
32 x84 x8 4 23.2898 1 4.82595
33 x91 x9 1 28.2001 1 5.31038
34 x92 x9 2 34.2759 1 5.85457
35 x93 x9 3 21.7287 1 4.66140
36 x94 x9 4 25.2429 1 5.02424
37 x101 x10 1 40.3210 1 6.34989
38 x102 x10 2 25.3427 1 5.03415
39 x103 x10 3 29.0168 1 5.38673
40 x104 x10 4 30.7894 1 5.54882
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41 x111 x11 1 19.4994 1 4.41582
42 x112 x11 2 18.6905 1 4.32325
43 x113 x11 3 26.7441 1 5.17147
44 x114 x11 4 26.6769 1 5.16497
45 x121 x12 1 12.7185 1 3.56629
46 x122 x12 2 15.6341 1 3.95400
47 x123 x12 3 30.6642 1 5.53753
48 x124 x12 4 17.0459 1 4.12867
49 x131 x13 1 28.7573 1 5.36258
50 x132 x13 2 33.5044 1 5.78830
51 x133 x13 3 39.3545 1 6.27332
52 x134 x13 4 25.4582 1 5.04561
53 x141 x14 1 32.6395 1 5.71310
54 x142 x14 2 17.8742 1 4.22779
55 x143 x14 3 13.8981 1 3.72802
56 x144 x14 4 14.8683 1 3.85594
57 x151 x15 1 14.6865 1 3.83229
58 x152 x15 2 12.3377 1 3.51250
59 x153 x15 3 9.8278 1 3.13494
60 x154 x15 4 21.0609 1 4.58922

==
60

Choice experiment designers frequently ask the questions: “How good is this choice experiment? Is it
efficient enough?” One of the challenges of designing a choice experiment is determining the answers
to these questions. Our D-efficiency value is essentially scale-less. In the linear model experiment, we
have a hypothetical maximum D-efficiency that we use to scale D-efficiency to a 0 to 100 scale. We
do not usually have that in choice experiments (see page 440 for an exception). One way to assess the
quality of the design is to look at the parameter variances. In this table they seem large and variable.
This is usually not a good sign. This run of the %ChoicEff macro requested a design with only 15
choice sets, which is not a lot. Let’s try again, this time with 30 choice sets.

%choiceff(data=nodups, model=class(x1-x15), seed=513,
iter=10, nsets=30, nalts=5, options=nodups, beta=zero)

Here is the new parameter variance table.

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1.82750 1 1.35185
2 x12 x1 2 1.52927 1 1.23663
3 x13 x1 3 1.50894 1 1.22839
4 x14 x1 4 1.28186 1 1.13219
5 x21 x2 1 1.67064 1 1.29253
6 x22 x2 2 2.25926 1 1.50308
7 x23 x2 3 1.76088 1 1.32698
8 x24 x2 4 1.69763 1 1.30293
9 x31 x3 1 1.59737 1 1.26387
10 x32 x3 2 2.02124 1 1.42170
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11 x33 x3 3 1.67137 1 1.29281
12 x34 x3 4 1.87473 1 1.36921
13 x41 x4 1 1.40549 1 1.18553
14 x42 x4 2 1.22398 1 1.10634
15 x43 x4 3 1.16179 1 1.07786
16 x44 x4 4 1.41207 1 1.18831
17 x51 x5 1 1.54385 1 1.24252
18 x52 x5 2 1.60084 1 1.26524
19 x53 x5 3 1.70746 1 1.30670
20 x54 x5 4 1.42809 1 1.19503
21 x61 x6 1 1.74385 1 1.32055
22 x62 x6 2 1.76563 1 1.32877
23 x63 x6 3 1.49271 1 1.22177
24 x64 x6 4 1.68579 1 1.29838
25 x71 x7 1 2.07147 1 1.43926
26 x72 x7 2 2.13145 1 1.45995
27 x73 x7 3 1.95383 1 1.39779
28 x74 x7 4 1.81710 1 1.34800
29 x81 x8 1 1.42543 1 1.19391
30 x82 x8 2 1.71120 1 1.30813
31 x83 x8 3 1.72912 1 1.31496
32 x84 x8 4 1.65668 1 1.28712
33 x91 x9 1 1.66802 1 1.29152
34 x92 x9 2 1.66456 1 1.29018
35 x93 x9 3 1.84660 1 1.35890
36 x94 x9 4 2.06666 1 1.43759
37 x101 x10 1 1.69240 1 1.30092
38 x102 x10 2 1.50033 1 1.22488
39 x103 x10 3 1.56721 1 1.25188
40 x104 x10 4 1.50211 1 1.22561
41 x111 x11 1 1.36458 1 1.16815
42 x112 x11 2 1.51382 1 1.23037
43 x113 x11 3 1.79314 1 1.33908
44 x114 x11 4 1.60204 1 1.26572
45 x121 x12 1 1.61251 1 1.26985
46 x122 x12 2 1.45537 1 1.20639
47 x123 x12 3 1.58978 1 1.26087
48 x124 x12 4 1.43593 1 1.19830
49 x131 x13 1 1.50986 1 1.22876
50 x132 x13 2 1.64192 1 1.28138
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51 x133 x13 3 1.69662 1 1.30254
52 x134 x13 4 1.47618 1 1.21498
53 x141 x14 1 1.42358 1 1.19314
54 x142 x14 2 1.42641 1 1.19433
55 x143 x14 3 1.22545 1 1.10700
56 x144 x14 4 1.24266 1 1.11474
57 x151 x15 1 1.88147 1 1.37167
58 x152 x15 2 2.12868 1 1.45900
59 x153 x15 3 1.61916 1 1.27246
60 x154 x15 4 2.44415 1 1.56338

==
60

This looks much better. The variances are smaller and more uniform. Note that it would be good to
run the %MktEx macro again without options=largedesign and allow it to iterate more before making
the final choice design.

Next, we will investigate another thing you can try. Typically, the %MktEx macro is run so that it loops
over all of the columns in a row, and then it goes on to the next row. Alternatively, it can work with
pairs of columns at one time using the exchange=2 option. Working with pairs of columns instead of
single columns is always much slower, but sometimes it can make better designs. Here is the code.

%macro partprof;
sum = 0;
do k = 1 to 15;

sum = sum + (x[k+15] = x[k] & x[k+30] = x[k] &
x[k+45] = x[k] & x[k+60] = x[k]);

end;
bad = abs(sum - 10);
if sum < 10 then do;

if x[j1] ^= x[mod(j1 - 1, 15) + 1] then bad = bad + 1000;
if x[j2] ^= x[mod(j2 - 1, 15) + 1] then bad = bad + 1000;
end;

%mend;

%mktex(5 ** 75, n=400, optiter=0, tabiter=0, maxtime=720, order=random=15,
out=sasuser.cand, restrictions=partprof, seed=472, exchange=2,
maxstages=1, options=largedesign nosort resrep)

The initial quantification of badness is the same. Like before, nonconforming levels are whacked.
This time however, they are whacked in two ways−when j1, the primary column index points to a
nonconstant level, and when j2, the secondary column index for the pair-wise exchange indexes a
nonconstant level. In the %MktEx invocation, we now see maxtime=720 so that %MktEx can run over
night for 12 hours (or 720 minutes). We also see exchange=2 for pair-wise exchanges. The output data
set is stored as a permanent SAS data set in the sasuser library. If we search for 12 hours for a design,
we want to make sure it is there for us if we accidentally trip over the power cord in the morning before
we have had our coffee. See page 163 for more information on permanent SAS data sets.

There is one more option that we have not used previously, order=random=15. This is a special
variation on order=random for pair-wise exchanges in partial-profile designs. Before this option is
explained, here is a bit of background. Sequential pair-wise exchanges for m factors works like this:
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%MktEx sets j1 = 1, 2, 3, ..., m and j2 = j1 + 1, j1 + 2, ..., m. Together, the variables j1 and j2
loop over all pairs of columns. Random pair-wise exchanges works like this: this: %MktEx sets j1 =
random permutation(1, 2, 3, ..., m) and j2 = random permutation(j1 + 1, j1 + 2, ..., m). Together,
the variables j1 and j2 loop over all pairs of columns but in a random order. For partial profiles,
pair-wise exchanges are appealing, because sometimes there is a lot to be gained by having two values
change at once. However, it does not make sense to consider simultaneously changing the level of a
nonconstant attribute and the level of a constant attribute, nor does it make sense to consider pair-wise
exchanges within constant attributes. Random exchange with a value of 15 specified works like this:
%MktEx sets j1 = random permutation(1, 2, 3, ..., m) and j2 is set to a sequential list of the other
factors in the same attribute as j1. For example, when j1 = 18, which means j1 is indexing the
second alternative (18 is in the second block of 15 factors) for the third attribute (18 is 3 beyond the
fifteenth factor, which is the end of the first block), then j2 = 3, 18, 33, 48, and 63 for a nonconstant
third attribute (which index the 5 factors that make up the third attribute) and j2 = j1 for constant
attributes. This does pair-wise exchanges but only within nonconstant attributes. This eliminates a
lot of uninteresting pairs from consideration.

Here is a small part of the iteration history.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 58.6611 Ran,Mut,Ann
1 1 58.6806 0 Violations
1 2 58.7175 0 Violations
1 3 58.7108 1 Violations
1 4 58.7007 0 Violations
1 5 58.6681 1 Violations
1 6 58.6568 2 Violations

.

.

.

1 398 31.4906 4 Violations
1 399 31.3437 0 Violations
1 400 31.2368 0 Violations
1 1 31.3070 0 Violations
1 2 31.3869 0 Violations
1 3 31.4504 0 Violations
1 4 31.5318 0 Violations
1 5 31.5681 0 Violations
1 6 31.6076 0 Violations
1 7 31.6189 1 Violations
1 7 31.6396 0 Violations
1 8 31.6282 1 Violations
1 8 31.6907 0 Violations
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.

.

.

1 398 34.7965 0 Violations
1 399 34.8517 0 Violations
1 400 34.8992 0 Violations
1 1 34.9343 0 Violations
1 2 34.9673 0 Violations
1 3 34.9941 0 Violations

.

.

.

1 397 43.2570 0 Violations
1 398 43.2617 0 Violations
1 399 1 43.2617 43.2617 Conforms
1 399 7 43.2617 43.2617
1 399 69 43.2665 43.2665
1 399 69 43.2665 43.2665
1 399 48 43.2674 43.2674
1 399 35 43.2701 43.2701

.

.

.

1 271 29 49.0081 49.0081
1 271 59 49.0081 49.0081
1 271 33 49.0081 49.0081
1 End 49.0061

It is followed by these messages.

NOTE: Stopping early, possibly before convergence, with a large design.
NOTE: Quitting the algorithm search step after 720.07 minutes and 22 designs.

These next steps make the choice design.

%mktkey(5 15)

%mktroll(design=sasuser.cand, key=key, out=rolled)

%mktdups(generic, data=rolled, out=nodups, factors=x1-x15, nalts=5)

%choiceff(data=nodups, model=class(x1-x15), seed=513,
iter=10, nsets=30, nalts=5, options=nodups, beta=zero)

proc print data=best(obs=15); id set; by notsorted set; var x1-x15; run;

Here is the variance table.
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1.55680 1 1.24772
2 x12 x1 2 1.76682 1 1.32922
3 x13 x1 3 1.50404 1 1.22639
4 x14 x1 4 1.43339 1 1.19724
5 x21 x2 1 1.37856 1 1.17412
6 x22 x2 2 1.62243 1 1.27375
7 x23 x2 3 1.52808 1 1.23615
8 x24 x2 4 1.55253 1 1.24601
9 x31 x3 1 1.79120 1 1.33836
10 x32 x3 2 1.93540 1 1.39119
11 x33 x3 3 1.75466 1 1.32463
12 x34 x3 4 1.81796 1 1.34832
13 x41 x4 1 1.63862 1 1.28009
14 x42 x4 2 1.59684 1 1.26366
15 x43 x4 3 1.58467 1 1.25884
16 x44 x4 4 1.65078 1 1.28483
17 x51 x5 1 1.50650 1 1.22740
18 x52 x5 2 1.63131 1 1.27723
19 x53 x5 3 1.52405 1 1.23452
20 x54 x5 4 1.71268 1 1.30870
21 x61 x6 1 1.37164 1 1.17117
22 x62 x6 2 1.59728 1 1.26384
23 x63 x6 3 1.27588 1 1.12955
24 x64 x6 4 1.31074 1 1.14488
25 x71 x7 1 1.67753 1 1.29519
26 x72 x7 2 1.86514 1 1.36570
27 x73 x7 3 1.34253 1 1.15868
28 x74 x7 4 1.53091 1 1.23730
29 x81 x8 1 1.36565 1 1.16861
30 x82 x8 2 1.43040 1 1.19599
31 x83 x8 3 1.42614 1 1.19421
32 x84 x8 4 1.48790 1 1.21980
33 x91 x9 1 1.77503 1 1.33230
34 x92 x9 2 1.29440 1 1.13772
35 x93 x9 3 1.54699 1 1.24378
36 x94 x9 4 1.39202 1 1.17984
37 x101 x10 1 1.26205 1 1.12341
38 x102 x10 2 1.19272 1 1.09212
39 x103 x10 3 1.36649 1 1.16897
40 x104 x10 4 1.54890 1 1.24455
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41 x111 x11 1 1.81033 1 1.34548
42 x112 x11 2 1.41572 1 1.18984
43 x113 x11 3 1.53332 1 1.23827
44 x114 x11 4 1.61646 1 1.27140
45 x121 x12 1 1.55783 1 1.24813
46 x122 x12 2 1.68065 1 1.29640
47 x123 x12 3 1.60454 1 1.26670
48 x124 x12 4 1.36580 1 1.16867
49 x131 x13 1 1.70258 1 1.30483
50 x132 x13 2 1.70672 1 1.30641
51 x133 x13 3 1.56914 1 1.25265
52 x134 x13 4 1.60295 1 1.26608
53 x141 x14 1 1.64414 1 1.28224
54 x142 x14 2 1.43348 1 1.19728
55 x143 x14 3 1.29226 1 1.13678
56 x144 x14 4 1.45448 1 1.20602
57 x151 x15 1 1.62811 1 1.27597
58 x152 x15 2 1.99746 1 1.41332
59 x153 x15 3 1.63405 1 1.27830
60 x154 x15 4 1.76144 1 1.32719

==
60

Here are the first few choice sets.

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

257 2 3 1 1 2 4 4 5 1 1 2 1 4 3 3
2 3 1 4 4 4 4 2 1 4 2 1 4 2 3
2 3 1 3 1 4 4 1 1 5 2 1 4 5 3
2 3 1 2 3 4 4 4 1 3 2 1 4 4 3
2 3 1 4 5 4 4 3 1 2 2 1 4 1 3

290 5 5 5 5 3 4 2 2 5 5 3 5 5 3 3
5 5 5 5 2 4 2 1 5 2 3 5 5 3 2
5 5 5 5 4 4 2 5 5 2 3 5 4 3 5
5 5 5 5 1 4 2 3 5 4 3 5 1 3 4
5 5 5 5 5 4 2 4 5 1 3 5 3 3 1

261 3 3 1 2 5 1 1 4 2 5 1 4 5 3 1
1 2 2 2 5 1 1 3 2 5 1 4 3 3 1
2 4 3 2 5 1 1 2 2 5 1 4 1 3 1
4 5 4 2 5 1 1 1 2 5 1 4 4 3 1
4 1 1 2 5 1 1 5 2 5 1 4 2 3 1

The example starting on page 412 and the choice design shown on page 416 creates a partial-profile
design with all constant attributes equal to one. In contrast, this design uses the full range of values for
the constant attributes. In terms of fitting the choice model, it does not matter. An attribute that is
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constant within a choice set does not contribute to the likelihood function for that choice set, and this
is true no matter what the constant value is. It typically will not matter for data collection either, since
data collection is typically phrased in terms like “everything else being equal” without any specifics
about what the equal levels are. About the only difference is in the %MktEx macro. D-efficiency should
be higher with the varying-constant approach than with the all-one approach.

Partial Profiles and Incomplete Blocks Designs

This next example makes a partial-profile design from a balanced incomplete blocks design (BIBD)
and a small orthogonal array. See page 443 for more information on BIBD.

80 Choice Sets, 16 Binary Attributes, Four Varying. In this example, we create a partial-profile de-
sign with 16 binary attributes and four varying at one time. We create 80 choice sets of two alternatives
each. The resulting design is optimal under the assumption β = 0 (Anderson, 2003).

The following code creates and displays the design, using ad hoc code. This code is provided for those
who want to better understand what is going on.

proc iml;
d = { 1 1 1 1 ,

1 1 2 2 ,
1 2 1 2 ,
1 2 2 1 };

b = { 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 7 ,
2 5 8 11 14 5 6 7 10 5 6 7 9 5 6 7 8 9 10 8 ,
3 6 9 12 15 8 12 9 13 13 8 10 11 10 9 11 12 12 11 13 ,
4 7 10 13 16 11 14 15 16 15 16 12 14 14 13 16 15 16 15 14 }‘;

m = max(b); p = nrow(d);
sets = nrow(b) # p;
d2 = mod(d, 2) + 1;
x = j(sets, 2 # m, 1);
do i = 1 to nrow(b);

j = ((i-1) # p : i # p - 1) + 1;
x[j, b[i,] ] = d;
x[j, b[i,] + m] = d2;
end;

x = (1:sets)‘ @ {1 1}‘ || shape(x, 2 # sets);
m = ncol(x) - 1;
vname = ’Set’ || (’x1’ : rowcatc(’x’ || char(m)));
create design from x[colname=vname];
append from x;
quit;

proc print; by set; id set; var x:; where set le 8 or set ge 77; run;

Here is an easier but much less explicit way using the %MktPPro macro and the ibd= option. The
%MktPPro macro is described in more detail on page 453.
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%mktex(2 4 2 2 2, n=8)

proc print; run;

data design; set design; drop x2; run;

proc iml;
b = { 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 7 ,

2 5 8 11 14 5 6 7 10 5 6 7 9 5 6 7 8 9 10 8 ,
3 6 9 12 15 8 12 9 13 13 8 10 11 10 9 11 12 12 11 13 ,
4 7 10 13 16 11 14 15 16 15 16 12 14 14 13 16 15 16 15 14 }‘;

create b from b; append from b;
quit;

%mktppro(ibd=b)

Returning to the ad hoc code, the matrix d contains one half of an orthogonal array with 4 two-level
factors in 8 runs. It will be used to make the first alternative in each choice set. The second alternative
is the second half of the orthogonal array which is constructed from the first half using the statement
d2 = mod(d, 2) + 1. Recall the chair example on page 370 where the optimal generic choice design
was created by the %ChoicEff macro by sorting the rows of an orthogonal array into choice sets. Here,
an optimal generic design for four choice sets, each with two alternatives, and four binary attributes
is made by pairing each of the four alternatives in d with one of the remaining runs in the orthogonal
array (the run that can be made by shifting the first alternative: 0 → 1 and 1 → 0). Here is the optimal
generic design for four choice sets and four binary attributes.

Set
1 1 1 1 1

2 2 2 2

2 1 1 2 2
2 2 1 1

3 1 2 1 2
2 1 2 1

4 1 2 2 1
2 1 1 2

The BIBD is stored in the matrix b, which is transposed, so it has 20 rows and four columns, and the
first row is (1 2 3 4). This first row dictates that the first four choice sets are to be made from the
first four attributes and the optimal generic design above. The second set of four choice sets is made
by storing the four-factor design in attributes 1, 5, 6, and 7. The last four choice sets are made varying
attributes 7, 8, 13, and 14 in the same way. Here are the first eight and last four choice sets.

Set x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
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2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1
2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1
2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 1 1 1 1 2 2 1 1

78 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

79 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1

80 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1

Notice that in the first four choice sets, the first four attributes vary and the last 12 are constant. In
the last four choice sets, only attributes 7, 8, 13, and 14 vary.

Let’s return to the IML code. The first alternatives are stored in d, and the second in d2, which is
made from d by shifting. The matrix b contains the BIBD, and x will contain the choice design. Like
when we make linear designs, we will start with one row per choice set and then convert to one row
for each alternative of each choice set, so x starts out as 80 rows or choice sets and 2 × 16 attributes
for 32 columns. For the first row in b, rows j = (1:4) of x are filled in, for the second row in b, rows
j = (5:8) of x are filled in, and so on. The first 16 columns of x are filled in using the rows of d using
the entries in b[1] as column indices, and the second 16 columns of x are filled in using the rows of
d2 and again using the entries in b[1] as column indices. The statement x = (1:sets)‘ @ {1 1}‘ ||
shape(x, 2 # sets) adds the choice set number and rolls out each row of 32 attributes into two rows
of 16 attributes. The remaining IML statements output the design to a SAS data set with variable
names Set x1-x16. These statements evaluate the design.

%choiceff(data=chdes, model=class(x1-x16), nsets=80, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

Here is the last part of the output.
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Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 5.000000 0.200000
1 5.000000 0.200000

Final Results

Design 1
Choice Sets 80
Alternatives 2
D-Efficiency 5.000000
D-Error 0.200000

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.2 1 0.44721
2 x21 x2 1 0.2 1 0.44721
3 x31 x3 1 0.2 1 0.44721
4 x41 x4 1 0.2 1 0.44721
5 x51 x5 1 0.2 1 0.44721
6 x61 x6 1 0.2 1 0.44721
7 x71 x7 1 0.2 1 0.44721
8 x81 x8 1 0.2 1 0.44721
9 x91 x9 1 0.2 1 0.44721
10 x101 x10 1 0.2 1 0.44721
11 x111 x11 1 0.2 1 0.44721
12 x121 x12 1 0.2 1 0.44721
13 x131 x13 1 0.2 1 0.44721
14 x141 x14 1 0.2 1 0.44721
15 x151 x15 1 0.2 1 0.44721
16 x161 x16 1 0.2 1 0.44721

==
16

The %ChoicEff macro cannot improve on the design, since it is optimal, and the variances are all
constant. On page 428 we talk about not having a scale for D-efficiency in choice models. While that is
usually true, it is not true for special cases like this where the optimal design is known. This design has
100% D-efficiency for a partial-profile design with 80 choice sets, two alternatives, 16 binary attributes
with four varying, and β = 0. We can also use methods like we have seen in previous examples to
construct a design for this situation and compare the results. Here is the code. Since we only have two
alternatives, our restrictions are fairly simple.
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%macro partprof;
sum = 0;
do k = 1 to 16;

sum = sum + (x[k] = x[k+16]);
end;

bad = abs(sum - 12);
%mend;

%mktex(2 ** 32, n=1000, optiter=0, tabiter=0, order=random,
out=sasuser.cand, restrictions=partprof, seed=382)

%mktkey(2 16)

%mktroll(design=sasuser.cand, key=key, out=rolled)

%mktdups(generic, data=rolled, out=nodups, factors=x1-x16, nalts=2)

%choiceff(data=nodups, model=class(x1-x16), seed=495,
iter=20, nsets=80, nalts=2, options=nodups, beta=zero)

proc print data=best; id set; by notsorted set; var x:; run;

The %MktEx step ran in about 26 minutes and created 1000 candidate choice sets with a D-efficiency of
85.8857%. The %MktDups macro detected no duplicate choice sets or alternatives, and the %ChoicEff
macro ran in just over one minute. Here is the last part of the output.

Final Results

Design 15
Choice Sets 80
Alternatives 2
D-Efficiency 4.977221
D-Error 0.200915
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.20203 1 0.44947
2 x21 x2 1 0.20104 1 0.44837
3 x31 x3 1 0.20094 1 0.44827
4 x41 x4 1 0.21109 1 0.45944
5 x51 x5 1 0.21214 1 0.46059
6 x61 x6 1 0.20099 1 0.44832
7 x71 x7 1 0.20194 1 0.44938
8 x81 x8 1 0.20203 1 0.44948
9 x91 x9 1 0.20097 1 0.44829
10 x101 x10 1 0.20285 1 0.45039
11 x111 x11 1 0.21104 1 0.45939
12 x121 x12 1 0.20102 1 0.44835
13 x131 x13 1 0.18431 1 0.42931
14 x141 x14 1 0.20206 1 0.44951
15 x151 x15 1 0.19272 1 0.43900
16 x161 x16 1 0.20183 1 0.44926

==
16

If this design were optimal, D-efficiency would be 5 and all of the variances would be 0.2. Instead, our
D-efficiency is 4.997 and the variances are slightly larger on the average. Computing 100× 4.977221/5
we see that our iteratively-derived partial-profile design is 99.54% D-efficient. These next three steps
make successively smaller designs.

%choiceff(data=nodups, model=class(x1-x16), seed=495,
iter=20, nsets=60, nalts=2, options=nodups, beta=zero)

%choiceff(data=nodups, model=class(x1-x16), seed=495,
iter=20, nsets=40, nalts=2, options=nodups, beta=zero)

%choiceff(data=nodups, model=class(x1-x16), seed=495,
iter=20, nsets=20, nalts=2, options=nodups, beta=zero)

Here are the “Final Results” tables for the 80-run design above and the 60, 40, and 20-run designs
created here.

Final Results

Design 15
Choice Sets 80
Alternatives 2
D-Efficiency 4.977221
D-Error 0.200915
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Final Results

Design 10
Choice Sets 60
Alternatives 2
D-Efficiency 3.716947
D-Error 0.269038

Final Results

Design 16
Choice Sets 40
Alternatives 2
D-Efficiency 2.452105
D-Error 0.407813

Final Results

Design 12
Choice Sets 20
Alternatives 2
D-Efficiency 1.150469
D-Error 0.869211

Computing 100× (80/n)× (d/5), where there are 80 choice sets in the optimal design with D-efficiency
5 and n choice sets in the iteratively derived design with D-efficiency d, we see that our design relative
D-efficiencies are: 99.544% in 80 sets, 99.119% in 60 sets, 98.084% in 40 sets, and 92.038% in 20 sets,
all relative to a (real in 80 sets and hypothetical in 60, 40, and 20 sets) optimal design in n sets. For
most problems, we will never be able to derive numbers like this. However it is reassuring to see them
when it is possible, and to see that they are this high. Here are the four tables with the variances for
80, 60, 40, and 20 sets.
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.20203 1 0.44947
2 x21 x2 1 0.20104 1 0.44837
3 x31 x3 1 0.20094 1 0.44827
4 x41 x4 1 0.21109 1 0.45944
5 x51 x5 1 0.21214 1 0.46059
6 x61 x6 1 0.20099 1 0.44832
7 x71 x7 1 0.20194 1 0.44938
8 x81 x8 1 0.20203 1 0.44948
9 x91 x9 1 0.20097 1 0.44829
10 x101 x10 1 0.20285 1 0.45039
11 x111 x11 1 0.21104 1 0.45939
12 x121 x12 1 0.20102 1 0.44835
13 x131 x13 1 0.18431 1 0.42931
14 x141 x14 1 0.20206 1 0.44951
15 x151 x15 1 0.19272 1 0.43900
16 x161 x16 1 0.20183 1 0.44926

==
16

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.26788 1 0.51757
2 x21 x2 1 0.27031 1 0.51992
3 x31 x3 1 0.26788 1 0.51757
4 x41 x4 1 0.29097 1 0.53941
5 x51 x5 1 0.27508 1 0.52449
6 x61 x6 1 0.26789 1 0.51758
7 x71 x7 1 0.27268 1 0.52218
8 x81 x8 1 0.27469 1 0.52411
9 x91 x9 1 0.27032 1 0.51992
10 x101 x10 1 0.27253 1 0.52205
11 x111 x11 1 0.25213 1 0.50212
12 x121 x12 1 0.27496 1 0.52436
13 x131 x13 1 0.25414 1 0.50413
14 x141 x14 1 0.26787 1 0.51756
15 x151 x15 1 0.29131 1 0.53973
16 x161 x16 1 0.27221 1 0.52174

==
16
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.40769 1 0.63851
2 x21 x2 1 0.40883 1 0.63940
3 x31 x3 1 0.41634 1 0.64524
4 x41 x4 1 0.41625 1 0.64517
5 x51 x5 1 0.41603 1 0.64501
6 x61 x6 1 0.45934 1 0.67775
7 x71 x7 1 0.40876 1 0.63934
8 x81 x8 1 0.44949 1 0.67044
9 x91 x9 1 0.35011 1 0.59170
10 x101 x10 1 0.42390 1 0.65107
11 x111 x11 1 0.45768 1 0.67652
12 x121 x12 1 0.42318 1 0.65052
13 x131 x13 1 0.41484 1 0.64408
14 x141 x14 1 0.40841 1 0.63907
15 x151 x15 1 0.41452 1 0.64383
16 x161 x16 1 0.37300 1 0.61073

==
16

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.72680 1 0.85252
2 x21 x2 1 0.92729 1 0.96296
3 x31 x3 1 0.72155 1 0.84944
4 x41 x4 1 0.94524 1 0.97223
5 x51 x5 1 0.98455 1 0.99224
6 x61 x6 1 0.66667 1 0.81650
7 x71 x7 1 0.79685 1 0.89266
8 x81 x8 1 0.99932 1 0.99966
9 x91 x9 1 0.93214 1 0.96547
10 x101 x10 1 1.32156 1 1.14959
11 x111 x11 1 1.03494 1 1.01732
12 x121 x12 1 0.93766 1 0.96833
13 x131 x13 1 0.83709 1 0.91493
14 x141 x14 1 1.28216 1 1.13232
15 x151 x15 1 1.11837 1 1.05753
16 x161 x16 1 1.12348 1 1.05994

==
16

At 20 choice sets, we see an increase in the variability of the variances, which is often associated with
having too few choice sets.

Let’s look in a little more detail at our BIBD. This code tabulates how often attribute j will be paired
with attribute k over all i = 1, ..., 20 rows in the BIBD.
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proc iml;
b = { 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 7 ,

2 5 8 11 14 5 6 7 10 5 6 7 9 5 6 7 8 9 10 8 ,
3 6 9 12 15 8 12 9 13 13 8 10 11 10 9 11 12 12 11 13 ,
4 7 10 13 16 11 14 15 16 15 16 12 14 14 13 16 15 16 15 14 }‘;

m = max(b); p = nrow(b); q = ncol(b);
f = j(m, m, 0);
do i = 1 to p;

do j = 1 to q;
do k = j to q;

f[b[i,j], b[i,k]] = f[b[i,j], b[i,k]] + 1;
end;

end;
end;

print f[format=1.];
x = j(p, m, 0);
do i = 1 to p; x[i, b[i,]] = 1; end;
print b[format=2.] ’ ’ x[format=1.];
quit;

Each of the 16 attributes is paired with each of the other 15 attributes exactly once. This is what
makes this IBD a balanced IBD or BIBD. Each attribute appears five times (which in our case means
that each attribute appears in five blocks of four choice sets for a total of 20 choice sets). The five times
comes from the fact that in each row, each attribute is paired with three of the remaining 15, so each
attribute must appear 15/3 = 5 times. In summary, our BIBD consists of 20 quadruples of attributes
arranged such that each attribute is paired with every other attribute once, and each attribute appears
in the design five times.

F

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5
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The PROC IML step also converts the BIBD from 4 columns with attribute numbers into a binary
matrix with 16 columns, one for each attribute, that shows which attributes are used and which are
not. Here is both the BIBD and the binary matrix.

B X

1 2 3 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 5 6 7 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 8 9 10 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
1 11 12 13 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
1 14 15 16 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 5 8 11 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0
2 6 12 14 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
2 7 9 15 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0
2 10 13 16 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1
3 5 13 15 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0
3 6 8 16 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
3 7 10 12 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0
3 9 11 14 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0
4 5 10 14 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0
4 6 9 13 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0
4 7 11 16 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
4 8 12 15 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
5 9 12 16 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1
6 10 11 15 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0
7 8 13 14 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0

80 Choice Sets, 16 Binary Attributes, Four Varying, Part 2. The %MktEx macro cannot make a
BIBD. However, with a little work and an appropriate restrictions macro, %MktEx can be trained to
make something close. It can make an IBD, where every pair does not occur equally often, and these
can be used to make partial-profile designs. First note that %MktEx cannot make an IBD that looks like
the left matrix just displayed using a direct approach like specifying 4 sixteen-level factors. In 20 runs,
there would be 61 parameters. Instead, we will make a binary matrix, more like the one displayed on
the right. We need to make a design in 20 runs with 16 two-level factors and have restrictions so that
exactly four factors are two (or not at the base-line level of one). We could do that with a macro like
this.

%macro res;
bad = abs(sum(x = 2) - 4);

%mend;

However, our restrictions macro needs to be more complicated. Having four attributes vary is only part
of what we need to accomplish. We also would like each attribute to appear in five rows (as shown by
the diagonal of the F matrix on page 444). We would also like each attribute to be paired with each
other attribute exactly once (as shown by the ones in the upper triangle of the F matrix. Restrictions
macros get called a lot, so it is good to make them as computationally efficient as possible. One way
to increase computational efficiency in IML is to use matrix operations instead of do loops as much as
is possible. Another way to increase computational efficiency in any language is to move computations
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out of loops as much as possible. In other words, if a quantity does no change inside a loop, compute
it once outside the loop instead of recomputing it over and over again. This next example does both
of these things. The %MktEx macro allows you to call a second restrictions macro once that creates
one or more constant matrices that are used in the normal restrictions macro. This second macro is
named on the resmac= option and the constant matrices are named on the reslist= option. Here are
our restrictions macros.

%macro con;
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + 5 # i(&m);
_p = (_f = 5) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 4);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum(abs(f - _f ) # _p);
%mend;

We will discuss what these macros do before we discuss how they do it. Our first goal is to whack
the design hard when it has the wrong number of varying attributes. Our second goal is to whack
the design not quite so hard for not having ones in the frequency matrix f (on page 444) above the
diagonal. Our third goal is to nudge the design gently for not having fives in f on the diagonal. We
whacked the off diagonals and nudged the diagonal because, if the off diagonals are going to get fixed,
the diagonals need some freedom to go up and down for a while.

Our macros both use the %MktEx macro’s variables &n and &m, which are the number of rows and
columns in the design. The macro con will make two constant matrices for our restrictions macro to
use. Both matrices begin with a single underscore, because you must use matrix names that do not
conflict with any of the scores of internal matrix names that %MktEx uses. If you create intermediate
results in this macro use names that begin with a single underscore for those matrices as well. The
first one, f is exactly equal to the f matrix shown on page 444. The second one, p contains badness
penalties for corresponding cells in f. There is no penalty associated with any values in the design’s f
matrix below the diagonal, there is a penalty of ten for each f value that does not match the f above
the diagonal, and there is a penalty of one for each f value that does not match the f on the diagonal.
Here are f and p.
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_F _P

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 10 10 10 10 10 10 10 10 10 10 10 10 10
0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 10 10 10 10 10 10 10 10 10 10 10 10
0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 10 10 10 10 10 10 10 10 10 10 10
0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 10 10 10 10 10 10 10 10 10 10
0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 10 10 10 10 10 10 10 10 10
0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 10 10 10 10 10 10 10 10
0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 10 10 10 10 10 10 10
0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 10 10 10 10 10 10
0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 10 10 10 10 10
0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 10 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 10 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Here are the pieces that go into making f.

%let n = 20;
%let m = 16;
proc iml;

a = (1:&m);
b = j(1, &m, 1);
c = j(&m, 1, 1);
d = (1:&m)‘;
e = (1:&m) @ j(&m, 1, 1);
f = j(1, &m, 1) @ (1:&m)‘;
g = (1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘;
h = 5 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + 5 # i(&m);
print a[format=2.] b[format=2.];
print c[format=1.] ’ ’ d[format=2.] ’ ’ e[format=2.];
print f[format=2.] g[format=1.] h[format=1.] _f[format=1.];
quit;
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A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C D E

1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 12 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F G

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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H _F

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

The “@” operator specifies Kronecker or direct product. The Kronecker product A = B @ C of an n×m
and p × q matrix is an np ×mq matrix that consists of n ×m submatrices of the form aij × B. The
matrix e is the Kronecker product of a, an index row vector going from 1 to 16, and c, a column vector
of 16 ones, which creates a matrix of 16 row index vectors going from 1 to 16. The matrix f is the
Kronecker product of b, a row vector of 16 ones, and d, an index column vector going from 1 to 16
which creates a matrix of 16 column index vectors going from 1 to 16. The matrix f is the transpose
of e. The matrix g is a Boolean matrix which is upper triangular, and above the diagonal are ones
since e is greater than f above the diagonal. The matrix h is an identity matrix times 5, which when
added to g gives the desired result. The matrix p is constructed from f so that it has zeros where
f has zeros, tens where f has ones, and ones where f has fives. Both of these matrices could be
constructed in a much more straight-forward way using do loops, and since they are only constructed
once, it really would not matter, but it is always good to learn matrix operations. Besides, this way,
with a single statement is a lot more fun.

In the res restrictions macro, badness is initialized based on the number of varying factors. The next
statements compute the f matrix of frequencies. Notice that the macro is looking at the full design in
xmat except when processing the ith row, and then it looks in x. The loc function creates an index
vector of all of the columns in its argument vector that are nonzero, so loc(x = 2) creates an index
vector of all the columns that have twos. For the ith row, the rows and columns of f for the design
columns that have twos are incremented. The statement if ncol(l) then f[l, l] = f[l, l] + 1
adds values both above and below the diagonal, but the below diagonal values are ignored since the
penalties are all zero below the diagonal. We could write another do loop that just incremented above
and on diagonal frequencies, but that would probably be slower. The last statement increments the
badness criterion. The multiplication by 1000 in the first line, whacks the design hard for having the
wrong number of varying attributes. The tens in p whack the design less hard for not having ones off
the diagonal, and the ones in p nudge the design in the direction of having fives on the diagonal. Here
is our %MktEx call.
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%mktex(2 ** 16, n=20, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p),
order=random, options=resrep accept, exchange=2, seed=205,
maxdesigns=1, out=sasuser.ibd2)

The macro specifies restrictions=res, resmac=con, reslist=%str( f, p). The resmac= option
names the constant matrix definition macro. The reslist= option names the constant matrices. The
list f, p is included in a %str( ) function since the matrix names must be separated by commas.
Another new option is options=acceptaccept. This tells %MktEx to accept designs that do not meet
the restrictions. For this problem, we would be extremely lucky if we found an actual BIBD, and we
are willing to accept something close. Here is some of the iteration history.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 46.3945 Ran,Mut,Ann
1 1 50.9919 4373 Violations
1 2 52.0060 4149 Violations
1 3 54.6365 4149 Violations
1 4 57.6414 3996 Violations
1 5 55.9297 3267 Violations
1 6 57.3744 3043 Violations
1 7 53.0821 2890 Violations
1 8 55.7085 2686 Violations
1 9 54.2112 2441 Violations
1 10 52.6384 2291 Violations
1 11 51.5465 2045 Violations
1 12 53.5948 1912 Violations
1 13 50.6521 1629 Violations
1 14 48.0705 1427 Violations
1 15 51.7720 1264 Violations
1 16 53.0066 1024 Violations
1 17 51.2140 950 Violations
1 18 51.0421 839 Violations
1 19 43.8809 712 Violations
1 20 24.9443 682 Violations
1 1 26.9593 618 Violations
.
.
.
1 10 32.1882 180 Violations
1 11 32.1882 180 Violations
1 12 32.1882 180 Violations
1 13 1 32.1882 32.1882 Acceptable
1 End 32.1882 Violations
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One thing that is different from what we have seen previously, is now the number of violations is always
evaluated over the entire design, so values start out pretty big. In this example, the %MktEx macro
prints some warnings and notes.

WARNING: It may be impossible to meet all restrictions.
NOTE: The restrictions were not met.
WARNING: The final efficiency and levels table will not be printed.
WARNING: It appears that the design has zero or near-zero efficiency.
WARNING: Values in the iteration history are ridged.
NOTE: The data set WORK.RANDOMIZED has 20 observations and 16 variables.
NOTE: The data set SASUSER.IBD2 has 20 observations and 16 variables.
NOTE: The final ridged D-efficiency criterion is 32.1882.
NOTE: The final unridged D-efficiency criterion is 0.0000.

When %MktEx finishes with the first observation in the second pass through the design, it prints the
warning that it may be impossible to meet all restrictions. This is because %MktEx did not succeed in
finding zero violations in any row. We will see later that sometimes it is possible to meet all restrictions
even when this message comes out, but in this case, when %MktEx finished, there were still restriction
violations. The %MktEx macro skips printing the final efficiencies with PROC OPTEX because there are
too many model parameters. For this application, that is not a problem for us, since we are not using
this design as is, it is just an intermediate step. We can turn off these warnings with options=nofinal.
Here is the design.

proc print data=sasuser.ibd2; run;

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1
2 1 1 1 1 1 2 2 2 1 1 1 1 2 1 1 1
3 2 1 1 1 2 1 1 1 1 1 1 1 2 1 2 1
4 1 2 1 1 2 1 2 1 1 1 1 2 1 1 1 1
5 2 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2
6 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 2
7 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1
8 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1
9 1 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1
10 1 1 2 1 1 2 1 1 1 2 2 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 2
12 1 1 1 2 1 2 1 1 1 1 1 2 1 1 1 2
13 1 2 2 1 1 1 1 1 1 1 2 1 2 1 1 1
14 2 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1
15 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 2
16 1 1 1 1 2 2 1 1 1 2 1 1 1 1 2 1
17 1 1 1 2 1 1 2 1 2 1 1 1 2 1 1 1
18 1 1 1 1 1 1 1 2 2 2 1 2 1 1 1 1
19 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 1
20 2 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1
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We see four varying attributes in each row. These next steps create the orthogonal array, the actual
IBD, the IBD frequency matrix f like before, and a choice design from the IBD and the orthogonal
array. They also evaluate the design.

%mktex(2 4 2 2 2, n=8)

data design; set design; drop x2; run;

%mktppro(x=sasuser.ibd2)

%choiceff(data=chdes, model=class(x1-x16), nsets=80, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

Recall that on page 435 we used for our orthogonal array, the hard-coded matrix:

1 1 1 1
1 1 2 2
1 2 1 2
1 2 2 1

and the second half of the orthogonal array:

2 2 2 2
2 2 1 1
2 1 2 1
2 1 1 2

was made from the first by shifting (1→ 2 and 2→ 1). In this example, we directly made the orthogonal
array with the %MktEx macro, and we did it in a particular way. We are interested in 4 two-level factors,
and we request a two-level factor, followed by a four-level factor, followed by three two-level factors.
More generally, we will request the pm subset of the design pmm1 in p ×m runs. Examples: 24 in 8
runs, selected from 2441 in 8 runs, 33 in 9 runs, selected from 3331 in 9 runs, 44 in 16 runs, selected
from 4441 in 16 runs. The rows of the orthogonal-array design must be sorted into the right order. The
easiest way to do this is to first request one of the m p-level factors, then request the m-level factor,
then request the remaining (m − 1) p-level factors. Then after the design is created, discard x2, the
m-level factor. The goal is to create an orthogonal array with p blocks of m rows. When a design is
created this way, the design factor x1 will contain the block number and x2, which is discarded, will
contain the order in which the rows need to be sorted within block. When the design is sorted by x1
and x2, everything is in the right order. These are the steps that did that.

%mktex(2 4 2 2 2, n=8)

data design; set design; drop x2; run;

All but the most interested readers may skip this paragraph. Each block is a difference scheme, and
blocks 2 through p are obtained from the preceding block by adding 1 (in the appropriate Galois field).
For example, when p is 2, add 1 modulo 2; and when p is 3, add 1 modulo 3. You will not get optimal
results if you stick in any other kind of orthogonal array. Just as many orthogonal arrays are created
by developing a difference scheme, our partial-profile design will be created by developing the difference
scheme that %MktEx will output in the first m rows of the experimental design.
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Now our orthogonal array is in the data set Design, and our binary representation of an IBD is in
the data set sasuser.IBD2. We can use the %MktPPro macro to develop the orthogonal array into a
partial-profile design using the rules in the IBD. This step takes by default the design=design data
set and uses the binary matrix created by the the %MktEx macro, to create out= choice design, which
by default is called ChDes. If we had an actual IBD like the one created on page 435, we would have
specified the ibd= option instead.

%mktppro(x=sasuser.ibd2)

Here are the frequencies.

F

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 1 1 2 0 1 1 1 1 1 1 1 1 1 1
0 0 5 1 1 1 1 1 1 1 2 0 1 1 1 1
0 0 0 5 1 1 1 1 1 1 1 1 1 1 0 2
0 0 0 0 5 1 1 0 1 1 0 1 1 1 2 1
0 0 0 0 0 5 1 1 0 2 1 2 1 1 1 1
0 0 0 0 0 0 5 1 1 0 1 1 2 1 1 1
0 0 0 0 0 0 0 5 2 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 5 1 1 2 1 1 1 0
0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 5 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

The frequencies look pretty good with all fives on the diagonal and mostly ones in the upper triangle.
You need to ensure that the constant-diagonal restrictions were met. This next step evaluates the
choice design.

%choiceff(data=chdes, model=class(x1-x16), nsets=80, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

Here are the results.

n Name Beta Label

1 x11 0 x1 1
2 x21 0 x2 1
3 x31 0 x3 1
4 x41 0 x4 1
5 x51 0 x5 1
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6 x61 0 x6 1
7 x71 0 x7 1
8 x81 0 x8 1
9 x91 0 x9 1
10 x101 0 x10 1
11 x111 0 x11 1
12 x121 0 x12 1
13 x131 0 x13 1
14 x141 0 x14 1
15 x151 0 x15 1
16 x161 0 x16 1

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 5.000000 0.200000
1 5.000000 0.200000

Final Results

Design 1
Choice Sets 80
Alternatives 2
D-Efficiency 5.000000
D-Error 0.200000

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.2 1 0.44721
2 x21 x2 1 0.2 1 0.44721
3 x31 x3 1 0.2 1 0.44721
4 x41 x4 1 0.2 1 0.44721
5 x51 x5 1 0.2 1 0.44721
6 x61 x6 1 0.2 1 0.44721
7 x71 x7 1 0.2 1 0.44721
8 x81 x8 1 0.2 1 0.44721
9 x91 x9 1 0.2 1 0.44721
10 x101 x10 1 0.2 1 0.44721
11 x111 x11 1 0.2 1 0.44721
12 x121 x12 1 0.2 1 0.44721
13 x131 x13 1 0.2 1 0.44721
14 x141 x14 1 0.2 1 0.44721
15 x151 x15 1 0.2 1 0.44721
16 x161 x16 1 0.2 1 0.44721

==
16

This design is optimal! It is optimal even though we did not use a real BIBD in its construction. We
did however, use a real orthogonal array, and the optimality depends a lot more on the orthogonal
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array than it does on the BIBD.

80 Choice Sets, 16 Binary Attributes, Four Varying, Part 3. This next example tries basically
the same thing we just tried, only this time we use %MktEx to find 12 (out of 20) rows from a BIBD
to use, which will make 12 × 4 = 48 choice sets. Our restrictions macro now loops over 12 rows
instead of 20, it looks for threes on the diagonal instead of fives, and it looks for either zeros or ones
in the upper triangle. If parts of our computed matrix looks like f, (ones above) we are okay, or if
parts of it looks like d (three time and identity matrix and hence zeros above) we are okay. So we
create two matrices abs(f - f) and abs(f - d) and take the element-wise minimum using the “><”
operator and element-wise multiply that times the penalty matrix. Since we now have fewer runs than
parameters, we specify ridge=0.01. The %MktEx macro prints a number of warnings when there are
more runs than parameters like we have here, but it does make the design if you specify a ridging value
to add to the diagonal of the information matrix to make it nonsingular.

%macro con;
_d = 3 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = 3) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 4);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** 16, n=12, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2, seed=151,
maxdesigns=1, out=sasuser.ibd3, ridge=0.01)

%mktex(2 4 2 2 2, n=8)

data design; set design; drop x2; run;

%mktppro(x=sasuser.ibd3)

%choiceff(data=chdes, model=class(x1-x16), nsets=48, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

See page 732 for an easier-to-modify version of this code. Here is some of the output.
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Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 24.2793 Ran,Mut,Ann
1 1 25.1008 2397 Violations
1 2 25.7906 2173 Violations
1 3 25.8098 1949 Violations
1 4 25.3443 1563 Violations
1 5 25.0900 1268 Violations
1 6 25.2672 1135 Violations
1 7 25.4814 911 Violations
1 8 24.2675 707 Violations
1 9 24.7043 615 Violations
1 10 25.0944 270 Violations
1 11 25.3510 249 Violations
1 12 25.3595 70 Violations
1 1 24.6445 58 Violations

WARNING: It may be impossible to meet all restrictions.
1 2 25.1399 56 Violations
1 3 25.5988 44 Violations
1 4 25.5988 44 Violations
1 5 26.3537 34 Violations
1 6 27.1408 24 Violations
1 7 27.6591 16 Violations
1 8 27.6843 14 Violations
1 9 27.7351 2 Violations
1 10 27.7351 2 Violations
1 11 27.7351 2 Violations
1 12 27.7351 2 Violations
1 1 27.7351 2 Violations
1 2 27.7351 2 Violations
1 3 27.6546 0 Violations
1 4 27.6546 0 Violations
1 5 27.6546 0 Violations
1 6 27.6546 0 Violations
1 7 27.6546 0 Violations
1 8 27.6546 0 Violations
1 9 27.6546 0 Violations
1 10 27.6546 0 Violations
1 11 27.6546 0 Violations
1 12 27.6546 0 Violations
1 1 27.6546 0 Violations
1 2 27.6546 0 Violations
1 3 27.6546 0 Violations
1 4 1 27.6546 27.6546 Conforms
1 End 27.6546
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F

3 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1
0 3 0 1 0 0 0 1 1 1 0 1 1 0 1 1
0 0 3 1 1 0 0 1 1 1 1 1 0 1 0 1
0 0 0 3 0 1 1 0 0 1 0 1 1 1 1 0
0 0 0 0 3 1 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 3 1 1 0 0 1 1 1 0 1 0
0 0 0 0 0 0 3 0 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 3 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 3 1 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 3 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 3 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

.

.

.

Final Results

Design 1
Choice Sets 48
Alternatives 2
D-Efficiency 3.000000
D-Error 0.333333

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.33333 1 0.57735
2 x21 x2 1 0.33333 1 0.57735
3 x31 x3 1 0.33333 1 0.57735
4 x41 x4 1 0.33333 1 0.57735
5 x51 x5 1 0.33333 1 0.57735
6 x61 x6 1 0.33333 1 0.57735
7 x71 x7 1 0.33333 1 0.57735
8 x81 x8 1 0.33333 1 0.57735
9 x91 x9 1 0.33333 1 0.57735
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10 x101 x10 1 0.33333 1 0.57735
11 x111 x11 1 0.33333 1 0.57735
12 x121 x12 1 0.33333 1 0.57735
13 x131 x13 1 0.33333 1 0.57735
14 x141 x14 1 0.33333 1 0.57735
15 x151 x15 1 0.33333 1 0.57735
16 x161 x16 1 0.33333 1 0.57735

==
16

This design is optimal as well. The frequencies look good with 3’s on the diagonal.

80 Choice Sets, 16 Binary Attributes, Four Varying, Part 4. We could also ask for 8 runs and 32
choice sets. This time we look for two on the diagonal and zeros or ones above the diagonal. Notice
that our IBD conforms to all restrictions.

%macro con;
_d = 2 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = 2) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 4);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** 16, n=8, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2, seed=17,
maxdesigns=1, out=sasuser.ibd4, ridge=0.01)

%mktex(2 4 2 2 2, n=8)

data design; set design; drop x2; run;

%mktppro(x=sasuser.ibd4)

%choiceff(data=chdes, model=class(x1-x16), nsets=32, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

See page 732 for an easier-to-modify version of this code. Here is just the last part of the output. This
design is optimal as well.
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Final Results

Design 1
Choice Sets 32
Alternatives 2
D-Efficiency 2.000000
D-Error 0.500000

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.5 1 0.70711
2 x21 x2 1 0.5 1 0.70711
3 x31 x3 1 0.5 1 0.70711
4 x41 x4 1 0.5 1 0.70711
5 x51 x5 1 0.5 1 0.70711
6 x61 x6 1 0.5 1 0.70711
7 x71 x7 1 0.5 1 0.70711
8 x81 x8 1 0.5 1 0.70711
9 x91 x9 1 0.5 1 0.70711
10 x101 x10 1 0.5 1 0.70711
11 x111 x11 1 0.5 1 0.70711
12 x121 x12 1 0.5 1 0.70711
13 x131 x13 1 0.5 1 0.70711
14 x141 x14 1 0.5 1 0.70711
15 x151 x15 1 0.5 1 0.70711
16 x161 x16 1 0.5 1 0.70711

==
16

Making the (what should be by now) obvious changes (not shown) asking for 4 runs and 16 choice sets,
you can even get an optimal design in 16 runs, although again, we would not recommend this. Here is
the last part of the output.

Final Results

Design 1
Choice Sets 16
Alternatives 2
D-Efficiency 1.000000
D-Error 1.000000
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 1 1 1
2 x21 x2 1 1 1 1
3 x31 x3 1 1 1 1
4 x41 x4 1 1 1 1
5 x51 x5 1 1 1 1
6 x61 x6 1 1 1 1
7 x71 x7 1 1 1 1
8 x81 x8 1 1 1 1
9 x91 x9 1 1 1 1
10 x101 x10 1 1 1 1
11 x111 x11 1 1 1 1
12 x121 x12 1 1 1 1
13 x131 x13 1 1 1 1
14 x141 x14 1 1 1 1
15 x151 x15 1 1 1 1
16 x161 x16 1 1 1 1

==
16

48 Choice Sets, 24 Three-Level Attributes, Six Varying. This next example creates 48 partial-
profile choice sets each containing three alternatives and 24 attributes, six of which vary. It uses a
slight variation on the code we used previously. Our con macro is exactly the same as our last one.
We want each attribute to appear twice. Our res macro differs from the last one only in the first line,
because now we want 6 attributes to vary instead of four. The %MktEx call asks for 24 factors, since
we have 24 attributes. It specifies n=8 to request an eight row IBD.

%macro con;
_d = 2 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = 2) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 6);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** 24, n=8, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2, seed=114,
maxdesigns=1, out=sasuser.ibd5, ridge=0.01)
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This next part is new. It requests 6 three-level factors (and an additional six-level factor) in 18 runs.
The order of the factors is important! See page 452. See page 732 for an-easier-to modify version of
this code.

%mktex(3 6 3 ** 5, n=18)

data design; set design; drop x2; run;

proc print; run;

%mktppro(x=sasuser.ibd5)

%choiceff(data=chdes, model=class(x1-x24), nsets=48, nalts=3,
beta=zero, init=chdes, initvars=x1-x24)

proc print; by set; id set; var x:; where set le 6 or set gt 42; run;

Obs x1 x3 x4 x5 x6 x7

1 1 1 1 1 1 1
2 1 2 3 2 3 1
3 1 3 2 2 1 3
4 1 3 3 1 2 2
5 1 1 2 3 3 2
6 1 2 1 3 2 3
7 2 2 2 2 2 2
8 2 3 1 3 1 2
9 2 1 3 3 2 1
10 2 1 1 2 3 3
11 2 2 3 1 1 3
12 2 3 2 1 3 1
13 3 3 3 3 3 3
14 3 1 2 1 2 3
15 3 2 1 1 3 2
16 3 2 2 3 1 1
17 3 3 1 2 2 1
18 3 1 3 2 1 2

Here is the last part of the output, including the first six and last six choice sets. This design is optimal.

Final Results

Design 1
Choice Sets 48
Alternatives 3
D-Efficiency 2.309401
D-Error 0.433013
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Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.5 1 0.70711
2 x12 x1 2 0.5 1 0.70711
3 x21 x2 1 0.5 1 0.70711
4 x22 x2 2 0.5 1 0.70711
5 x31 x3 1 0.5 1 0.70711
6 x32 x3 2 0.5 1 0.70711
7 x41 x4 1 0.5 1 0.70711
8 x42 x4 2 0.5 1 0.70711
9 x51 x5 1 0.5 1 0.70711
10 x52 x5 2 0.5 1 0.70711
11 x61 x6 1 0.5 1 0.70711
12 x62 x6 2 0.5 1 0.70711
13 x71 x7 1 0.5 1 0.70711
14 x72 x7 2 0.5 1 0.70711
15 x81 x8 1 0.5 1 0.70711
16 x82 x8 2 0.5 1 0.70711
17 x91 x9 1 0.5 1 0.70711
18 x92 x9 2 0.5 1 0.70711
19 x101 x10 1 0.5 1 0.70711
20 x102 x10 2 0.5 1 0.70711
21 x111 x11 1 0.5 1 0.70711
22 x112 x11 2 0.5 1 0.70711
23 x121 x12 1 0.5 1 0.70711
24 x122 x12 2 0.5 1 0.70711
25 x131 x13 1 0.5 1 0.70711
26 x132 x13 2 0.5 1 0.70711
27 x141 x14 1 0.5 1 0.70711
28 x142 x14 2 0.5 1 0.70711
29 x151 x15 1 0.5 1 0.70711
30 x152 x15 2 0.5 1 0.70711
31 x161 x16 1 0.5 1 0.70711
32 x162 x16 2 0.5 1 0.70711
33 x171 x17 1 0.5 1 0.70711
34 x172 x17 2 0.5 1 0.70711
35 x181 x18 1 0.5 1 0.70711
36 x182 x18 2 0.5 1 0.70711
37 x191 x19 1 0.5 1 0.70711
38 x192 x19 2 0.5 1 0.70711
39 x201 x20 1 0.5 1 0.70711
40 x202 x20 2 0.5 1 0.70711
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41 x211 x21 1 0.5 1 0.70711
42 x212 x21 2 0.5 1 0.70711
43 x221 x22 1 0.5 1 0.70711
44 x222 x22 2 0.5 1 0.70711
45 x231 x23 1 0.5 1 0.70711
46 x232 x23 2 0.5 1 0.70711
47 x241 x24 1 0.5 1 0.70711
48 x242 x24 2 0.5 1 0.70711

==
48

S x x x x x x x x x x x x x x x
e x x x x x x x x x 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
t 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 2
1 1 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 1 1 3 3 1 3

2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 2 3 1 1
1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 1 2
1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 3

3 1 1 1 1 1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 2 1 1 3
1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 3 2 1 1
1 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 2

4 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 2 1 2
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 3
1 1 1 1 1 1 3 1 1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 3 3 1 2
1 1 1 1 1 1 2 1 1 1 2 1 1 1 3 1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 2 2 1 1

6 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 2 1 3
1 1 1 1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 1 1 1 3 1 1
1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 2 1 1 2

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1
3 1 3 3 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 3 1

44 1 1 2 3 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1
2 1 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 2 1
3 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1

45 1 1 3 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 1
2 1 1 3 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 1 1
3 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1
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46 1 1 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1
2 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 1 1 1 1 3 1
3 1 2 2 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1

47 1 1 1 2 1 1 1 1 1 1 1 1 3 1 3 1 1 1 1 1 1 1 2 1
2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1
3 1 3 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1

48 1 1 2 1 1 1 1 1 1 1 1 1 3 1 2 1 1 1 1 1 1 1 3 1
2 1 3 2 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1
3 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1

32 Choice Sets, 16 Four-level Attributes, Four Varying. This example creates 32 choice sets, with
16 four-level attributes, four of which vary in each choice set. See page 732 for an easier-to-modify
version of this code.

%macro con;
_d = 2 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = 2) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 4);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** 16, n=8, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2, seed=114,
maxdesigns=1, out=sasuser.ibd6, ridge=0.01)

%mktex(4 ** 5, n=16)

data design; set design; drop x2; run;

%mktppro(x=sasuser.ibd6)

%choiceff(data=chdes, model=class(x1-x16), nsets=32, nalts=4,
beta=zero, init=chdes, initvars=x1-x16)

proc print; by set; id set; var x:; where set le 6 or set gt 42; run;
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64 Choice Sets, 32 Four-level Attributes, Four Varying. This example creates 64 choice sets, with
32 four-level attributes, four of which vary in each choice set. See page 732 for an easier-to-modify
version of this code.

%macro con;
_d = 2 # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = 2) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - 4);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** 32, n=16, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2, seed=420,
maxdesigns=1, out=sasuser.ibd7, ridge=0.01)

%mktex(4 ** 5, n=16)

data design; set design; drop x2; run;

%mktppro(x=sasuser.ibd7)

%choiceff(data=chdes, model=class(x1-x32), nsets=64, nalts=4,
beta=zero, init=chdes, initvars=x1-x32)





Multinomial Logit Models
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Abstract

Multinomial logit models are used to model relationships between a polytomous response variable and
a set of regressor variables. The term “multinomial logit model” includes, in a broad sense, a variety
of models. The cumulative logit model is used when the response of an individual unit is restricted
to one of a finite number of ordinal values. Generalized logit and conditional logit models are used to
model consumer choices. This article focuses on the statistical techniques for analyzing discrete choice
data and discusses fitting these models using SAS/STAT software.∗

Introduction

Multinomial logit models are used to model relationships between a polytomous response variable and
a set of regressor variables. These polytomous response models can be classified into two distinct types,
depending on whether the response variable has an ordered or unordered structure.

In an ordered model, the response Y of an individual unit is restricted to one of m ordered values. For
example, the severity of a medical condition may be: none, mild, and severe. The cumulative logit
model assumes that the ordinal nature of the observed response is due to methodological limitations
in collecting the data that results in lumping together values of an otherwise continuous response
variable (McKelvey and Zavoina 1975). Suppose Y takes values y1, y2, . . . , ym on some scale, where
y1 < y2 < . . . < ym. It is assumed that the observable variable is a categorized version of a continuous
latent variable U such that

Y = yi ⇔ αi−1 < U ≤ αi, i = 1, . . . ,m

where −∞ = α0 < α1 < . . . < αm = ∞. It is further assumed that the latent variable U is determined
by the explanatory variable vector x in the linear form U = −β′x+ ε, where β is a vector of regression
coefficients and ε is a random variable with a distribution function F . It follows that

Pr{Y ≤ yi|x} = F (αi + β′x)

If F is the logistic distribution function, the cumulative model is also known as the proportional odds
model. You can use PROC LOGISTIC or PROC PROBIT directly to fit the cumulative logit models.
Although the cumulative model is the most widely used model for ordinal response data, other useful
models include the adjacent-categories logit model and the continuation-ratio model (Agresti 1990).

∗This chapter was presented at SUGI 20 by Ying So and can also be found in the SUGI 20
proceedings. Copies of this article (TS-722G) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.

467



468 TS-722G − Multinomial Logit Models

In an unordered model, the polytomous response variable does not have an ordered structure. Two
classes of models, the generalized logit models and the conditional logit models, can be used with
nominal response data. The generalized logit model consists of a combination of several binary logits
estimated simultaneously. For example, the response variable of interest is the occurrence or nonoc-
currence of infection after a Caesarean section with two types of (I,II) infection. Two binary logits
are considered: one for type I infection versus no infection and the other for type II infection versus
no infection. The conditional logit model has been used in biomedical research to estimate relative
risks in matched case-control studies. The nuisance parameters that correspond to the matched sets
in an unconditional analysis are eliminated by using a conditional likelihood that contains only the
relative risk parameters (Breslow and Day 1980). The conditional logit model was also introduced by
McFadden (1974) in the context of econometrics.

In studying consumer behavior, an individual is presented with a set of alternatives and asked to choose
the most preferred alternative. Both the generalized logit and conditional logit models are used in the
analysis of discrete choice data. In a conditional logit model, a choice among alternatives is treated as
a function of the characteristics of the alternatives, whereas in a generalized logit model, the choice is a
function of the characteristics of the individual making the choice. In many situations, a mixed model
that includes both the characteristics of the alternatives and the individual is needed for investigating
consumer choice.

Consider an example of travel demand. People are asked to choose between travel by auto, plane or
public transit (bus or train). The following SAS statements create the data set TRAVEL. The variables
AutoTime, PlanTime, and TranTime represent the total travel time required to get to a destination by
using auto, plane, or transit, respectively. The variable Age represents the age of the individual being
surveyed, and the variable Chosen contains the individual’s choice of travel mode.

data travel;
input AutoTime PlanTime TranTime Age Chosen $;
datalines;

10.0 4.5 10.5 32 Plane
5.5 4.0 7.5 13 Auto
4.5 6.0 5.5 41 Transit
3.5 2.0 5.0 41 Transit
1.5 4.5 4.0 47 Auto
10.5 3.0 10.5 24 Plane
7.0 3.0 9.0 27 Auto
9.0 3.5 9.0 21 Plane
4.0 5.0 5.5 23 Auto
22.0 4.5 22.5 30 Plane
7.5 5.5 10.0 58 Plane
11.5 3.5 11.5 36 Transit
3.5 4.5 4.5 43 Auto
12.0 3.0 11.0 33 Plane
18.0 5.5 20.0 30 Plane
23.0 5.5 21.5 28 Plane
4.0 3.0 4.5 44 Plane
5.0 2.5 7.0 37 Transit
3.5 2.0 7.0 45 Auto
12.5 3.5 15.5 35 Plane
1.5 4.0 2.0 22 Auto
;



TS-722G − Multinomial Logit Models 469

In this example, AutoTime, PlanTime, and TranTime are alternative-specific variables, whereas Age
is a characteristic of the individual. You use a generalized logit model to investigate the relationship
between the choice of transportation and Age, and you use a conditional logit model to investigate how
travel time affects the choice. To study how the choice depends on both the travel time and age of the
individual, you need to use a mixed model that incorporates both types of variables.

A survey of the literature reveals a confusion in the terminology for the nominal response models. The
term “multinomial logit model” is often used to describe the generalized logit model. The mixed logit is
sometimes referred to as the multinomial logit model in which the generalized logit and the conditional
logit models are special cases.

The following sections describe discrete choice models, illustrate how to use SAS/STAT software to fit
these models, and discuss cross-alternative effects.

Modeling Discrete Choice Data

Consider an individual choosing among m alternatives in a choice set. Let Πjk denote the probability
that individual j chooses alternative k, let Xj represent the characteristics of individual j, and let Zjk

be the characteristics of the kth alternative for individual j. For example, Xj may be an age and each
Zjk a travel time.

The generalized logit model focuses on the individual as the unit of analysis and uses individual char-
acteristics as explanatory variables. The explanatory variables, being characteristics of an individual,
are constant over the alternatives. For example, for each of the m travel modes, Xj = (1 age)′, and
for the first subject, X1 = (1 32)′. The probability that individual j chooses alternative k is

Πjk =
exp(β′

kXj)∑m
l=1 exp(β′

lXj)
=

1∑m
l=1 exp[(βl − βk)′Xj)]

β1, . . . ,βm are m vectors of unknown regression parameters (each of which is different, even though
Xj is constant across alternatives). Since

∑m
k=1 Πjk = 1, the m sets of parameters are not unique. By

setting the last set of coefficients to null (that is, βm = 0), the coefficients βk represent the effects of
the X variables on the probability of choosing the kth alternative over the last alternative. In fitting
such a model, you estimate m− 1 sets of regression coefficients.

In the conditional logit model, the explanatory variables Z assume different values for each alternative
and the impact of a unit of Z is assumed to be constant across alternatives. For example, for each of the
m travel modes, Zjk = (time)′, and for the first subject, Z11 = (10)′, Z12 = (4.5)′, and Z13 = (10.5)′.
The probability that the individual j chooses alternative k is

Πjk =
exp(θ′Zjk)∑m
l=1 exp(θ′Zjl)

=
1∑m

l=1 exp[θ′(Zjl − Zjk)]

θ is a single vector of regression coefficients. The impact of a variable on the choice probabilities derives
from the difference of its values across the alternatives.

For the mixed logit model that includes both characteristics of the individual and the alternatives, the
choice probabilities are

Πjk =
exp(β′

kXj + θ′Zjk)∑m
l=1 exp(β′

lXj + θ′Zjl)

β1, . . . ,βm−1 and βm ≡ 0 are the alternative-specific coefficients, and θ is the set of global coefficients.
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Fitting Discrete Choice Models

The CATMOD procedure in SAS/STAT software directly fits the generalized logit model. SAS/STAT
software does not yet have a procedure that is specially designed to fit the conditional or mixed logit
models. However, with some preliminary data processing, you can use the PHREG procedure to fit
these models.

The PHREG procedure fits the Cox proportional hazards model to survival data (refer to SAS/STAT
documentation). The partial likelihood of Breslow has the same form as the likelihood in a conditional
logit model.

Let zl denote the vector of explanatory variables for individual l. Let t1 < t2 < . . . < tk denote k
distinct ordered event times. Let di denote the number of failures at ti. Let si be the sum of the
vectors zl for those individuals that fail at ti, and let Ri denote the set of indices for those who are at
risk just before ti.

The Breslow (partial) likelihood is

LB(θ) =
k∏

i=1

exp(θ′si)
[
∑

l∈Ri
exp(θ′zl)]di

In a stratified analysis, the partial likelihood is the product of the partial likelihood for each individual
stratum. For example, in a study of the time to first infection from a surgery, the variables of a
patient consist of Time (time from surgery to the first infection), Status (an indicator of whether
the observation time is censored, with value 2 identifying a censored time), Z1 and Z2 (explanatory
variables thought to be related to the time to infection), and Grp (a variable identifying the stratum to
which the observation belongs). The specification in PROC PHREG for fitting the Cox model using
the Breslow likelihood is as follows:

proc phreg;
model time*status(2) = z1 z2 / ties=breslow;
strata grp;
run;

To cast the likelihood of the conditional logit model in the form of the Breslow likelihood, consider m
artificial observed times for each individual who chooses one of m alternatives. The kth alternative is
chosen at time 1; the choices of all other alternatives (second choice, third choice, ...) are not observed
and would have been chosen at some later time. So a choice variable is coded with an observed time
value of 1 for the chosen alternative and a larger value, 2, for all unchosen (unobserved or censored
alternatives). For each individual, there is exactly one event time (1) and m − 1 nonevent times,
and the risk set just prior to this event time consists of all the m alternatives. For individual j with
alternative-specific characteristics Zjl, the Breslow likelihood is then

LB(θ) =
exp(θ′Zjk)∑m
l=1 exp(θ′Zjl)

This is precisely the probability that individual j chooses alternative k in a conditional logit model. By
stratifying on individuals, you get the likelihood of the conditional logit model. Note that the observed
time values of 1 and 2 are chosen for convenience; however, the censored times have to be larger than
the event time to form the correct risk set.
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Before you invoke PROC PHREG to fit the conditional logit, you must arrange your data in such a
way that there is a survival time for each individual-alternative. In the example of travel demand, let
Subject identify the individuals, let TravTime represent the travel time for each mode of transportation,
and let Choice have a value 1 if the alternative is chosen and 2 otherwise. The Choice variable is used
as the artificial time variable as well as a censoring variable in PROC PHREG. The following SAS
statements reshape the data set TRAVEL into data set CHOICE and display the first nine observations:

data choice(keep=subject mode travtime choice);
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
do i = 1 to 3;

Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
output;

end;
run;

proc print data=choice(obs=9);
run;

Trav
Obs Subject Mode Time Choice

1 1 Auto 10.0 2
2 1 Plane 4.5 1
3 1 Transit 10.5 2
4 2 Auto 5.5 1
5 2 Plane 4.0 2
6 2 Transit 7.5 2
7 3 Auto 4.5 2
8 3 Plane 6.0 2
9 3 Transit 5.5 1

Notice that each observation in TRAVEL corresponds to a block of three observations in CHOICE,
exactly one of which is chosen.

The following SAS statements invoke PROC PHREG to fit the conditional logit model. The Breslow
likelihood is requested by specifying ties=breslow. Choice is the artificial time variable, and a value
of 2 identifies censored times. Subject is used as a stratification variable.

proc phreg data=choice;
model choice*choice(2) = travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model Using PHREG’;
run;
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Conditional Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

TravTime 1 -0.26549 0.10215 6.7551 0.0093 0.767

To study the relationship between the choice of transportation and the age of people making the choice,
the analysis is based on the generalized logit model. You can use PROC CATMOD directly to fit the
generalized logit model (refer to SAS/STAT User’s Guide, Vol. 1). In the following invocation of
PROC CATMOD, Chosen is the response variable and Age is the explanatory variable:

proc catmod data=travel;
direct age;
model chosen=age;
title ’Multinomial Logit Model Using Catmod’;
run;

Response Profiles

Response Chosen
-------------------

1 Auto
2 Plane
3 Transit

Analysis of Maximum Likelihood Estimates

Function Standard Chi-
Parameter Number Estimate Error Square Pr > ChiSq
-------------------------------------------------------------------
Intercept 1 3.0449 2.4268 1.57 0.2096

2 2.7212 2.2929 1.41 0.2353
Age 1 -0.0710 0.0652 1.19 0.2762

2 -0.0500 0.0596 0.70 0.4013

Note that there are two intercept coefficients and two slope coefficients for Age. The first Intercept
and the first Age coefficients correspond to the effect on the probability of choosing auto over transit,
and the second intercept and second age coefficients correspond to the effect of choosing plane over
transit.
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Let Xj be a (p + 1)-vector representing the characteristics of individual j. The generalized logit model
can be cast in the framework of a conditional model by defining the global parameter vector θ and the
alternative-specific regressor variables Zjk as follows:

θ =


β1

β2
...

βm−1

 Zj1 =


Xj

0
...
0

 Zj2 =


0
Xj

0
...
0

 . . . Zj,m−1 =


0
...
0
Xj

 Zjm =

 0
...
0



where the 0 is a (p + 1)-vector of zeros. The probability that individual j chooses alternative k for the
generalized logit model is put in the form that corresponds to a conditional logit model as follows:

Πjk =
exp(β′

kXj)∑m
l=1 exp(β′

lXj)

=
exp(θ′Zjk)∑m
l=1 exp(θ′Zjl)

Here, the vector Xj representing the characteristics of individual j includes the element 1 for the
intercept parameter (provided that the intercept parameters are to be included in the model).

By casting the generalized logit model into a conditional logit model, you can then use PROC PHREG
to analyze the generalized logit model. In the example of travel demand, the alternative-specific
variables Auto, Plane, AgeAuto, and AgePlane are created from the individual characteristic variable
Age. The following SAS statements reshape the data set TRAVEL into data set CHOICE2 and display
the first nine observations:

data choice2;
array times[3] autotime plantime trantime;
array allmodes[3] $ _temporary_ (’Auto’ ’Plane’ ’Transit’);
set travel;
Subject = _n_;
do i = 1 to 3;

Mode = allmodes[i];
TravTime = times[i];
Choice = 2 - (chosen eq mode);
Auto = (i eq 1);
Plane = (i eq 2);
AgeAuto = auto * age;
AgePlane = plane * age;
output;

end;
keep subject mode travtime choice auto plane ageauto ageplane;
run;

proc print data=choice2(obs=9);
run;
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Trav Age Age
Obs Subject Mode Time Choice Auto Plane Auto Plane

1 1 Auto 10.0 2 1 0 32 0
2 1 Plane 4.5 1 0 1 0 32
3 1 Transit 10.5 2 0 0 0 0
4 2 Auto 5.5 1 1 0 13 0
5 2 Plane 4.0 2 0 1 0 13
6 2 Transit 7.5 2 0 0 0 0
7 3 Auto 4.5 2 1 0 41 0
8 3 Plane 6.0 2 0 1 0 41
9 3 Transit 5.5 1 0 0 0 0

The following SAS statements invoke PROC PHREG to fit the generalized logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane /

ties=breslow;
strata subject;
title ’Generalized Logit Model Using PHREG’;
run;

Generalized Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 3.04494 2.42682 1.5743 0.2096 21.009
Plane 1 2.72121 2.29289 1.4085 0.2353 15.199
AgeAuto 1 -0.07097 0.06517 1.1859 0.2762 0.931
AgePlane 1 -0.05000 0.05958 0.7045 0.4013 0.951

By transforming individual characteristics into alternative-specific variables, the mixed logit model can
be analyzed as a conditional logit model.

Analyzing the travel demand data for the effects of both travel time and age of individual requires the
same data set as the generalized logit model, only now the TravTime variable will be used as well. The
following SAS statements use PROC PHREG to fit the mixed logit model:

proc phreg data=choice2;
model choice*choice(2) = auto plane ageauto ageplane travtime /

ties=breslow;
strata subject;
title ’Mixed Logit Model Using PHREG’;
run;
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Mixed Logit Model Using PHREG

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 2.50069 2.39585 1.0894 0.2966 12.191
Plane 1 -2.77912 3.52929 0.6201 0.4310 0.062
AgeAuto 1 -0.07826 0.06332 1.5274 0.2165 0.925
AgePlane 1 0.01695 0.07439 0.0519 0.8198 1.017
TravTime 1 -0.60845 0.27126 5.0315 0.0249 0.544

A special case of the mixed logit model is the conditional logit model with alternative-specific constants.
Each alternative in the model can be represented by its own intercept, which captures the unmeasured
desirability of the alternative.

proc phreg data=choice2;
model choice*choice(2) = auto plane travtime / ties=breslow;
strata subject;
title ’Conditional Logit Model with Alternative Specific Constants’;
run;

Conditional Logit Model with Alternative Specific Constants

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 -0.11966 0.70820 0.0285 0.8658 0.887
Plane 1 -1.63145 1.24251 1.7241 0.1892 0.196
TravTime 1 -0.48665 0.20725 5.5139 0.0189 0.615

With transit as the reference mode, the intercept for auto, which is negative, may reflect the inconve-
nience of having to drive over traveling by bus/train, and the intercept for plane may reflect the high
expense of traveling by plane over bus/train.

Cross-Alternative Effects

Discrete choice models are often derived from the principle of maximum random utility. It is assumed
that an unobserved utility Vk is associated with the kth alternative, and the response function Y is
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determined by

Y = k ⇔ Vk = max{Vl, 1 ≤ l ≤ m}

Both the generalized logit and the conditional logit models are based on the assumption that V1, . . . , Vm

are independently distributed and each follows an extreme maxima value distribution (Hoffman and
Duncan, 1988). An important property of such models is Independence from Irrelevant Alternatives
(IIA); that is, the ratio of the choice probabilities for any two alternatives for a particular observation
is not influenced systematically by any other alternatives. IIA can be tested by fitting a model that
contains all the cross-alternative effects and examining the significance of these effects. The cross-
alternative effects pick up a variety of IIA violations and other sources of error in the model. (See
pages 269, 275, 283, and 480 for other discussions of IIA.)

In the example of travel demand, there may be separate effects for the three travel modes and travel
times. In addition, there may be cross-alternative effects for travel times. Not all the effects are
estimable, only two of the three intercepts and three of the six cross-alternative effects can be estimated.
The following SAS statements create the design variables for all the cross-alternative effects and display
the first nine observations:

* Number of alternatives in each choice set;
%let m = 3;

data choice3;
drop i j k autotime plantime trantime;

* Values of the variable CHOSEN;
array allmodes[&m] $

_temporary_ (’Auto’ ’Plane’ ’Transit’);

* Travel times for the alternatives;
array times[&m] autotime plantime trantime;

* New variables that will contain the design:;
array inters[&m]

Auto /*intercept for auto */
Plane /*intercept for plane */
Transit; /*intercept for transit */

array cross[%eval(&m * &m)]
TimeAuto /*time of auto alternative */
PlanAuto /*cross effect of plane on auto */
TranAuto /*cross effect of transit on auto */
AutoPlan /*cross effect of auto on plane */
TimePlan /*time of plane alternative */
TranPlan /*cross effect of transit on plane*/
AutoTran /*cross effect of auto on transit */
PlanTran /*cross effect of plane on transit*/
TimeTran; /*time of transit alternative */

set travel;

subject = _n_;
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* Create &m observations for each choice set;
do i = 1 to &m;

Mode = allmodes[i]; /* this alternative */
Travtime = times[i]; /* travel time */
Choice = 2 - (chosen eq mode);/* 1 - chosen */
do j = 1 to &m;

inters[j] = (i eq j); /* mode indicator */
do k = 1 to &m;

* (j=k) - time, otherwise, cross effect;
cross[&m*(j-1)+k]=times[k]*inters[j];
end;

end;
output;
end;

run;

proc print data=choice3(obs=9) label noobs;
var subject mode travtime choice auto plane transit

timeauto timeplan timetran autoplan autotran planauto
plantran tranauto tranplan;

run;

subject Mode Travtime Choice Auto Plane Transit

1 Auto 10.0 2 1 0 0
1 Plane 4.5 1 0 1 0
1 Transit 10.5 2 0 0 1
2 Auto 5.5 1 1 0 0
2 Plane 4.0 2 0 1 0
2 Transit 7.5 2 0 0 1
3 Auto 4.5 2 1 0 0
3 Plane 6.0 2 0 1 0
3 Transit 5.5 1 0 0 1

Time Time Time Auto Auto Plan Plan Tran Tran
Auto Plan Tran Plan Tran Auto Tran Auto Plan

10.0 0.0 0.0 0.0 0.0 4.5 0.0 10.5 0.0
0.0 4.5 0.0 10.0 0.0 0.0 0.0 0.0 10.5
0.0 0.0 10.5 0.0 10.0 0.0 4.5 0.0 0.0
5.5 0.0 0.0 0.0 0.0 4.0 0.0 7.5 0.0
0.0 4.0 0.0 5.5 0.0 0.0 0.0 0.0 7.5
0.0 0.0 7.5 0.0 5.5 0.0 4.0 0.0 0.0
4.5 0.0 0.0 0.0 0.0 6.0 0.0 5.5 0.0
0.0 6.0 0.0 4.5 0.0 0.0 0.0 0.0 5.5
0.0 0.0 5.5 0.0 4.5 0.0 6.0 0.0 0.0
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PROC PHREG allows you to specify test statements for testing linear hypotheses of the parameters.
The test is a Wald test, which is based on the asymptotic normality of the parameter estimators. The
following SAS statements invoke PROC PHREG to fit the so called “Mother Logit” model that includes
all the cross-alternative effects. The TEST statement, with label IIA, specifies the null hypothesis that
cross-alternative effects AutoPlan, PlanTran, and TranAuto are 0. Since only three cross-alternative
effects are estimable and these are the first cross-alternative effects specified in the model, they account
for all the cross-alternative effects in the model.

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto timeplan

timetran autoplan plantran tranauto planauto tranplan
autotran / ties=breslow;

IIA: test autoplan,plantran,tranauto;
strata subject;
title ’Mother Logit Model’;
run;

Mother Logit Model

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 46.142 24.781
AIC 46.142 40.781
SBC 46.142 49.137

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 21.3607 8 0.0062
Score 15.4059 8 0.0517
Wald 6.2404 8 0.6203
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Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 -0.73812 3.05933 0.0582 0.8093 0.478
Plane 1 -3.62435 3.48049 1.0844 0.2977 0.027
Transit 0 0 . . . .
TimeAuto 1 -2.23433 1.89921 1.3840 0.2394 0.107
TimePlan 1 -0.10112 0.68621 0.0217 0.8829 0.904
TimeTran 1 0.09785 0.70096 0.0195 0.8890 1.103
AutoPlan 1 0.44495 0.68616 0.4205 0.5167 1.560
PlanTran 1 -0.53234 0.63481 0.7032 0.4017 0.587
TranAuto 1 1.66295 1.51193 1.2097 0.2714 5.275
PlanAuto 0 0 . . . .
TranPlan 0 0 . . . .
AutoTran 0 0 . . . .

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

IIA 1.6526 3 0.6475

The χ2 statistic for the Wald test is 1.6526 with 3 degrees of freedom, indicating that the cross-
alternative effects are not statistically significant (p = .6475). A generally more preferable way of
testing the significance of the cross-alternative effects is to compare the likelihood of the “Mother
logit” model with the likelihood of the reduced model with the cross- alternative effects removed. The
following SAS statements invoke PROC PHREG to fit the reduced model:

proc phreg data=choice3;
model choice*choice(2) = auto plane transit timeauto

timeplan timetran / ties=breslow;
strata subject;
title ’Reduced Model without Cross-Alternative Effects’;
run;

Reduced Model without Cross-Alternative Effects

The PHREG Procedure

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates

-2 LOG L 46.142 27.153
AIC 46.142 37.153
SBC 46.142 42.376

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 18.9886 5 0.0019
Score 14.4603 5 0.0129
Wald 7.3422 5 0.1964

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Auto 1 1.71578 1.80467 0.9039 0.3417 5.561
Plane 1 -3.60073 3.30555 1.1866 0.2760 0.027
Transit 0 0 . . . .
TimeAuto 1 -0.79543 0.36327 4.7946 0.0285 0.451
TimePlan 1 0.12162 0.58954 0.0426 0.8366 1.129
TimeTran 1 -0.42184 0.25733 2.6873 0.1012 0.656

The chi-squared statistic for the likelihood ratio test of IIA is (27.153− 24.781) = 2.372, which is not
statistically significant (p = .4989) when compared to a χ2 distribution with 3 degrees of freedom. This
is consistent with the previous result of the Wald test. (See pages 269, 275, 283, and 476 for other
discussions of IIA.)

Final Comments

For some discrete choice problems, the number of available alternatives is not the same for each indi-
vidual. For example, in a study of consumer brand choices of laundry detergents as prices change, data
are pooled from different locations, not all of which offer a brand that contains potash. The varying
choice sets across individuals can easily be accommodated in PROC PHREG. For individual j who
chooses from a set of mj alternatives, consider mj artificial times in which the chosen alternative has
an event time 1 and the unchosen alternatives have a censored time of 2. The analysis is carried out
in the same fashion as illustrated in the previous section.

Unlike the example of travel demand in which data for each individual are provided, choice data are
often given in aggregate form, with choice frequencies indicating the repetition of each choice. One
way of dealing with aggregate data is to expand the data to the individual level and carry out the
analysis as if you have nonaggregate data. This approach is generally not recommended, because it
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defeats the purpose of having a smaller aggregate data set. PROC PHREG provides a FREQ statement
that allows you to specify a variable that identifies the frequency of occurrence of each observation.
However, with the specification of a FREQ variable, the artificial event time is no longer the only event
time in a given stratum, but has ties of the given frequency. With proper stratification, the Breslow
likelihood is proportional to the likelihood of the conditional logit model. Thus PROC PHREG can be
used to obtain parameter estimates and hypothesis testing results for the choice models.

The ties=discrete option should not be used instead of the ties=breslow option. This is especially
detrimental with aggregate choice data because the likelihood that PROC PHREG is maximizing may
no longer be the same as the likelihood of the conditional logit model. ties=discrete corresponds to
the discrete logistic model for genuinely discrete time scale, which is also suitable for the analysis of
case-control studies when there is more than one case in a matched set (Gail, Lubin, and Rubinstein,
1981). For nonaggregate choice data, all ties= options give the same results; however, the resources
required for the computation are not the same, with ties=breslow being the most efficient.

Once you have a basic understanding of how PROC PHREG works, you can use it to fit a variety of
models for the discrete choice data. The major involvement in such a task lies in reorganizing the data
to create the observations necessary to form the correct risk sets and the appropriate design variables.
There are many options in PROC PHREG that can also be useful in the analysis of discrete choice data.
For example, the offset= option allows you to restrict the coefficient of an explanatory variable to
the value of 1; the selection= option allows you to specify one of four methods for selecting variables
into the model; the outest= option allows you to specify the name of the SAS data set that contains
the parameter estimates, based on which you can easily compute the predicted probabilities of the
alternatives.

This article deals with estimating parameters of discrete choice models. There is active research in the
field of marketing research to use design of experiments to study consumer choice behavior. If you are
interested in this area, refer to Carson et al. (1994), Kuhfeld et al. (1994), and Lazari et al. (1994).





Conjoint Analysis

Warren F. Kuhfeld

Abstract

Conjoint analysis is used to study consumers’ product preferences and simulate consumer choice. This
chapter describes conjoint analysis and provides examples using SAS. Topics include metric and non-
metric conjoint analysis, efficient experimental design, data collection and manipulation, holdouts,
brand by price interactions, maximum utility and logit simulators, and change in market share.†

Introduction

Conjoint analysis is used to study the factors that influence consumers’ purchasing decisions. Products
possess attributes such as price, color, ingredients, guarantee, environmental impact, predicted reliabil-
ity, and so on. Consumers typically do not have the option of buying the product that is best in every
attribute, particularly when one of those attributes is price. Consumers are forced to make trade-offs
as they decide which products to purchase. Consider the decision to purchase a car. Increased size
generally means increased safety and comfort. The trade off is an increase in cost and environmental
impact and a decrease in gas mileage and maneuverability. Conjoint analysis is used to study these
trade-offs.

Conjoint analysis is a popular marketing research technique. It is used in designing new products,
changing or repositioning existing products, evaluating the effects of price on purchase intent, and
simulating market share. Refer to Green and Rao (1971) and Green and Wind (1975) for early intro-
ductions to conjoint analysis, Louviere (1988) for a more recent introduction, and Green and Srinivasan
(1990) for a review article.

Conjoint Measurement

Conjoint analysis grew out of the area of conjoint measurement in mathematical psychology. Conjoint
measurement is used to investigate the joint effect of a set of independent variables on an ordinal-scale-
of-measurement dependent variable. The independent variables are typically nominal and sometimes
interval-scaled variables. Conjoint measurement simultaneously finds a monotonic scoring of the de-
pendent variable and numerical values for each level of each independent variable. The goal is to
monotonically transform the ordinal values to equal the sum of their attribute level values. Hence,
conjoint measurement is used to derive an interval variable from ordinal data. The conjoint measure-
ment model is a mathematical model, not a statistical model, since it has no statistical error term.

†Copies of this chapter (TS-722H) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Conjoint Analysis

Conjoint analysis is based on a main effects analysis-of-variance model. Subjects provide data about
their preferences for hypothetical products defined by attribute combinations. Conjoint analysis decom-
poses the judgment data into components, based on qualitative attributes of the products. A numerical
part-worth utility value is computed for each level of each attribute. Large part-worth utilities are as-
signed to the most preferred levels, and small part-worth utilities are assigned to the least preferred
levels. The attributes with the largest part-worth utility range are considered the most important in
predicting preference. Conjoint analysis is a statistical model with an error term and a loss function.

Metric conjoint analysis models the judgments directly. When all of the attributes are nominal, the
metric conjoint analysis is a simple main-effects ANOVA with some specialized output. The attributes
are the independent variables, the judgments comprise the dependent variable, and the part-worth
utilities are the β’s, the parameter estimates from the ANOVA model. The following is a metric
conjoint analysis model for three factors:

yijk = µ + β1i + β2j + β3k + εijk

where

∑
β1i =

∑
β2j =

∑
β3k = 0

This model could be used, for example, to investigate preferences for cars that differ on three attributes:
mileage, expected reliability, and price. The yijk term is one subject’s stated preference for a car with
the ith level of mileage, the jth level of expected reliability, and the kth level of price. The grand mean
is µ, and the error is εijk. The predicted utility for the ijk product is:

ŷijk = µ̂ + β̂1i + β̂2j + β̂3k

Nonmetric conjoint analysis finds a monotonic transformation of the preference judgments. The model,
which follows directly from conjoint measurement, iteratively fits the ANOVA model until the trans-
formation stabilizes. The R2 increases during every iteration until convergence, when the change in
R2 is essentially zero. The following is a nonmetric conjoint analysis model for three factors:

Φ(yijk) = µ + β1i + β2j + β3k + εijk

where Φ(yijk) designates a monotonic transformation of the variable y.

The R2 for a nonmetric conjoint analysis model will always be greater than or equal to the R2 from
a metric analysis of the same data. The smaller R2 in metric conjoint analysis is not necessarily
a disadvantage, since results should be more stable and reproducible with the metric model. Metric
conjoint analysis was derived from nonmetric conjoint analysis as a special case. Today, metric conjoint
analysis is probably used more often than nonmetric conjoint analysis.

In the SAS System, conjoint analysis is performed with the SAS/STAT procedure TRANSREG (trans-
formation regression). Metric conjoint analysis models are fit using ordinary least squares, and non-
metric conjoint analysis models are fit using an alternating least squares algorithm (Young, 1981; Gifi,
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1990). Conjoint analysis is explained more fully in the examples. The “PROC TRANSREG Specifi-
cations” section of this chapter starting on page 585 documents the PROC TRANSREG statements
and options that are most relevant to conjoint analysis. The “Samples of PROC TRANSREG Usage”
section starting on page 594 shows some typical conjoint analysis specifications. This chapter shows
some of the SAS programming that is used for conjoint analysis. Alternatively, there is a marketing
research GUI that performs conjoint analysis available from the main display manager PMENU by
selecting: Solutions → Analysis → Market Research.

Choice-Based Conjoint

The meaning of the word “conjoint” has broadened over the years from conjoint measurement to
conjoint analysis (which at first always meant what we now call nonmetric conjoint analysis) and later
to metric conjoint analysis. Metric and nonmetric conjoint analysis are based on a linear ANOVA
model. In contrast, a different technique, discrete choice, is based on the nonlinear multinomial logit
model. Discrete choice is sometimes referred to as “choice-based conjoint.” This technique is not
discussed in this chapter, however it is discussed in detail starting on page 141.

Experimental Design

Experimental design is a fundamental component of conjoint analysis. A conjoint study uses experi-
mental design to create a list of products that vary on an assortment of attributes such as brand, price,
size, and so on, and subjects rate or rank the products. There are many examples of making conjoint
designs in this chapter. Before you read them, be sure to read the design chapters beginning on pages
47 and 99.

The Output Delivery System

The Output Delivery System (ODS) can be used to customize the output of SAS procedures including
PROC TRANSREG, the procedure we use for conjoint analysis. PROC TRANSREG can produce
a great deal of information for conjoint analysis, more than we often wish to see. We will use ODS
primarily to exclude certain portions of the default conjoint output in which we are usually not inter-
ested. This will create a better, more parsimonious display for typical analyses. However, when we
need it, we can revert back to getting the full array of information. See page 143 for other examples of
customizing output using ODS. You can run the following step once to customize PROC TRANSREG
conjoint analysis output.

proc template;
edit Stat.Transreg.ParentUtilities;

column Label Utility StdErr tValue Probt Importance Variable;
header title;
define title; text ’Part-Worth Utilities’; space=1; end;
define Variable; print=off; end;
end;

run;
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Running this step edits the templates for the main conjoint analysis results table and stores a copy in
sasuser. These changes will remain in effect until you delete them. These changes move the variable
label to the first column, turn off printing the variable names, and set the table header to “Part-Worth
Utilities”. These changes assume that each effect in the model has a variable label associated with it,
so there is no need to print variable names. This will usually be the case. To return to the default
output, run the following.

* Delete edited template, restore original template;
proc template;

delete Stat.Transreg.ParentUtilities;
run;

By default, PROC TRANSREG prints an ANOVA table for metric conjoint analysis and both univari-
ate and multivariate ANOVA tables for nonmetric conjoint analysis. With nonmetric conjoint analysis,
PROC TRANSREG sometimes prints liberal and conservative ANOVA tables. All of the possible
ANOVA tables, along with some header notes, can be suppressed by specifying the following statement
before running PROC TRANSREG.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

For metric conjoint analysis, this statement can be abbreviated as follows.

ods exclude notes mvanova anova;

The rest of this section gives more details about what the PROC TEMPLATE step does and why. The
rest of this section can be helpful if you wish to further customize the output from TRANSREG or
some other procedure. Impatient readers may skip ahead to the candy example on page 489.

We are most interested in the part-worth utilities table in conjoint analysis, which contains the part-
worth utilities, their standard errors, and the importance of each attribute. We can first use PROC
TEMPLATE to identify the template for the utilities table and then edit the template. First, let’s
have PROC TEMPLATE display the templates for PROC TRANSREG. The source stat.transreg
statement specifies that we want to see PROC TEMPLATE source code for the STAT product and
the TRANSREG procedure.

proc template;
source stat.transreg;
run;

If we search the results for “Utilities”, we find the template for the table Stat.Transreg.ParentUtilities.
Here is the template for the part-worth utilities table.

define table Stat.Transreg.ParentUtilities;
notes "Parent Utilities Table for Proc Transreg";
dynamic FootMessages TitleText;
column Label Utility StdErr tValue Probt Importance Variable;
header Title;
footer Foot;

define Title;
text TitleText;
space = 1;
spill_margin;
first_panel;

end;
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define Label;
parent = Stat.Transreg.Label;
style = RowHeader;

end;

define Utility;
header = "Utility";
format_width = 7;
parent = Stat.Transreg.Coefficient;

end;

define StdErr;
parent = Stat.Transreg.StdErr;

end;

define tValue;
parent = Stat.Transreg.tValue;
print = OFF;

end;

define Probt;
parent = Stat.Transreg.Probt;
print = OFF;

end;

define Importance;
header = %nrstr(";Importance;%(%% Utility;Range%)");
translate _val_=._ into " ";
format = 7.3;

end;

define Variable;
parent = Stat.Transreg.Variable;

end;

define Foot;
text FootMessages;
just = l;
maximize;

end;

control = control;
required_space = 20;

end;

Recall that we ran the following step to customize the output.

proc template;
edit Stat.Transreg.ParentUtilities;

column Label Utility StdErr tValue Probt Importance Variable;
header title;
define title; text ’Part-Worth Utilities’; space=1; end;
define Variable; print=off; end;
end;

run;
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We specified the edit Stat.Transreg.ParentUtilities statement to name the table that we wish to
change. The column statement was copied from the PROC TEMPLATE source listing, and it names
all of the columns in the table. Some, like tValue and Probt do not print by default. We will change
the Variable column to also not print. We redefine Variable with the print=off option specified.
We also redefine the table header to read “Part-Worth Utilities”. The names in the column and header
statements must match the names in the original template.
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Chocolate Candy Example

This example illustrates conjoint analysis with rating scale data and a single subject. The subject was
asked to rate his preference for eight chocolate candies. The covering was either dark or milk chocolate,
the center was either chewy or soft, and the candy did or did not contain nuts. The candies were rated
on a 1 to 9 scale where 1 means low preference and 9 means high preference. Conjoint analysis is
used to determine the importance of each attribute and the part-worth utility for each level of each
attribute.

Metric Conjoint Analysis

After data collection, the attributes and the rating data are entered into a SAS data set.

title ’Preference for Chocolate Candies’;

data choc;
input Chocolate $ Center $ Nuts $& Rating;
datalines;

Dark Chewy Nuts 7
Dark Chewy No Nuts 6
Dark Soft Nuts 6
Dark Soft No Nuts 4
Milk Chewy Nuts 9
Milk Chewy No Nuts 8
Milk Soft Nuts 9
Milk Soft No Nuts 7
;

Note that the “&” specification in the input statement is used to read character data with embedded
blanks.

PROC TRANSREG is used to perform a metric conjoint analysis.

ods exclude notes mvanova anova;
proc transreg utilities separators=’, ’ short;

title2 ’Metric Conjoint Analysis’;
model identity(rating) = class(chocolate center nuts / zero=sum);
run;

Printed output from the metric conjoint analysis is requested by specifying the utilities option in
the proc statement. The value specified in the separators= option, in this case a comma followed by
a blank, is used in constructing the labels for the part-worth utilities in the printed output. With these
options, the labels will consist of the class variable name, a comma, a blank and the values of the class
variables. We specify the short option to suppress the iteration history. PROC TRANSREG will still
print a convergence summary table so we will know if there are any convergence problems. Since this
is a metric conjoint analysis, there should be only one iteration and there should not be any problems.
We specified ods exclude notes mvanova anova to exclude ANOVA information (which we usually
want to ignore) and provide more parsimonious output. The analysis variables, the transformation of
each variable, and transformation specific options are specified in the model statement.
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The model statement provides for general transformation regression models, so it has a markedly
different syntax from other SAS/STAT procedure model statements. Variable lists are specified in
parentheses after a transformation name. The specification identity(rating) requests an identity
transformation of the dependent variable Rating. A transformation name must be specified for all
variable lists, even for the dependent variable in metric conjoint analysis, when no transformation is
desired. The identity transformation of Rating will not change the original scoring. An equal sign
follows the dependent variable specification, then the attribute variables are specified along with their
transformation. The specification

class(chocolate center nuts / zero=sum)

designates the attributes as class variables with the restriction that the part-worth utilities sum to
zero within each attribute. A slash must be specified to separate the variables from the transformation
option zero=sum. The class specification creates a main-effects design matrix from the specified
variables. This example produces only printed output; later examples will show how to store results in
output SAS data sets.

The output is shown next. Recall that we used an ods exclude statement and we used PROC TEM-
PLATE on page 485 to customize the output from PROC TRANSREG.

Preference for Chocolate Candies
Metric Conjoint Analysis

The TRANSREG Procedure

Dependent Variable Identity(Rating)

Class Level Information

Class Levels Values

Chocolate 2 Dark Milk

Center 2 Chewy Soft

Nuts 2 No Nuts Nuts

Number of Observations Read 8
Number of Observations Used 8

Identity(Rating)
Algorithm converged.

Root MSE 0.50000 R-Square 0.9500
Dependent Mean 7.00000 Adj R-Sq 0.9125
Coeff Var 7.14286
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Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 7.0000 0.17678

Chocolate, Dark -1.2500 0.17678 50.000
Chocolate, Milk 1.2500 0.17678

Center, Chewy 0.5000 0.17678 20.000
Center, Soft -0.5000 0.17678

Nuts, No Nuts -0.7500 0.17678 30.000
Nuts, Nuts 0.7500 0.17678

We see Algorithm converged in the output indicating no problems with the iterations. We also see
R2 = 0.95. The last table displays the part-worth utilities. The part-worth utilities show the most
and least preferred levels of the attributes. Levels with positive utility are preferred over those with
negative utility. Milk chocolate (part-worth utility = 1.25) was preferred over dark (-1.25), chewy
center (0.5) over soft (-0.5), and nuts (0.75) over no nuts (-0.75).

Conjoint analysis provides an approximate decomposition of the original ratings. The predicted utility
for a candy is the sum of the intercept and the part-worth utilities. The conjoint analysis model for
the preference for chocolate type i, center j, and nut content k is

yijk = µ + β1i + β2j + β3k + εijk

for i = 1, 2; j = 1, 2; k = 1, 2; where

β11 + β12 = β21 + β22 = β31 + β32 = 0

The part-worth utilities for the attribute levels are the parameter estimates β̂11, β̂12, β̂21, β̂22, β̂31, and
β̂32 from this main-effects ANOVA model. The estimate of the intercept is µ̂, and the error term is
εijk.

The predicted utility for the ijk combination is

ŷijk = µ̂ + β̂1i + β̂2j + β̂3k

For the most preferred milk/chewy/nuts combination, the predicted utility and actual preference values
are

7.0 + 1.25 + 0.5 + 0.75 = 9.5 = ŷ ≈ y = 9.0

For the least preferred dark/soft/no nuts combination, the predicted utility and actual preference values
are



492 TS-722H − Conjoint Analysis

7.0 +−1.25 +−0.5 +−0.75 = 4.5 = ŷ ≈ y = 4.0

The predicted utilities are regression predicted values; the squared correlation between the predicted
utilities for each combination and the actual preference ratings is the R2.

The importance value is computed from the part-worth utility range for each factor (attribute). Each
range is divided by the sum of all ranges and multiplied by 100. The factors with the largest part-worth
utility ranges are the most important in determining preference. Note that when the attributes have a
varying number of levels, attributes with the most levels sometimes have inflated importances (Wittink,
Krishnamurthi, and Reibstein; 1989).

The importance values show that type of chocolate, with an importance of 50%, was the most important
attribute in determining preference.

100× (1.25−−1.25)
(1.25−−1.25) + (0.50−−0.50) + (0.75−−0.75)

= 50%

The second most important attribute was whether the candy contained nuts, with an importance of
30%.

100× (0.75−−0.75)
(1.25−−1.25) + (0.50−−0.50) + (0.75−−0.75)

= 30%

Type of center was least important at 20%.

100× (0.50−−0.50)
(1.25−−1.25) + (0.50−−0.50) + (0.75−−0.75)

= 20%

Nonmetric Conjoint Analysis

In the next part of this example, PROC TRANSREG is used to perform a nonmetric conjoint analysis
of the candy data set. The difference between requesting a nonmetric and metric conjoint analysis
is the dependent variable transformation; a monotone transformation of Rating variable is requested
instead of an identity transformation. Also, we did not specify the short option this time so that we
could see the iteration history table. The output statement is used to put the transformed rating into
the out= output data set.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

proc transreg utilities separators=’, ’;
title2 ’Nonmetric Conjoint Analysis’;
model monotone(rating) = class(chocolate center nuts / zero=sum);
output;
run;

Nonmetric conjoint analysis iteratively derives the monotonic transformation of the ratings. Recall
that we used an ods exclude statement and we used PROC TEMPLATE on page 485 to customize
the output from PROC TRANSREG.
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Preference for Chocolate Candies
Nonmetric Conjoint Analysis

The TRANSREG Procedure

Dependent Variable Monotone(Rating)

Class Level Information

Class Levels Values

Chocolate 2 Dark Milk

Center 2 Chewy Soft

Nuts 2 No Nuts Nuts

Number of Observations Read 8
Number of Observations Used 8

TRANSREG Univariate Algorithm Iteration History for Monotone(Rating)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.08995 0.23179 0.95000
2 0.01263 0.03113 0.96939 0.01939
3 0.00345 0.00955 0.96981 0.00042
4 0.00123 0.00423 0.96984 0.00003
5 0.00050 0.00182 0.96985 0.00000
6 0.00021 0.00078 0.96985 0.00000
7 0.00009 0.00033 0.96985 0.00000
8 0.00004 0.00014 0.96985 0.00000
9 0.00002 0.00006 0.96985 0.00000

10 0.00001 0.00003 0.96985 0.00000 Converged

Algorithm converged.

Root MSE 0.38829 R-Square 0.9698
Dependent Mean 7.00000 Adj R-Sq 0.9472
Coeff Var 5.54699
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Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 7.0000 0.13728

Chocolate, Dark -1.3143 0.13728 53.209
Chocolate, Milk 1.3143 0.13728

Center, Chewy 0.4564 0.13728 18.479
Center, Soft -0.4564 0.13728

Nuts, No Nuts -0.6993 0.13728 28.312
Nuts, Nuts 0.6993 0.13728

The standard errors are not adjusted for the fact
that the dependent variable was transformed and so
are generally liberal (too small).

The R2 increases from 0.95 for the metric case to 0.96985 for the nonmetric case. The importances and
part-worth utilities are slightly different from the metric analysis, but the overall pattern of results is
the same.

The GPLOT procedure is used to plot the transformation of the ratings.

proc sort; by rating; run;

proc gplot;
title h=1.5 ’Preference for Chocolate Candies’;
title2 h=1 ’Nonmetric Conjoint Analysis’;
plot trating * rating = 1 / frame haxis=axis2 vaxis=axis1;
symbol1 v=plus i=join;
axis1 order=(1 to 10)

label=(angle=90 ’Transformation of Rating’);
axis2 order=(1 to 9) label=(’Original Rating’);
run; quit;
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In this case, the transformation is nearly linear. In practice, the R2 may increase much more than it
did in this example, and the transformation may be markedly nonlinear.
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Frozen Diet Entrées Example (Basic)

This example uses PROC TRANSREG to perform a conjoint analysis to study preferences for frozen
diet entrées. The entrées have four attributes: three with three levels and one with two levels. The
attributes are shown in the table.

Factor Levels
Main Ingredient Chicken Beef Turkey
Fat Claim Per Serving 8 Grams 5 Grams 2 Grams
Price $2.59 $2.29 $1.99
Calories 350 250

Choosing the Number of Stimuli

Ideally, for this design, we would like the number of runs in the experimental design to be divisible
by 2 (because of the two-level factor), 3 (because of the three-level factors), 2× 3 = 6 (to have equal
numbers of products in each two-level and three-level factor combinations), and 3× 3 = 9 (to have
equal numbers of products in each pair of three-level factor combinations). If we fit a main-effects
model, we need at least 1 + 3 × (3 − 1) + (2 − 1) = 8 runs. We can avoid doing this math ourselves
and instead use the %MktRuns autocall macro to help us choose the number of products. See page 597
for macro documentation and information on installing and using SAS autocall macros. To use this
macro, you specify the number of levels for each of the factors. For this example, specify three 3’s and
one 2.

title ’Frozen Diet Entrees’;

%mktruns( 3 3 3 2 )

Frozen Diet Entrees

Design Summary

Number of
Levels Frequency

2 1
3 3

Frozen Diet Entrees

Saturated = 8
Full Factorial = 54
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Some Reasonable Cannot Be
Design Sizes Violations Divided By

18 * 0
36 * 0
12 3 9
24 3 9
30 3 9
9 4 2 6

27 4 2 6
15 7 2 6 9
21 7 2 6 9
33 7 2 6 9

* - 100% Efficient Design can be made with the MktEx Macro.

n Design Reference

18 2 ** 1 3 ** 7 Orthogonal Array
36 2 ** 16 3 ** 4 Orthogonal Array
36 2 ** 11 3 ** 12 Orthogonal Array
36 2 ** 10 3 ** 8 6 ** 1 Orthogonal Array
36 2 ** 9 3 ** 4 6 ** 2 Orthogonal Array
36 2 ** 4 3 ** 13 Orthogonal Array
36 2 ** 3 3 ** 9 6 ** 1 Orthogonal Array
36 2 ** 2 3 ** 12 6 ** 1 Orthogonal Array
36 2 ** 2 3 ** 5 6 ** 2 Orthogonal Array
36 2 ** 1 3 ** 8 6 ** 2 Orthogonal Array
36 2 ** 1 3 ** 3 6 ** 3 Orthogonal Array

The output tells us that we need at least eight products, shown by the “Saturated = 8”. The sizes 18
and 36 would be optimal. Twelve is a good size but three times it cannot be divided by 9 = 3 × 3.
The “three times” comes from the 3(3− 1)/2 = 3 pairs of three-level factors. Similarly, the size 9 has
four violations because it cannot be divided once by 2 and three times by 6 = 2 × 3 (once for each
three-level factor and two-level factor pair). We could use a size smaller than 18 and not have equal
frequencies everywhere, but 18 is a manageable number so we will use 18.

When an orthogonal and balanced design is available from the %MktEx macro, the %MktRuns macro tells
us about it. For example, the macro tells us that our design, which can be designated 2133, is available
in 18 runs, and can be constructed from a design with 1 two-level factor (2 ** 1 or 21) and 7 three-level
factors (3 ** 7 or 37). Both the %MktRuns and %MktEx macros accept this ’n ∗ ∗m’ exponential syntax
as input, which means m factors each at n levels. Hence, 2 3 ** 7 or 2 ** 1 3 ** 7 or 2 3 3 3 3
3 3 3 are all equivalent level-list specifications for the experimental design 2137, which has 1 two-level
factor and 7 three-level factors.
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Generating the Design

We can use the %MktEx autocall macro to find a design. When you invoke the %MktEx macro for a
simple problem, you only need to specify the numbers of levels and number of runs. The macro does
the rest. The %MktEx macro can create designs in a number of ways. For this problem, it simply looks
up an orthogonal design. Here is the %MktEx macro call for this example:

%mktex(3 3 3 2, n=18)

The first argument to the %MktEx macro is a list of factor levels, and the second is the number of runs
(n=18). These are all the options that are needed for a simple problem such as this one. However,
throughout this book, random number seeds are explicitly specified with the seed= option so that you
can reproduce these results.‡ Here is the code for creating our design with the random number seed
and the actual factor names specified:

%mktex(3 3 3 2, n=18, seed=151)
%mktlab(vars=Ingredient Fat Price Calories)

The %MktEx macro always creates factors named x1, x2, and so on. The %MktLab autocall macro is used
to change the names when you want to provide actual factor names. This example has four factors,
Ingredient, Fat, and Price, each with three levels and Calories with two levels.

Here is the output:

Frozen Diet Entrees

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

Frozen Diet Entrees

The OPTEX Procedure

Class Level Information

Class Levels -Values-

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 2 1 2

‡By specifying a random number seed, results should be reproducible within a SAS release for a particular operating
system. However, due to machine differences, some results may not be exactly reproducible on other machines. For most
orthogonal and balanced designs, the results should be reproducible. When computerized searches are done, it is likely
that you will not get the same design as the one in the book, although you would expect the efficiency differences to be
slight.
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Frozen Diet Entrees

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.6667

We see that the macro had no trouble finding an optimal, 100% efficient experimental design through
table look up. The value Tab in the Notes column of the algorithm search history tells us the macro
was able to use table look up. See pages 597, 667, and the discrete choice examples starting on page
141 for more information on how the %MktEx macro works.

The %MktEx macro creates two output data sets with the experimental design, Design and Randomized.
The Design data set is sorted and for a number of the tabled designs, often has a first row consisting
entirely of ones. For these reasons, you should typically use the randomized design. In the randomized
design, the profiles are presented in a random order and the levels have been randomly reassigned.
Neither of these operations affects the design efficiency, balance, or orthogonality. When there are
restrictions on the design (see for example page 551), the profiles are sorted into a random order, but
the levels are not randomly reassigned. The randomized design is the default input to the %MktLab
macro.

Evaluating and Preparing the Design

We will use the FORMAT procedure to create descriptive labels for the levels of the attributes. By
default, the values of the factors are positive integers. For example for ingredient, we create a format
if (for Ingredient Format) that assigns the descriptive value label “Chicken” for level 1, “Beef” for
level 2, and “Turkey” for level 3. A permanent SAS data set is created with the formats assigned
(although, as we will see in the next example, we could have done this previously in the %MktLab step).
Finally, the design is printed.

proc format;
value if 1=’Chicken’ 2=’Beef’ 3=’Turkey’;
value ff 1=’8 Grams’ 2=’5 Grams’ 3=’2 Grams’;
value pf 1=’$2.59’ 2=’$2.29’ 3=’$1.99’;
value cf 1=’350’ 2=’250’;
run;

data sasuser.dietdes;
set final;
format ingredient if. fat ff. price pf. calories cf.;
run;

proc print; run;

Here is the design.
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Frozen Diet Entrees

Obs Ingredient Fat Price Calories

1 Turkey 5 Grams $1.99 350
2 Turkey 8 Grams $2.29 350
3 Chicken 8 Grams $1.99 350
4 Turkey 2 Grams $2.59 250
5 Beef 8 Grams $2.59 350
6 Beef 2 Grams $1.99 350
7 Beef 5 Grams $2.29 350
8 Beef 5 Grams $2.29 250
9 Chicken 2 Grams $2.29 350
10 Beef 8 Grams $2.59 250
11 Turkey 8 Grams $2.29 250
12 Chicken 5 Grams $2.59 350
13 Chicken 5 Grams $2.59 250
14 Chicken 2 Grams $2.29 250
15 Turkey 5 Grams $1.99 250
16 Turkey 2 Grams $2.59 350
17 Beef 2 Grams $1.99 250
18 Chicken 8 Grams $1.99 250

Even when you know the design is 100% D-efficient, orthogonal, and balanced, it is good to run basic
checks on your designs. You can use the %MktEval autocall macro to display information about the
design.

%mkteval;

The macro first prints a matrix of canonical correlations between the factors. We hope to see an identity
matrix (a matrix of ones on the diagonal and zeros everywhere else), which would mean that all of the
factors are uncorrelated. Next, the macro prints all one-way frequencies for all attributes, all two-way
frequencies, and all n-way frequencies (in this case four-way frequencies). We hope to see equal or at
least nearly equal one-way and two-way frequencies, and we want to see that each combination occurs
only once.

Frozen Diet Entrees
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Ingredient Fat Price Calories

Ingredient 1 0 0 0
Fat 0 1 0 0
Price 0 0 1 0
Calories 0 0 0 1
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Frozen Diet Entrees
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Ingredient 6 6 6
Fat 6 6 6
Price 6 6 6
Calories 9 9
Ingredient Fat 2 2 2 2 2 2 2 2 2
Ingredient Price 2 2 2 2 2 2 2 2 2
Ingredient Calories 3 3 3 3 3 3
Fat Price 2 2 2 2 2 2 2 2 2
Fat Calories 3 3 3 3 3 3
Price Calories 3 3 3 3 3 3
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A canonical correlation is the maximum correlation between linear combinations of the coded factors
(see page 70). All zeros off the diagonal show that this design is orthogonal for main effects. If any
off-diagonal canonical correlations had been greater than 0.316 (r2 > 0.1), the macro would have
listed them in a separate table. The last title line tells you that none of them were this large. For
nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a substitute
for looking at the variance matrix (with examine=v) in the %MktEx macro. The %MktEx macro just
provides a quick and more-compact picture of the correlations between the factors. The variance matrix
is sensitive to the actual model specified and the coding. The canonical-correlation matrix just tells
you if there is some correlation between the main effects. In this case, there are no correlations.

The equal one-way frequencies show you that this design is balanced. The equal two-way frequencies
show you that this design is orthogonal. Equal one-way and two-way frequencies together show you
that this design is 100% D-efficient. The n-way frequencies, all equal to one, show you that there are
no duplicate profiles. This is a perfect design for a main effects model. However, there are other 100%
efficient designs for this problem with duplicate observations. In the last part of the output, the n-Way
frequencies may contain some 2’s for those designs. You can specify options=nodups in the %MktEx
macro to ensure that there are no duplicate profiles.

The %MktEval macro produces a very compact summary of the design, hence some information, for
example the levels to which the frequencies correspond, is not shown. You can use the print=freqs
option in the %MktEval macro to get a less compact and more detailed display.

Printing the Stimuli and Data Collection

Next, we generate the stimuli. The data null step uses the file statement to set the print desti-
nation to the printed output destination. The design data set is read with the set statement. A put
statement prints the attributes along with some constant text and the combination number. The put
statement option +3 skips 3 spaces, @50 starts printing in column 50, +(-1) skips one space backwards
getting rid of the blank that would by default appear after the stimulus number, and / skips to a new
line. Text enclosed in quotes is literally copied to the output. For our attribute variables, the formatted
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values are printed. The variable n is the number of the current pass through the DATA step, which
in this case is the stimulus number. The if statement causes six descriptions to be printed on a page.

title;
data _null_;

file print;
set sasuser.dietdes;
put ///

+3 ingredient ’Entree’ @50 ’(’ _n_ +(-1) ’)’ /
+3 ’With ’ fat ’of Fat and ’ calories ’Calories’ /
+3 ’Now for Only ’ Price +(-1) ’.’///;

if mod(_n_, 6) = 0 then put _page_;
run;

Turkey Entree (1)
With 5 Grams of Fat and 350 Calories
Now for Only $1.99.

Turkey Entree (2)
With 8 Grams of Fat and 350 Calories
Now for Only $2.29.

Chicken Entree (3)
With 8 Grams of Fat and 350 Calories
Now for Only $1.99.

Turkey Entree (4)
With 2 Grams of Fat and 250 Calories
Now for Only $2.59.

Beef Entree (5)
With 8 Grams of Fat and 350 Calories
Now for Only $2.59.

Beef Entree (6)
With 2 Grams of Fat and 350 Calories
Now for Only $1.99.

Beef Entree (7)
With 5 Grams of Fat and 350 Calories
Now for Only $2.29.

Beef Entree (8)
With 5 Grams of Fat and 250 Calories
Now for Only $2.29.

Chicken Entree (9)
With 2 Grams of Fat and 350 Calories
Now for Only $2.29.
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Beef Entree (10)
With 8 Grams of Fat and 250 Calories
Now for Only $2.59.

Turkey Entree (11)
With 8 Grams of Fat and 250 Calories
Now for Only $2.29.

Chicken Entree (12)
With 5 Grams of Fat and 350 Calories
Now for Only $2.59.

Chicken Entree (13)
With 5 Grams of Fat and 250 Calories
Now for Only $2.59.

Chicken Entree (14)
With 2 Grams of Fat and 250 Calories
Now for Only $2.29.

Turkey Entree (15)
With 5 Grams of Fat and 250 Calories
Now for Only $1.99.

Turkey Entree (16)
With 2 Grams of Fat and 350 Calories
Now for Only $2.59.

Beef Entree (17)
With 2 Grams of Fat and 250 Calories
Now for Only $1.99.

Chicken Entree (18)
With 8 Grams of Fat and 250 Calories
Now for Only $1.99.

Next, we print the stimuli, produce the cards, and ask a subject to sort the cards from most preferred
to least preferred. The combination numbers (most preferred to least preferred) are entered as data.
For example, this subject’s most preferred combination is 17, which is the “Beef Entree, With 2 Grams
of Fat and 250 Calories, Now for Only $1.99”, and her least preferred combination is 18, “Chicken
Entree, With 8 Grams of Fat and 250 Calories, Now for Only $1.99”.

Data Processing

The data are transposed, going from one observation and 18 variables to 18 observations and one
variable named Combo. The next DATA step creates the variable Rank: 1 for the first and most
preferred combination, ..., and 18 for the last and least preferred combination. The data are sorted by
combination number and merged with the design.
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title ’Frozen Diet Entrees’;

data results;
input combo1-combo18;
datalines;

17 6 8 7 10 5 4 16 15 1 11 2 9 14 12 13 3 18
;

proc transpose out=results(rename=(col1=combo)); run;

data results; set results; Rank = _n_; drop _name_; run;

proc sort; by combo; run;

data results(drop=combo);
merge sasuser.dietdes results;
run;

proc print; run;

Frozen Diet Entrees

Obs Ingredient Fat Price Calories Rank

1 Turkey 5 Grams $1.99 350 10
2 Turkey 8 Grams $2.29 350 12
3 Chicken 8 Grams $1.99 350 17
4 Turkey 2 Grams $2.59 250 7
5 Beef 8 Grams $2.59 350 6
6 Beef 2 Grams $1.99 350 2
7 Beef 5 Grams $2.29 350 4
8 Beef 5 Grams $2.29 250 3
9 Chicken 2 Grams $2.29 350 13
10 Beef 8 Grams $2.59 250 5
11 Turkey 8 Grams $2.29 250 11
12 Chicken 5 Grams $2.59 350 15
13 Chicken 5 Grams $2.59 250 16
14 Chicken 2 Grams $2.29 250 14
15 Turkey 5 Grams $1.99 250 9
16 Turkey 2 Grams $2.59 350 8
17 Beef 2 Grams $1.99 250 1
18 Chicken 8 Grams $1.99 250 18

Recall that the seventeenth combination was most preferred, and it has a rank of 1. The eighteenth
combination was least preferred and it has a rank of 18.
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Nonmetric Conjoint Analysis

PROC TRANSREG is used to perform the nonmetric conjoint analysis of the ranks.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

proc transreg utilities order=formatted separators=’, ’;
model monotone(rank / reflect) =

class(Ingredient Fat Price Calories / zero=sum);
output out=utils p ireplace;
run;

The utilities option prints the part-worth utilities and importance table. The order=formatted
option sorts the levels of the attributes by the formatted values. By default, levels are sorted by their
internal unformatted values (in this case the integers 1, 2, 3). The model statement names the variable
Rank as the dependent variable and specifies a monotone transformation for the nonmetric conjoint
analysis. The reflect transformation option is specified with rank data. With rank data, small values
mean high preference and large values mean low preference. The reflect transformation option reflects
the ranks around their mean (-(rank - mean rank) + mean rank) so that in the results, large part-
worth utilities will mean high preference. With ranks ranging from 1 to 18, reflect transforms 1 to
18, 2 to 17, ..., r to (19 − r), ..., and 18 to 1. (Note that the mean rank is the midpoint, in this case
(18+1)/2 = 9.5, and −(r−r̄)+r̄ = 2r̄−r = 2(max(r)+min(r))/2−r = 19−r.) The class specification
names the attributes and scales the part-worth utilities to sum to zero within each attribute.

The output statement creates the out= data set, which contains the original variables, transformed
variables, and indicator variables. The predicted utilities for all combinations are written to this
data set by the p option (for predicted values). The ireplace option specifies that the transformed
independent variables replace the original independent variables, since both are the same.

Here are the results of the conjoint analysis. Recall that we used an ods exclude statement and we
used PROC TEMPLATE on page 485 to customize the output from PROC TRANSREG.

Frozen Diet Entrees

The TRANSREG Procedure

Dependent Variable Monotone(Rank)

Class Level Information

Class Levels Values

Ingredient 3 Beef Chicken Turkey

Fat 3 2 Grams 5 Grams 8 Grams

Price 3 $1.99 $2.29 $2.59

Calories 2 250 350
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Number of Observations Read 18
Number of Observations Used 18

TRANSREG Univariate Algorithm Iteration History for Monotone(Rank)

Iteration Average Maximum Criterion
Number Change Change R-Square Change Note

-------------------------------------------------------------------------
1 0.07276 0.10014 0.99174
2 0.00704 0.01074 0.99977 0.00802
3 0.00468 0.00710 0.99990 0.00013
4 0.00311 0.00470 0.99995 0.00006
5 0.00207 0.00312 0.99998 0.00003
6 0.00138 0.00208 0.99999 0.00001
7 0.00092 0.00138 1.00000 0.00001
8 0.00061 0.00092 1.00000 0.00000
9 0.00041 0.00061 1.00000 0.00000
10 0.00027 0.00041 1.00000 0.00000
11 0.00018 0.00027 1.00000 0.00000
12 0.00012 0.00018 1.00000 0.00000
13 0.00008 0.00012 1.00000 0.00000
14 0.00005 0.00008 1.00000 0.00000
15 0.00004 0.00005 1.00000 0.00000
16 0.00002 0.00004 1.00000 0.00000
17 0.00002 0.00002 1.00000 0.00000
18 0.00001 0.00002 1.00000 0.00000
19 0.00001 0.00001 1.00000 0.00000 Converged

Algorithm converged.

Frozen Diet Entrees

The TRANSREG Procedure

The TRANSREG Procedure Hypothesis Tests for Monotone(Rank)

Root MSE 0.00007166 R-Square 1.0000
Dependent Mean 9.50000 Adj R-Sq 1.0000
Coeff Var 0.00075429
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Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 9.5000 0.00002

Ingredient, Beef 6.0281 0.00002 74.999
Ingredient, Chicken -6.0281 0.00002
Ingredient, Turkey -0.0000 0.00002

Fat, 2 Grams 2.0094 0.00002 25.000
Fat, 5 Grams 0.0000 0.00002
Fat, 8 Grams -2.0094 0.00002

Price, $1.99 0.0000 0.00002 0.000
Price, $2.29 0.0000 0.00002
Price, $2.59 -0.0000 0.00002

Calories, 250 0.0001 0.00002 0.001
Calories, 350 -0.0001 0.00002

The standard errors are not adjusted for the fact that
the dependent variable was transformed and so are
generally liberal (too small).

We see in the conjoint output that main ingredient was the most important attribute at almost 75%
and that beef was preferred over turkey, which was preferred over chicken. We also see that fat content
was the second most important attribute at 25% and lower fat is preferred over higher fat. Price and
calories only account for essentially none of the preference.

Next, the products in the out= data set are sorted by their predicted utility and the combinations
are printed along with their rank, transformed and reflected rank, and predicted values (predicted
utility). The variable Rank is the original rank variable; TRank contains the transformation of rank,
in this case the reflection and monotonic transformation; and PRank contains the predicted utilities or
predicted values. The first letter of the variable name comes from the first letter of “Transformation”
and “Predicted”.

proc sort; by descending prank; run;

proc print label;
var ingredient fat price calories rank trank prank;
label trank = ’Reflected Rank’

prank = ’Utilities’;
run;
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Frozen Diet Entrees

Reflected
Obs Ingredient Fat Price Calories Rank Rank Utilities

1 Beef 2 Grams $1.99 250 1 17.5375 17.5375
2 Beef 2 Grams $1.99 350 2 17.5373 17.5373
3 Beef 5 Grams $2.29 250 3 15.5282 15.5281
4 Beef 5 Grams $2.29 350 4 15.5279 15.5280
5 Beef 8 Grams $2.59 250 5 13.5188 13.5188
6 Beef 8 Grams $2.59 350 6 13.5186 13.5186
7 Turkey 2 Grams $2.59 250 7 11.5095 11.5094
8 Turkey 2 Grams $2.59 350 8 11.5092 11.5093
9 Turkey 5 Grams $1.99 250 9 9.5001 9.5001
10 Turkey 5 Grams $1.99 350 10 9.4999 9.4999
11 Turkey 8 Grams $2.29 250 11 7.4908 7.4907
12 Turkey 8 Grams $2.29 350 12 7.4905 7.4906
13 Chicken 2 Grams $2.29 250 14 5.4813 5.4814
14 Chicken 2 Grams $2.29 350 13 5.4813 5.4812
15 Chicken 5 Grams $2.59 250 16 3.4719 3.4720
16 Chicken 5 Grams $2.59 350 15 3.4719 3.4719
17 Chicken 8 Grams $1.99 250 18 1.4626 1.4627
18 Chicken 8 Grams $1.99 350 17 1.4626 1.4625

It is interesting to see that the sorted combinations support the information in the utilities table. The
combinations are perfectly sorted on beef, turkey, and chicken. Furthermore, within ties in the main
ingredient, the products are sorted by fat content.
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Frozen Diet Entrées Example (Advanced)

This example is an advanced version of the previous example. It illustrates conjoint analysis with more
than one subject. It has six parts.

• The %MktEx macro is used to generate an experimental design.

• Holdout observations are generated.

• The descriptions of the products are printed for data collection.

• The data are collected, entered, and processed.

• The metric conjoint analysis is performed.

• Results are summarized across subjects.

Creating a Design with the %MktEx Macro

The first thing you need to do in a conjoint study is decide on the product attributes and levels.
Then you create the experimental design. We will use the same experimental design as we used in the
previous example. The attributes and levels are shown in the table.

Factor Levels
Main Ingredient Chicken Beef Turkey
Fat Claim Per Serving 8 Grams 5 Grams 2 Grams
Price $2.59 $2.29 $1.99
Calories 350 250

We will create our designs in the same way as we did in the previous example, starting on page 498.
Only the random number seed has changed. Like before, we use the %MktEval macro to check the
one-way and two-way frequencies and to ensure that each combination only appears once. See page
597 for macro documentation and information on installing and using SAS autocall macros.

title ’Frozen Diet Entrees’;

proc format;
value if 1=’Chicken’ 2=’Beef’ 3=’Turkey’;
value ff 1=’8 Grams’ 2=’5 Grams’ 3=’2 Grams’;
value pf 1=’$2.59’ 2=’$2.29’ 3=’$1.99’;
value cf 1=’350’ 2=’250’;
run;

%mktex(3 3 3 2, n=18, seed=205)
%mktlab(vars=Ingredient Fat Price Calories)

%mkteval;
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Frozen Diet Entrees

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 100.0000 100.0000 Tab
1 End 100.0000

Frozen Diet Entrees

The OPTEX Procedure

Class Level Information

Class Levels -Values-

x1 3 1 2 3
x2 3 1 2 3
x3 3 1 2 3
x4 2 1 2

Frozen Diet Entrees

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.6667

Frozen Diet Entrees
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

Ingredient Fat Price Calories

Ingredient 1 0 0 0
Fat 0 1 0 0
Price 0 0 1 0
Calories 0 0 0 1
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Frozen Diet Entrees
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Ingredient 6 6 6
Fat 6 6 6
Price 6 6 6
Calories 9 9
Ingredient Fat 2 2 2 2 2 2 2 2 2
Ingredient Price 2 2 2 2 2 2 2 2 2
Ingredient Calories 3 3 3 3 3 3
Fat Price 2 2 2 2 2 2 2 2 2
Fat Calories 3 3 3 3 3 3
Price Calories 3 3 3 3 3 3
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This design is 100% efficient, perfectly balanced and orthogonal, and each product occurs exactly once.

Designing Holdouts

The next steps add holdout observations to the design and display the results. Holdouts are ranked
by the subjects but are analyzed with zero weight to exclude them from contributing to the utility
computations. The correlation between the ranks for holdouts and their predicted utilities provide an
indication of the validity of the results of the study.

The first %MktEx step recreates the formats and the design (just so you can see all of the code for a
design with holdouts in one step). The next %MktEx step adds four holdouts to the randomized design
created from the previous step. The specification options=nodups (no duplicates) ensures that the
holdouts do not match products already in the design. The first %MktEval step evaluates just the
original design, excluding the holdouts. The second %MktEval step evaluates the entire design. Both
%MktEval steps ensure that the variable w, which flags the active and holdout observations, is excluded
and not treated as a factor. The %MktLab step gives the factors informative names and assigns formats.
Unlike the previous examples, this time we directly assign the formats in the %MktLab macro using the
statements= option, specifying a complete format statement.

title ’Frozen Diet Entrees’;

proc format;
value if 1=’Chicken’ 2=’Beef’ 3=’Turkey’;
value ff 1=’8 Grams’ 2=’5 Grams’ 3=’2 Grams’;
value pf 1=’$2.59’ 2=’$2.29’ 3=’$1.99’;
value cf 1=’350’ 2=’250’;
run;

%mktex(3 3 3 2, n=18, seed=205)

%mktex(3 3 3 2, n=22, init=randomized, holdouts=4, options=nodups, seed=368)
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proc print data=randomized; run;

%mkteval(data=randomized(where=(w=1)), factors=x:);
%mkteval(data=randomized(drop=w));

%mktlab(data=randomized, out=sasuser.dietdes,
vars=Ingredient Fat Price Calories,
statements=format Ingredient if. fat ff. price pf. calories cf.)

proc print; run;

Here is the last part of the output from the first %MktEx step, which shows that the macro found a
100% efficient design.

Frozen Diet Entrees

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 100.0000 100.0000 100.0000 0.6667

Next, is some of the output from the %MktEx step that finds the holdouts. Notice that the macro
immediately enters the design refinement step.

Frozen Diet Entrees

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 98.0764 Ini

1 Start 98.0764 Pre,Mut,Ann
1 22 1 98.2421 98.2421 Conforms
1 End 98.2421

2 Start 98.2421 Pre,Mut,Ann
2 2 1 98.2421 98.2421 Conforms
2 End 98.2421

3 Start 98.2421 Pre,Mut,Ann
3 2 1 98.2421 98.2421 Conforms
3 End 98.2421
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4 Start 98.2421 Pre,Mut,Ann
4 2 1 98.2421 98.2421 Conforms
4 End 98.2421

5 Start 98.2421 Pre,Mut,Ann
5 2 1 98.2421 98.2421 Conforms
5 End 98.2421

NOTE: Stopping since it appears that no improvement is possible.

Next, the raw design is printed. Observations with w equal to 1 comprise the original design. The
observations with a missing w are the holdouts.

Frozen Diet Entrees

Obs x1 x2 x3 x4 w

1 2 3 1 2 .
2 2 2 1 2 1
3 3 3 3 1 1
4 3 3 3 2 1
5 3 1 1 1 1
6 1 3 1 1 1
7 1 3 1 2 1
8 1 1 2 1 1
9 2 2 1 1 1

10 3 2 2 2 1
11 2 2 3 1 .
12 2 3 2 2 1
13 3 1 1 2 1
14 2 1 3 2 1
15 3 2 1 1 .
16 1 2 3 1 1
17 1 1 2 2 1
18 1 2 2 2 .
19 2 3 2 1 1
20 3 2 2 1 1
21 1 2 3 2 1
22 2 1 3 1 1
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Here is the evaluation of the original design.

Frozen Diet Entrees
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4

x1 1 0 0 0
x2 0 1 0 0
x3 0 0 1 0
x4 0 0 0 1

Frozen Diet Entrees
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316

Frequencies

x1 6 6 6
x2 6 6 6
x3 6 6 6
x4 9 9
x1 x2 2 2 2 2 2 2 2 2 2
x1 x3 2 2 2 2 2 2 2 2 2
x1 x4 3 3 3 3 3 3
x2 x3 2 2 2 2 2 2 2 2 2
x2 x4 3 3 3 3 3 3
x3 x4 3 3 3 3 3 3
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Here is an evaluation of the design with the holdouts.

Frozen Diet Entrees
Canonical Correlations Between the Factors

There are 0 Canonical Correlations Greater Than 0.316

x1 x2 x3 x4

x1 1 0.09 0.17 0.11
x2 0.09 1 0.09 0.11
x3 0.17 0.09 1 0.11
x4 0.11 0.11 0.11 1
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Frozen Diet Entrees
Summary of Frequencies

There are 0 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

* x1 7 8 7
* x2 6 9 7
* x3 8 7 7

x4 11 11
* x1 x2 2 3 2 2 3 3 2 3 2
* x1 x3 2 3 2 3 2 3 3 2 2
* x1 x4 3 4 4 4 4 3
* x2 x3 2 2 2 3 3 3 3 2 2
* x2 x4 3 3 5 4 3 4
* x3 x4 4 4 3 4 4 3

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1

Here is the design, printed with descriptive factor names and formats.

Frozen Diet Entrees

Obs Ingredient Fat Price Calories w

1 Beef 2 Grams $2.59 250 .
2 Beef 5 Grams $2.59 250 1
3 Turkey 2 Grams $1.99 350 1
4 Turkey 2 Grams $1.99 250 1
5 Turkey 8 Grams $2.59 350 1

6 Chicken 2 Grams $2.59 350 1
7 Chicken 2 Grams $2.59 250 1
8 Chicken 8 Grams $2.29 350 1
9 Beef 5 Grams $2.59 350 1
10 Turkey 5 Grams $2.29 250 1

11 Beef 5 Grams $1.99 350 .
12 Beef 2 Grams $2.29 250 1
13 Turkey 8 Grams $2.59 250 1
14 Beef 8 Grams $1.99 250 1
15 Turkey 5 Grams $2.59 350 .
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16 Chicken 5 Grams $1.99 350 1
17 Chicken 8 Grams $2.29 250 1
18 Chicken 5 Grams $2.29 250 .
19 Beef 2 Grams $2.29 350 1
20 Turkey 5 Grams $2.29 350 1
21 Chicken 5 Grams $1.99 250 1
22 Beef 8 Grams $1.99 350 1

Print the Stimuli

Once the design is generated, the stimuli (descriptions of the combinations) must be generated for data
collection. They are printed using the exact same step as we used on page 502.

title;
data _null_;

file print;
set sasuser.dietdes;
put ///

+3 ingredient ’Entree’ @50 ’(’ _n_ +(-1) ’)’ /
+3 ’With ’ fat ’of Fat and ’ calories ’Calories’ /
+3 ’Now for Only ’ Price +(-1) ’.’///;

if mod(_n_, 6) = 0 then put _page_;
run;

In the interest of space, only the first three are shown.

Beef Entree (1)
With 2 Grams of Fat and 250 Calories
Now for Only $2.59.

Beef Entree (2)
With 5 Grams of Fat and 250 Calories
Now for Only $2.59.

Turkey Entree (3)
With 2 Grams of Fat and 350 Calories
Now for Only $1.99.

Data Collection, Entry, and Preprocessing

The next step in the conjoint analysis study is data collection and entry. Each subject was asked to take
the 22 cards and rank them from the most preferred combination to the least preferred combination.
The combination numbers are entered as data. The data follow the datalines statement in the next
DATA step. For the first subject, 4 was most preferred, 3 was second most preferred, ..., and 5 was the
least preferred combination. The DATA step validates the data entry and converts the input to ranks.
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title ’Frozen Diet Entrees’;

%let m = 22; /* number of combinations */

* Read the input data and convert to ranks;
data ranks(drop=i k c1-c&m);

input c1-c&m;
array c[&m];
array r[&m];
do i = 1 to &m;

k = c[i];
if 1 le k le &m then do;

if r[k] ne . then
put ’ERROR: For subject ’ _n_ +(-1) ’, combination ’ k

’is given more than once.’;
r[k] = i; /* Convert to ranks. */
end;

else put ’ERROR: For subject ’ _n_ +(-1) ’, combination ’ k
’is invalid.’;

end;

do i = 1 to &m;
if r[i] = . then

put ’ERROR: For subject ’ _n_ +(-1) ’, combination ’ i
’is not given.’;

end;
name = ’Subj’ || put(_n_, z2.);
datalines;

4 3 7 21 12 10 6 19 1 16 18 11 20 14 17 15 2 22 9 8 13 5
4 12 3 1 19 7 10 6 11 21 16 2 18 20 15 9 14 22 13 17 5 8
4 3 7 12 19 21 1 6 10 18 16 11 20 15 2 14 9 17 22 8 13 5
4 12 1 10 21 14 18 3 7 2 17 13 19 11 22 20 16 15 6 9 5 8
4 21 14 11 16 3 12 22 19 18 10 17 8 20 7 1 6 2 9 13 15 5
4 21 16 12 3 14 11 22 18 19 7 10 1 17 8 6 2 20 9 13 15 5
12 4 19 1 3 7 6 21 18 11 16 2 10 20 9 15 14 17 22 8 13 5
4 21 3 16 14 11 12 22 18 10 19 20 17 8 7 6 1 2 13 15 9 5
4 21 3 16 11 14 22 12 18 10 20 19 17 8 7 6 1 13 15 2 9 5
4 3 14 11 21 12 16 22 19 10 18 20 17 1 7 8 2 13 9 6 15 5
15 22 17 21 6 11 13 19 4 12 3 18 9 7 1 10 8 20 14 16 5 2
12 4 3 7 21 19 1 18 11 6 16 2 14 10 17 22 20 9 15 8 13 5
;

The macro variable &m is set to 22, the number of combinations. This is done to make it easier to
modify the code for future use with different sized studies. For each subject, the numbers of the 22
products are read into the variables c1 through c22. The do loop, do i = 1 to &m, loops over each
of the products. Consider the first product: k is set to c[i], which is c[1], which is 4 since the fourth
product was ranked first by the first subject. The first data integrity check, if 1 le k le &m then
do ensures that the number is in the valid range, 1 to 22. Otherwise an error is printed. Since the
number is valid, r[k] is checked to see if it is missing. If it is not missing, another error is printed.
The array r consists of 22 variables r1 through 22. These variables start out each pass through the
DATA step as missing and end up as the ranks. If r[k] eq ., then the kth combination has not had
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a rank assigned yet so everything is fine. If r[k] ne ., the same number appears twice in a subject’s
data so there is something wrong with the data entry. The statement r[k] = i assigns the ranks. For
subject 1 and the first product, k = c[i] = c[1] = 4 so the rank of the fourth product is set to 1
(r[k] = r[4] = i = 1). For subject 1 and the second product, k = c[i] = c[2] = 3 so the rank of
the third product is set to 2 (r[k] = r[3] = i = 2). For subject 1 and the last product, k = c[i]
= c[22] = 5 so the rank of the fifth product is set to 22 (r[k] = r[5] = i = 22). At the end of the
do i = 1 to &m loop, each of the 22 variables in r1-r22 should have been set to exactly one rank. If
any of these variables are missing, then one or more product numbers did not appear in the data, so
this is flagged as an error. The statement name = ’Subj’ || put( n , z2.) creates a subject ID of
the form Subj01, Subj02, ..., Subj12.

Say there was a mistake in data entry for the first subject−say product 17 had been entered as 7
instead of 17. We would get the following error messages.

ERROR: For subject 1, combination 7 is given more than once.
ERROR: For subject 1, combination 17 is not given.

If for the first subject, the 17 had been entered as 117 instead of 17, we would get the following error
messages.

ERROR: For subject 1, combination 117 is invalid.
ERROR: For subject 1, combination 17 is not given.

The next step transposes the data set from one row per subject to one row per product. The id name
statement on PROC TRANSPOSE names the rank variables Subj01 through Subj12. Later, we will
need to sort by these names. That is why we used leading zeros and names like Subj01 instead of
Subj1. Next, the input data set is merged with the design.

proc transpose data=ranks out=ranks2;
id name;
run;

data both;
merge sasuser.dietdes ranks2;
drop _name_;
run;

proc print label;
title2 ’Data and Design Together’;
run;

Frozen Diet Entrees
Data and Design Together

Obs Ingredient Fat Price Calories w Subj01 Subj02 Subj03 Subj04

1 Beef 2 Grams $2.59 250 . 9 4 7 3
2 Beef 5 Grams $2.59 250 1 17 12 15 10
3 Turkey 2 Grams $1.99 350 1 2 3 2 8
4 Turkey 2 Grams $1.99 250 1 1 1 1 1
5 Turkey 8 Grams $2.59 350 1 22 21 22 21
6 Chicken 2 Grams $2.59 350 1 7 8 8 19
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7 Chicken 2 Grams $2.59 250 1 3 6 3 9
8 Chicken 8 Grams $2.29 350 1 20 22 20 22
9 Beef 5 Grams $2.59 350 1 19 16 17 20
10 Turkey 5 Grams $2.29 250 1 6 7 9 4
11 Beef 5 Grams $1.99 350 . 12 9 12 14
12 Beef 2 Grams $2.29 250 1 5 2 4 2
13 Turkey 8 Grams $2.59 250 1 21 19 21 12
14 Beef 8 Grams $1.99 250 1 14 17 16 6
15 Turkey 5 Grams $2.59 350 . 16 15 14 18
16 Chicken 5 Grams $1.99 350 1 10 11 11 17
17 Chicken 8 Grams $2.29 250 1 15 20 18 11
18 Chicken 5 Grams $2.29 250 . 11 13 10 7
19 Beef 2 Grams $2.29 350 1 8 5 5 13
20 Turkey 5 Grams $2.29 350 1 13 14 13 16
21 Chicken 5 Grams $1.99 250 1 4 10 6 5
22 Beef 8 Grams $1.99 350 1 18 18 19 15

Obs Subj05 Subj06 Subj07 Subj08 Subj09 Subj10 Subj11 Subj12

1 16 13 4 17 17 14 15 7
2 18 17 12 18 20 17 22 12
3 6 5 5 3 3 2 11 3
4 1 1 2 1 1 1 9 2
5 22 22 22 22 22 22 21 22
6 17 16 7 16 16 20 5 10
7 15 11 6 15 15 15 14 4
8 13 15 20 14 14 16 17 20
9 19 19 15 21 21 19 13 18
10 11 12 13 10 10 10 16 14
11 4 7 10 6 5 4 6 9
12 7 4 1 7 8 6 10 1
13 20 20 21 19 18 18 7 21
14 3 6 17 5 6 3 19 13
15 21 21 16 20 19 21 1 19
16 5 3 11 4 4 7 20 11
17 12 14 18 13 13 13 3 15
18 10 9 9 9 9 11 12 8
19 9 10 3 11 12 9 8 6
20 14 18 14 12 11 12 18 17
21 2 2 8 2 2 5 4 5
22 8 8 19 8 7 8 2 16

One more data set manipulation is sometimes necessary−the addition of simulation observations. Sim-
ulation observations are not rated by the subjects and do not contribute to the analysis. They are
scored as passive observations. Simulations are what-if combinations. They are combinations that are
entered to get a prediction of what their utility would have been if they had been rated. In this ex-
ample, all combinations are added as simulations. The %MktEx macro is called to make a full-factorial
design. The n= specification accepts expressions, so n=3*3*3*2 and n=54 are equivalent. The data
all step reads in the design and data followed by the simulation observations. The flag variable f
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indicates when the simulation observations are being processed. Simulation observations are given a
weight of 0 to exclude them from the analysis and to distinguish them from the holdouts. Notice that
the dependent variable has missing values for the simulations and nonmissing values for the holdouts
and active observations.

proc format;
value wf 1 = ’Active’

. = ’Holdout’
0 = ’Simulation’;

run;

%mktex(3 3 3 2, n=3*3*3*2)
%mktlab(data=design, vars=Ingredient Fat Price Calories)

data all;
set both final(in=f);
if f then w = 0;
format w wf.;
run;

proc print data=all(Obs=25 drop=subj04-subj12) label;
title2 ’Some of the Final Data Set’;
run;

Here the data for the first three subjects and the first 25 rows of the data set.

Frozen Diet Entrees
Some of the Final Data Set

Obs Ingredient Fat Price Calories w Subj01 Subj02 Subj03

1 Beef 2 Grams $2.59 250 Holdout 9 4 7
2 Beef 5 Grams $2.59 250 Active 17 12 15
3 Turkey 2 Grams $1.99 350 Active 2 3 2
4 Turkey 2 Grams $1.99 250 Active 1 1 1
5 Turkey 8 Grams $2.59 350 Active 22 21 22
6 Chicken 2 Grams $2.59 350 Active 7 8 8
7 Chicken 2 Grams $2.59 250 Active 3 6 3
8 Chicken 8 Grams $2.29 350 Active 20 22 20
9 Beef 5 Grams $2.59 350 Active 19 16 17
10 Turkey 5 Grams $2.29 250 Active 6 7 9
11 Beef 5 Grams $1.99 350 Holdout 12 9 12
12 Beef 2 Grams $2.29 250 Active 5 2 4
13 Turkey 8 Grams $2.59 250 Active 21 19 21
14 Beef 8 Grams $1.99 250 Active 14 17 16
15 Turkey 5 Grams $2.59 350 Holdout 16 15 14
16 Chicken 5 Grams $1.99 350 Active 10 11 11
17 Chicken 8 Grams $2.29 250 Active 15 20 18
18 Chicken 5 Grams $2.29 250 Holdout 11 13 10
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19 Beef 2 Grams $2.29 350 Active 8 5 5
20 Turkey 5 Grams $2.29 350 Active 13 14 13
21 Chicken 5 Grams $1.99 250 Active 4 10 6
22 Beef 8 Grams $1.99 350 Active 18 18 19
23 Chicken 8 Grams $2.59 350 Simulation . . .
24 Chicken 8 Grams $2.59 350 Simulation . . .
25 Chicken 8 Grams $2.59 350 Simulation . . .

Metric Conjoint Analysis

In this part of this example, the conjoint analysis is performed with PROC TRANSREG.

ods exclude notes mvanova anova;
proc transreg data=all utilities short separators=’, ’

method=morals outtest=utils;
title2 ’Conjoint Analysis’;
model identity(subj: / reflect) =

class(Ingredient Fat Price Calories / zero=sum);
weight w;
output p ireplace out=results coefficients;
run;

The proc, model, and output statements are typical for a conjoint analysis of rank-order data with
more than one subject. (In this analysis, we perform a metric conjoint analysis. It is more typical to
perform nonmetric conjoint analysis of rank-order data. However, it is not absolutely required.) The
proc statement specifies method=morals, which fits the conjoint analysis model separately for each
subject. The proc statement also requests an outtest= data set, which contains the ANOVA and
part-worth utilities tables from the printed output. In the model statement, the dependent variable
list subj: specifies all variables in the DATA= data set that begin with the prefix subj (in this case
subj01-subj12). The weight variable designates the active (weight = 1), holdout (weight = .), and
simulation (weight = 0) observations. Only the active observations are used to compute the part-worth
utilities. However, predicted utilities are computed for all observations, including active, holdouts, and
simulations, using those part-worths. The output statement creates an out= data set beginning with
all results for the first subject, followed by all subject two results, and so on.

Here are the results. Recall that we used an ods exclude statement and we used PROC TEMPLATE
on page 485 to customize the output from PROC TRANSREG. There is one set of output for each
subject. Conjoint analysis fits individual-level models.

Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Class Level Information

Class Levels Values

Ingredient 3 Chicken Beef Turkey



522 TS-722H − Conjoint Analysis

Fat 3 8 Grams 5 Grams 2 Grams

Price 3 $2.59 $2.29 $1.99

Calories 2 350 250

Number of Observations Read 76
Number of Observations Used 18
Sum of Weights Read 18
Sum of Weights Used 18

Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj01)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj01)

Root MSE 1.81046 R-Square 0.9618
Dependent Mean 11.38889 Adj R-Sq 0.9351
Coeff Var 15.89675

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.3889 0.42673

Ingredient, Chicken 1.5556 0.60349 13.095
Ingredient, Beef -2.1111 0.60349
Ingredient, Turkey 0.5556 0.60349

Fat, 8 Grams -6.9444 0.60349 50.000
Fat, 5 Grams -0.1111 0.60349
Fat, 2 Grams 7.0556 0.60349

Price, $2.59 -3.4444 0.60349 23.810
Price, $2.29 0.2222 0.60349
Price, $1.99 3.2222 0.60349

Calories, 350 -1.8333 0.42673 13.095
Calories, 250 1.8333 0.42673
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj02)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj02)

Root MSE 1.30809 R-Square 0.9788
Dependent Mean 11.77778 Adj R-Sq 0.9640
Coeff Var 11.10646

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.7778 0.30832

Ingredient, Chicken -1.0556 0.43603 8.451
Ingredient, Beef 0.1111 0.43603
Ingredient, Turkey 0.9444 0.43603

Fat, 8 Grams -7.7222 0.43603 64.789
Fat, 5 Grams 0.1111 0.43603
Fat, 2 Grams 7.6111 0.43603

Price, $2.59 -1.8889 0.43603 15.493
Price, $2.29 0.1111 0.43603
Price, $1.99 1.7778 0.43603

Calories, 350 -1.3333 0.30832 11.268
Calories, 250 1.3333 0.30832
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj03)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj03)

Root MSE 1.15470 R-Square 0.9844
Dependent Mean 11.66667 Adj R-Sq 0.9735
Coeff Var 9.89743

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.6667 0.27217

Ingredient, Chicken 0.6667 0.38490 6.667
Ingredient, Beef -1.0000 0.38490
Ingredient, Turkey 0.3333 0.38490

Fat, 8 Grams -7.6667 0.38490 62.000
Fat, 5 Grams -0.1667 0.38490
Fat, 2 Grams 7.8333 0.38490

Price, $2.59 -2.6667 0.38490 20.667
Price, $2.29 0.1667 0.38490
Price, $1.99 2.5000 0.38490

Calories, 350 -1.3333 0.27217 10.667
Calories, 250 1.3333 0.27217
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj04)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj04)

Root MSE 1.05935 R-Square 0.9849
Dependent Mean 11.72222 Adj R-Sq 0.9743
Coeff Var 9.03711

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.7222 0.24969

Ingredient, Chicken -2.1111 0.35312 13.490
Ingredient, Beef 0.7222 0.35312
Ingredient, Turkey 1.3889 0.35312

Fat, 8 Grams -2.7778 0.35312 22.484
Fat, 5 Grams -0.2778 0.35312
Fat, 2 Grams 3.0556 0.35312

Price, $2.59 -3.4444 0.35312 25.054
Price, $2.29 0.3889 0.35312
Price, $1.99 3.0556 0.35312

Calories, 350 -5.0556 0.24969 38.972
Calories, 250 5.0556 0.24969
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj05)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj05)

Root MSE 1.02198 R-Square 0.9854
Dependent Mean 11.22222 Adj R-Sq 0.9752
Coeff Var 9.10676

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.2222 0.24088

Ingredient, Chicken 0.5556 0.34066 7.407
Ingredient, Beef 0.5556 0.34066
Ingredient, Turkey -1.1111 0.34066

Fat, 8 Grams -1.7778 0.34066 17.037
Fat, 5 Grams -0.2778 0.34066
Fat, 2 Grams 2.0556 0.34066

Price, $2.59 -7.2778 0.34066 63.704
Price, $2.29 0.2222 0.34066
Price, $1.99 7.0556 0.34066

Calories, 350 -1.3333 0.24088 11.852
Calories, 250 1.3333 0.24088
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj06)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj06)

Root MSE 1.67000 R-Square 0.9636
Dependent Mean 11.27778 Adj R-Sq 0.9381
Coeff Var 14.80785

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.2778 0.39362

Ingredient, Chicken 1.1111 0.55667 11.015
Ingredient, Beef 0.6111 0.55667
Ingredient, Turkey -1.7222 0.55667

Fat, 8 Grams -2.8889 0.55667 24.622
Fat, 5 Grams -0.5556 0.55667
Fat, 2 Grams 3.4444 0.55667

Price, $2.59 -6.2222 0.55667 51.836
Price, $2.29 -0.8889 0.55667
Price, $1.99 7.1111 0.55667

Calories, 350 -1.6111 0.39362 12.527
Calories, 250 1.6111 0.39362
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj07)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj07)

Root MSE 1.06979 R-Square 0.9857
Dependent Mean 11.88889 Adj R-Sq 0.9756
Coeff Var 8.99821

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.8889 0.25215

Ingredient, Chicken 0.2222 0.35660 7.353
Ingredient, Beef 0.7222 0.35660
Ingredient, Turkey -0.9444 0.35660

Fat, 8 Grams -7.6111 0.35660 68.382
Fat, 5 Grams -0.2778 0.35660
Fat, 2 Grams 7.8889 0.35660

Price, $2.59 -1.9444 0.35660 15.441
Price, $2.29 0.3889 0.35660
Price, $1.99 1.5556 0.35660

Calories, 350 -1.0000 0.25215 8.824
Calories, 250 1.0000 0.25215
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj08)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj08)

Root MSE 0.79582 R-Square 0.9915
Dependent Mean 11.16667 Adj R-Sq 0.9855
Coeff Var 7.12677

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.1667 0.18758

Ingredient, Chicken 0.5000 0.26527 4.412
Ingredient, Beef -0.5000 0.26527
Ingredient, Turkey 0.0000 0.26527

Fat, 8 Grams -2.3333 0.26527 20.588
Fat, 5 Grams 0.0000 0.26527
Fat, 2 Grams 2.3333 0.26527

Price, $2.59 -7.3333 0.26527 64.706
Price, $2.29 -0.0000 0.26527
Price, $1.99 7.3333 0.26527

Calories, 350 -1.1667 0.18758 10.294
Calories, 250 1.1667 0.18758
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj09)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj09)

Root MSE 1.05935 R-Square 0.9850
Dependent Mean 11.27778 Adj R-Sq 0.9745
Coeff Var 9.39325

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.2778 0.24969

Ingredient, Chicken 0.6111 0.35312 7.389
Ingredient, Beef -1.0556 0.35312
Ingredient, Turkey 0.4444 0.35312

Fat, 8 Grams -2.0556 0.35312 18.473
Fat, 5 Grams -0.0556 0.35312
Fat, 2 Grams 2.1111 0.35312

Price, $2.59 -7.3889 0.35312 65.764
Price, $2.29 -0.0556 0.35312
Price, $1.99 7.4444 0.35312

Calories, 350 -0.9444 0.24969 8.374
Calories, 250 0.9444 0.24969
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj10)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj10)

Root MSE 0.90062 R-Square 0.9889
Dependent Mean 11.27778 Adj R-Sq 0.9812
Coeff Var 7.98577

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.2778 0.21228

Ingredient, Chicken -1.3889 0.30021 9.722
Ingredient, Beef 0.9444 0.30021
Ingredient, Turkey 0.4444 0.30021

Fat, 8 Grams -2.0556 0.30021 18.750
Fat, 5 Grams -0.3889 0.30021
Fat, 2 Grams 2.4444 0.30021

Price, $2.59 -7.2222 0.30021 59.028
Price, $2.29 0.2778 0.30021
Price, $1.99 6.9444 0.30021

Calories, 350 -1.5000 0.21228 12.500
Calories, 250 1.5000 0.21228
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj11)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj11)

Root MSE 7.42369 R-Square 0.2393
Dependent Mean 12.16667 Adj R-Sq -0.2932
Coeff Var 61.01660

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 12.1667 1.74978

Ingredient, Chicken 1.6667 2.47456 23.950
Ingredient, Beef -0.1667 2.47456
Ingredient, Turkey -1.5000 2.47456

Fat, 8 Grams 0.6667 2.47456 45.378
Fat, 5 Grams -3.3333 2.47456
Fat, 2 Grams 2.6667 2.47456

Price, $2.59 -1.5000 2.47456 21.429
Price, $2.29 0.1667 2.47456
Price, $1.99 1.3333 2.47456

Calories, 350 -0.6111 1.74978 9.244
Calories, 250 0.6111 1.74978
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Frozen Diet Entrees
Conjoint Analysis

The TRANSREG Procedure

Identity(Subj12)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Subj12)

Root MSE 1.49443 R-Square 0.9717
Dependent Mean 11.66667 Adj R-Sq 0.9519
Coeff Var 12.80944

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 11.6667 0.35224

Ingredient, Chicken 0.8333 0.49814 8.974
Ingredient, Beef 0.6667 0.49814
Ingredient, Turkey -1.5000 0.49814

Fat, 8 Grams -6.1667 0.49814 51.923
Fat, 5 Grams -1.1667 0.49814
Fat, 2 Grams 7.3333 0.49814

Price, $2.59 -2.8333 0.49814 23.718
Price, $2.29 -0.5000 0.49814
Price, $1.99 3.3333 0.49814

Calories, 350 -2.0000 0.35224 15.385
Calories, 250 2.0000 0.35224



534 TS-722H − Conjoint Analysis

Next, we will print some of the output data set to see the predicted utilities for the first two subjects.

proc print data=results(drop=_depend_ t_depend_ intercept &_trgind) label;
title2 ’Predicted Utility’;
where w ne 0 and _depvar_ le ’Identity(Subj02)’ and not (_type_ =: ’M’);
by _depvar_;
label p_depend_ = ’Predicted Utility’;
run;

We print TYPE , NAME , and the weight variable, w; drop the original and transformed dependent
variable, depend and t depend ; print the predicted values (predicted utilities), p depend ; drop the
intercept and coded independent variables; and print the original class variables. Note that the macro
variable & trgind is automatically created by PROC TRANSREG and its value is a list of the names
of the coded variables. The where statement is used to exclude the simulation observations and just
show results for the first two subjects. Here are the predicted utilities for each of the rated products
for the first two subjects.

Frozen Diet Entrees
Predicted Utility

----------- Dependent Variable Transformation(Name)=Identity(Subj01) -----------

Predicted
Obs _TYPE_ _NAME_ w Utility Ingredient Fat Price Calories

1 ROW1 Holdout 14.7222 Beef 2 Grams $2.59 250
2 SCORE ROW2 Active 7.5556 Beef 5 Grams $2.59 250
3 SCORE ROW3 Active 20.3889 Turkey 2 Grams $1.99 350
4 SCORE ROW4 Active 24.0556 Turkey 2 Grams $1.99 250
5 SCORE ROW5 Active -0.2778 Turkey 8 Grams $2.59 350
6 SCORE ROW6 Active 14.7222 Chicken 2 Grams $2.59 350
7 SCORE ROW7 Active 18.3889 Chicken 2 Grams $2.59 250
8 SCORE ROW8 Active 4.3889 Chicken 8 Grams $2.29 350
9 SCORE ROW9 Active 3.8889 Beef 5 Grams $2.59 350
10 SCORE ROW10 Active 13.8889 Turkey 5 Grams $2.29 250
11 ROW11 Holdout 10.5556 Beef 5 Grams $1.99 350
12 SCORE ROW12 Active 18.3889 Beef 2 Grams $2.29 250
13 SCORE ROW13 Active 3.3889 Turkey 8 Grams $2.59 250
14 SCORE ROW14 Active 7.3889 Beef 8 Grams $1.99 250
15 ROW15 Holdout 6.5556 Turkey 5 Grams $2.59 350
16 SCORE ROW16 Active 14.2222 Chicken 5 Grams $1.99 350
17 SCORE ROW17 Active 8.0556 Chicken 8 Grams $2.29 250
18 ROW18 Holdout 14.8889 Chicken 5 Grams $2.29 250
19 SCORE ROW19 Active 14.7222 Beef 2 Grams $2.29 350
20 SCORE ROW20 Active 10.2222 Turkey 5 Grams $2.29 350
21 SCORE ROW21 Active 17.8889 Chicken 5 Grams $1.99 250
22 SCORE ROW22 Active 3.7222 Beef 8 Grams $1.99 350
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----------- Dependent Variable Transformation(Name)=Identity(Subj02) -----------

Predicted
Obs _TYPE_ _NAME_ w Utility Ingredient Fat Price Calories

79 ROW1 Holdout 18.9444 Beef 2 Grams $2.59 250
80 SCORE ROW2 Active 11.4444 Beef 5 Grams $2.59 250
81 SCORE ROW3 Active 20.7778 Turkey 2 Grams $1.99 350
82 SCORE ROW4 Active 23.4444 Turkey 2 Grams $1.99 250
83 SCORE ROW5 Active 1.7778 Turkey 8 Grams $2.59 350
84 SCORE ROW6 Active 15.1111 Chicken 2 Grams $2.59 350
85 SCORE ROW7 Active 17.7778 Chicken 2 Grams $2.59 250
86 SCORE ROW8 Active 1.7778 Chicken 8 Grams $2.29 350
87 SCORE ROW9 Active 8.7778 Beef 5 Grams $2.59 350
88 SCORE ROW10 Active 14.2778 Turkey 5 Grams $2.29 250
89 ROW11 Holdout 12.4444 Beef 5 Grams $1.99 350
90 SCORE ROW12 Active 20.9444 Beef 2 Grams $2.29 250
91 SCORE ROW13 Active 4.4444 Turkey 8 Grams $2.59 250
92 SCORE ROW14 Active 7.2778 Beef 8 Grams $1.99 250
93 ROW15 Holdout 9.6111 Turkey 5 Grams $2.59 350
94 SCORE ROW16 Active 11.2778 Chicken 5 Grams $1.99 350
95 SCORE ROW17 Active 4.4444 Chicken 8 Grams $2.29 250
96 ROW18 Holdout 12.2778 Chicken 5 Grams $2.29 250
97 SCORE ROW19 Active 18.2778 Beef 2 Grams $2.29 350
98 SCORE ROW20 Active 11.6111 Turkey 5 Grams $2.29 350
99 SCORE ROW21 Active 13.9444 Chicken 5 Grams $1.99 250

100 SCORE ROW22 Active 4.6111 Beef 8 Grams $1.99 350

Analyzing Holdouts

The next steps display the correlations between the predicted utility for holdout observations and their
actual ratings. These correlations provide a measure of the validity of the results, since the holdout
observations have zero weight and do not contribute to any of the calculations. The Pearson correlations
are the ordinary correlation coefficients, and the Kendall Tau’s are rank-based measures of correlation.
These correlations should always be large. Subjects whose correlations are small may be unreliable.

PROC CORR is used to produce the correlations. Since the output is not very compact, ODS is
used to suppress the normal printed output (ods listing close), output the Pearson correlations to
an output data set P (PearsonCorr=p), and output the Kendall correlations to an output data set K
(KendallCorr=k). The listing is reopened for normal output (ods listing), the two tables are merged
renaming the variables to identify the correlation type, the subject number is pulled out of the subject
variable names, and the results are printed.
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ods output KendallCorr=k PearsonCorr=p;
ods listing close;
proc corr nosimple noprob kendall pearson

data=results(where=(w=.));
title2 ’Holdout Validation Results’;
var p_depend_;
with t_depend_;
by notsorted _depvar_;
run;

ods listing;

data both(keep=subject pearson kendall);
length Subject 8;
merge p(rename=(p_depend_=Pearson))

k(rename=(p_depend_=Kendall));
subject = input(substr(_depvar_, 14, 2), best2.);
run;

proc print; run;

Here are the results.

Frozen Diet Entrees
Holdout Validation Results

Obs Subject Pearson Kendall

1 1 0.93848 0.66667
2 2 0.94340 1.00000
3 3 0.99038 1.00000
4 4 0.97980 1.00000
5 5 0.98930 1.00000
6 6 0.98649 1.00000
7 7 0.99029 1.00000
8 8 0.99296 1.00000
9 9 0.99873 1.00000
10 10 0.99973 1.00000
11 11 -0.98184 -1.00000
12 12 0.92920 1.00000

Most of the correlations look great! However, the results from subject 11 look suspect. Subject 11’s
holdout correlations are negative. We can return to page 532 and look at the conjoint results. Subject
11 has an R2 of 0.2393. In contrast, all of the other subjects have an R2 over 0.95. Subject 11 almost
certainly did not take the task seriously, so his or her results will be discarded.

data results2;
set results;
if not (index(_depvar_, ’11’));
run;
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data utils2;
set utils;
if not (index(_depvar_, ’11’));
run;

Simulations

The next steps display simulation observations. The most preferred combinations are printed for each
subject.

proc sort data=results2(where=(w=0)) out=sims(drop=&_trgind);
by _depvar_ descending p_depend_;
run;

data sims; /* Pull out first 10 for each subject. */
set sims;
by _depvar_;
retain n 0;
if first._depvar_ then n = 0;
n = n + 1;
if n le 10;
drop w _depend_ t_depend_ n _name_ _type_ intercept;
run;

proc print data=sims label;
by _depvar_ ;
title2 ’Simulations Sorted by Decreasing Predicted Utility’;
title3 ’Just the Ten Most Preferred Combinations are Printed’;
label p_depend_ = ’Predicted Utility’;
run;

Frozen Diet Entrees
Simulations Sorted by Decreasing Predicted Utility
Just the Ten Most Preferred Combinations are Printed

----------- Dependent Variable Transformation(Name)=Identity(Subj01) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

1 22.0556 Chicken 2 Grams $2.29 250
2 22.0556 Chicken 2 Grams $2.29 250
3 22.0556 Chicken 2 Grams $2.29 250
4 21.3889 Chicken 2 Grams $1.99 350
5 21.3889 Chicken 2 Grams $1.99 350
6 21.3889 Chicken 2 Grams $1.99 350
7 20.3889 Turkey 2 Grams $1.99 350
8 20.3889 Turkey 2 Grams $1.99 350
9 20.3889 Turkey 2 Grams $1.99 350

10 18.3889 Beef 2 Grams $2.29 250
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----------- Dependent Variable Transformation(Name)=Identity(Subj02) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

11 20.9444 Beef 2 Grams $2.29 250
12 20.9444 Beef 2 Grams $2.29 250
13 20.9444 Beef 2 Grams $2.29 250
14 20.7778 Turkey 2 Grams $1.99 350
15 20.7778 Turkey 2 Grams $1.99 350
16 20.7778 Turkey 2 Grams $1.99 350
17 19.7778 Chicken 2 Grams $2.29 250
18 19.7778 Chicken 2 Grams $2.29 250
19 19.7778 Chicken 2 Grams $2.29 250
20 19.7778 Turkey 2 Grams $2.59 250

----------- Dependent Variable Transformation(Name)=Identity(Subj03) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

21 21.6667 Chicken 2 Grams $2.29 250
22 21.6667 Chicken 2 Grams $2.29 250
23 21.6667 Chicken 2 Grams $2.29 250
24 21.3333 Chicken 2 Grams $1.99 350
25 21.3333 Chicken 2 Grams $1.99 350
26 21.3333 Chicken 2 Grams $1.99 350
27 21.0000 Turkey 2 Grams $1.99 350
28 21.0000 Turkey 2 Grams $1.99 350
29 21.0000 Turkey 2 Grams $1.99 350
30 20.0000 Beef 2 Grams $2.29 250

----------- Dependent Variable Transformation(Name)=Identity(Subj04) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

31 20.9444 Beef 2 Grams $2.29 250
32 20.9444 Beef 2 Grams $2.29 250
33 20.9444 Beef 2 Grams $2.29 250
34 20.2778 Beef 5 Grams $1.99 250
35 20.2778 Beef 5 Grams $1.99 250
36 20.2778 Beef 5 Grams $1.99 250
37 18.4444 Turkey 8 Grams $1.99 250
38 18.4444 Turkey 8 Grams $1.99 250
39 18.4444 Turkey 8 Grams $1.99 250
40 18.1111 Chicken 2 Grams $2.29 250
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----------- Dependent Variable Transformation(Name)=Identity(Subj05) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

41 19.8889 Beef 5 Grams $1.99 250
42 19.8889 Beef 5 Grams $1.99 250
43 19.8889 Beef 5 Grams $1.99 250
44 19.5556 Chicken 2 Grams $1.99 350
45 19.5556 Chicken 2 Grams $1.99 350
46 19.5556 Chicken 2 Grams $1.99 350
47 18.3889 Beef 8 Grams $1.99 250
48 18.3889 Beef 8 Grams $1.99 250
49 18.3889 Beef 8 Grams $1.99 250
50 17.8889 Turkey 2 Grams $1.99 350

----------- Dependent Variable Transformation(Name)=Identity(Subj06) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

51 21.3333 Chicken 2 Grams $1.99 350
52 21.3333 Chicken 2 Grams $1.99 350
53 21.3333 Chicken 2 Grams $1.99 350
54 20.0556 Beef 5 Grams $1.99 250
55 20.0556 Beef 5 Grams $1.99 250
56 20.0556 Beef 5 Grams $1.99 250
57 18.5000 Turkey 2 Grams $1.99 350
58 18.5000 Turkey 2 Grams $1.99 350
59 18.5000 Turkey 2 Grams $1.99 350
60 17.7222 Beef 8 Grams $1.99 250

----------- Dependent Variable Transformation(Name)=Identity(Subj07) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

61 21.8889 Beef 2 Grams $2.29 250
62 21.8889 Beef 2 Grams $2.29 250
63 21.8889 Beef 2 Grams $2.29 250
64 21.3889 Chicken 2 Grams $2.29 250
65 21.3889 Chicken 2 Grams $2.29 250
66 21.3889 Chicken 2 Grams $2.29 250
67 20.5556 Chicken 2 Grams $1.99 350
68 20.5556 Chicken 2 Grams $1.99 350
69 20.5556 Chicken 2 Grams $1.99 350
70 19.3889 Turkey 2 Grams $1.99 350
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----------- Dependent Variable Transformation(Name)=Identity(Subj08) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

71 20.1667 Chicken 2 Grams $1.99 350
72 20.1667 Chicken 2 Grams $1.99 350
73 20.1667 Chicken 2 Grams $1.99 350
74 19.6667 Turkey 2 Grams $1.99 350
75 19.6667 Turkey 2 Grams $1.99 350
76 19.6667 Turkey 2 Grams $1.99 350
77 19.1667 Beef 5 Grams $1.99 250
78 19.1667 Beef 5 Grams $1.99 250
79 19.1667 Beef 5 Grams $1.99 250
80 17.8333 Chicken 5 Grams $1.99 350

----------- Dependent Variable Transformation(Name)=Identity(Subj09) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

81 20.5000 Chicken 2 Grams $1.99 350
82 20.5000 Chicken 2 Grams $1.99 350
83 20.5000 Chicken 2 Grams $1.99 350
84 20.3333 Turkey 2 Grams $1.99 350
85 20.3333 Turkey 2 Grams $1.99 350
86 20.3333 Turkey 2 Grams $1.99 350
87 18.5556 Beef 5 Grams $1.99 250
88 18.5556 Beef 5 Grams $1.99 250
89 18.5556 Beef 5 Grams $1.99 250
90 18.3333 Chicken 5 Grams $1.99 350

----------- Dependent Variable Transformation(Name)=Identity(Subj10) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

91 20.2778 Beef 5 Grams $1.99 250
92 20.2778 Beef 5 Grams $1.99 250
93 20.2778 Beef 5 Grams $1.99 250
94 19.6111 Turkey 2 Grams $1.99 350
95 19.6111 Turkey 2 Grams $1.99 350
96 19.6111 Turkey 2 Grams $1.99 350
97 18.6111 Beef 8 Grams $1.99 250
98 18.6111 Beef 8 Grams $1.99 250
99 18.6111 Beef 8 Grams $1.99 250

100 18.1111 Turkey 8 Grams $1.99 250



Frozen Diet Entrées Example (Advanced) 541

----------- Dependent Variable Transformation(Name)=Identity(Subj12) -----------

Predicted
Obs Utility Ingredient Fat Price Calories

101 21.3333 Chicken 2 Grams $2.29 250
102 21.3333 Chicken 2 Grams $2.29 250
103 21.3333 Chicken 2 Grams $2.29 250
104 21.1667 Chicken 2 Grams $1.99 350
105 21.1667 Chicken 2 Grams $1.99 350
106 21.1667 Chicken 2 Grams $1.99 350
107 21.1667 Beef 2 Grams $2.29 250
108 21.1667 Beef 2 Grams $2.29 250
109 21.1667 Beef 2 Grams $2.29 250
110 18.8333 Turkey 2 Grams $1.99 350

Summarizing Results Across Subjects

Conjoint analyses are performed on an individual basis, but usually the goal is to summarize the results
across subjects. The outtest= data set contains all of the information in the printed output and can
be manipulated to create additional reports including a list of the individual R2s and the average of
the importance values across subjects. Here is a listing of the variables in the outtest= data set.

proc contents data=utils2 position;
ods select position;
title2 ’Variables in the OUTTEST= Data Set’;
run;

Frozen Diet Entrees
Variables in the OUTTEST= Data Set

The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Label

1 _DEPVAR_ Char 42 Dependent Variable Transformation(Name)
2 _TYPE_ Char 8
3 Title Char 80 Title
4 Variable Char 42 Variable
5 Coefficient Num 8 Coefficient
6 Statistic Char 24 Statistic
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7 Value Num 8 Value
8 NumDF Num 8 Num DF
9 DenDF Num 8 Den DF
10 SSq Num 8 Sum of Squares
11 MeanSquare Num 8 Mean Square
12 F Num 8 F Value
13 NumericP Num 8 Numeric (Approximate) p Value
14 P Char 9 Formatted p Value
15 LowerLimit Num 8 95% Lower Confidence Limit
16 UpperLimit Num 8 95% Upper Confidence Limit
17 StdError Num 8 Standard Error
18 Importance Num 8 Importance (% Utility Range)
19 Label Char 256 Label

The individual R2s are displayed by printing the Value variable for observations whose Statistic
value is “R-Square”.

proc print data=utils2 label;
title2 ’R-Squares’;
id _depvar_;
var value;
format value 4.2;
where statistic = ’R-Square’;
label value = ’R-Square’ _depvar_ = ’Subject’;
run;

Frozen Diet Entrees
R-Squares

Subject R-Square

Identity(Subj01) 0.96
Identity(Subj02) 0.98
Identity(Subj03) 0.98
Identity(Subj04) 0.98
Identity(Subj05) 0.99
Identity(Subj06) 0.96
Identity(Subj07) 0.99
Identity(Subj08) 0.99
Identity(Subj09) 0.99
Identity(Subj10) 0.99
Identity(Subj12) 0.97

The next steps extract the importance values and create a table. The DATA step extracts the im-
portance values and creates row and column labels. The PROC TRANSPOSE step creates a subjects
by attributes matrix from a vector (of the number of subjects times the number of attribute values).
PROC PRINT displays the importance values, and PROC MEANS displays the average importances.
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data im;
set utils2;
if n(importance); /* Exclude all missing, including specials.*/
_depvar_ = scan(_depvar_, 2); /* Discard transformation. */
label = scan(label, 1, ’,’); /* Use up to comma for label. */
keep importance _depvar_ label;
run;

proc transpose data=im out=im(drop=_name_ _label_);
id label;
by notsorted _depvar_;
var importance;
label _depvar_ = ’Subject’;
run;

proc print label;
title2 ’Importances’;
format _numeric_ 2.;
id _depvar_;
run;

proc means mean;
title2 ’Average Importances’;
run;

Frozen Diet Entrees
Importances

Subject Ingredient Fat Price Calories

Subj01 13 50 24 13
Subj02 8 65 15 11
Subj03 7 62 21 11
Subj04 13 22 25 39
Subj05 7 17 64 12
Subj06 11 25 52 13
Subj07 7 68 15 9
Subj08 4 21 65 10
Subj09 7 18 66 8
Subj10 10 19 59 13
Subj12 9 52 24 15



544 TS-722H − Conjoint Analysis

Frozen Diet Entrees
Average Importances

The MEANS Procedure

Variable Mean
--------------------------
Ingredient 8.9069044
Fat 38.0953010
Price 39.0198700
Calories 13.9779245
--------------------------

On the average, price is the most important attribute followed very closely by fat content. These two
attributes on the average account for 77% of preference. Calories and main ingredient account for the
remaining 23%. Note that everyone does not have the same pattern of importance values. However, it
is a little hard to compare subjects just by looking at the numbers.

We can make a nicer display of importances with stars flagging the most important attributes for each
product as follows. These steps replace each importance variable with its formatted value followed by
zero stars for 0 - 30, one star for 30 - 45, two stars for 45 - 60, three stars for 60 - 75, and so on. The
value returned by the ceil function is the number of characters that are extracted from the string
’ ******’.

data im2;
set im;
label c1 = ’Ingredient’ c2 = ’Fat’ c3 = ’Price’ c4 = ’Calories’;
c1 = put(ingredient, 2.) || substr(’ ******’, 1, ceil(ingredient / 15));
c2 = put(fat , 2.) || substr(’ ******’, 1, ceil(fat / 15));
c3 = put(price , 2.) || substr(’ ******’, 1, ceil(price / 15));
c4 = put(calories , 2.) || substr(’ ******’, 1, ceil(calories / 15));
run;

proc print label;
title2 ’Importances’;
var c1-c4;
id _depvar_;
run;
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Frozen Diet Entrees
Importances

Subject Ingredient Fat Price Calories

Subj01 13 50 ** 24 13
Subj02 8 65 *** 15 11
Subj03 7 62 *** 21 11
Subj04 13 22 25 39 *
Subj05 7 17 64 *** 12
Subj06 11 25 52 ** 13
Subj07 7 68 *** 15 9
Subj08 4 21 65 *** 10
Subj09 7 18 66 *** 8
Subj10 10 19 59 ** 13
Subj12 9 52 ** 24 15

Subject 4 is more concerned about calories. However, most individuals seem to fall into one of two
groups, either primarily price conscious then fat conscious, or primarily fat conscious then price con-
scious.

Both the out= data set and the outtest= data set contain the part-worth utilities. In the out= data
set, they are contained in the observations whose type value is ’M COEFFI’. The part-worth utilities
are the multiple regression coefficients. The names of the variables that contain the part-worth utilities
are stored in the macro variable & trgind, which is automatically created by PROC TRANSREG.

proc print data=results2 label;
title2 ’Part-Worth Utilities’;
where _type_ = ’M COEFFI’;
id _name_;
var &_trgind;
run;
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Frozen Diet Entrees
Part-Worth Utilities

Ingredient, Ingredient, Ingredient, Fat, 8 Fat, 5
_NAME_ Chicken Beef Turkey Grams Grams

Subj01 1.55556 -2.11111 0.55556 -6.94444 -0.11111
Subj02 -1.05556 0.11111 0.94444 -7.72222 0.11111
Subj03 0.66667 -1.00000 0.33333 -7.66667 -0.16667
Subj04 -2.11111 0.72222 1.38889 -2.77778 -0.27778
Subj05 0.55556 0.55556 -1.11111 -1.77778 -0.27778
Subj06 1.11111 0.61111 -1.72222 -2.88889 -0.55556
Subj07 0.22222 0.72222 -0.94444 -7.61111 -0.27778
Subj08 0.50000 -0.50000 0.00000 -2.33333 0.00000
Subj09 0.61111 -1.05556 0.44444 -2.05556 -0.05556
Subj10 -1.38889 0.94444 0.44444 -2.05556 -0.38889
Subj12 0.83333 0.66667 -1.50000 -6.16667 -1.16667

Fat, 2 Price, Price, Price, Calories, Calories,
_NAME_ Grams $2.59 $2.29 $1.99 350 250

Subj01 7.05556 -3.44444 0.22222 3.22222 -1.83333 1.83333
Subj02 7.61111 -1.88889 0.11111 1.77778 -1.33333 1.33333
Subj03 7.83333 -2.66667 0.16667 2.50000 -1.33333 1.33333
Subj04 3.05556 -3.44444 0.38889 3.05556 -5.05556 5.05556
Subj05 2.05556 -7.27778 0.22222 7.05556 -1.33333 1.33333
Subj06 3.44444 -6.22222 -0.88889 7.11111 -1.61111 1.61111
Subj07 7.88889 -1.94444 0.38889 1.55556 -1.00000 1.00000
Subj08 2.33333 -7.33333 -0.00000 7.33333 -1.16667 1.16667
Subj09 2.11111 -7.38889 -0.05556 7.44444 -0.94444 0.94444
Subj10 2.44444 -7.22222 0.27778 6.94444 -1.50000 1.50000
Subj12 7.33333 -2.83333 -0.50000 3.33333 -2.00000 2.00000

These part-worth utilities can be clustered, for example using PROC FASTCLUS.

proc fastclus data=results2 maxclusters=3 out=clusts;
where _type_ = ’M COEFFI’;
id _name_;
var &_trgind;
run;

proc sort; by cluster; run;

proc print label;
title2 ’Part-Worth Utilities, Clustered’;
by cluster;
id _name_;
var &_trgind;
run;
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Frozen Diet Entrees
Part-Worth Utilities, Clustered

---------------------------------- Cluster=1 -----------------------------------

Ingredient, Ingredient, Ingredient, Fat, 8 Fat, 5
_NAME_ Chicken Beef Turkey Grams Grams

Subj05 0.55556 0.55556 -1.11111 -1.77778 -0.27778
Subj06 1.11111 0.61111 -1.72222 -2.88889 -0.55556
Subj08 0.50000 -0.50000 0.00000 -2.33333 0.00000
Subj09 0.61111 -1.05556 0.44444 -2.05556 -0.05556
Subj10 -1.38889 0.94444 0.44444 -2.05556 -0.38889

Fat, 2 Price, Price, Price, Calories, Calories,
_NAME_ Grams $2.59 $2.29 $1.99 350 250

Subj05 2.05556 -7.27778 0.22222 7.05556 -1.33333 1.33333
Subj06 3.44444 -6.22222 -0.88889 7.11111 -1.61111 1.61111
Subj08 2.33333 -7.33333 -0.00000 7.33333 -1.16667 1.16667
Subj09 2.11111 -7.38889 -0.05556 7.44444 -0.94444 0.94444
Subj10 2.44444 -7.22222 0.27778 6.94444 -1.50000 1.50000

---------------------------------- Cluster=2 -----------------------------------

Ingredient, Ingredient, Ingredient, Fat, 8 Fat, 5
_NAME_ Chicken Beef Turkey Grams Grams

Subj01 1.55556 -2.11111 0.55556 -6.94444 -0.11111
Subj02 -1.05556 0.11111 0.94444 -7.72222 0.11111
Subj03 0.66667 -1.00000 0.33333 -7.66667 -0.16667
Subj07 0.22222 0.72222 -0.94444 -7.61111 -0.27778
Subj12 0.83333 0.66667 -1.50000 -6.16667 -1.16667

Fat, 2 Price, Price, Price, Calories, Calories,
_NAME_ Grams $2.59 $2.29 $1.99 350 250

Subj01 7.05556 -3.44444 0.22222 3.22222 -1.83333 1.83333
Subj02 7.61111 -1.88889 0.11111 1.77778 -1.33333 1.33333
Subj03 7.83333 -2.66667 0.16667 2.50000 -1.33333 1.33333
Subj07 7.88889 -1.94444 0.38889 1.55556 -1.00000 1.00000
Subj12 7.33333 -2.83333 -0.50000 3.33333 -2.00000 2.00000
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---------------------------------- Cluster=3 -----------------------------------

Ingredient, Ingredient, Ingredient, Fat, 8 Fat, 5
_NAME_ Chicken Beef Turkey Grams Grams

Subj04 -2.11111 0.72222 1.38889 -2.77778 -0.27778

Fat, 2 Price, Price, Price, Calories, Calories,
_NAME_ Grams $2.59 $2.29 $1.99 350 250

Subj04 3.05556 -3.44444 0.38889 3.05556 -5.05556 5.05556

The clusters reflect what we saw looking at the importance information. Subject 4, who is the only
subject that is primarily calorie conscious, is in a separate cluster from everyone else. Cluster 1 subjects
5, 6, 8, 9, and 10 are primarily price conscious. Cluster 2 subjects 1, 2, 3, 7, and 12 are primarily fat
conscious.
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Spaghetti Sauce

This example uses conjoint analysis in a study of spaghetti sauce preferences. The goal is to investigate
the main effects for all of the attributes and the interaction of brand and price, and to simulate market
share. Rating scale data are gathered from a group of subjects. The example has eight parts.

• An efficient experimental design is generated with the %MktEx macro.

• Descriptions of the spaghetti sauces are generated.

• Data are collected, entered, and processed.

• The metric conjoint analysis is performed with PROC TRANSREG.

• Market share is simulated with the maximum utility model.

• Market share is simulated with the Bradley-Terry-Luce and logit models.

• The simulators are compared.

• Change in market share is investigated.

Create an Efficient Experimental Design with the %MktEx Macro

In this example, subjects were asked to rate their interest in purchasing hypothetical spaghetti sauces.
The table shows the attributes, the attribute levels, and the number of df associated with each effect.

Experimental Design
Effects Levels df
Intercept 1
Brand Pregu, Sundance, Tomato Garden 2
Meat Content Vegetarian, Meat, Italian Sausage 2
Mushroom Content Mushrooms, No Mention 1
Natural Ingredients All Natural Ingredients, No Mention 1
Price $1.99, $2.29, $2.49, $2.79, $2.99 4
Brand × Price 8

The brand names “Pregu”, “Sundance”, and “Tomato Garden” are artificial. Usually, real brand names
would be used−your client’s or company’s brand and the competitors’ brands. The absence of a feature
(for example, no mushrooms) is not mentioned in the product description, hence the “No Mention” in
the table.

In this design there are 19 model df. A design with more than 19 runs must be generated if there are
to be error df. A popular heuristic is to limit the design size to at most 30 runs. In this example,
30 runs allow us to have two observations in each of the 15 brand by price cells. Note however that
when subjects are required to make that many judgments, there is the risk that the quality of the
data will be poor. Caution should be used when generating designs with this many runs. We can use
the %MktRuns macro to evaluate this and other design sizes. See page 597 for macro documentation
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and information on installing and using SAS autocall macros. We specify the number of levels of each
factor as the argument.

title ’Spaghetti Sauces’;

%mktruns( 3 3 2 2 5 )

Spaghetti Sauces

Design Summary

Number of
Levels Frequency

2 2
3 2
5 1

Saturated = 11
Full Factorial = 180

Some Reasonable Cannot Be
Design Sizes Violations Divided By

180 * 0
60 1 9
90 1 4
120 1 9
30 2 4 9
150 2 4 9
210 2 4 9
36 5 5 10 15
72 5 5 10 15
108 5 5 10 15

* - 100% Efficient Design can be made with the MktEx Macro.

We see that 30 is a reasonable size, although it cannot be divided by 9 = 3 × 3 and 4 = 2 × 2, so
perfect orthogonality will not be possible. We would need a much larger size like 60 or 180 to do better.
Note that this output states “Saturated=11” referring to a main-effects model. In this example, we
are also interested in the brand by price interaction. We can run the %MktRuns macro again, this time
specifying the interaction.

%mktruns( 3 3 2 2 5, interact=1*5 )
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Spaghetti Sauces

Design Summary

Number of
Levels Frequency

2 2
3 2
5 1

Spaghetti Sauces

Saturated = 19
Full Factorial = 180

Some Reasonable Cannot Be
Design Sizes Violations Divided By

180 0
90 1 4
60 2 9 45
120 2 9 45
30 3 4 9 45
150 3 4 9 45
210 3 4 9 45
36 8 5 10 15 30 45
72 8 5 10 15 30 45
108 8 5 10 15 30 45

Now the output states “Saturated=19”, which includes the 8 df for the interaction. We see as before
that 30 cannot be divided by 4 = 2× 2. We also see that 30 cannot be divide by 45 = 3× 15 so each
level of meat content will not appear equally often in each brand/price cell. Since we would need a
much larger size to do better, we will use 30 runs.

The next steps create and evaluate the design. First, formats for each of the factors are created using
PROC FORMAT. The %MktEx macro is called to create the design. The factors x1 = Brand and x2 =
Meat are designated as three-level factors, x3 = Mushroom and x4 = Ingredients as two-level factors,
and x5 = Price as a five-level factor. The interact=1*5 option specifies that the interaction between
the first and fifth factors must be estimable (x1 × x5 which is brand by price), n=30 specifies the number
of runs, and seed=289 specifies the random number seed. The where macro provides restrictions that
eliminate unrealistic combinations. Specifically, products at the cheapest price, $1.99, with meat, and
products with Italian Sausage with All Natural Ingredients are eliminated from consideration.

We impose restrictions with the %MktEx macro by writing a macro, with IML statements, that quantifies
the badness of each run of the design. The variable bad is set to zero when everything is fine, and values
larger than zero when the row of the design does not conform to the restrictions. Ideally, when there
are multiple restrictions, as there are here, the variable bad should be set to the number of violations,
so the macro can know when it is moving in the right direction as it changes the design. Our first
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restriction (contribution to the badness value) is (x2 = 3 & x4 = 1) and our second is (x5 = 1 &
(x2 = 2 | x2 = 3)), where & means and and | means or.§ The restrictions correspond to (Meat =
’Italian Sausage’ & Ingredients = ’All Natural’) and (Price = 1.99 & (Meat = ’Meat’ |
Meat = ’Italian Sausage’)). Each of these Boolean or logical expressions evaluates to 1 when the
expression is true and 0 when it is false. The sum of the two restrictions is: 0 - no problem, 1 - one
restriction violation, or 2 - two restriction violations.

The %MktLab macro assigns actual descriptive factor names instead of the default x1-x5 and formats
for the levels. The default input to the %MktLab macro is the data set Randomized, which is the
randomized design created by the %MktEx macro.

The default output from the %MktLab macro is a data set called Final. We instead use the out= option
to store the results in a permanent SAS data set. The %MktEx macro is used to display the frequencies
for each level, the two-way frequencies, and the number of times each product occurs in the design
(five-way frequencies).

title ’Spaghetti Sauces’;

proc format;
value br 1=’Pregu’ 2=’Sundance’ 3=’Tomato Garden’;
value me 1=’Vegetarian’ 2=’Meat’ 3=’Italian Sausage’;
value mu 1=’Mushrooms’ 2=’No Mention’;
value in 1=’All Natural’ 2=’No Mention’;
value pr 1=’1.99’ 2=’2.29’ 3=’2.49’ 4=’2.79’ 5=’2.99’;
run;

%macro where;
bad = (x2 = 3 & x4 = 1) + (x5 = 1 & (x2 = 2 | x2 = 3));
%mend;

%mktex(3 3 2 2 5, interact=1*5, n=30, seed=289, restrictions=where)

%mktlab(vars=Brand Meat Mushroom Ingredients Price,
statements=format brand br. meat me. mushroom mu.

ingredients in. price pr.,
out=sasuser.spag);

%mkteval;

proc print data=sasuser.spag; run;

§In the restrictions macro, you must use the logical symbols | & ∧ ¬ > < >= <= = ∧= ¬= and not the logical
words OR AND NOT GT LT GE LE EQ NE.
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Here is some of the output from the %MktEx macro.

Spaghetti Sauces

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 92.6280 Can
1 2 1 92.6280 92.6280 Conforms
1 End 92.6280

2 Start 78.9640 Tab,Unb
2 28 1 91.5726 Conforms
2 End 91.6084

3 Start 78.9640 Tab,Unb
3 1 1 91.5434 Conforms
3 End 91.6084

4 Start 77.5906 Tab,Ran
4 28 1 91.9486 Conforms
4 5 4 92.6280 92.6280
4 End 92.6280

.

.

.

21 Start 74.7430 Ran,Mut,Ann
21 24 1 89.9706 Conforms
21 End 91.6084

Spaghetti Sauces

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 92.6280 92.6280 Ini

1 Start 92.6280 Can
1 2 1 92.6280 92.6280 Conforms
1 End 92.6280
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Spaghetti Sauces

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 92.6280 92.6280 Ini

1 Start 90.4842 Pre,Mut,Ann
1 2 1 91.2145 Conforms
1 End 91.6084

.

.

.

6 Start 91.1998 Pre,Mut,Ann
6 2 1 91.6084 Conforms
6 End 91.6084

NOTE: Stopping since it appears that no improvement is possible.

Spaghetti Sauces

The OPTEX Procedure

Class Level Information

Class Levels -Values--

x1 3 1 2 3
x2 3 1 2 3
x3 2 1 2
x4 2 1 2
x5 5 1 2 3 4 5

Spaghetti Sauces

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 92.6280 82.6056 97.6092 0.7958

The D-Efficiency looks reasonable at 92.63. For this problem, the full-factorial design is small (180
runs), and the macro found the same D-efficiency several times. This suggests that we have probably
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indeed found the optimal design for this situation. Here is the output from the %MktEval macro.

Spaghetti Sauces
Canonical Correlations Between the Factors

There are 2 Canonical Correlations Greater Than 0.316

Brand Meat Mushroom Ingredients Price

Brand 1 0.21 0 0.17 0
Meat 0.21 1 0.08 0.42 0.52
Mushroom 0 0.08 1 0 0
Ingredients 0.17 0.42 0 1 0.17
Price 0 0.52 0 0.17 1

Spaghetti Sauces
Canonical Correlations > 0.316 Between the Factors

There are 2 Canonical Correlations Greater Than 0.316

r r Square

Meat Price 0.52 0.27
Meat Ingredients 0.42 0.17

Spaghetti Sauces
Summary of Frequencies

There are 2 Canonical Correlations Greater Than 0.316
* - Indicates Unequal Frequencies

Frequencies

Brand 10 10 10
* Meat 15 9 6

Mushroom 15 15
* Ingredients 12 18

Price 6 6 6 6 6
* Brand Meat 4 3 3 5 4 1 6 2 2

Brand Mushroom 5 5 5 5 5 5
* Brand Ingredients 3 7 5 5 4 6

Brand Price 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
* Meat Mushroom 7 8 5 4 3 3
* Meat Ingredients 7 8 5 4 0 6
* Meat Price 6 3 2 2 2 0 2 2 3 2 0 1 2 1 2
* Mushroom Ingredients 6 9 6 9

Mushroom Price 3 3 3 3 3 3 3 3 3 3
* Ingredients Price 3 3 2 2 2 3 3 4 4 4

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
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The meat and price factors are correlated, as are the meat and ingredients factors. This is not surprising
since we excluded cells for these factor combinations and hence forced some correlations. The rest of
the correlations are small.

The frequencies look good. The n-way frequencies at the end of this listing show that each product
occurs only once. Each brand, price, and brand/price combination occurs equally often, as does each
mushroom level. There are more vegetarian sauces (the first formatted level) than either of the meat
sauces because of the restrictions that meat cannot occur at the lowest price and Italian sausage cannot
be paired with all-natural ingredients. The design is shown next.

Spaghetti Sauces

Obs Brand Meat Mushroom Ingredients Price

1 Pregu Meat No Mention No Mention 2.79
2 Tomato Garden Vegetarian No Mention No Mention 2.79
3 Pregu Meat Mushrooms All Natural 2.29
4 Tomato Garden Vegetarian Mushrooms All Natural 2.49
5 Sundance Vegetarian Mushrooms No Mention 1.99
6 Pregu Italian Sausage No Mention No Mention 2.49
7 Tomato Garden Vegetarian No Mention No Mention 2.99
8 Tomato Garden Italian Sausage Mushrooms No Mention 2.29
9 Pregu Vegetarian Mushrooms No Mention 2.49
10 Pregu Vegetarian No Mention No Mention 2.29
11 Sundance Vegetarian Mushrooms No Mention 2.79
12 Tomato Garden Vegetarian Mushrooms No Mention 1.99
13 Sundance Meat No Mention No Mention 2.29
14 Sundance Meat Mushrooms No Mention 2.99
15 Pregu Italian Sausage Mushrooms No Mention 2.79
16 Tomato Garden Italian Sausage Mushrooms No Mention 2.99
17 Sundance Vegetarian Mushrooms All Natural 2.29
18 Pregu Meat Mushrooms All Natural 2.99
19 Tomato Garden Meat No Mention No Mention 2.49
20 Sundance Meat Mushrooms All Natural 2.49
21 Pregu Vegetarian No Mention All Natural 1.99
22 Sundance Meat No Mention All Natural 2.79
23 Tomato Garden Vegetarian No Mention All Natural 1.99
24 Sundance Italian Sausage No Mention No Mention 2.49
25 Sundance Vegetarian No Mention All Natural 1.99
26 Sundance Vegetarian No Mention All Natural 2.99
27 Pregu Italian Sausage No Mention No Mention 2.99
28 Tomato Garden Vegetarian No Mention All Natural 2.29
29 Pregu Vegetarian Mushrooms No Mention 1.99
30 Tomato Garden Meat Mushrooms All Natural 2.79
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Generating the Questionnaire

Next, preparations are made for data collection. A DATA step is used to print descriptions of each
product combination. Here is an example:

Try Pregu brand vegetarian spaghetti sauce, now with
mushrooms. A 26 ounce jar serves four adults for only
$1.99.

Remember that “No Mention” is not mentioned. The following step prints the questionnaires including
a cover sheet.

options ls=80 ps=74 nonumber nodate;
title;

data _null_;
set sasuser.spag;
length lines $ 500 aline $ 60;
file print linesleft=ll;

* Format meat level, preserve ’Italian’ capitalization;
aline = lowcase(put(meat, me.));
if aline =: ’ita’ then substr(aline, 1, 1) = ’I’;

* Format meat differently for ’vegetarian’;
if meat > 1

then lines = ’Try ’ || trim(put(brand, br.)) ||
’ brand spaghetti sauce with ’ || aline;

else lines = ’Try ’ || trim(put(brand, br.)) ||
’ brand ’ || trim(aline) || ’ spaghetti sauce ’;

* Add mushrooms, natural ingredients to text line;
n = (put(ingredients, in.) =: ’All’);
m = (put(mushroom, mu.) =: ’Mus’);

if n or m then do;
lines = trim(lines) || ’, now with’;

if m then do;
lines = trim(lines) || ’ ’ || lowcase(put(mushroom, mu.));
if n then lines = trim(lines) || ’ and’;
end;

if n then lines = trim(lines) || ’ ’ ||
lowcase(put(ingredients, in.)) || ’ ingredients’;

end;

* Add price;
lines = trim(lines) ||

’. A 26 ounce jar serves four adults for only $’ ||
put(price, pr.) || ’.’;
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* Print cover page, with subject number, instructions, and rating scale;
if _n_ = 1 then do;

put ///// +41 ’Subject: ________’ ////
+5 ’Please rate your willingness to purchase the following’ /
+5 ’products on a nine point scale.’ ///
+9 ’1 Definitely Would Not Purchase This Product’ ///
+9 ’2’ ///
+9 ’3 Probably Would Not Purchase This Product’ ///
+9 ’4’ ///
+9 ’5 May or May Not Purchase This Product’ ///
+9 ’6’ ///
+9 ’7 Probably Would Purchase This Product’ ///
+9 ’8’ ///
+9 ’9 Definitely Would Purchase This Product’ /////
+5 ’Please rate every product and be sure to rate’ /
+5 ’each product only once.’ //////
+5 ’Thank you for your participation!’;

put _page_;
end;

if ll < 8 then put _page_;

* Break up description, print on several lines;

start = 1;
do l = 1 to 10 until(aline = ’ ’);

* Find a good place to split, blank or punctuation;
stop = start + 60;
do i = stop to start by -1 while(substr(lines, i, 1) ne ’ ’); end;
do j = i to max(start, i - 8) by -1;

if substr(lines, j, 1) in (’.’ ’,’) then do; i = j; j = 0; end;
end;

stop = i; len = stop + 1 - start;
aline = substr(lines, start, len);
start = stop + 1;
if l = 1 then put +5 _n_ 2. ’) ’ aline;
else put +9 aline;
end;

* Print rating scale;
put +9 ’Definitely Definitely ’ /

+9 ’Would Not 1 2 3 4 5 6 7 8 9 Would ’ /
+9 ’Purchase Purchase ’ //;

run;

options ls=80 ps=60 nonumber nodate;

In the interest of space, not all questions are printed.



Spaghetti Sauce 559

Subject: ________

Please rate your willingness to purchase the following
products on a nine point scale.

1 Definitely Would Not Purchase This Product

2

3 Probably Would Not Purchase This Product

4

5 May or May Not Purchase This Product

6

7 Probably Would Purchase This Product

8

9 Definitely Would Purchase This Product

Please rate every product and be sure to rate
each product only once.

Thank you for your participation!
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1) Try Pregu brand spaghetti sauce with meat. A 26 ounce jar
serves four adults for only $2.79.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

2) Try Tomato Garden brand vegetarian spaghetti sauce.
A 26 ounce jar serves four adults for only $2.79.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

3) Try Pregu brand spaghetti sauce with meat, now with
mushrooms and all natural ingredients. A 26 ounce jar
serves four adults for only $2.29.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

4) Try Tomato Garden brand vegetarian spaghetti sauce, now with
mushrooms and all natural ingredients. A 26 ounce jar
serves four adults for only $2.49.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

5) Try Sundance brand vegetarian spaghetti sauce, now with
mushrooms. A 26 ounce jar serves four adults for only
$1.99.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

6) Try Pregu brand spaghetti sauce with Italian sausage.
A 26 ounce jar serves four adults for only $2.49.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

7) Try Tomato Garden brand vegetarian spaghetti sauce.
A 26 ounce jar serves four adults for only $2.99.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase
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30) Try Tomato Garden brand spaghetti sauce with meat, now with
mushrooms and all natural ingredients. A 26 ounce jar
serves four adults for only $2.79.

Definitely Definitely
Would Not 1 2 3 4 5 6 7 8 9 Would
Purchase Purchase

Data Processing

The data are entered next. Some cases have ordinary ’.’ missing values. This code was used at data
entry for no response. When there were multiple responses or the response was not clear, the special
underscore missing value was used. The statement missing specifies that underscore missing values
are to be expected in the data. The input statement reads the subject number and the 30 ratings. A
name like Subj001, Subj002, ..., Subj030 is created from the subject number. If there are any missing
data, all data for that subject are excluded by the if nmiss(of rate:) = 0 statement.

title ’Spaghetti Sauces’;

data rawdata;
missing _;
input subj @5 (rate1-rate30) (1.);
name = compress(’Sub’ || put(subj, z3.));
if nmiss(of rate:) = 0;
datalines;

1 319591129691132168146121171191
2 749173216928911175549891841791
3 449491116819413186158171961791
.
.
.
14 1139812951994_9466149198915699
.
.
.
19 2214922399981121.1116161941991
.
.
.

;

Next, the data are transposed from one row per subject and 30 columns to one column per subject
and 30 rows, one for each product rated. Then the data are merged with the experimental design.
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proc transpose data=rawdata(drop=subj) out=temp(drop=_name_);
id name;
run;

data inputdata; merge sasuser.spag temp; run;

Metric Conjoint Analysis

Next, we use PROC TRANSREG to perform the conjoint analysis.

ods exclude notes mvanova anova;
proc transreg data=inputdata utilities short separators=’’ ’, ’

lprefix=0 outtest=utils method=morals;
title2 ’Conjoint Analysis’;
model identity(sub:) =

class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results1 coefficients;
run;

The utilities option requests conjoint analysis output, and the short option suppresses the iteration
histories. The lprefix=0 option specifies that zero variable name characters are to be used to construct
the labels for the part-worths; the labels will simply consist of formatted values. The outtest= option
creates an output SAS data set, Utils, that contains all of the statistical results. The method=morals,
algorithm fits the conjoint analysis model separately for each subject. We specify ods exclude notes
mvanova anova to exclude ANOVA information (which we usually want to ignore) and provide more
parsimonious output.

The model statement names the ratings for each subject as dependent variables and the factors as
independent variables. Since this is a metric conjoint analysis, identity is specified for the ratings.
The identity transformation is the no-transformation option, which is used for variables that need to
enter the model with no further manipulations. The factors are specified as class variables, and the
zero=sum option is specified to constrain the parameter estimates to sum to zero within each effect.
The brand | price specification asks for a simple brand effect, a simple price effect, and the brand
* price interaction.

The p option in the output statement requests predicted values, the ireplace option suppresses the
output of transformed independent variables, and the coefficients option requests that the part-
worth utilities be output. These options control the contents of the out=results data set, which
contains the ratings, predicted utilities for each product, indicator variables, and the part-worth utili-
ties.

In the interest of space, only the results for the first subject are printed here. Recall that we used an
ods exclude statement and we used PROC TEMPLATE on page 485 to customize the output from
PROC TRANSREG.
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Conjoint Analysis

The TRANSREG Procedure

Class Level Information

Class Levels Values

Brand 3 Pregu Sundance Tomato Garden

Price 5 1.99 2.29 2.49 2.79 2.99

Meat 3 Vegetarian Meat Italian Sausage

Mushroom 2 Mushrooms No Mention

Ingredients 2 All Natural No Mention

Number of Observations Read 30
Number of Observations Used 30

Conjoint Analysis

The TRANSREG Procedure

Identity(Sub001)
Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Sub001)

Root MSE 2.09608 R-Square 0.8344
Dependent Mean 3.73333 Adj R-Sq 0.5635
Coeff Var 56.14499

Part-Worth Utilities

Importance
Standard (% Utility

Label Utility Error Range)

Intercept 3.0675 0.45364

Pregu 2.0903 0.55937 28.924
Sundance 0.2973 0.55886
Tomato Garden -2.3876 0.55205
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1.99 -0.6836 0.91331 7.134
2.29 0.3815 0.77035
2.49 0.4209 0.78975
2.79 -0.5397 0.79677
2.99 0.4209 0.78975

Pregu, 1.99 0.7430 1.09161 15.639
Pregu, 2.29 0.9491 1.13055
Pregu, 2.49 -0.7433 1.14528
Pregu, 2.79 -1.0115 1.13157
Pregu, 2.99 0.0626 1.13769
Sundance, 1.99 0.0361 1.09135
Sundance, 2.29 -1.2578 1.09310
Sundance, 2.49 -0.1443 1.16287
Sundance, 2.79 1.1633 1.09574
Sundance, 2.99 0.2027 1.12077
Tomato Garden, 1.99 -0.7791 1.08788
Tomato Garden, 2.29 0.3087 1.16798
Tomato Garden, 2.49 0.8876 1.16026
Tomato Garden, 2.79 -0.1518 1.10376
Tomato Garden, 2.99 -0.2654 1.13455

Vegetarian 2.2828 0.68783 27.813
Meat -0.2596 0.70138
Italian Sausage -2.0231 0.86266

Mushrooms 1.5514 0.38441 20.042
No Mention -1.5514 0.38441

All Natural -0.0347 0.45814 0.448
No Mention 0.0347 0.45814

The next steps process the outtest= data set, saving the R2, adjusted R2, and df. Subjects whose
adjusted R2 is less than 0.3 (R2 approximately 0.73) are flagged for exclusion. We want the final
analysis to be based on subjects who seemed to be taking the task seriously. The next steps flag the
subjects whose fit seems bad and create a macro variable &droplist that contains a list of variables
to be dropped from the final analysis.
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data model;
set utils;
if statistic in (’R-Square’, ’Adj R-Sq’, ’Model’);
Subj = scan(_depvar_, 2);
if statistic = ’Model’ then do;

value = numdf;
statistic = ’Num DF’;
output;
value = dendf;
statistic = ’Den DF’;
output;
value = dendf + numdf + 1;
statistic = ’N’;
end;

output;
keep statistic value subj;
run;

proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;

data summ2(drop=list);
length list $ 1000;
retain list;
set summ end=eof;
if adj_r_sq < 0.3 then do;

Small = ’*’;
list = trim(list) || ’ ’ || subj;
end;

if eof then call symput(’droplist’, trim(list));
run;

%put &droplist;

proc print label data=summ2(drop=_name_ _label_); run;

The outtest= data set contains for each subject the ANOVA, R2, and part-worth utility tables. The
numerator df is found in the variable NumDF, the denominator df is found in the variable DenDF, and the
R2 and adjusted R2 are found in the variable Value. The first DATA step processes the outtest= data
set, stores all of the statistics of interest in the variable Value, and discards the extra observations and
variables. The PROC TRANSPOSE step creates a data set with one observation per subject. Here is
the &droplist macro variable.

Sub011 Sub021 Sub031 Sub051 Sub071 Sub081 Sub092 Sub093 Sub094 Sub096

Here is some of the R2 and df summary. We see the df are right, and most of the R2’s look good.
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Conjoint Analysis

Num Den Adj
Obs Subj DF DF N R-Square R-Sq Small

1 Sub001 18 11 30 0.83441 0.56345
2 Sub002 18 11 30 0.91844 0.78497
3 Sub003 18 11 30 0.92908 0.81302
.
.
.
10 Sub010 18 11 30 0.97643 0.93786
.
.
.
84 Sub091 18 11 30 0.85048 0.60581
85 Sub092 18 11 30 0.64600 0.06673 *
86 Sub093 18 11 30 0.45024 -0.44936 *
87 Sub094 18 11 30 0.62250 0.00477 *
88 Sub095 18 11 30 0.85996 0.63081
89 Sub096 18 11 30 0.73321 0.29664 *
90 Sub097 18 11 30 0.94155 0.84589
91 Sub099 18 11 30 0.88920 0.70789
92 Sub100 18 11 30 0.90330 0.74507

We can run the conjoint again, this time using the drop=&droplist data set option to drop the subjects
with poor fit. In the interest of space, the noprint option was specified on this step. The printed output
will be the same as in the previous step, except for the fact that a few subject’s tables are deleted.

proc transreg data=inputdata(drop=&droplist) utilities short noprint
separators=’’ ’, ’ lprefix=0 outtest=utils method=morals;
title2 ’Conjoint Analysis’;
model identity(sub:) =

class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results2 coefficients;
run;

Simulating Market Share

In many conjoint analysis studies, the conjoint analysis is not the primary goal. The conjoint analysis
is used to generate part-worth utilities, which are then used as input to consumer choice and market
share simulators. The end result for a product is its expected “preference share,” which when properly
weighted can be used to predict the proportion of times that the product will be purchased. The effects
on market share of introducing new products can also be simulated.

One of the most popular ways to simulate market share is with the maximum utility model, which
assumes each subject will buy with probability one the product for which he or she has the highest
utility. The probabilities for each product are averaged across subjects to get predicted market share.
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Other simulation methods include the Bradley-Terry-Luce (BTL) model and the logit model. Unlike
the maximum utility model, the BTL and the logit models do not assign all of the probability of
choice to the most preferred alternative. Probability is a continuous function of predicted utility. In
the maximum utility model, probability of choice is a binary step function of utility. In the BTL
model, probability of choice is a linear function of predicted utility. In the logit model, probability
of choice is an increasing nonlinear logit function of predicted utility. The BTL model computes the
probabilities by dividing each utility by the sum of the predicted utilities within each subject. The
logit model divides the exponentiated predicted utilities by the sum of exponentiated utilities, again
within subject.

Maximum Utility: pijk = 1.0 if yijk = MAX(yijk),
0.0 otherwise

BTL: pijk = yijk/
∑ ∑ ∑

yijk

Logit: pijk = exp(yijk)/
∑ ∑ ∑

exp(yijk)

The following plot shows the different assumptions made by the three choice simulators. This plot
shows expected market share for a subject with utilities ranging from one to nine.

M M M M M M M M

M
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L L L L L L
L

L

L

The maximum utility line is flat at zero until it reaches the maximum utility, where it jumps to 1.0.
The BTL line increases from 0.02 to 0.20 as utility ranges from 1 to 9. The logit function increases
exponentially, with small utilities mapping to near-zero probabilities and the largest utility mapping
to a proportion of 0.63.

The maximum utility, BTL, and logit models are based on different assumptions and produce different
results. The maximum utility model has the advantage of being scale-free. Any strictly monotonic
transformation of each subject’s predicted utilities will produce the same market share. However, this
model is unstable because it assigns a zero probability of choice to all alternatives that do not have
the maximum predicted utility, including those that have predicted utilities near the maximum. The
disadvantage of the BTL and logit models is that results are not invariant under linear transformations
of the predicted utilities. These methods are considered inappropriate by some researchers for this
reason. With negative predicted utilities, the BTL method produces negative probabilities, which are
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invalid. The BTL results change when a constant is added to the predicted utilities but do not change
when a constant is multiplied by the predicted utilities. Conversely, the logit results change when a
constant is multiplied by the predicted utilities but do not change when a constant is added to the
predicted utilities. The BTL method is not often used in practice, the logit model is sometimes used,
and the maximum utility model is most often used. Refer to Finkbeiner (1988) for a discussion of
conjoint analysis choice simulators. Do not confuse a logit model choice simulator and the multinomial
logit model; they are quite different.

The three simulation methods will produce different results. This is because all three methods make
different assumptions about how consumers translate utility into choice. To see why the models differ,
imagine a product that is everyone’s second choice. Further imagine that there is wide-spread dis-
agreement on first choice. Every other product is someone’s first choice, and all other products are
preferred about equally often. In the maximum utility model, this second choice product will have zero
probability of choice because no one would choose it first. In the other models, it should be the most
preferred, because for every individual it will have a high, near-maximum probability of choice. Of
course, preference patterns are not usually as weird as the one just described. If consumers are perfectly
rational and always choose the alternative with the highest utility, then the maximum utility model
is correct. However, you need to be aware that your results will depend on the choice of simulator
model and in BTL and logit, the scaling of the utilities. One reason why the discrete choice model
is popular in marketing research is discrete choice models choices directly, whereas conjoint simulates
choices indirectly.

Here is the code that made the plot. You can try this program with different minima and maxima to
see the effects of linear transformations of the predicted utilities.

%let min = 1;
%let max = 9;
%let by = 1;
%let list = &min to &max by &by;
data a;

sumb = 0;
suml = 0;
do u = &list;

logit = exp(u);
btl = u;
sumb = sumb + btl;
suml = suml + logit;
end;

do u = &list;
logit = exp(u);
btl = u;
max = abs(u - (&max)) < (0.5 * (&by));
btl = btl / sumb;
logit = logit / suml;
output;
end;

run;
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goptions ftext=swiss colors=(black) hsize=4.5in vsize=4.5in;
proc gplot;

title h=1.5 ’Simulator Comparisons’;
plot max * u = 1 btl * u = 2 logit * u = 3 /

vaxis=axis2 haxis=axis1 overlay frame;
symbol1 v=M i=step;
symbol2 v=B i=join;
symbol3 v=L i=spline;
axis1 order=(&list) label=(’Utility’);
axis2 order=(0 to 1 by 0.1)

label=(angle=90 "Probability of Choice");
note move=(2.5cm, 9.2cm)

font=swissu ’B - ’ font=swiss ’Bradley-Terry-Luce’;
note move=(2.5cm, 8.7cm)

font=swissu ’L - ’ font=swiss ’Logit’;
note move=(2.5cm, 8.2cm)

font=swissu ’M - ’ font=swiss ’Maximum Utility’;
run; quit;

Simulating Market Share, Maximum Utility Model

This section shows how to use the predicted utilities from a conjoint analysis to simulate choice and
predict market share. The end result for a hypothetical product is its expected market share, which is
a prediction of the proportion of times that the product will be purchased. Note however, that a term
like “expected market share,” while widely used, is a misnomer. Without purchase volume data, it is
unlikely that these numbers would mirror true market share. Nevertheless, conjoint analysis is a useful
and popular marketing research technique.

A SAS macro is used to simulate market share. It takes a method=morals output data set from
PROC TRANSREG and creates a data set with expected market share for each combination. First,
market share is computed with the maximum utility model. The macro finds the most preferred
combination(s) for each subject, which are those combinations with the largest predicted utility, and
assigns the probability that each combination will be purchased. Typically, for each subject, one
product will have a probability of purchase of 1.0, and all other produces will have zero probability of
purchase. However, when two predicted utilities are tied for the maximum, that subject will have two
probabilities of 0.5 and the rest will be zero. The probabilities are averaged across subjects for each
product to get market share. Subjects can be differentially weighted.
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/*---------------------------------------*/
/* Simulate Market Share */
/*---------------------------------------*/

%macro sim(data=_last_, /* SAS data set with utilities. */
idvars=, /* Additional variables to display with */

/* market share results. */
weights=, /* By default, each subject contributes */

/* equally to the market share */
/* computations. To differentially */
/* weight the subjects, specify a vector */
/* of weights, one per subject. */
/* Separate the weights by blanks. */

out=shares, /* Output data set name. */
method=max /* max - maximum utility model. */

/* btl - Bradley-Terry-Luce model. */
/* logit - logit model. */
/* WARNING: The Bradley-Terry-Luce model */
/* and the logit model results are not */
/* invariant under linear */
/* transformations of the utilities. */

); /*---------------------------------------*/

options nonotes;

%if &method = btl or &method = logit %then
%put WARNING: The Bradley-Terry-Luce model and the logit model

results are not invariant under linear transformations of the
utilities.;
%else %if &method ne max %then %do;

%put WARNING: Invalid method &method.. Assuming method=max.;
%let method = max;
%end;

* Eliminate coefficient observations, if any;
data temp1;

set &data(where=(_type_ = ’SCORE’ or _type_ = ’ ’));
run;

* Determine number of runs and subjects.;
proc sql;

create table temp2 as select nruns,
count(nruns) as nsubs, count(distinct nruns) as chk
from (select count( _depvar_) as nruns
from temp1 where _type_ in (’SCORE’, ’ ’) group by _depvar_);

quit;
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data _null_;
set temp2;
call symput(’nruns’, compress(put(nruns, 5.0)));
call symput(’nsubs’, compress(put(nsubs, 5.0)));
if chk > 1 then do;

put ’ERROR: Corrupt input data set.’;
call symput(’okay’, ’no’);
end;

else call symput(’okay’, ’yes’);
run;

%if &okay ne yes %then %do;
proc print;

title2 ’Number of runs should be constant across subjects’;
run;

%goto endit;
%end;

%else %put NOTE: &nruns runs and &nsubs subjects.;

%let w = %scan(&weights, %eval(&nsubs + 1), %str( ));
%if %length(&w) > 0 %then %do;

%put ERROR: Too many weights.;
%goto endit;
%end;

* Form nruns by nsubs data set of utilities;
data temp2;

keep _u1 - _u&nsubs &idvars;
array u[&nsubs] _u1 - _u&nsubs;

do j = 1 to &nruns;

* Read ID variables;
set temp1(keep=&idvars) point = j;

* Read utilities;
k = j;
do i = 1 to &nsubs;

set temp1(keep=p_depend_) point = k;
u[i] = p_depend_;
%if &method = logit %then u[i] = exp(u[i]);;
k = k + &nruns;
end;

output;
end;

stop;
run;
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* Set up for maximum utility model;
%if &method = max %then %do;

* Compute maximum utility for each subject;
proc means data=temp2 noprint;

var _u1-_u&nsubs;
output out=temp1 max=_sum1 - _sum&nsubs;
run;

* Flag maximum utility;
data temp2(keep=_u1 - _u&nsubs &idvars);

if _n_ = 1 then set temp1(drop=_type_ _freq_);
array u[&nsubs] _u1 - _u&nsubs;
array m[&nsubs] _sum1 - _sum&nsubs;
set temp2;
do i = 1 to &nsubs;

u[i] = ((u[i] - m[i]) > -1e-8); /* < 1e-8 is considered 0 */
end;

run;

%end;

* Compute sum for each subject;
proc means data=temp2 noprint;

var _u1-_u&nsubs;
output out=temp1 sum=_sum1 - _sum&nsubs;
run;

* Compute expected market share;
data &out(keep=share &idvars);

if _n_ = 1 then set temp1(drop=_type_ _freq_);
array u[&nsubs] _u1 - _u&nsubs;
array m[&nsubs] _sum1 - _sum&nsubs;
set temp2;

* Compute final probabilities;

do i = 1 to &nsubs;
u[i] = u[i] / m[i];
end;

* Compute expected market share;

%if %length(&weights) = 0 %then %do;
Share = mean(of _u1 - _u&nsubs);
%end;
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%else %do;
Share = 0;
wsum = 0;
%do i = 1 %to &nsubs;

%let w = %scan(&weights, &i, %str( ));
%if %length(&w) = 0 %then %let w = .;
if &w < 0 then do;

if _n_ > 1 then stop;
put "ERROR: Invalid weight &w..";
call symput(’okay’, ’no’);
end;

share = share + &w * _u&i;
wsum = wsum + &w;
%end;

share = share / wsum;
%end;

run;

options notes;

%if &okay ne yes %then %goto endit;

proc sort;
by descending share &idvars;
run;

proc print label noobs;
title2 ’Expected Market Share’;
title3 %if &method = max %then "Maximum Utility Model";

%else %if &method = btl %then "Bradley-Terry-Luce Model";
%else "Logit Model";;

run;

%endit:

%mend;

title ’Spaghetti Sauces’;

%sim(data=results2, out=maxutils, method=max,
idvars=price brand meat mushroom ingredients);
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Spaghetti Sauces
Expected Market Share
Maximum Utility Model

Brand Price Meat Mushroom Ingredients Share

Sundance 1.99 Vegetarian Mushrooms No Mention 0.18293
Pregu 1.99 Vegetarian No Mention All Natural 0.14228
Tomato Garden 2.29 Italian Sausage Mushrooms No Mention 0.12195
Pregu 2.29 Vegetarian No Mention No Mention 0.10976
Pregu 1.99 Vegetarian Mushrooms No Mention 0.10366
Tomato Garden 1.99 Vegetarian Mushrooms No Mention 0.09146
Tomato Garden 1.99 Vegetarian No Mention All Natural 0.07520
Sundance 2.29 Vegetarian Mushrooms All Natural 0.07317
Sundance 1.99 Vegetarian No Mention All Natural 0.05081
Pregu 2.29 Meat Mushrooms All Natural 0.02439
Sundance 2.29 Meat No Mention No Mention 0.01220
Sundance 2.49 Italian Sausage No Mention No Mention 0.01220
Tomato Garden 2.29 Vegetarian No Mention All Natural 0.00000
Pregu 2.49 Vegetarian Mushrooms No Mention 0.00000
Pregu 2.49 Italian Sausage No Mention No Mention 0.00000
Sundance 2.49 Meat Mushrooms All Natural 0.00000
Tomato Garden 2.49 Vegetarian Mushrooms All Natural 0.00000
Tomato Garden 2.49 Meat No Mention No Mention 0.00000
Pregu 2.79 Meat No Mention No Mention 0.00000
Pregu 2.79 Italian Sausage Mushrooms No Mention 0.00000
Sundance 2.79 Vegetarian Mushrooms No Mention 0.00000
Sundance 2.79 Meat No Mention All Natural 0.00000
Tomato Garden 2.79 Vegetarian No Mention No Mention 0.00000
Tomato Garden 2.79 Meat Mushrooms All Natural 0.00000
Pregu 2.99 Meat Mushrooms All Natural 0.00000
Pregu 2.99 Italian Sausage No Mention No Mention 0.00000
Sundance 2.99 Vegetarian No Mention All Natural 0.00000
Sundance 2.99 Meat Mushrooms No Mention 0.00000
Tomato Garden 2.99 Vegetarian No Mention No Mention 0.00000
Tomato Garden 2.99 Italian Sausage Mushrooms No Mention 0.00000

The largest market share (18.29%) is for Sundance brand vegetarian sauce with mushrooms costing
$1.99. The next largest share (14.23%) is Pregu brand vegetarian sauce with all natural ingredients
costing $1.99. Five of the seven most preferred sauces all cost $1.99−the minimum. It is not clear from
this simulation if any brand is the leader.
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Simulating Market Share, Bradley-Terry-Luce and Logit Models

The Bradley-Terry-Luce model and the logit model are also available in the %SIM macro.

title ’Spaghetti Sauces’;

%sim(data=results2, out=btl, method=btl,
idvars=price brand meat mushroom ingredients);

%sim(data=results2, out=logit, method=logit,
idvars=price brand meat mushroom ingredients);

Spaghetti Sauces
Expected Market Share
Bradley-Terry-Luce Model

Brand Price Meat Mushroom Ingredients Share

Pregu 1.99 Vegetarian Mushrooms No Mention 0.053479
Sundance 1.99 Vegetarian Mushrooms No Mention 0.052990
Tomato Garden 1.99 Vegetarian Mushrooms No Mention 0.051751
Pregu 1.99 Vegetarian No Mention All Natural 0.050683
Sundance 1.99 Vegetarian No Mention All Natural 0.050193
Tomato Garden 1.99 Vegetarian No Mention All Natural 0.048955
Sundance 2.29 Vegetarian Mushrooms All Natural 0.048236
Pregu 2.29 Vegetarian No Mention No Mention 0.043972
Tomato Garden 2.29 Vegetarian No Mention All Natural 0.042035
Pregu 2.49 Vegetarian Mushrooms No Mention 0.041532
Pregu 2.29 Meat Mushrooms All Natural 0.041063
Sundance 2.29 Meat No Mention No Mention 0.036321
Tomato Garden 2.29 Italian Sausage Mushrooms No Mention 0.032995
Sundance 2.79 Vegetarian Mushrooms No Mention 0.032067
Sundance 2.49 Meat Mushrooms All Natural 0.031310
Tomato Garden 2.49 Vegetarian Mushrooms All Natural 0.031057
Sundance 2.99 Vegetarian No Mention All Natural 0.026879
Pregu 2.49 Italian Sausage No Mention No Mention 0.026046
Pregu 2.99 Meat Mushrooms All Natural 0.025318
Pregu 2.79 Meat No Mention No Mention 0.025038
Tomato Garden 2.79 Vegetarian No Mention No Mention 0.024325
Pregu 2.79 Italian Sausage Mushrooms No Mention 0.024263
Sundance 2.49 Italian Sausage No Mention No Mention 0.022383
Sundance 2.99 Meat Mushrooms No Mention 0.022264
Tomato Garden 2.99 Vegetarian No Mention No Mention 0.022113
Sundance 2.79 Meat No Mention All Natural 0.021858
Tomato Garden 2.79 Meat Mushrooms All Natural 0.021415
Tomato Garden 2.49 Meat No Mention No Mention 0.019142
Pregu 2.99 Italian Sausage No Mention No Mention 0.016391
Tomato Garden 2.99 Italian Sausage Mushrooms No Mention 0.013926
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Spaghetti Sauces
Expected Market Share

Logit Model

Brand Price Meat Mushroom Ingredients Share

Sundance 1.99 Vegetarian Mushrooms No Mention 0.10463
Pregu 1.99 Vegetarian No Mention All Natural 0.09621
Tomato Garden 1.99 Vegetarian Mushrooms No Mention 0.09001
Pregu 1.99 Vegetarian Mushrooms No Mention 0.08358
Pregu 2.29 Vegetarian No Mention No Mention 0.07755
Sundance 2.29 Vegetarian Mushrooms All Natural 0.07102
Tomato Garden 1.99 Vegetarian No Mention All Natural 0.06872
Tomato Garden 2.29 Italian Sausage Mushrooms No Mention 0.06735
Sundance 1.99 Vegetarian No Mention All Natural 0.06419
Pregu 2.29 Meat Mushrooms All Natural 0.04137
Pregu 2.49 Vegetarian Mushrooms No Mention 0.03578
Sundance 2.29 Meat No Mention No Mention 0.03273
Sundance 2.49 Italian Sausage No Mention No Mention 0.02081
Tomato Garden 2.99 Italian Sausage Mushrooms No Mention 0.02055
Sundance 2.79 Vegetarian Mushrooms No Mention 0.02022
Tomato Garden 2.29 Vegetarian No Mention All Natural 0.01996
Pregu 2.79 Italian Sausage Mushrooms No Mention 0.01233
Pregu 2.49 Italian Sausage No Mention No Mention 0.01199
Sundance 2.49 Meat Mushrooms All Natural 0.01010
Sundance 2.99 Meat Mushrooms No Mention 0.00964
Pregu 2.79 Meat No Mention No Mention 0.00763
Pregu 2.99 Italian Sausage No Mention No Mention 0.00637
Pregu 2.99 Meat Mushrooms All Natural 0.00547
Tomato Garden 2.49 Vegetarian Mushrooms All Natural 0.00538
Tomato Garden 2.79 Meat Mushrooms All Natural 0.00516
Sundance 2.99 Vegetarian No Mention All Natural 0.00399
Sundance 2.79 Meat No Mention All Natural 0.00266
Tomato Garden 2.79 Vegetarian No Mention No Mention 0.00209
Tomato Garden 2.99 Vegetarian No Mention No Mention 0.00162
Tomato Garden 2.49 Meat No Mention No Mention 0.00088

The three methods produce different results.

Change in Market Share

The following steps simulate what would happen to the market if new products were introduced.
Simulation observations are added to the data set and given zero weight. The conjoint analyses are
rerun to compute the predicted utilities for the active observations and the simulations. The maximum
utility model is used.

Recall that the design has numeric variables with values like 1, 2, and 3. Formats are used to print
the descriptions of the levels of the attributes. The first thing we want to do is read in products
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to simulate. We could read in values like 1, 2, and 3 or we could read in more descriptive values
and convert them to numerics using informats. We chose the latter approach. First we use PROC
FORMAT to create the informats. Previously, we created formats with PROC FORMAT by specifying
a value statement followed by pairs of the form numeric-value=descriptive-character-string. We create
an informat with PROC FORMAT by specifying an invalue statement followed by pairs of the form
descriptive-character-string=numeric-value.

title ’Spaghetti Sauces’;

proc format;
invalue inbrand ’Preg’=1 ’Sun’ =2 ’Tom’ =3;
invalue inmeat ’Veg’ =1 ’Meat’=2 ’Ital’=3;
invalue inmush ’Mush’=1 ’No’ =2;
invalue iningre ’Nat’ =1 ’No’ =2;
invalue inprice ’1.99’=1 ’2.29’=2 ’2.49’=3 ’2.79’=4 ’2.99’=5;
run;

Next, we read the observations we want to consider for a sample market using the informats we just
created. An input statement specification of the form “variable : informat” reads values starting with
the first nonblank character.

data simulat;
input brand : inbrand.

meat : inmeat.
mushroom : inmush.
ingredients : iningre.
price : inprice.;

datalines;
Preg Veg Mush Nat 1.99
Sun Veg Mush Nat 1.99
Tom Veg Mush Nat 1.99
Preg Meat Mush Nat 2.49
Sun Meat Mush Nat 2.49
Tom Meat Mush Nat 2.49
Preg Ital Mush Nat 2.79
Sun Ital Mush Nat 2.79
Tom Ital Mush Nat 2.79
;

Next, the original input data set is combined with the simulation observations. The subjects with
poor fit are dropped and a weight variable is created to flag the simulation observations. The weight
variable is not strictly necessary since all of the simulation observations will have missing values on
the ratings so will be excluded from the analysis that way. Still, it is good practice to explicitly use
weights to exclude observations.

data inputdata2(drop=&droplist);
set inputdata(in=w) simulat;
Weight = w;
run;
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proc print;
title2 ’Simulation Observations Have a Weight of Zero’;
id weight;
var brand -- price;
run;

Spaghetti Sauces
Simulation Observations Have a Weight of Zero

Weight Brand Meat Mushroom Ingredients Price

1 Pregu Meat No Mention No Mention 2.79
1 Tomato Garden Vegetarian No Mention No Mention 2.79
1 Pregu Meat Mushrooms All Natural 2.29
1 Tomato Garden Vegetarian Mushrooms All Natural 2.49
1 Sundance Vegetarian Mushrooms No Mention 1.99
1 Pregu Italian Sausage No Mention No Mention 2.49
1 Tomato Garden Vegetarian No Mention No Mention 2.99
1 Tomato Garden Italian Sausage Mushrooms No Mention 2.29
1 Pregu Vegetarian Mushrooms No Mention 2.49
1 Pregu Vegetarian No Mention No Mention 2.29
1 Sundance Vegetarian Mushrooms No Mention 2.79
1 Tomato Garden Vegetarian Mushrooms No Mention 1.99
1 Sundance Meat No Mention No Mention 2.29
1 Sundance Meat Mushrooms No Mention 2.99
1 Pregu Italian Sausage Mushrooms No Mention 2.79
1 Tomato Garden Italian Sausage Mushrooms No Mention 2.99
1 Sundance Vegetarian Mushrooms All Natural 2.29
1 Pregu Meat Mushrooms All Natural 2.99
1 Tomato Garden Meat No Mention No Mention 2.49
1 Sundance Meat Mushrooms All Natural 2.49
1 Pregu Vegetarian No Mention All Natural 1.99
1 Sundance Meat No Mention All Natural 2.79
1 Tomato Garden Vegetarian No Mention All Natural 1.99
1 Sundance Italian Sausage No Mention No Mention 2.49
1 Sundance Vegetarian No Mention All Natural 1.99
1 Sundance Vegetarian No Mention All Natural 2.99
1 Pregu Italian Sausage No Mention No Mention 2.99
1 Tomato Garden Vegetarian No Mention All Natural 2.29
1 Pregu Vegetarian Mushrooms No Mention 1.99
1 Tomato Garden Meat Mushrooms All Natural 2.79
0 Pregu Vegetarian Mushrooms All Natural 1.99
0 Sundance Vegetarian Mushrooms All Natural 1.99
0 Tomato Garden Vegetarian Mushrooms All Natural 1.99
0 Pregu Meat Mushrooms All Natural 2.49
0 Sundance Meat Mushrooms All Natural 2.49
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0 Tomato Garden Meat Mushrooms All Natural 2.49
0 Pregu Italian Sausage Mushrooms All Natural 2.79
0 Sundance Italian Sausage Mushrooms All Natural 2.79
0 Tomato Garden Italian Sausage Mushrooms All Natural 2.79

The next steps run the conjoint analyses suppressing the printed output using the noprint option.
The statement weight weight is specified since we want the simulation observations (which have zero
weight) excluded from contributing to the analysis. However, the procedure will still compute an
expected utility for every observation including observations with zero, missing, and negative weights.
The outtest= data set is created like before so we can check to make sure the df and R2 look reasonable.

ods exclude notes mvanova anova;
proc transreg data=inputdata2 utilities short noprint

separators=’, ’ lprefix=0 method=morals outtest=utils;
title2 ’Conjoint Analysis’;
model identity(sub:) =

class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results3 coefficients;
weight weight;
run;

data model;
set utils;
if statistic in (’R-Square’, ’Adj R-Sq’, ’Model’);
Subj = scan(_depvar_, 2);
if statistic = ’Model’ then do;

value = numdf;
statistic = ’Num DF’;
output;
value = dendf;
statistic = ’Den DF’;
output;
value = dendf + numdf + 1;
statistic = ’N’;
end;

output;
keep statistic value subj;
run;

proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;

proc print label data=summ(drop=_name_ _label_); run;

The SAS log tells us that the nine simulation observations were deleted both because of zero weight
and because of missing values in the dependent variables.
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NOTE: 9 observations were deleted from the analysis but not from the
output data set due to missing values.

NOTE: 9 observations were deleted from the analysis but not from the
output data set due to nonpositive weights.

NOTE: A total of 9 observations were deleted.

The df and R2 results, some of which are shown next, look fine.

Spaghetti Sauces
Conjoint Analysis

Num Den Adj
Obs Subj DF DF N R-Square R-Sq

1 Sub001 18 11 30 0.83441 0.56345
2 Sub002 18 11 30 0.91844 0.78497
3 Sub003 18 11 30 0.92908 0.81302
.
.
.
81 Sub099 18 11 30 0.88920 0.70789
82 Sub100 18 11 30 0.90330 0.74507

The simulation observations are pulled out of the out= data set, and the %SIM macro is run to simulate
market share.

data results4;
set results3;
where weight = 0;
run;

%sim(data=results4, out=shares2, method=max,
idvars=price brand meat mushroom ingredients);

Spaghetti Sauces
Expected Market Share
Maximum Utility Model

Brand Price Meat Mushroom Ingredients Share

Pregu 1.99 Vegetarian Mushrooms All Natural 0.35976
Sundance 1.99 Vegetarian Mushrooms All Natural 0.29878
Tomato Garden 1.99 Vegetarian Mushrooms All Natural 0.19512
Tomato Garden 2.79 Italian Sausage Mushrooms All Natural 0.08537
Sundance 2.79 Italian Sausage Mushrooms All Natural 0.02439
Pregu 2.49 Meat Mushrooms All Natural 0.01220
Sundance 2.49 Meat Mushrooms All Natural 0.01220
Pregu 2.79 Italian Sausage Mushrooms All Natural 0.01220
Tomato Garden 2.49 Meat Mushrooms All Natural 0.00000
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For this set of products, the inexpensive vegetarian sauces have the greatest market share with Pregu
brand preferred over Sundance and Tomato Garden. Now we’ll consider adding six more products to
the market, the six meat sauces we just saw, but at a lower price.

data simulat2;
input brand : inbrand.

meat : inmeat.
mushroom : inmush.
ingredients : iningre.
price : inprice.;

datalines;
Preg Meat Mush Nat 2.29
Sun Meat Mush Nat 2.29
Tom Meat Mush Nat 2.29
Preg Ital Mush Nat 2.49
Sun Ital Mush Nat 2.49
Tom Ital Mush Nat 2.49
;

data inputdata3(drop=&droplist);
set inputdata(in=w) simulat simulat2;
weight = w;
run;

ods exclude notes mvanova anova;
proc transreg data=inputdata3 utilities short noprint

separators=’, ’ lprefix=0 method=morals outtest=utils;
title2 ’Conjoint Analysis’;
model identity(sub:) =

class(brand | price meat mushroom ingredients / zero=sum);
output p ireplace out=results5 coefficients;
weight weight;
run;

Now we see that 15 simulation observations were excluded.
NOTE: 15 observations were deleted from the analysis but not from the

output data set due to missing values.
NOTE: 15 observations were deleted from the analysis but not from the

output data set due to nonpositive weights.
NOTE: A total of 15 observations were deleted.

These steps extract the df and R2.
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data model;
set utils;
if statistic in (’R-Square’, ’Adj R-Sq’, ’Model’);
Subj = scan(_depvar_, 2);
if statistic = ’Model’ then do;

value = numdf;
statistic = ’Num DF’;
output;
value = dendf;
statistic = ’Den DF’;
output;
value = dendf + numdf + 1;
statistic = ’N’;
end;

output;
keep statistic value subj;
run;

proc transpose data=model out=summ;
by subj;
idlabel statistic;
id statistic;
run;

proc print label data=summ(drop=_name_ _label_); run;

The df and R2 still look fine.

Spaghetti Sauces
Conjoint Analysis

Num Den Adj
Obs Subj DF DF N R-Square R-Sq

1 Sub001 18 11 30 0.83441 0.56345
2 Sub002 18 11 30 0.91844 0.78497
3 Sub003 18 11 30 0.92908 0.81302
.
.
.
81 Sub099 18 11 30 0.88920 0.70789
82 Sub100 18 11 30 0.90330 0.74507

Now we’ll run the simulation with all 15 simulation observations.
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data results6;
set results5;
where weight = 0;
run;

%sim(data=results6, out=shares3, method=max,
idvars=price brand meat mushroom ingredients);

Spaghetti Sauces
Expected Market Share
Maximum Utility Model

Brand Price Meat Mushroom Ingredients Share

Sundance 1.99 Vegetarian Mushrooms All Natural 0.25813
Pregu 1.99 Vegetarian Mushrooms All Natural 0.20935
Pregu 2.29 Meat Mushrooms All Natural 0.19512
Tomato Garden 1.99 Vegetarian Mushrooms All Natural 0.15447
Sundance 2.49 Italian Sausage Mushrooms All Natural 0.08537
Sundance 2.29 Meat Mushrooms All Natural 0.03659
Tomato Garden 2.49 Italian Sausage Mushrooms All Natural 0.01829
Tomato Garden 2.29 Meat Mushrooms All Natural 0.01220
Pregu 2.49 Italian Sausage Mushrooms All Natural 0.01220
Tomato Garden 2.79 Italian Sausage Mushrooms All Natural 0.01220
Sundance 2.79 Italian Sausage Mushrooms All Natural 0.00610
Pregu 2.49 Meat Mushrooms All Natural 0.00000
Sundance 2.49 Meat Mushrooms All Natural 0.00000
Tomato Garden 2.49 Meat Mushrooms All Natural 0.00000
Pregu 2.79 Italian Sausage Mushrooms All Natural 0.00000

These steps merge the data set containing the old market shares with the data set containing the new
market shares to show the effect of adding the new products.

title ’Spaghetti Sauces’;

proc sort data=shares2;
by price brand meat mushroom ingredients;
run;

proc sort data=shares3;
by price brand meat mushroom ingredients;
run;

data both;
merge shares2(rename=(share=OldShare)) shares3;
by price brand meat mushroom ingredients;
if oldshare = . then Change = 0;
else change = oldshare;
change = share - change;
run;



584 TS-722H − Conjoint Analysis

proc sort;
by descending share price brand meat mushroom ingredients;
run;

options missing=’ ’;
proc print noobs;

title2 ’Expected Market Share and Change’;
var price brand meat mushroom ingredients

oldshare share change;
format oldshare -- change 6.3;
run;

options missing=.;

Spaghetti Sauces
Expected Market Share and Change

Old
Price Brand Meat Mushroom Ingredients Share Share Change

1.99 Sundance Vegetarian Mushrooms All Natural 0.299 0.258 -0.041
1.99 Pregu Vegetarian Mushrooms All Natural 0.360 0.209 -0.150
2.29 Pregu Meat Mushrooms All Natural 0.195 0.195
1.99 Tomato Garden Vegetarian Mushrooms All Natural 0.195 0.154 -0.041
2.49 Sundance Italian Sausage Mushrooms All Natural 0.085 0.085
2.29 Sundance Meat Mushrooms All Natural 0.037 0.037
2.49 Tomato Garden Italian Sausage Mushrooms All Natural 0.018 0.018
2.29 Tomato Garden Meat Mushrooms All Natural 0.012 0.012
2.49 Pregu Italian Sausage Mushrooms All Natural 0.012 0.012
2.79 Tomato Garden Italian Sausage Mushrooms All Natural 0.085 0.012 -0.073
2.79 Sundance Italian Sausage Mushrooms All Natural 0.024 0.006 -0.018
2.49 Pregu Meat Mushrooms All Natural 0.012 0.000 -0.012
2.49 Sundance Meat Mushrooms All Natural 0.012 0.000 -0.012
2.49 Tomato Garden Meat Mushrooms All Natural 0.000 0.000 0.000
2.79 Pregu Italian Sausage Mushrooms All Natural 0.012 0.000 -0.012

We see that the vegetarian sauces are most preferred, but we predict they would lose share if the new
meat sauces were entered in the market. In particular, the Sundance and Pregu meat sauces would
gain significant market share under this model.
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PROC TRANSREG Specifications

PROC TRANSREG (transformation regression) is used to perform conjoint analysis and many other
types of analyses, including simple regression, multiple regression, redundancy analysis, canonical corre-
lation, analysis of variance, and external unfolding, all with nonlinear transformations of the variables.
This section documents the statements and options available in PROC TRANSREG that are com-
monly used in conjoint analyses. Refer to “The TRANSREG Procedure” in the SAS/STAT User’s
Guide for more information on PROC TRANSREG. This section documents only a small subset of the
capabilities of PROC TRANSREG.

The following statements are used in the TRANSREG procedure for conjoint analysis:

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

OUTPUT <OUT=SAS-data-set> <o-options>;
WEIGHT variable;
ID variables;
BY variables;

Specify the proc and model statements to use PROC TRANSREG. The output statement is required
to produce an out= output data set, which contains the transformations, indicator variables, and
predicted utility for each product. The outtest= data set, which contains the ANOVA, regression,
and part-worth utility tables, is requested in the proc statement. All options can be abbreviated to
their first three letters.

PROC TRANSREG Statement
PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>

<a-options> <o-options>;

The data= and outtest= options can appear only in the PROC TRANSREG statement. The algorithm
options (a-options) appear in the proc or model statement. The output options (o-options) can appear
in the proc or output statement.

DATA=SAS-data-set
specifies the input SAS data. If the data= option is not specified, PROC TRANSREG uses the most
recently created SAS data set.

OUTTEST=SAS-data-set
specifies an output data set that will contain the ANOVA table, R2, and the conjoint analysis part-
worth utilities, and the attribute importances.
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Algorithm Options

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

Algorithm options can appear in the proc or model statement as a-options.

CONVERGE=n
specifies the minimum average absolute change in standardized variable scores that is required to
continue iterating. By default, converge=0.00001.

DUMMY
requests a canonical initialization. When spline transformations are requested, specify dummy to
solve for the optimal transformations without iteration. Iteration is only necessary when there are
monotonicity constraints.

LPREFIX=n
specifies the number of first characters of a class variable’s label (or name if no label is specified) to
use in constructing labels for part-worth utilities. For example, the default label for Brand=Duff is
“Brand Duff”. If you specify lprefix=0 then the label is simply “Duff”.

MAXITER=n
specifies the maximum number of iterations. By default, maxiter=30.

NOPRINT
suppresses the display of all output.

ORDER=FORMATTED
ORDER=INTERNAL
specifies the order in which the CLASS variable levels are reported. The default, order=internal,
sorts by unformatted value. Specify order=formatted when you want the levels sorted by formatted
value. Sort order is machine dependent. Note that in Version 6 and Version 7 of the SAS System, the
default sort order was order=formatted. The default was changed to order=internal in Version 8
to be consistent with Base SAS procedures.

METHOD=MORALS
METHOD=UNIVARIATE
specifies the iterative algorithm. Both method=morals and method=univariate fit univariate multiple
regression models with the possibility of nonlinear transformations of the variables. They differ in the
way they structure the output data set when there is more than one dependent variable. When it can
be used, method=univariate is more efficient than method=morals.

You can use method=univariate when no transformations of the independent variables are requested,
for example when the independent variables are all designated class, identity, or pspline. In this
case, the final set of independent variables will be the same for all subjects. If transformations such as



PROC TRANSREG Specifications 587

monotone, identity, spline or mspline are specified for the independent variables, the transformed
independent variables may be different for each dependent variable and so must be output separately
for each dependent variable. In conjoint analysis, there will typically be one dependent variable for
each subject. This is illustrated in the examples.

With method=univariate and more than one dependent variable, PROC TRANSREG creates a data
set with the same number of score observations as the original but with more variables. The untrans-
formed dependent variable names are unchanged. The default transformed dependent variable names
consist of the prefix “T” and the original variable names. The default predicted value names consist
of the prefix “P” and the original variable names. The full set of independent variables appears once.

When more than one dependent variable is specified, method=morals creates a rolled-out data set
with the dependent variable in depend , its transformation in t depend , and its predicted values in
p depend . The full set of independents is repeated for each (original) dependent variable.

The procedure chooses a default method based on what is specified in the model statement. When
transformations of the independent variables are requested, the default method is morals. Otherwise
the default method is univariate.

SEPARATORS=string-1 <string-2 >
specifies separators for creating labels for the part-worth utilities. By default, separators=’ ’ ’ * ’
(“blank” and “blank asterisk blank”). The first value is used to separate variable names and values in
interactions. The second value is used to separate interaction components. For example, the default
label for Brand=Duff is “Brand Duff”. If you specify separators=’, ’ then the label is “Brand, Duff”.
Furthermore, the default label for the interaction of Brand=Duff and Price=3.99 is “Brand Duff *
Price 3.99”. You could specify lprefix=0 and separators=’’ ’ @ ’ to instead create labels like
“Duff @ 3.99”. You use the lprefix=0 option when you want to construct labels using zero characters
of the variable name, that is when you want to construct labels from just the formatted level. The
option separators=’’ ’ @ ’ specifies in the second string a separator of the form “blank at blank”.
In this case, the first string is ignored because with lprefix=0 there is no name to separate from the
level.

SHORT
suppresses the iteration histories. For most standard metric conjoint analyses, no iterations are neces-
sary, so specifying short eliminates unnecessary output. PROC TRANSREG will print a message if
it ever fails to converge, so it is usually safe to specify the short option.

UTILITIES
prints the part-worth utilities and importances table and an ANOVA table. Note that you can use
an ods exclude statement to exclude ANOVA tables and unnecessary notes from the conjoint output
(see page 486).

Output Options

PROC TRANSREG <DATA=SAS-data-set> <OUTTEST=SAS-data-set>
<a-options> <o-options>;

OUTPUT <OUT=SAS-data-set> <o-options>;

The out= option can only appear in the output statement. The other output options can appear in
the proc or output statement as o-options.
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COEFFICIENTS
outputs the part-worth utilities to the out= data set.

P
includes the predicted values in the out= output data set, which are the predicted utilities for each
product. By default, the predicted values variable name is the original dependent variable name prefixed
with a “P”.

IREPLACE
replaces the original independent variables with the transformed independent variables in the output
data set. The names of the transformed variables in the output data set correspond to the names of
the original independent variables in the input data set.

OUT=SAS-data-set
names the output data set. When an output statement is specified without the out= option, PROC
TRANSREG creates a data set and uses the DATAn convention. To create a permanent SAS data set,
specify a two-level name. The data set will contain the original input variables, the coded indicator
variables, the transformation of the dependent variable, and the optionally predicted utilities for each
product.

RESIDUALS
outputs to the out= data set the differences between the observed and predicted utilities. By default,
the residual variable name is the original dependent variable name prefixed with an “R”.

Transformations and Expansions

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

The operators “*”, “|”, and “@” from the GLM procedure are available for interactions with class
variables.

class(a * b ...
c | d ...
e | f ... @ n)

For example, this statement fits 100 individual main-effects models:

model identity(rating1-rating100) = class(x1-x5 / zero=sum);

This fits models with main effects and all two-way interactions:

model identity(rating1-rating100) = class(x1|x2|x3|x4|x5@2 / zero=sum);

This fits models with main effects and some two-way interactions:

model identity(rating1-rating100) = class(x1-x5 x1*x2 x3*x4 / zero=sum);
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You can also fit separate price functions within each brand by specifying:

model identity(rating1-rating100) =
class(brand / zero=none) | spline(price);

The list x1-x5 is equivalent to x1 x2 x3 x4 x5. The vertical bar specifies all main effects and inter-
actions, and the at sign limits the interactions. For example, @2 limits the model to main effects and
two-way interactions. The list x1|x2|x3|x4|x5@2 is equivalent to x1 x2 x1 * x2 x3 x1 * x3 x2 *
x3 x4 x1 * x4 x2 * x4 x3 * x4 x5 x1 * x5 x2 * x5 x3 * x5 x4 * x5. The specification x1 *
x2 indicates the two-way interaction between x1 and x2, and x1 * x2 * x3 indicates the three-way
interaction between x1, x2, and x3.

Each of the following can be specified in the model statement as a transform. The pspline and class
expansions create more than one output variable for each input variable. The rest are transformations
that create one output variable for each input variable.

CLASS
designates variables for analysis as nominal-scale-of-measurement variables. For conjoint analysis, the
zero=sum t-option is typically specified: class(variables / zero=sum). Variables designated as class
variables are expanded to a set of indicator variables. Usually the number output variables for each
class variable is the number of different values in the input variables. Dependent variables should not
be designated as class variables.

IDENTITY
variables are not changed by the iterations. The identity(variables) specification designates interval-
scale-of-measurement variables when no transformation is permitted. When small data values mean
high preference, you will need to use the reflect transformation option.

MONOTONE
monotonically transforms variables; ties are preserved. When monotone(variables) is used with de-
pendent variables, a nonmetric conjoint analysis is performed. When small data values mean high
preference, you will need to use the reflect transformation option. The monotone specification can
also be used with independent variables to impose monotonicity on the part-worth utilities. When it
is known that monotonicity should exist in an attribute variable, using monotone instead of class for
that attribute may improve prediction. An option exists in PROC TRANSREG for optimally untying
tied values, but this option should not be used because it almost always produces a degenerate result.

MSPLINE
monotonically and smoothly transforms variables. By default, mspline(variables) fits a monotonic
quadratic spline with no knots. Knots are specified as t-options, for example mspline(variables /
nknots=3) or mspline(variables / knots=5 to 15 by 5). Like monotone, mspline, finds a monotonic
transformation. Unlike monotone, mspline places a bound on the df (number of knots + degree) used
by the transformation. With mspline, it is possible to allow for nonlinearity in the responses and
still have error df. This is not always possible with monotone. When small data values mean high
preference, you will need to use the reflect transformation option. You can also use mspline with
attribute variables to impose monotonicity on the part-worth utilities.
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PSPLINE
expands each variable to a piece-wise polynomial spline basis. By default, pspline(variables) uses a
cubic spline with no knots. Knots are specified as t-options. Specify pspline(variable / degree=2) for
an attribute variable to fit a quadratic model. For each pspline variable, d + k output variables are
created, where d is the degree of the polynomial and k is the number of knots. You should not specify
pspline with the dependent variables.

RANK
performs a rank transformation, with ranks averaged within ties. Rating-scale data can be transformed
to ranks by specifying rank(variables). When small data values mean high preference, you will need
to use the reflect transformation option. Typically, rank is only used for dependent variables. For
example, if a rating-scale variable has sorted values 1, 1, 1, 2, 3, 3, 4, 5, 5, 5, then the rank transfor-
mation is 2, 2, 2, 4, 5.5, 5.5, 7, 9, 9, 9. A conjoint analysis of the original rating-scale variable will not
usually be the same as a conjoint analysis of a rank transformation of the ratings. With ordinal-scale-
of-measurement data, it is often good to analyze rank transformations instead of the original data.
An alternative is to specify monotone, which performs a nonmetric conjoint analysis. For real data,
monotone will always find a better fit than rank, but rank may lead to better prediction.

SPLINE
smoothly transforms variables. By default, spline(variables) fits a cubic spline with no knots. Knots
are specified as t-options. Like pspline, spline models nonlinearities in the attributes.

Transformation Options

MODEL transform(dependents </ t-options>) =
transform(independents </ t-options>)
<transform(independents </ t-options>) ...> </ a-options>;

The following are specified in the model statement as t-options’s.

DEGREE=n
specifies the degree of the spline. The defaults are degree=3 (cubic spline) for spline and pspline,
and degree=2 (quadratic spline) for mspline. For example, to request a quadratic spline, specify
spline(variables / degree=2).

EVENLY
is used with the nknots= option to evenly space the knots for splines. For example, if spline(x /
nknots=2 evenly) is specified and x has a minimum of 4 and a maximum of 10, then the two interior
knots are 6 and 8. Without evenly, the nknots= option places knots at percentiles, so the knots are
not evenly spaced.

KNOTS=numberlist
specifies the interior knots or break points for splines. By default, there are no knots. For example, to
request knots at 1, 2, 3, 4, 5, specify spline(variable / knots=1 to 5).
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NKNOTS=k
creates k knots for splines: the first at the 100/(k+1) percentile, the second at the 200/(k+1) percentile,
and so on. Unless evenly is specified, knots are placed at data values; there is no interpolation.
For example, with spline(variable / NKNOTS=3), knots are placed at the twenty-fifth percentile, the
median, and the seventy-fifth percentile. By default, nknots=0.

REFLECT
reflects the transformation around its mean, Y = −(Y − Y) + Y, after the iterations are completed
and before the final standardization and results calculations. This option is particularly useful with the
dependent variable. When the dependent variable consists of ranks with the most preferred combination
assigned 1.0, identity(variable / reflect) will reflect the transformation so that positive utilities
mean high preference.

ZERO=SUM
constrains the part-worth utilities to sum to zero within each attribute. The specification
class(variables / zero=sum) creates a less than full rank model, but the coefficients are uniquely
determined due to the sum-to-zero constraint.

BY Statement

BY variables;

A by statement can be used with PROC TRANSREG to obtain separate analyses on observations in
groups defined by the by variables. When a by statement appears, the procedure expects the input
data set to be sorted in order of the by variables.

If the input data set is not sorted in ascending order, use one of the following alternatives:

• Use the SORT procedure with a similar by statement to sort the data.

• Use the by statement options notsorted or descending in the by statement for the TRANSREG
procedure. As a cautionary note, the notsorted option does not mean that the data are unsorted.
It means that the data are arranged in groups (according to values of the by variables), and these
groups are not necessarily in alphabetical or increasing numeric order.

• Use the DATASETS procedure (in base SAS software) to create an index on the by variables.

For more information on the by statement, refer to the discussion in SAS Language: Reference. For
more information on the DATASETS procedure, refer to the discussion in SAS Procedures Guide.

ID Statement

ID variables;

The id statement includes additional character or numeric variables from the input data set in the
out= data set.
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WEIGHT Statement

WEIGHT variable;

A weight statement can be used in conjoint analysis to distinguish ordinary active observations, hold-
outs, and simulation observations. When a weight statement is used, a weighted residual sum of
squares is minimized. The observation is used in the analysis only if the value of the weight statement
variable is greater than zero. For observations with positive weight, the weight statement has no effect
on df or number of observations, but the weights affect most other calculations.

Assign each active observation a weight of 1. Assign each holdout observation a weight that excludes it
from the analysis, such as missing. Assign each simulation observation a different weight that excludes
it from the analysis, such as zero. Holdouts are rated by the subjects and so have nonmissing values
in the dependent variables. Simulation observations are not rated and so have missing values in the
dependent variable. It is useful to create a format for the weight variable that distinguishes the three
types of observations in the input and output data sets.

proc format;
value wf 1 = ’Active’

. = ’Holdout’
0 = ’Simulation’;

run;

PROC TRANSREG does not distinguish between weights that are zero, missing, or negative. All non-
positive weights exclude the observations from the analysis. The holdout and simulation observations
are given different nonpositive values and a format to make them easy to distinguish in subsequent
analyses and listings. The part-worth utilities for each attribute are computed using only those ob-
servations with positive weight. The predicted utility is computed for all products, even those with
nonpositive weights.

Monotone, Spline, and Monotone Spline Comparisons

When you choose the transformation of the ratings or rankings, you choose among

identity - model the data directly

monotone - model an increasing step function of the data

mspline - model a nonlinear but smooth and increasing function of the data

spline - model a smooth function of the data

The following plot shows examples of the different types of functions you can fit in PROC TRANSREG.
At the top of the plot are some artificial nonlinear data. Below that is a spline function, created by
spline. It is smooth and nonlinear. It follows the overall shape of the data, but smoothes out the
smaller bumps. Below that is a monotone spline function, created by mspline. Like the spline function,
it is smooth and nonlinear. Unlike the spline function, it is monotonic. The function never decreases;
it always rises or stays flat. The monotone spline function follows the overall upward trend in the
data, and it shows the changes in upward trend, but it smoothes out all the dips and bumps in the
function. Below the monotone spline function is a monotone step function, created by monotone. It
is not smooth, but it is monotonic. Like the monotone spline, the monotone step function follows the
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Functions Available in PROC TRANSREG

Nonlinear Artificial Data

Smooth Spline Function

Smooth Monotone Spline

Monotone Step Function

Line

overall upward trend in the data, and it smoothes out all the dips and bumps in the function. However,
the function is not smooth, and it typically requires many more parameters be fit than with monotone
splines. Below the monotone step function is a line, created by identity. It is smooth and linear. It
follows the overall upward trend in the data, but it smoothes over all the dips, bumps, and changes in
upward trend.

Typical conjoint analyses are metric (using identity) or nonmetric (using monotone). While not often
used in practice, monotone splines have a lot to recommend them. They allow for nonlinearities in
the transformation of preference, but unlike monotone, they are smooth and do not use up all of your
error df. One would typically never use spline on the ratings or rankings in a conjoint analysis, but
if for some reason, you had a lot of price points,¶ you could fit a spline function of the price attribute.
This would allow for nonlinearities in preferences for different prices while constraining the part-worth
utility function to be smooth.

¶For design efficiency reasons, you typically should not.
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Samples of PROC TRANSREG Usage

Conjoint analysis can be performed in many ways with PROC TRANSREG. This section provides
sample specifications for some typical and some more esoteric conjoint analyses. The dependent vari-
ables typically contain ratings or rankings of products by a number of subjects. The independent
variables, x1-x5, are the attributes. For metric conjoint analysis, the dependent variable is designated
identity. For nonmetric conjoint analysis, monotone is used. Attributes are usually designated as
class variables with the restriction that the part-worth utilities within each attribute sum to zero.

The utilities option requests an overall ANOVA table, a table of part-worth utilities, their standard
errors, and the importance of each attribute. The p (predicted values) option outputs to a data
set the predicted utility for each product. The ireplace option suppresses the separate output of
transformed independent variables since the independent variable transformations are the same as the
raw independent variables. The weight variable is used to distinguish active observations from holdouts
and simulation observations. The reflect transformation option reflects the transformation of the
ranking so that large transformed values, positive utility, and positive evaluation will all correspond.

Today, metric conjoint analysis is used more often than nonmetric conjoint analysis, and rating-scale
data are collected more often than rankings.

Metric Conjoint Analysis with Rating-Scale Data

This is a metric conjoint analysis with rating-scale data.

ods exclude notes mvanova anova;
proc transreg data=a utilities short method=morals;

model identity(rating1-rating100) = class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

Nonmetric Conjoint Analysis

This is a nonmetric conjoint analysis specification, which has many parameters for the transformations.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

proc transreg data=a utilities short maxiter=500 method=morals;
model monotone(ranking1-ranking100 / reflect) = class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;
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Monotone Splines

This is a conjoint analysis that is more restrictive than a nonmetric analysis but less restrictive than a
metric conjoint analysis. By default, the monotone spline transformation has two parameters (degree
two with no knots).

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

proc transreg data=a utilities short maxiter=500 method=morals;
model mspline(ranking1-ranking100 / reflect) =

class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

If less smoothness is desired, specify knots. For example:

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova;

proc transreg data=a utilities short maxiter=500 method=morals;
model mspline(ranking1-ranking100 / reflect nknots=3) =

class(x1-x5 / zero=sum);
output p ireplace;
weight w;
run;

Each knot requires estimation of an additional parameter.

Constraints on the Utilities

Here is a metric conjoint analysis specification with linearity constraints imposed on x4 and mono-
tonicity constraints imposed on x5.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;

proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) = class(x1-x3 / zero=sum)

identity(x4) monotone(x5);
output p ireplace;
weight w;
run;

With the monotonic constraints on the part-worth utilities, PROC TRANSREG prints some extra infor-
mation, liberal and conservative part-worth utility and fit statistics tables. These tables report the same
part-worth utilities, but are based on different methods of counting the number of parameters estimated.
The liberal test tables can be suppressed by adding liberalutilities liberalfitstatistics to the
ods exclude statement.

Here is another example, specifying monotonic step-function constraints on x1-x5 and a smooth, mono-
tonic transformation of price:
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ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;

proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) = monotone(x1-x5) mspline(price);
output p ireplace;
weight w;
run;

A Discontinuous Price Function

The utility of price may not be a continuous function of price. It has been frequently found that
utility is discontinuous at round numbers such as $1.00, $2.00, $100, $1000, and so on. If price has
many values in the data set, say over the range $1.05 to $3.95, then a monotone function of price with
discontinuities at $2.00 and $3.00 can be requested as follows.

ods exclude notes anova liberalanova conservanova
mvanova liberalmvanova conservmvanova
liberalutilities liberalfitstatistics;

proc transreg data=a utilities short maxiter=500 method=morals;
model identity(rating1-rating100) =

class(x1-x5 / zero=sum)
mspline(price / knots=2 2 2 3 3 3);

output p ireplace;
weight w;
run;

The monotone spline is degree two. The order of the spline is one greater than the degree; in this
case the order is three. When the same knot value is specified order times, the transformation is
discontinuous at the knot. Refer to page 785, for some applications of splines to conjoint analysis.
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and

Choice Modeling Macros

Warren F. Kuhfeld

Abstract

SAS provides a set of macros for designing experiments and analyzing choice data. Syntax and usage
of these macros is discussed in this chapter. An additional macro for scatter plots of labeled points is
documented here as well.∗

Introduction

The following SAS autocall macros are available.

Required
Macro Page Products Purpose
%ChoicEff 600 STAT, IML efficient choice design
%MktAllo 632 processes allocation data
%MktBal 635 STAT, QC balanced main-effects designs
%MktBlock 638 STAT, IML block a linear or choice design
%MktDes 648 STAT, QC efficient factorial design via candidate set search
%MktDups 655 identify duplicate choice sets or runs
%MktEval 663 STAT, IML evaluate an experimental design
%MktEx 667 STAT, IML, QC efficient factorial design
%MktKey 710 aid creation of the key= data set
%MktLab 712 STAT relabel, rename and assign levels to design factors
%MktMerge 723 merges a choice design with choice data
%MktOrth 725 IML lists 116,590 entry orthogonal array catalog
%MktPPro 731 STAT, IML partial profiles through BIB designs
%MktRoll 735 rolls a linear design into a choice design
%MktRuns 740 selecting experimental design number of runs
%PhChoice 748 customizes the printed output from a choice model
%PlotIt 753 STAT, GRAPH graphical scatter plots of labeled points

∗Copies of this chapter (TS-722I) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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These macros are used for generating efficient factorial designs, efficient choice designs, processing and
evaluating designs, processing data from choice experiments, and for certain graphical displays. The
BASE product is required to run all macros along with any additional indicated products. To run
the full suite of macros you need to have BASE, SAS/STAT, SAS/QC and SAS/IML installed, and
you need SAS/GRAPH for the plotting macro. Once you have the right products installed, and you
have installed the macros, you can call them and use them just as you would use a SAS procedure.
However, the syntax for macros is a little different from SAS procedures. Here is an example of making
an experimental design with a two-level and 7 three-level factors with 18 runs or profiles.

%mktex( 2 3 ** 7, n=18 )

Changes and Enhancements

With this release, the orthogonal array catalog has almost quadrupled in size, and the %PlotIt macro
has a new default style.

Installation

If your site has installed the autocall libraries supplied by SAS and uses the standard configuration
of SAS supplied software, you need to ensure that the SAS system option mautosource is in effect to
begin using the autocall macros. Note however, that there are differences between the macros used in
this documentation and those that were shipped with your Version of SAS. Be sure to get the latest
macros from the Web http://support.sas.com/techsup/tnote/tnote stat.html#market. These macros
will not work with Version 6.12, however they should work with Version 8.2 and later versions of SAS.
You should install all of these macros, not just one or some. Some of the macros call other macros and
will not work if the other macros are not there or if only older versions of the other macros are there.
For example, the %MktEx macro calls: the %MktRuns macro to parse the factors list, the %MktDes macro
for candidate set generation and search, and the %MktOrth macro to get the orthogonal array catalog.

The macros do not have to be included (for example, with a %include statement). They can be
called directly once they are properly installed. For more information about autocall libraries, refer to
SAS Macro Language: Reference. On a PC for example, the autocall library may be installed in the
stat\sasmacro directory off of your SAS root directory. The name of your SAS root directory could
be anything, but it is probably something like SAS or SAS\V8, or SAS\V9, and so on. One way to
find the right directory is to use Start → Find to find one of the existing autocall macros such as
mktdes.sas or plotit.sas. Here are some examples of SAS/STAT autocall macro directories on a
PC.

C:\Program Files\SAS Institute\SAS\V8\stat\sasmacro
C:\Program Files\SAS\SAS 9.1\stat\sasmacro

Unix should have a similar directory structure to the PC. The autocall library in Unix may be installed
in the stat/sasmacro directory off of your SAS root directory. On MVS, each macro will be a different
member of a PDS. For details on installing autocall macros, consult your host documentation.

Usually, an autocall library is a directory containing individual files, each of which contains one macro
definition. An autocall library can also be a SAS catalog. To use a directory as a SAS autocall library,
store the source code for each macro in a separate file in the directory. The name of the file must be the
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same as the macro name, typically followed by .sas. For example, the macro %MktEx must typically
be stored in a file named mktex.sas. On most hosts, the reserved fileref sasautos is assigned at
invocation time to the autocall library supplied by SAS or another one designated by your site.

The libraries that SAS searches for autocall macros are controlled by the SASAUTOS option. The
default value for this option is set in the configuration file. One way to have SAS find your autocall
macros is to update this option in the SAS configuration file. For example, searching for SAS*.CFG
may turn up SASV9.CFG or SASV8.CFG that on a PC will contain lines like this. The directories
listed in this option will depend on what SAS products you have licensed.

/* Setup the SAS System autocall library definition */
-SET SASAUTOS (

"!sasroot\core\sasmacro"
"!sasext0\cpe\sasmacro"
"!sasext0\risk\sasmacro"
"!sasext0\dmine\sasmacro"
"!sasext0\access\sasmacro"
"!sasext0\assist\sasmacro"
"!sasext0\eis\sasmacro"
"!sasext0\ets\sasmacro"
"!sasext0\gis\sasmacro"
"!sasext0\graph\sasmacro"
"!sasext0\iml\sasmacro"
"!sasext0\intrnet\sasmacro"
"!sasext0\or\sasmacro"
"!sasext0\qc\sasmacro"
"!sasext0\share\sasmacro"
"!sasext0\stat\sasmacro"
"!sasext0\webhound\sasmacro"
"C:\Program Files\SAS Institute\SAS\V8\test\sasmacro"
)

If you replace the existing macros in stat\sasmacro, you should never have to change this file. However,
if you install the new macros anywhere else, you need to ensure that that location appears in your
configuration file before stat\sasmacro or you will not get all of the most recent macros. For details,
refer to your host documentation and SAS macro language documentation.
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%ChoicEff Macro

The %ChoicEff autocall macro is used to find efficient experimental designs for choice experiments.
See pages 321, 363, 399, and 406 for examples. You supply sets of candidate alternatives. The macro
searches the candidates for an efficient experimental design−a design in which the variances of the
parameter estimates are minimized, given an assumed parameter vector β.

There are two ways you can use the macro:

• You can create a candidate set of alternatives, and the macro will create a design consisting
of choice sets built from the alternatives you supplied. You must designate for each candidate
alternative the design alternative(s) for which it is a candidate. For a branded study with m
brands, you must create m lists of candidate alternatives, one for each brand.

• You can create a candidate set of choice sets, and the macro will build a design from the choice
sets that you supplied. Typically, you would only use this approach when there are restrictions
across alternatives (certain alternatives may not appear with certain other alternatives) and with
partial-profile designs.

The %ChoicEff macro uses a modified Fedorov candidate-set-search algorithm, just like PROC OPTEX
and the %MktEx macro. Typically, you use as a candidate set a full-factorial, fractional-factorial, or a
tabled design created with the %MktEx macro. First, the %ChoicEff macro either constructs a random
initial design from the candidates or it uses an initial design that you specified. The macro considers
swapping out every design alternative/set and replacing it with each candidate alternative/set. Swaps
that increase efficiency are performed. The process of evaluating and swapping continues until efficiency
stabilizes. This process is repeated with different initial designs, and the best design is output for
use. The key differences between the %ChoicEff macro and the %MktEx macro are as follows. The
%ChoicEff macro requires you to specify the true (or assumed true) parameters and it optimizes the
variance matrix for a multinomial logit model, whereas the %MktEx macro optimizes the variance matrix
for a linear model, which does not depend on the parameters.

Here is an example. This example creates a design for a generic model with 3 three-level factors. First,
the %MktEx macro is used to create a set of candidate alternatives, where x1-x3 are the factors. Note
that the n= specification allows expressions. Our candidate set must also contain flag variables, one for
each alternative, that flag which candidates can be used for which alternative(s). Since this is a generic
model, each candidate can appear in any alternative, so we need to add flags that are constant: f1=1
f2=1 f3=1. The %MktEx macro does not allow you to create constant factors. Instead, we can use the
%MktLab macro to add the flag variables, essentially by specifying that we have three intercepts. The
option int=f1-f3 creates three variables with values all one. A 1 in variable f1 indicates that the
candidate can be used for the first alternative, a 1 in f2 indicates that the candidate can be used for
the second alternative, and so on. In this case, all candidates can be used for all alternatives, otherwise
the flag variables would contain zeros for candidates that cannot be used for certain alternatives. The
default output data set from the %MktLab macro is called FINAL. This code makes the candidate set.

%mktex(3 ** 3, n=3**3, seed=238)
%mktlab(int=f1-f3)

proc print; run;
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Here is the candidate set.

Obs f1 f2 f3 x1 x2 x3

1 1 1 1 3 3 3
2 1 1 1 3 2 1
3 1 1 1 1 3 1
4 1 1 1 2 2 3
5 1 1 1 1 2 2
6 1 1 1 3 1 2
7 1 1 1 3 1 2
8 1 1 1 2 3 2
9 1 1 1 2 2 3
10 1 1 1 3 3 3
11 1 1 1 3 1 2
12 1 1 1 2 2 3
13 1 1 1 2 3 2
14 1 1 1 2 1 1
15 1 1 1 2 3 2
16 1 1 1 1 2 2
17 1 1 1 2 1 1
18 1 1 1 1 3 1
19 1 1 1 2 1 1
20 1 1 1 1 2 2
21 1 1 1 3 3 3
22 1 1 1 1 3 1
23 1 1 1 1 1 3
24 1 1 1 3 2 1
25 1 1 1 3 2 1
26 1 1 1 1 1 3
27 1 1 1 1 1 3

Next, the %ChoicEff macro is run to find an efficient design for the unbranded, purely generic model
assuming β = 0. Here is the code.

%choiceff(data=final, model=class(x1-x3), nsets=9,
flags=f1-f3, beta=zero, seed=145, maxiter=100)

proc print; var x1-x3; id set; by set; run;

The option data=final names the input data set, model=class(x1-x3) specifies the PROC TRANS-
REG model statement for coding the design, nsets=9 specifies nine choice sets, flags=f1-f3 specifies
the three alternative flag variables, beta=zero specifies all zero parameters, and seed=145 specifies the
random number seed, and maxiter=100 specifies the number of designs to create. Here is part of the
output.
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n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.945985 1.057100
1 1.634565 0.611784
2 1.702866 0.587245
3 1.702866 0.587245

.

.

.

Design Iteration D-Efficiency D-Error
----------------------------------------------
84 0 0.870220 1.149135

1 1.608264 0.621789
2 1.732051 0.577350
3 1.732051 0.577350

.

.

.

Final Results

Design 84
Choice Sets 9
Alternatives 3
D-Efficiency 1.732051
D-Error 0.577350

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.66667 1 0.81650
2 x12 x1 2 0.66667 1 0.81650
3 x21 x2 1 0.66667 1 0.81650
4 x22 x2 2 0.66667 1 0.81650
5 x31 x3 1 0.66667 1 0.81650
6 x32 x3 2 0.66667 1 0.81650

==
6
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Set x1 x2 x3

1 2 1 2
1 2 3
3 3 1

2 3 2 2
1 1 1
2 3 3

3 2 3 1
3 2 2
1 1 3

4 1 2 2
2 3 3
3 1 1

5 1 1 3
2 2 1
3 3 2

6 1 3 1
2 1 2
3 2 3

7 3 1 1
2 2 3
1 3 2

8 2 2 1
3 1 3
1 3 2

9 2 1 2
3 3 3
1 2 1

The output from the %ChoicEff macro consists of a list of the parameter names, values and labels,
followed by two iteration histories (each based on a different random initial design), then a brief report
on the most efficient design found, and finally a table with the parameter names, variances, df, and
standard errors. The design is printed using PROC PRINT.

Here is another example. These next steps directly create an optimal design for this generic model
and evaluate its efficiency using the %ChoicEff macro and the initial design options. The DATA step
creates a cyclic design. In a cyclic design, the factor levels increase cyclically from one alternative to
the next. The levels for a factor for the three alternatives will always be one of the following: (1, 2, 3)
or (2, 3, 1) or (3, 1, 2).
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* Cyclic (Optimal) Design;
data x(keep=f1-f3 x1-x3);

retain f1-f3 1;
d1 = ceil(_n_ / 3); d2 = mod(_n_ - 1, 3) + 1; input d3 @@;
do i = -1 to 1;

x1 = mod(d1 + i, 3) + 1;
x2 = mod(d2 + i, 3) + 1;
x3 = mod(d3 + i, 3) + 1;
output;
end;

datalines;
1 2 3 3 1 2 2 3 1
;

proc print data=x; var x: f:; run;

Here is part of the cyclic design. Notice the cyclical pattern. Each level in the second or third alternative
is one greater than the level in the previous alternative, where 3+1 is defined to be 1. The flag variables
f1-f3 contain all ones showing that each candidate can be used in any alternative.

Obs x1 x2 x3 f1 f2 f3

1 1 1 1 1 1 1
2 2 2 2 1 1 1
3 3 3 3 1 1 1
4 1 2 2 1 1 1
5 2 3 3 1 1 1
6 3 1 1 1 1 1
.
.
.
25 3 3 1 1 1 1
26 1 1 2 1 1 1
27 2 2 3 1 1 1

This is the code that evaluates the design.

%choiceff(data=x, model=class(x1-x3), nsets=9, flags=f1-f3,
beta=zero, init=x, initvars=x1-x3, intiter=0)

The option init=x specifies the initial design, initvars=x1-x3 specifies the factors in the initial design,
and intiter=0 specifies the number of internal iterations. Specify intiter=0 when you just want to
evaluate the efficiency of a given design. Here is the output from the %ChoicEff macro.
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n Name Beta Label

1 x11 0 x1 1
2 x12 0 x1 2
3 x21 0 x2 1
4 x22 0 x2 2
5 x31 0 x3 1
6 x32 0 x3 2

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 1.732051 0.577350

Final Results

Design 1
Choice Sets 9
Alternatives 3
D-Efficiency 1.732051
D-Error 0.577350

Variable Standard
n Name Label Variance DF Error

1 x11 x1 1 0.66667 1 0.81650
2 x12 x1 2 0.66667 1 0.81650
3 x21 x2 1 0.66667 1 0.81650
4 x22 x2 2 0.66667 1 0.81650
5 x31 x3 1 0.66667 1 0.81650
6 x32 x3 2 0.66667 1 0.81650

==
6

These next steps use the %MktEx and %MktRoll macros to create a candidate set of choice sets and the
%ChoicEff macro to search for an efficient design using the candidate-set-swapping algorithm.

%mktex(3 ** 9, n=2187)

data key;
input (x1-x3) ($);
datalines;

x1 x2 x3
x4 x5 x6
x7 x8 x9
;

%mktroll(design=design, key=key, out=rolled)

%choiceff(data=rolled, model=class(x1-x3), nsets=9, nalts=3,
beta=zero, seed=17)
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The first steps create a candidate set of choice sets. The %MktEx macro creates a design with nine
factors, three for each of the three alternatives. The KEY data set specifies that the first alternative is
made from the linear design factors x1-x3, the second alternative is made from x4-x6, and the third
alternative is made from x7-x9. The %MktRoll macro turns a linear design into a choice design using
the rules specified in the KEY data set.

In the %ChoicEff macro, the nalts=3 option specifies that there are three alternatives. There must
always be a constant number of alternatives in each choice set, even if all of the alternatives will not
be used. When a nonconstant number of alternatives is desired, you must use a weight variable to
flag those alternatives that the subject will not see. When you swap choice sets, you need to specify
nalts=. The output from these steps is not appreciably different from what we saw previously, so it is
not shown.

This next example has brand effects and uses the alternative-swapping algorithm.

%mktex(3 ** 4, n = 3**4)
%mktlab(data=design, vars=x1-x3 Brand)

data full(drop=i);
set final;
array f[3];
do i = 1 to 3; f[i] = (brand eq i); end;
run;

proc print data=full(obs=9); run;

The %MktEx macro makes the linear candidate design. The %MktLab macro changes the name of the
variable x4 to Brand while retaining the original names for x1-x3 and original values for all factors
of 1, 2, and 3. The DATA step creates the flags. The flag f1 flags brand 1 candidates as available
for the first alternative, f2 flags brand 2 candidates as available for the second alternative, and so on.
The Boolean expression (brand eq i) evaluates to 1 if true and 0 if false. Here is the first part of the
candidate set.

Obs x1 x2 x3 Brand f1 f2 f3

1 1 1 1 1 1 0 0
2 1 1 1 2 0 1 0
3 1 1 1 3 0 0 1
4 1 1 2 1 1 0 0
5 1 1 2 2 0 1 0
6 1 1 2 3 0 0 1
7 1 1 3 1 1 0 0
8 1 1 3 2 0 1 0
9 1 1 3 3 0 0 1

Here is the %ChoicEff macro call for making the design.

%choiceff(data=full, seed=151,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=’ ’),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);
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The model= specification states that Brand and x1-x3 are classification or categorical variables and
brand effects and brand by attribute interactions (alternative-specific effects) (see page 222) are desired.
The zero=’ ’ specification is like zero=none except zero=none applies to all factors in the specification
whereas zero=’ ’ applies to just the first. This zero=’ ’ specification specifies that there is no
reference level for the first factor (Brand), and last level will by default be the reference category for
the other factors (x1-x3). Hence, binary variables are created for all three brands, but only two binary
variables are created for the 3 three-level factors. We need to do this because we need the alternative-
specific effects for all brands, including Brand 3. Notice that the candidate set consists of branded
alternatives with flags such that only brand n is considered for the nth alternative of each choice set.
In the interest of space, not all of the output is shown. Here is some of the output.

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0 .
1 0 .

0.300256 (Ridged)
2 0 .

0.302184 (Ridged)
3 0 .

0.303659 (Ridged)
4 0 .

0.305192 (Ridged)
5 0 .

0.305192 (Ridged)

Design Iteration D-Efficiency D-Error
----------------------------------------------

2 0 0 .
1 0 .

0.295570 (Ridged)
2 0 .

0.303106 (Ridged)
.
.
.
7 0 .

0.304929 (Ridged)

Final Results

Design 1
Choice Sets 15
Alternatives 3
D-Efficiency 0
D-Error .
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Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 5.70845 1 2.38924
2 Brand2 Brand 2 3.89246 1 1.97293
3 Brand3 Brand 3 . 0 .
4 Brand1x11 Brand 1 * x1 1 1.99395 1 1.41207
5 Brand1x12 Brand 1 * x1 2 2.09289 1 1.44668
6 Brand2x11 Brand 2 * x1 1 1.80635 1 1.34400
7 Brand2x12 Brand 2 * x1 2 2.09299 1 1.44672
8 Brand3x11 Brand 3 * x1 1 2.12281 1 1.45699
9 Brand3x12 Brand 3 * x1 2 2.16706 1 1.47209
.
.
.
21 Brand3x32 Brand 3 * x3 2 2.18010 1 1.47652

==
20

The following is printed to the log.

Redundant Variables:

Brand3

Notice that at each step, the efficiency is zero, but a nonzero ridged value is printed. This model
contains a structural-zero coefficient in Brand3. While we need alternative-specific effects for Brand 3
(like Brand3x11 and Brand3x12), we do not need the Brand 3 effect (Brand3) This can be seen from
both the Redundant Variables list and from looking at the variance and df table. The inclusion of the
Brand3 term in the model makes the efficiency of the design zero. However, the %ChoicEff macro can
still optimize the goodness of the design by optimizing a ridged efficiency criterion – a small constant is
added to each diagonal entry of the information matrix to make it nonsingular. That is what is shown
in the iteration history. Unlike the %MktEx macro, the %ChoicEff macro does not have an explicit
ridge= option. It automatically ridges, but only when needed. The option converge=1e-12 was
specified because for this example, iteration stops prematurely with the default convergence criterion.
This next step switches to a full-rank coding, dropping the redundant variable Brand3, and using the
output from the last step as the initial design.

%choiceff(data=full, init=best(keep=index), drop=brand3, seed=522,
model=class(brand brand*x1 brand*x2 brand*x3 / zero=’ ’),
nsets=15, flags=f1-f3, beta=zero, converge=1e-12);

The option drop=brand3 is used to drop the parameter with the zero coefficient. We could have moved
the brand specification into its own class specification (separate from the alternative-specific effects)
and not specified zero=’ ’ with it (see for example page 609). However, sometimes it is easier to
specify a model with more terms than you really need, and then list the terms to drop, so that is what
we illustrate here.

In this usage of init= with alternative swapping, the only part of the initial design that is required is
the Index variable. It contains indices into the candidate set of the alternatives that are used to make
the initial design. This usage is for the situation where the initial design was output from the macro.
(In contrast, in the example usage on page 603, the option initvars=x1-x3 was specified because the
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initial design was not created by the %ChoicEff macro.) Here is some of the output. Notice that now
there are no zero parameters so D-efficiency can be directly computed.

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.683825 1.462362
1 0.683825 1.462362

Final Results

Design 1
Choice Sets 15
Alternatives 3
D-Efficiency 0.683825
D-Error 1.462362

Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 5.70845 1 2.38924
2 Brand2 Brand 2 3.89246 1 1.97293
3 Brand1x11 Brand 1 * x1 1 1.99395 1 1.41207
4 Brand1x12 Brand 1 * x1 2 2.09289 1 1.44668
5 Brand2x11 Brand 2 * x1 1 1.80635 1 1.34400
6 Brand2x12 Brand 2 * x1 2 2.09299 1 1.44672
7 Brand3x11 Brand 3 * x1 1 2.12281 1 1.45699
8 Brand3x12 Brand 3 * x1 2 2.16706 1 1.47209
9 Brand1x21 Brand 1 * x2 1 2.38373 1 1.54393
10 Brand1x22 Brand 1 * x2 2 2.17427 1 1.47454
11 Brand2x21 Brand 2 * x2 1 2.28422 1 1.51136
12 Brand2x22 Brand 2 * x2 2 2.25113 1 1.50038
13 Brand3x21 Brand 3 * x2 1 2.21430 1 1.48805
14 Brand3x22 Brand 3 * x2 2 2.09383 1 1.44701
15 Brand1x31 Brand 1 * x3 1 2.39416 1 1.54731
16 Brand1x32 Brand 1 * x3 2 2.10564 1 1.45108
17 Brand2x31 Brand 2 * x3 1 2.55697 1 1.59905
18 Brand2x32 Brand 2 * x3 2 2.25251 1 1.50084
19 Brand3x31 Brand 3 * x3 1 2.29769 1 1.51581
20 Brand3x32 Brand 3 * x3 2 2.18010 1 1.47652

==
20

These next steps handle the same problem, only this time, we use the set-swapping algorithm, and we
will specify a parameter vector that is not zero. At first, we will omit the beta= option, just to see the
coding. We specified the effects option in the PROC TRANSREG class specification to get -1, 0,
1 coding.
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%mktex(3 ** 9, n=2187, seed=121)

data key;
input (Brand x1-x3) ($);
datalines;

1 x1 x2 x3
2 x4 x5 x6
3 x7 x8 x9
;

%mktroll(design=design, key=key, alt=brand, out=rolled)

%choiceff(data=rolled, nsets=15, nalts=3,
model=class(brand)

class(brand*x1 brand*x2 brand*x3 / effects zero=’ ’))

The output tells us the parameter names and the order in which we need to specify parameters.

n Name Beta Label

1 Brand1 . Brand 1
2 Brand2 . Brand 2
3 Brand1x11 . Brand 1 * x1 1
4 Brand1x12 . Brand 1 * x1 2
5 Brand2x11 . Brand 2 * x1 1
6 Brand2x12 . Brand 2 * x1 2
7 Brand3x11 . Brand 3 * x1 1
8 Brand3x12 . Brand 3 * x1 2
9 Brand1x21 . Brand 1 * x2 1

10 Brand1x22 . Brand 1 * x2 2
11 Brand2x21 . Brand 2 * x2 1
12 Brand2x22 . Brand 2 * x2 2
13 Brand3x21 . Brand 3 * x2 1
14 Brand3x22 . Brand 3 * x2 2
15 Brand1x31 . Brand 1 * x3 1
16 Brand1x32 . Brand 1 * x3 2
17 Brand2x31 . Brand 2 * x3 1
18 Brand2x32 . Brand 2 * x3 2
19 Brand3x31 . Brand 3 * x3 1
20 Brand3x32 . Brand 3 * x3 2

Now that we are sure we know the order of the parameters, we can specify the assumed betas on the
beta= option. These numbers are based on prior research or our expectations of approximately what
we expect the parameter estimates will be. We also specified n=100 on this run, which is a sample size
we are considering.
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%choiceff(data=rolled, nsets=15, nalts=3, n=100, seed=462,
beta=1 2 -0.5 0.5 -0.75 0.75 -1 1

-0.5 0.5 -0.75 0.75 -1 1 -0.5 0.5 -0.75 0.75 -1 1,
model=class(brand)

class(brand*x1 brand*x2 brand*x3 / effects zero=’ ’))

Here is some of the output. Notice that parameters and test statistics are incorporated into the output.
The n= value is incorporated into the variance matrix and hence the efficiency statistics, variances and
tests.

Prob >
Variable Assumed Standard Squared

n Name Label Variance Beta DF Error Wald Wald

1 Brand1 Brand 1 0.011889 1.00 1 0.10903 9.1714 0.0001
2 Brand2 Brand 2 0.020697 2.00 1 0.14386 13.9021 0.0001
3 Brand1x11 Brand 1 * x1 1 0.008617 -0.50 1 0.09283 -5.3865 0.0001
4 Brand1x12 Brand 1 * x1 2 0.008527 0.50 1 0.09234 5.4147 0.0001
5 Brand2x11 Brand 2 * x1 1 0.009283 -0.75 1 0.09635 -7.7842 0.0001
6 Brand2x12 Brand 2 * x1 2 0.012453 0.75 1 0.11159 6.7208 0.0001
7 Brand3x11 Brand 3 * x1 1 0.021764 -1.00 1 0.14753 -6.7784 0.0001
8 Brand3x12 Brand 3 * x1 2 0.015657 1.00 1 0.12513 7.9917 0.0001
9 Brand1x21 Brand 1 * x2 1 0.012520 -0.50 1 0.11189 -4.4685 0.0001
10 Brand1x22 Brand 1 * x2 2 0.010685 0.50 1 0.10337 4.8370 0.0001
11 Brand2x21 Brand 2 * x2 1 0.010545 -0.75 1 0.10269 -7.3035 0.0001
12 Brand2x22 Brand 2 * x2 2 0.012654 0.75 1 0.11249 6.6672 0.0001
13 Brand3x21 Brand 3 * x2 1 0.018279 -1.00 1 0.13520 -7.3964 0.0001
14 Brand3x22 Brand 3 * x2 2 0.012117 1.00 1 0.11008 9.0845 0.0001
15 Brand1x31 Brand 1 * x3 1 0.009697 -0.50 1 0.09848 -5.0774 0.0001
16 Brand1x32 Brand 1 * x3 2 0.010787 0.50 1 0.10386 4.8141 0.0001
17 Brand2x31 Brand 2 * x3 1 0.009203 -0.75 1 0.09593 -7.8181 0.0001
18 Brand2x32 Brand 2 * x3 2 0.013923 0.75 1 0.11800 6.3562 0.0001
19 Brand3x31 Brand 3 * x3 1 0.016546 -1.00 1 0.12863 -7.7742 0.0001
20 Brand3x32 Brand 3 * x3 2 0.014235 1.00 1 0.11931 8.3815 0.0001

==
20

These next steps create a design for a cross-effects model with five brands at three prices and a
constant alternative. (See the examples beginning on pages 261 and 283 for more information on
cross effects.) Note the choice-set-swapping algorithm can handle cross effects but not the alternative-
swapping algorithm.

%mktex(3 ** 5, n=3**5)
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data key;
input (Brand Price) ($);
datalines;

1 x1
2 x2
3 x3
4 x4
5 x5
. .
;

%mktroll(design=design, key=key, alt=brand, out=rolled, keep=x1-x5)

proc print; by set; id set; where set in (1, 48, 101, 243); run;

The keep= option on the %MktRoll macro is used to keep the price variables that are needed to make
the cross effects. Here are a few of the candidate choice sets.

Set Brand Price x1 x2 x3 x4 x5

1 1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1

. 1 1 1 1 1

48 1 1 1 2 3 1 3
2 2 1 2 3 1 3
3 3 1 2 3 1 3
4 1 1 2 3 1 3
5 3 1 2 3 1 3

. 1 2 3 1 3

101 1 2 2 1 3 1 2
2 1 2 1 3 1 2
3 3 2 1 3 1 2
4 1 2 1 3 1 2
5 2 2 1 3 1 2

. 2 1 3 1 2

243 1 3 3 3 3 3 3
2 3 3 3 3 3 3
3 3 3 3 3 3 3
4 3 3 3 3 3 3
5 3 3 3 3 3 3

. 3 3 3 3 3

Notice that x1 contains the price for Brand 1, x2 contains the price for Brand 2, and so on, and the
price of brand i in a choice set is the same, no matter which alternative it is stored with.
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Here is the %ChoicEff macro call for creating the choice design with cross effects.

%choiceff(data=rolled, seed=17,
model=class(brand brand*price / zero=none)

identity(x1-x5) * class(brand / zero=none),
nsets=20, nalts=6, beta=zero);

Cross effects are created by interacting the price factors with brand. See pages 268 and 321 for more
information about cross effects.

Here is the redundant variable list from the log.

Redundant Variables:

Brand1Price3 Brand2Price3 Brand3Price3 Brand4Price3 Brand5Price3 x1Brand1
x2Brand2 x3Brand3 x4Brand4 x5Brand5

Next, we will run the macro again, this time requesting a full-rank model. The list of dropped names
was created by copying from the redundant variable list. Also, zero=none was changed to zero=’ ’
so no level would be zeroed for Brand but the last level of Price would be zeroed.

%choiceff(data=rolled, seed=17,
model=class(brand brand*price / zero=’ ’)

identity(x1-x5) * class(brand / zero=none),
drop=x1Brand1 x2Brand2 x3Brand3 x4Brand4 x5Brand5,
nsets=20, nalts=6, beta=zero);

Here is the last part of the output. Notice that we have five brand parameters, two price parameters
for each of the five brands, and four cross effect parameters for each of the five brands.

Variable Standard
n Name Label Variance DF Error

1 Brand1 Brand 1 13.8149 1 3.71683
2 Brand2 Brand 2 13.5263 1 3.67782
3 Brand3 Brand 3 13.2895 1 3.64547
4 Brand4 Brand 4 13.5224 1 3.67728
5 Brand5 Brand 5 16.3216 1 4.04000
6 Brand1Price1 Brand 1 * Price 1 2.8825 1 1.69779
7 Brand1Price2 Brand 1 * Price 2 3.5118 1 1.87399
8 Brand2Price1 Brand 2 * Price 1 2.8710 1 1.69441
9 Brand2Price2 Brand 2 * Price 2 3.5999 1 1.89733
10 Brand3Price1 Brand 3 * Price 1 2.8713 1 1.69448
11 Brand3Price2 Brand 3 * Price 2 3.5972 1 1.89662
12 Brand4Price1 Brand 4 * Price 1 2.8710 1 1.69441
13 Brand4Price2 Brand 4 * Price 2 3.5560 1 1.88574
14 Brand5Price1 Brand 5 * Price 1 2.8443 1 1.68649
15 Brand5Price2 Brand 5 * Price 2 3.8397 1 1.95953
16 x1Brand2 x1 * Brand 2 0.7204 1 0.84878
17 x1Brand3 x1 * Brand 3 0.7209 1 0.84908
18 x1Brand4 x1 * Brand 4 0.7204 1 0.84878
19 x1Brand5 x1 * Brand 5 0.7204 1 0.84877
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20 x2Brand1 x2 * Brand 1 0.7178 1 0.84722
21 x2Brand3 x2 * Brand 3 0.7178 1 0.84724
22 x2Brand4 x2 * Brand 4 0.7178 1 0.84720
23 x2Brand5 x2 * Brand 5 0.7248 1 0.85133
24 x3Brand1 x3 * Brand 1 0.7178 1 0.84722
25 x3Brand2 x3 * Brand 2 0.7178 1 0.84721
26 x3Brand4 x3 * Brand 4 0.7178 1 0.84720
27 x3Brand5 x3 * Brand 5 0.7248 1 0.85133
28 x4Brand1 x4 * Brand 1 0.7178 1 0.84722
29 x4Brand2 x4 * Brand 2 0.7178 1 0.84721
30 x4Brand3 x4 * Brand 3 0.7178 1 0.84724
31 x4Brand5 x4 * Brand 5 0.7293 1 0.85402
32 x5Brand1 x5 * Brand 1 0.7111 1 0.84325
33 x5Brand2 x5 * Brand 2 0.7180 1 0.84737
34 x5Brand3 x5 * Brand 3 0.7248 1 0.85135
35 x5Brand4 x5 * Brand 4 0.7179 1 0.84731

==
35

In this final %ChoicEff macro example, the goal is to create a design for a pricing study with ten
brands plus a constant alternative. Each brand has a single attribute, price. However, the prices are
potentially different for each brand and they do not even have the same numbers of levels. A model is
desired with brand and alternative-specific price effects. Here are the design specifications.

Brand Levels Prices
Brand 1 8 0.89 0.94 0.99 1.04 1.09 1.14 1.19 1.24
Brand 2 8 0.94 0.99 1.04 1.09 1.14 1.19 1.24 1.29
Brand 3 6 0.99 1.04 1.09 1.14 1.19 1.24
Brand 4 6 0.89 0.94 0.99 1.04 1.09 1.14
Brand 5 6 1.04 1.09 1.14 1.19 1.24 1.29
Brand 6 4 0.89 0.99 1.09 1.19
Brand 7 4 0.99 1.09 1.19 1.29
Brand 8 4 0.94 0.99 1.14 1.19
Brand 9 4 1.09 1.14 1.19 1.24
Brand 10 4 1.14 1.19 1.24 1.29

There are two challenging aspects of this problem: creating the candidate set and coping with the price
asymmetries. The candidate set must contain 8 rows for the eight Brand 1 prices, 8 rows for the eight
Brand 2 prices, 6 rows for the six Brand 3 prices, ..., and 4 rows for the four Brand 10 prices. It also
must contain a constant alternative. Furthermore, if we are to use the alternative-swapping algorithm,
the candidate set must contain 11 flag variables, each of which will designate the appropriate group of
alternatives. We could run the %MktEx macro ten times to make a candidate set for each of the brands,
but since we have only one factor per brand, it would be much easier to generate the candidate set
with a DATA step. Before we discuss the code, here is the candidate set that we need.
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Brand Price f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

1 1 1 0 0 0 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0 0 0 0
1 3 1 0 0 0 0 0 0 0 0 0 0
1 4 1 0 0 0 0 0 0 0 0 0 0
1 5 1 0 0 0 0 0 0 0 0 0 0
1 6 1 0 0 0 0 0 0 0 0 0 0
1 7 1 0 0 0 0 0 0 0 0 0 0
1 8 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0 0
2 2 0 1 0 0 0 0 0 0 0 0 0
2 3 0 1 0 0 0 0 0 0 0 0 0
2 4 0 1 0 0 0 0 0 0 0 0 0
2 5 0 1 0 0 0 0 0 0 0 0 0
2 6 0 1 0 0 0 0 0 0 0 0 0
2 7 0 1 0 0 0 0 0 0 0 0 0
2 8 0 1 0 0 0 0 0 0 0 0 0
3 1 0 0 1 0 0 0 0 0 0 0 0
3 2 0 0 1 0 0 0 0 0 0 0 0
3 3 0 0 1 0 0 0 0 0 0 0 0
3 4 0 0 1 0 0 0 0 0 0 0 0
3 5 0 0 1 0 0 0 0 0 0 0 0
3 6 0 0 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 0 0 0 0 0
4 2 0 0 0 1 0 0 0 0 0 0 0
4 3 0 0 0 1 0 0 0 0 0 0 0
4 4 0 0 0 1 0 0 0 0 0 0 0
4 5 0 0 0 1 0 0 0 0 0 0 0
4 6 0 0 0 1 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 0 0
5 2 0 0 0 0 1 0 0 0 0 0 0
5 3 0 0 0 0 1 0 0 0 0 0 0
5 4 0 0 0 0 1 0 0 0 0 0 0
5 5 0 0 0 0 1 0 0 0 0 0 0
5 6 0 0 0 0 1 0 0 0 0 0 0
6 1 0 0 0 0 0 1 0 0 0 0 0
6 2 0 0 0 0 0 1 0 0 0 0 0
6 3 0 0 0 0 0 1 0 0 0 0 0
6 4 0 0 0 0 0 1 0 0 0 0 0
7 1 0 0 0 0 0 0 1 0 0 0 0
7 2 0 0 0 0 0 0 1 0 0 0 0
7 3 0 0 0 0 0 0 1 0 0 0 0
7 4 0 0 0 0 0 0 1 0 0 0 0
8 1 0 0 0 0 0 0 0 1 0 0 0
8 2 0 0 0 0 0 0 0 1 0 0 0
8 3 0 0 0 0 0 0 0 1 0 0 0
8 4 0 0 0 0 0 0 0 1 0 0 0
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9 1 0 0 0 0 0 0 0 0 1 0 0
9 2 0 0 0 0 0 0 0 0 1 0 0
9 3 0 0 0 0 0 0 0 0 1 0 0
9 4 0 0 0 0 0 0 0 0 1 0 0
10 1 0 0 0 0 0 0 0 0 0 1 0
10 2 0 0 0 0 0 0 0 0 0 1 0
10 3 0 0 0 0 0 0 0 0 0 1 0
10 4 0 0 0 0 0 0 0 0 0 1 0
. . 0 0 0 0 0 0 0 0 0 0 1

It begins with eight alternatives for the eight prices for the first brand (Brand = 1 f1 = 1, f2-f11 =
0). It is followed by eight alternatives for the eight prices for the second brand (Brand = 2 f2 = 1, f1
= 0, f3 through f11 = 0). At the end is the constant alternative. For now, we do not need to worry
about the actual price levels, since price will be treated as a qualitative factor. Here is the code that
generated the candidate design.

data cand;
array n[10] _temporary_ (8 8 6 6 6 4 4 4 4 4);
retain f1-f11 0;
array f[11];
do Brand = 1 to 10;

f[brand] = 1;
do Price = 1 to n[brand]; output; end;
f[brand] = 0;
end;

brand = .; price = .; f11 = 1; output;
run;

proc print; id brand price; run;

It has the statement do Brand = 1 to 10 that creates the ten brands, plus an output statement at
the end to generate the constant alternative. Inside the do Brand loop is another do loop that creates
the n[brand] prices. The n array is a temporary array, which means it will not create any variables to
go into the output data set. It just gives us a convenient way to access the number of levels for each
of the ten brands.

This call to the %ChoicEff macro creates the design naming Brand and Price as classification variables.
Dummy variables will be created for all nonmissing levels of brand.

%choiceff(data=cand, seed=462,
model=class(brand / zero=none) class(brand*price / zero=’ ’),
nsets=24, flags=f1-f11, beta=zero)

Here is some of the output.
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Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0 .
1 0 .

0.001445 (Ridged)
2 0 .

0.001445 (Ridged)

Design Iteration D-Efficiency D-Error
----------------------------------------------

2 0 0 .
1 0 .

0.001445 (Ridged)
2 0 .

0.001445 (Ridged)

Final Results

Design 1
Choice Sets 24
Alternatives 11
D-Efficiency 0
D-Error .

Standard
n Variable Name Label Variance DF Error

1 Brand1 Brand 1 4.51944 1 2.12590
2 Brand2 Brand 2 4.50242 1 2.12189
3 Brand3 Brand 3 3.50008 1 1.87085
4 Brand4 Brand 4 3.49251 1 1.86882
5 Brand5 Brand 5 3.48040 1 1.86558
6 Brand6 Brand 6 2.46342 1 1.56953
7 Brand7 Brand 7 2.46617 1 1.57041
8 Brand8 Brand 8 2.47129 1 1.57203
9 Brand9 Brand 9 2.47975 1 1.57472
10 Brand10 Brand 10 2.46659 1 1.57054
11 Brand1Price1 Brand 1 * Price 1 8.18241 1 2.86049
12 Brand1Price2 Brand 1 * Price 2 8.22704 1 2.86828
13 Brand1Price3 Brand 1 * Price 3 8.20656 1 2.86471
14 Brand1Price4 Brand 1 * Price 4 8.28067 1 2.87762
15 Brand1Price5 Brand 1 * Price 5 8.20668 1 2.86473
16 Brand1Price6 Brand 1 * Price 6 8.21663 1 2.86647
17 Brand1Price7 Brand 1 * Price 7 8.25795 1 2.87366
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18 Brand2Price1 Brand 2 * Price 1 8.16766 1 2.85791
19 Brand2Price2 Brand 2 * Price 2 8.25283 1 2.87277
20 Brand2Price3 Brand 2 * Price 3 8.18178 1 2.86038
21 Brand2Price4 Brand 2 * Price 4 8.22588 1 2.86808
22 Brand2Price5 Brand 2 * Price 5 8.24887 1 2.87208
23 Brand2Price6 Brand 2 * Price 6 8.19937 1 2.86345
24 Brand2Price7 Brand 2 * Price 7 8.21050 1 2.86540
25 Brand3Price1 Brand 3 * Price 1 6.18856 1 2.48768
26 Brand3Price2 Brand 3 * Price 2 6.16883 1 2.48371
27 Brand3Price3 Brand 3 * Price 3 6.22013 1 2.49402
28 Brand3Price4 Brand 3 * Price 4 6.17914 1 2.48579
29 Brand3Price5 Brand 3 * Price 5 6.17185 1 2.48432
30 Brand3Price6 Brand 3 * Price 6 . 0 .
31 Brand3Price7 Brand 3 * Price 7 . 0 .
32 Brand4Price1 Brand 4 * Price 1 6.16116 1 2.48217
33 Brand4Price2 Brand 4 * Price 2 6.18716 1 2.48740
34 Brand4Price3 Brand 4 * Price 3 6.16633 1 2.48321
35 Brand4Price4 Brand 4 * Price 4 6.25094 1 2.50019
36 Brand4Price5 Brand 4 * Price 5 6.13517 1 2.47693
37 Brand4Price6 Brand 4 * Price 6 . 0 .
38 Brand4Price7 Brand 4 * Price 7 . 0 .
39 Brand5Price1 Brand 5 * Price 1 6.15820 1 2.48157
40 Brand5Price2 Brand 5 * Price 2 6.17572 1 2.48510
41 Brand5Price3 Brand 5 * Price 3 6.14151 1 2.47821
42 Brand5Price4 Brand 5 * Price 4 6.17153 1 2.48426
43 Brand5Price5 Brand 5 * Price 5 6.14552 1 2.47902
44 Brand5Price6 Brand 5 * Price 6 . 0 .
45 Brand5Price7 Brand 5 * Price 7 . 0 .
46 Brand6Price1 Brand 6 * Price 1 4.14170 1 2.03512
47 Brand6Price2 Brand 6 * Price 2 4.15481 1 2.03834
48 Brand6Price3 Brand 6 * Price 3 4.09000 1 2.02238
49 Brand6Price4 Brand 6 * Price 4 . 0 .
50 Brand6Price5 Brand 6 * Price 5 . 0 .
51 Brand6Price6 Brand 6 * Price 6 . 0 .
52 Brand6Price7 Brand 6 * Price 7 . 0 .
53 Brand7Price1 Brand 7 * Price 1 4.12837 1 2.03184
54 Brand7Price2 Brand 7 * Price 2 4.09248 1 2.02299
55 Brand7Price3 Brand 7 * Price 3 4.16503 1 2.04084
56 Brand7Price4 Brand 7 * Price 4 . 0 .
57 Brand7Price5 Brand 7 * Price 5 . 0 .
58 Brand7Price6 Brand 7 * Price 6 . 0 .
59 Brand7Price7 Brand 7 * Price 7 . 0 .
60 Brand8Price1 Brand 8 * Price 1 4.16889 1 2.04179
61 Brand8Price2 Brand 8 * Price 2 4.16045 1 2.03972
62 Brand8Price3 Brand 8 * Price 3 4.09355 1 2.02325
63 Brand8Price4 Brand 8 * Price 4 . 0 .
64 Brand8Price5 Brand 8 * Price 5 . 0 .
65 Brand8Price6 Brand 8 * Price 6 . 0 .
66 Brand8Price7 Brand 8 * Price 7 . 0 .
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67 Brand9Price1 Brand 9 * Price 1 4.11932 1 2.02961
68 Brand9Price2 Brand 9 * Price 2 4.15745 1 2.03898
69 Brand9Price3 Brand 9 * Price 3 4.17574 1 2.04346
70 Brand9Price4 Brand 9 * Price 4 . 0 .
71 Brand9Price5 Brand 9 * Price 5 . 0 .
72 Brand9Price6 Brand 9 * Price 6 . 0 .
73 Brand9Price7 Brand 9 * Price 7 . 0 .
74 Brand10Price1 Brand 10 * Price 1 4.12770 1 2.03167
75 Brand10Price2 Brand 10 * Price 2 4.12731 1 2.03158
76 Brand10Price3 Brand 10 * Price 3 4.11729 1 2.02911
77 Brand10Price4 Brand 10 * Price 4 . 0 .
78 Brand10Price5 Brand 10 * Price 5 . 0 .
79 Brand10Price6 Brand 10 * Price 6 . 0 .
80 Brand10Price7 Brand 10 * Price 7 . 0 .

==
54

There are unneeded parameters in our model, and for the moment, that is fine. We see 10 parameters
for Brand. The constant alternative (not shown) is the reference alternative. We see 7 parameters for
Brand 1’s price (8 prices - 1 = 7), 7 parameters for Brand 2’s price, 5 parameters for Brand 3’s price
(6 prices - 1 = 5), ..., and 3 parameters for Brand 10’s price (4 prices - 1 = 3). This all looks correct.

The log file contains the lines:

Redundant Variables:

Brand3Price6 Brand3Price7 Brand4Price6 Brand4Price7 Brand5Price6 Brand5Price7
Brand6Price4 Brand6Price5 Brand6Price6 Brand6Price7 Brand7Price4 Brand7Price5
Brand7Price6 Brand7Price7 Brand8Price4 Brand8Price5 Brand8Price6 Brand8Price7
Brand9Price4 Brand9Price5 Brand9Price6 Brand9Price7 Brand10Price4 Brand10Price5
Brand10Price6 Brand10Price7

Here they are again, manually reformatted to one brand per line:

Redundant Variables:

Brand3Price6 Brand3Price7
Brand4Price6 Brand4Price7
Brand5Price6 Brand5Price7
Brand6Price4 Brand6Price5 Brand6Price6 Brand6Price7
Brand7Price4 Brand7Price5 Brand7Price6 Brand7Price7
Brand8Price4 Brand8Price5 Brand8Price6 Brand8Price7
Brand9Price4 Brand9Price5 Brand9Price6 Brand9Price7
Brand10Price4 Brand10Price5 Brand10Price6 Brand10Price7

For Brands 1 and 2 we have 7 parameters and the last level for price 8 is the reference level and does
not appear in the model. The specification class(brand*price / zero=’ ’) sets the reference level
for brand to blank so it will use all 10 brands and uses the ordinary default last level for the reference
level for price. This zero= specification names a list of reference levels, blank for the first variable and
nothing specified, and hence the default, for the second.



620 TS-722I − Experimental Design and Choice Modeling Macros

For Brands 3 through 5, level 8, which does not appear, is the reference level as it is for all the brands. In
addition, since these brands have only six levels, two more terms are not estimable, the terms for price
levels 6 and 7. Hence the factors Brand3Price6, Brand3Price7, Brand4Price6, Brand4Price7,
Brand5Price6, and Brand5Price7 are not needed. Similarly for Brands 6 through 10, we can drop
the terms for the fourth through seventh price levels. We can run the macro again, this time deleting
all these terms.

%choiceff(data=cand, seed=462,
model=class(brand / zero=none) class(brand*price / zero=’ ’),
nsets=24, flags=f1-f11, beta=zero,
drop=
brand3price6 brand3price7
brand4price6 brand4price7
brand5price6 brand5price7
brand6price4 brand6price5 brand6price6 brand6price7
brand7price4 brand7price5 brand7price6 brand7price7
brand8price4 brand8price5 brand8price6 brand8price7
brand9price4 brand9price5 brand9price6 brand9price7
brand10price4 brand10price5 brand10price6 brand10price7
);

Here is some of the output.

Design Iteration D-Efficiency D-Error
----------------------------------------------

1 0 0.313841 3.186325
1 0.340743 2.934765
2 0.340743 2.934765

Design Iteration D-Efficiency D-Error
----------------------------------------------

2 0 0 .
1 0.341011 2.932458
2 0.341011 2.932458

Final Results

Design 2
Choice Sets 24
Alternatives 11
D-Efficiency 0.341011
D-Error 2.932458
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Standard
n Variable Name Label Variance DF Error

1 Brand1 Brand 1 4.50417 1 2.12230
2 Brand2 Brand 2 4.52567 1 2.12736
3 Brand3 Brand 3 3.47776 1 1.86487
4 Brand4 Brand 4 3.48724 1 1.86742
5 Brand5 Brand 5 3.49982 1 1.87078
6 Brand6 Brand 6 2.47337 1 1.57270
7 Brand7 Brand 7 2.45738 1 1.56760
8 Brand8 Brand 8 2.45142 1 1.56570
9 Brand9 Brand 9 2.45282 1 1.56615
10 Brand10 Brand 10 2.44575 1 1.56389
11 Brand1Price1 Brand 1 * Price 1 8.19264 1 2.86228
12 Brand1Price2 Brand 1 * Price 2 8.19269 1 2.86229
13 Brand1Price3 Brand 1 * Price 3 8.18940 1 2.86171
14 Brand1Price4 Brand 1 * Price 4 8.23067 1 2.86891
15 Brand1Price5 Brand 1 * Price 5 8.21587 1 2.86633
16 Brand1Price6 Brand 1 * Price 6 8.19365 1 2.86246
17 Brand1Price7 Brand 1 * Price 7 8.23031 1 2.86885
18 Brand2Price1 Brand 2 * Price 1 8.16830 1 2.85802
19 Brand2Price2 Brand 2 * Price 2 8.23185 1 2.86912
20 Brand2Price3 Brand 2 * Price 3 8.21687 1 2.86651
21 Brand2Price4 Brand 2 * Price 4 8.23295 1 2.86931
22 Brand2Price5 Brand 2 * Price 5 8.27059 1 2.87586
23 Brand2Price6 Brand 2 * Price 6 8.22612 1 2.86812
24 Brand2Price7 Brand 2 * Price 7 8.28203 1 2.87785
25 Brand3Price1 Brand 3 * Price 1 6.15558 1 2.48104
26 Brand3Price2 Brand 3 * Price 2 6.17640 1 2.48524
27 Brand3Price3 Brand 3 * Price 3 6.13255 1 2.47640
28 Brand3Price4 Brand 3 * Price 4 6.14840 1 2.47960
29 Brand3Price5 Brand 3 * Price 5 6.11249 1 2.47234
30 Brand4Price1 Brand 4 * Price 1 6.17231 1 2.48441
31 Brand4Price2 Brand 4 * Price 2 6.22760 1 2.49552
32 Brand4Price3 Brand 4 * Price 3 6.12111 1 2.47409
33 Brand4Price4 Brand 4 * Price 4 6.19792 1 2.48956
34 Brand4Price5 Brand 4 * Price 5 6.12131 1 2.47413
35 Brand5Price1 Brand 5 * Price 1 6.21514 1 2.49302
36 Brand5Price2 Brand 5 * Price 2 6.15748 1 2.48143
37 Brand5Price3 Brand 5 * Price 3 6.17697 1 2.48535
38 Brand5Price4 Brand 5 * Price 4 6.16121 1 2.48218
39 Brand5Price5 Brand 5 * Price 5 6.20067 1 2.49011
40 Brand6Price1 Brand 6 * Price 1 4.16170 1 2.04002
41 Brand6Price2 Brand 6 * Price 2 4.11324 1 2.02811
42 Brand6Price3 Brand 6 * Price 3 4.13298 1 2.03297
43 Brand7Price1 Brand 7 * Price 1 4.10703 1 2.02658
44 Brand7Price2 Brand 7 * Price 2 4.11083 1 2.02752
45 Brand7Price3 Brand 7 * Price 3 4.10632 1 2.02641
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46 Brand8Price1 Brand 8 * Price 1 4.12107 1 2.03004
47 Brand8Price2 Brand 8 * Price 2 4.10075 1 2.02503
48 Brand8Price3 Brand 8 * Price 3 4.08366 1 2.02081
49 Brand9Price1 Brand 9 * Price 1 4.11157 1 2.02770
50 Brand9Price2 Brand 9 * Price 2 4.10049 1 2.02497
51 Brand9Price3 Brand 9 * Price 3 4.10522 1 2.02614
52 Brand10Price1 Brand 10 * Price 1 4.07896 1 2.01964
53 Brand10Price2 Brand 10 * Price 2 4.09065 1 2.02253
54 Brand10Price3 Brand 10 * Price 3 4.11148 1 2.02768

==
54

We can see that we now have all the terms for the final model.

proc print data=best(obs=22); id set; by set; var brand price; run;

Here are the first two choice sets.

Set Brand Price

1 1 2
2 8
3 6
4 6
5 4
6 4
7 2
8 4
9 4

10 3
. .

2 1 4
2 8
3 4
4 3
5 2
6 4
7 4
8 3
9 4

10 3
. .

Because of the asymmetry, assigning the actual prices is not as simple as using a format. You could write
a lot of code of the form if brand = 1 and price = 1 then price = 0.89; else ..., however
that would be difficult. Instead, we will start by transposing our choice design.
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proc transpose data=best out=lin(keep=x1-x10) prefix=x;
var price; by set;
run;

proc print; run;

The transposed data set has one row per choice set and each of the 10 prices for the ten nonconstant
alternatives in each choice set. This is the linear version of our choice design. The factors x1 and x2
have 8 prices, 1 to 8, the factors x3 through x5 have 6 prices, 1 to 6. and the factors x6 through x10
have 4 prices, 1 to 4.

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 2 8 6 6 4 4 2 4 4 3
2 4 8 4 3 2 4 4 3 4 3
3 8 4 3 5 5 4 1 4 4 4
4 2 1 4 3 4 1 1 3 3 2
5 6 8 6 6 5 2 3 3 3 2
6 6 1 5 5 2 4 3 4 4 3
7 8 6 5 6 4 3 3 3 2 4
8 4 5 2 3 3 3 3 1 3 4
9 5 3 5 1 6 2 4 1 3 4
10 3 4 2 2 4 2 4 2 1 1
11 3 5 5 1 3 3 2 4 2 2
12 2 3 1 5 1 4 2 2 1 3
13 6 2 3 3 6 2 3 1 2 3
14 5 1 1 4 2 3 1 2 3 2
15 8 6 4 4 5 2 2 2 1 2
16 5 2 6 5 6 3 4 3 2 1
17 1 7 1 4 5 1 1 3 1 1
18 3 3 2 6 6 4 1 1 3 3
19 4 5 1 2 1 1 3 4 2 1
20 1 6 3 1 1 3 4 2 4 1
21 7 7 3 2 1 1 2 2 1 4
22 7 2 2 4 3 1 1 1 4 1
23 7 4 4 2 3 1 2 1 2 2
24 1 7 6 1 2 2 4 4 1 4

Now we can use formats or other means such as the %MktLab macro to assign prices within the
brand/price factors and then restore the choice design format. Here is the key= data set for the
%MktLab macro. It contains all of the different prices. The %MktLab macro assigns the prices and the
%MktRoll macro is used to convert our linear design back into a choice design.† The %MktLab macro
uses a KEY data set to specify the prices (see page 712). The %MktRoll macro uses a different KEY
data set to specify which linear design factor applies to which brand (see page 735).

†See page 60 for an illustration of linear versus choice designs.



624 TS-722I − Experimental Design and Choice Modeling Macros

data key;
input x1-x10;
datalines;

0.89 0.94 0.99 0.89 1.04 0.89 0.99 0.94 1.09 1.14
0.94 0.99 1.04 0.94 1.09 0.99 1.09 0.99 1.14 1.19
0.99 1.04 1.09 0.99 1.14 1.09 1.19 1.14 1.19 1.24
1.04 1.09 1.14 1.04 1.19 1.19 1.29 1.19 1.24 1.29
1.09 1.14 1.19 1.09 1.24 . . . . .
1.14 1.19 1.24 1.14 1.29 . . . . .
1.19 1.24 . . . . . . . .
1.24 1.29 . . . . . . . .
;

proc print; run;

%mktlab(data=lin, key=key, out=final)

%mktkey(x1-x10)

data key;
if _n_ le 10 then Brand = put(_n_, 2.);
input Price $ @@;
datalines;

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
;

proc print; run;

%mktroll(design=final,
alt=brand, key=key, out=sasuser.prices)

proc print data=sasuser.prices(obs=22); id set; by set; var brand price; run;

Here is the %MktLab KEY data set.

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1 0.89 0.94 0.99 0.89 1.04 0.89 0.99 0.94 1.09 1.14
2 0.94 0.99 1.04 0.94 1.09 0.99 1.09 0.99 1.14 1.19
3 0.99 1.04 1.09 0.99 1.14 1.09 1.19 1.14 1.19 1.24
4 1.04 1.09 1.14 1.04 1.19 1.19 1.29 1.19 1.24 1.29
5 1.09 1.14 1.19 1.09 1.24 . . . . .
6 1.14 1.19 1.24 1.14 1.29 . . . . .
7 1.19 1.24 . . . . . . . .
8 1.24 1.29 . . . . . . . .

Here is the %MktRoll KEY data set.
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Obs Brand Price

1 1 x1
2 2 x2
3 3 x3
4 4 x4
5 5 x5
6 6 x6
7 7 x7
8 8 x8
9 9 x9
10 10 x10
11

Here are the first two choice sets with the actual prices assigned.

Set Brand Price

1 1 0.94
2 1.29
3 1.24
4 1.14
5 1.19
6 1.19
7 1.09
8 1.19
9 1.24
10 1.24

.

2 1 1.04
2 1.29
3 1.14
4 0.99
5 1.09
6 1.19
7 1.29
8 1.14
9 1.24
10 1.24

.
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%ChoicEff Macro Options

The following options can be used with the %ChoicEff macro.

Option Description
bestcov=SAS-data-set covariance matrix for the best design
bestout=SAS-data-set best design
beta=list true parameters
converge=n convergence criterion
cov=SAS-data-set all of the covariance matrices
data=SAS-data-set input choice candidate set
drop=variable-list variables to drop from the model
fixed=variable-list variable that flags fixed alternatives
flags=variable-list variables that flag the alternative(s)
init=SAS-data-set input initial design data set
initvars=variable-list initial variables
intiter=n maximum number of internal iterations
iter=n maximum iterations (designs to create)
maxiter=n maximum iterations (designs to create)
model=model-specification model statement list of effects
morevars=variable-list more variables to add to the model
n=n number of observations
nalts=n number of alternatives
nsets=n number of choice sets desired
options=options-list binary options
out=SAS-data-set all designs data set
seed=n random number seed
submat=number-list submatrix for efficiency calculations
types=integer-list number of sets of each type
typevar=variable choice set types variable
weight=weight-variable optional weight variable

Required Options

You must specify both the model= and nsets= options and either the flags= or nalts= options. You
can omit beta= if you just want a listing of effects, however you must specify beta= to create a design.
The rest of the options are optional.

model= model-specification
specifies a PROC TRANSREG model statement list of effects. There are many potential forms for the
model specification and a number of options. See the SAS/STAT PROC TRANSREG documentation.

Generic effects example:

model=class(x1-x3),

Brand and alternative-specific effects example:

model=class(b)
class(b*x1 b*x2 b*x3 / effects zero=’ ’),
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Brand, alternative-specific, and cross effects:

model=class(b b*p / zero=’ ’)
identity(x1-x5) * class(b / zero=none),

See pages 600 through 625 for other examples of model syntax. Furthermore, all of the PROC TRANS-
REG and %ChoicEff macro examples from pages 173 through 409 show examples of model syntax for
choice models.

nsets= n
specifies the number of choice sets desired.

Other Required Options

You must specify exactly one of these next two options. When the candidate set consists of individual
alternatives to be swapped, specify the alternative flags with flags=. When the candidate set consists
of entire sets of alternatives to be swapped, specify the number of alternatives in each set with nalts=.

flags= variable-list
specifies variables that flag the alternative(s) for which each candidate may be used. There must be
one flag variable per alternative. If every candidate can be used in all alternatives, then the flags
are constant. For example, with three alternatives, create these constant flags: f1=1 f2=1 f3=1.
Otherwise, with three alternatives, specify flags=f1-f3 and create a candidate set where: alternative
1 candidates are indicated by f1=1 f2=0 f3=0, alternative 2 candidates are indicated by f1=0 f2=1
f3=0, and alternative 3 candidates are indicated by f1=0 f2=0 f3=1.

nalts= n
specifies the number of alternatives in each choice set for the set-swapping algorithm.

Other Options

The rest of the parameters are optional. You may specify zero or more of them.

bestcov= SAS-data-set
specifies a name for the data set containing the covariance matrix for the best design. By default, this
data set is called BESTCOV.

bestout= SAS-data-set
specifies a name for the data set containing the best design. By default, this data set is called BEST.
Often, you will want to specify a two-level name to create a permanent SAS data set so the design will
be available later for analysis.
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beta= list
specifies the true parameters. By default, when beta= is not specified, the macro just reports on coding.
You can specify beta=zero to assume all zeros. Otherwise specify a number list: beta=1 -1 2 -2 1
-1.

converge= n
specifies the D-efficiency convergence criterion. By default, converge=0.005.

cov= SAS-data-set
specifies a name for the data set containing all of the covariance matrices for all of the designs. By
default, this data set is called COV.

data= SAS-data-set
specifies the input choice candidate set. By default, the macro uses the last data set created.

drop= variable-list
specifies a list of variables to drop from the model. If you specified a less-than-full-rank model=
specification, you can use drop= to produce a full rank coding. When there are redundant variables,
the macro prints a list that you can use in the drop= option on a subsequent run.

fixed= variable-list
specifies the variable that flags the fixed alternatives. When fixed=variable is specified, the init=
data set must contain the named variable, which indicates which alternatives are fixed (cannot be
swapped out) and which ones may be changed. Example: fixed=fixed, init=init, initvars=x1-x3.
Values of the fixed= variable include:

1 - means this alternative can never be swapped out.

0 - means this alternative is used in the initial design, but it may be swapped out.

. - means this alternative should be randomly initialized, and it may be swapped out.

The fixed= option may be specified only when both init= and initvars= are specified.

init= SAS-data-set
specifies an input initial design data set. Null means a random start. One usage is to specify the
bestout= data set for an initial start. When flags= is specified, init= must contain the index
variable. Example: init=best(keep=index). When nalts= is specified, init= must contain the
choice set variable. Example: init=best(keep=set).

Alternatively, the init= data set can contain an arbitrary design, potentially created outside this
macro. In that case, you must also specify initvars=factors, where factors are the factors in the
design, for example initvars=x1-x3. When alternatives are swapped, this data set must also contain
the flags= variables. When init= is specified with initvars=, the data set may also contain a variable
specified on the fixed= option, which indicates which alternatives are fixed, and which ones can be
swapped in and out.
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intiter= n
specifies the maximum number of internal iterations. Specify intiter=0 to just evaluate efficiency of
an existing design. By default, intiter=10.

initvars= variable-list
specifies the factor variables in the init= data set that must match up with the variables in the data=
data set. See init=. All of these variables must be of the same type.

maxiter= n

iter= n
specifies the maximum iterations (designs to create). By default, maxiter=10.

morevars= variable-list
specifies more variables to add to the model. This option gives you the ability to specify a list of
variables to copy along as is, through the TRANSREG coding, then add them to the model.

n= n
specifies the number of observations to use in the variance matrix formula. By default, n=1.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

coded
prints the coded candidate set.

detail
prints the details of the swaps.

nocode
skips the PROC TRANSREG coding stage, assuming that WORK.TMP CAND was cre-
ated by a previous step. This is most useful with set swapping when the candidate set can
be big. It is important with options=nocode to note that the effect of morevars= and
drop= in previous runs has already been taken care of, so do not specify them (unless for
instance you want to drop still more variables).
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nodups
prevents the same choice set from coming out more than once. This option does not
affect the initialization, so the random initial design may have duplicates. This option
forces duplicates out during the iterations, so do not set intiter= to a small value. It
may take several iterations to eliminate all duplicates. It is possible that efficiency will
decrease as duplicates are forced out. With set swapping, this macro checks the candidate
choice set numbers to avoid duplicates. With alternative swapping, this macro checks the
candidate alternative index to avoid duplicates. The macro does not look at the actual
factors. This makes the checks faster, but if the candidate set contains duplicate choice
sets or alternatives, the macro may not succeed in eliminating all duplicates. Run the
%MktDups macro (which looks at the actual factors) on the design to check and make sure
all duplicates are eliminated. If you are using set swapping to make a generic design make
sure you run the %MktDups macro on the candidate set to eliminate duplicate choice sets
in advance.

notests
suppresses printing the diagonal of the covariance matrix, and hypothesis tests for this n
and β. When β is not zero, the results include a Wald test statistic (β divided by the
standard error), which is normally distributed, and the probability of a larger squared
Wald statistic.

orthcan
orthogonalizes the candidate set.

out= SAS-data-set
specifies a name for the output SAS data set with all of the final designs. The default is out=results.

seed= n
specifies the random number seed. By default, seed=0, and clock time is used as the random number
seed. By specifying a random number seed, results should be reproducible within a SAS release for
a particular operating system and for a particular version of the macro. However, due to machine
and macro differences, some results may not be exactly reproducible everywhere, although you would
expect the efficiency differences to be slight.

submat= number-list
specifies a submatrix for which efficiency calculations are desired. Specify an index vector. For example,
with 3 three-level factors, a, b, and c, and the model class(a b c a*b), specify submat=1:6, to see
the efficiency of just the 6× 6 matrix of main effects. Specify submat=3:6, to see the efficiency of just
the 4× 4 matrix of b and c main effects.

types= integer-list
specifies the number of sets of each type to put into the design. This option is used when you have
multiple types of choice sets and you want the design to consist of only certain numbers of each type.
This option can be specified with the set-swapping algorithm. The argument is an integer list. When
you specify types=, you must also specify typevar=. Say you are creating a design with 30 choice sets,
and you want the first 10 sets to consist of sets whose typevar= variable in the candidate set is type
1, and you want the rest to be type 2. You would specify types=10 20.
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typevar= variable
specifies a variable in the candidate data set that contains choice set types. The types must be integers
starting with 1. This option can only be specified with the set-swapping algorithm. When you specify
typevar=, you must also specify types=.

weight= weight-variable
specifies an optional weight variable. Typical usage is with an availability design. Give unavailable
alternatives a weight of zero and available alternatives a weight of one. The number of alternatives must
always be constant, so varying numbers of alternatives are handled by giving unavailable or unseen
alternatives a weight of zero.

%ChoicEff Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktAllo Macro

The %MktAllo autocall macro is used for manipulating data for an allocation choice experiment. See
page 345 for an example. The %MktAllo macro takes as input a data set with one row for each
alternative of each choice set. For example, in a study with 10 brands plus a constant alternative and
27 choice sets, there are 27 × 11 = 297 observations in the input data set. Here is an example of an
input data set. It contains a choice set variable, product attributes (Brand and Price) and a frequency
variable (Count) that contains the total number of times that each alternative was chosen.

Obs Set Brand Price Count

1 1 0
2 1 Brand 1 $50 103
3 1 Brand 2 $75 58
4 1 Brand 3 $50 318
5 1 Brand 4 $100 99
6 1 Brand 5 $100 54
7 1 Brand 6 $100 83
8 1 Brand 7 $75 71
9 1 Brand 8 $75 58
10 1 Brand 9 $75 100
11 1 Brand 10 $50 56
.
.
.

296 27 Brand 9 $100 94
297 27 Brand 10 $50 65

The end result is a data set with twice as many observations that contains the number of times each
alternative was chosen and the number of times it was not chosen. This data set also contains a variable
c with values 1 for first choice and 2 for second or subsequent choice.

Obs Set Brand Price Count c

1 1 0 1
2 1 1000 2
3 1 Brand 1 $50 103 1
4 1 Brand 1 $50 897 2
5 1 Brand 2 $75 58 1
6 1 Brand 2 $75 942 2
7 1 Brand 3 $50 318 1
8 1 Brand 3 $50 682 2
.
.
.
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593 27 Brand 10 $50 65 1
594 27 Brand 10 $50 935 2

Here is an example of usage:

%mktallo(data=allocs2, out=allocs3, nalts=11,
vars=set brand price, freq=Count)

The option data= names the input data set, out= names the output data set, nalts= specifies the
number of alternatives, vars= names the variables in the data set that will be used in the analysis
excluding the freq= variable, and freq= names the frequency variable.

%MktAllo Macro Options

The following options can be used with the %MktAllo macro.

Option Description
data=SAS-data-set input SAS data set
freq=variable frequency variable
nalts=n number of alternatives
out=SAS-data-set output SAS data set
vars=variable-list input variables

You must specify the nalts=, freq=, and vars= options.

data= SAS-data-set
specifies the input SAS data set. By default, the macro uses the last data set created.

freq= variable
specifies the frequency variable, which contains the number of times this alternative was chosen. This
option must be specified.

nalts= n
specifies the number of alternatives (including if appropriate the constant alternative). This option
must be specified.

out= SAS-data-set
specifies the output SAS data set. The default is out=allocs.

vars= variable-list
specifies the variables in the data set that will be used in the analysis but not the freq= variable. This
option must be specified.
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%MktAllo Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.



%MktBal Macro 635

%MktBal Macro

The %MktBal macro creates factorial designs using an algorithm that ensures that the design is perfectly
balanced, or when the number of levels of a factor does not divide the number of runs, as close to
perfectly balanced as possible. Do not use the %MktBal macro until you have tried the %MktEx macro
and determined that it does not make a design that is balanced enough for your needs. The %MktEx
macro can directly create thousands of orthogonal and balanced designs that the %MktBal algorithm
will never be able to find. Even when the %MktEx macro cannot create an orthogonal and balanced
design, it will usually find a nearly balanced design. Designs created with the %MktBal macro, while
perfectly balanced, may be less efficient than designs found with the %MktEx macro, and for large
problems, the %MktBal macro can be slow. It is likely that the current algorithm used by the %MktBal
macro will be changed in the future to use some now unknown algorithm that is both faster and better.

The %MktBal macro is not a full-featured experimental design generator. For example, you cannot
specify interactions that you want to estimate or specify restrictions such as which levels may or may
not appear together. You must use the %MktEx macro for that. The %MktBal macro builds a design
by creating a balanced first factor, optimally blocking it to create the second factor, then optimally
blocking the first two factors to create the third, and so on. Once it creates all factors, it refines each
factor. Each factor is in turn removed from the design, and the rest of the design is reblocked, replacing
the initial factor if the new design is more D-efficient.

Here is a simple example of creating a design with 2 two-level factors and 3 three-level factors in 18
runs. The %MktEval macro evaluates the results. This design is in fact optimal.

%mktbal(2 2 3 3 3, n=18, seed=151)
%mkteval;

In all cases, the factors are named x1, x2, x3, and so on.

This next example, at 120 runs and with factor levels greater than 5, is starting to get big, and by
default, it will run slowly. You can use the maxstarts=, maxtries=, and maxiter= options to make
the macro run more quickly. For example, the second example shown next runs much faster than the
first.

%mktbal(2 3 4 5 6 7 8 9 10, n=120, options=progress, seed=17)

%mktbal(2 3 4 5 6 7 8 9 10, n=120, options=progress, seed=17,
maxstarts=1, maxiter=1, maxtries=1)
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%MktBal Macro Options

The following options can be used with the %MktBal macro.

Option Description
iter=n maximum iterations (designs to create)
list list of the numbers of levels
maxiter=n maximum iterations (designs to create)
maxstarts=n maximum number of random starts
maxtries=n times to try refining each factor
n=n number of runs in the design
options=options-list binary options
out=SAS-data set output experimental design
seed=n random number seed

list
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify
either 2 2 2 or 2 ** 3. Lists of numbers, like 2 2 3 3 4 4 or a levels**number of factors syntax like:
2**2 3**2 4**2 can be used, or both can be combined: 2 2 3**4 5 6. The specification 3**4 means
4 three-level factors. You must specify a list. Note that the factor list is a positional parameter. This
means it must come first, and unlike all other parameters, it is not specified after a name and an equal
sign.

n= n
specifies the number of runs in the design. You must specify n=. You can use the %MktRuns macro to
get suggestions for values of n=.

out= SAS-data set
specifies the output experimental design. The default is out=design.

These next options control some of the details of the %MktBal macro.

maxiter= n

iter= n
specifies the maximum iterations (designs to create). By default, maxiter=5.

maxstarts= n
specifies the maximum number of random starts for each factor. With larger values, the macro tends
to find slightly better designs at a cost of slower run times. The default is maxstarts=10.
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maxtries= n
specifies the maximum number of times to try refining each factor after the initialization stage. The
default is maxtries=10.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

noprint
specifies that the final D-efficiency should not be printed.

progress
reports on the macro’s progress. For large numbers of factors, a large number or runs, or
when the number of levels is large, this macro is slow. The options=progress specification
gives you information about which step is being executed.

seed= n
specifies the random number seed. By default, seed=0, and clock time is used to make the random
number seed. By specifying a random number seed, results should be reproducible within a SAS release
for a particular operating system and for a particular version of the macro. However, due to machine
and macro differences, some results may not be exactly reproducible everywhere, although you would
expect the efficiency differences to be slight.

%MktBal Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktBlock Macro

The %MktBlock autocall macro is used to block a choice design or an ordinary linear experimental
design. See pages 244 and 308 for examples. When a choice design is too large to show all choice sets
to each subject, the design is blocked and a block of choice sets is shown to each subject. For example,
if there are 36 choice sets, instead of showing each subject 36 sets, you could instead create 2 blocks
and show 2 groups of subjects 18 sets each. You could also create 3 blocks of 12 choice sets or 4 blocks
of 9 choice sets. You can also request just one block if you want to see the correlations and frequencies
among all of the attributes of all of the alternatives of a choice design.

The design can be in one of two formats. Typically, a choice design has one row for each alternative of
each choice set and one column for each of the attributes. Typically, this kind of design is produced
by either the %ChoicEff or %MktRoll macro. Alternatively, a “linear” design is an intermediate step
in preparing some choice designs.‡ The linear design has one row for each choice set and one column
for each attribute of each alternative. Typically, the linear design is produced by the %MktEx macro.
The output from the %MktBlock macro is a data set containing the design, with the blocking variable
added and hence not in the original order, with runs or choice sets nested within blocks.

The macro tries to create a blocking factor that is uncorrelated with every attribute of every alternative.
In other words, the macro is trying to optimally add one additional factor, a blocking factor, to the
linear design. It is trying to make a factor that is orthogonal to all of the attributes of all of the
alternatives. For linear designs, you can usually ask for a blocking factor directly as just another factor
in the design, and then use the %MktLab macro to provide a name like Block, or you can use the
%MktBlock macro.

Here is an example of creating the blocking variable directly.

%mktex(3 ** 7, n=27, seed=350)

%mktlab(vars=x1-x6 Block)

Here is an example of creating a design and then blocking it.

%mktex(3 ** 6, n=27, seed=350)

%mktblock(data=randomized, nblocks=3, seed=377, maxiter=50)

The output shows that the blocking factor is uncorrelated with all of the factors in the design. This
output comes from the %MktEval macro, which is called by the %MktBlock macro.

‡See page 60 for an illustration of linear versus choice designs.
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Canonical Correlations Between the Factors
There are 0 Canonical Correlations Greater Than 0.316

Block x1 x2 x3 x4 x5 x6

Block 1 0 0 0 0 0 0
x1 0 1 0 0 0 0 0
x2 0 0 1 0 0 0 0
x3 0 0 0 1 0 0 0
x4 0 0 0 0 1 0 0
x5 0 0 0 0 0 1 0
x6 0 0 0 0 0 0 1

Summary of Frequencies
There are 0 Canonical Correlations Greater Than 0.316

Frequencies

Block 9 9 9
x1 9 9 9
x2 9 9 9
x3 9 9 9
x4 9 9 9
x5 9 9 9
x6 9 9 9
Block x1 3 3 3 3 3 3 3 3 3
Block x2 3 3 3 3 3 3 3 3 3
Block x3 3 3 3 3 3 3 3 3 3
Block x4 3 3 3 3 3 3 3 3 3
Block x5 3 3 3 3 3 3 3 3 3
Block x6 3 3 3 3 3 3 3 3 3
x1 x2 3 3 3 3 3 3 3 3 3
x1 x3 3 3 3 3 3 3 3 3 3
x1 x4 3 3 3 3 3 3 3 3 3
x1 x5 3 3 3 3 3 3 3 3 3
x1 x6 3 3 3 3 3 3 3 3 3
x2 x3 3 3 3 3 3 3 3 3 3
x2 x4 3 3 3 3 3 3 3 3 3
x2 x5 3 3 3 3 3 3 3 3 3
x2 x6 3 3 3 3 3 3 3 3 3
x3 x4 3 3 3 3 3 3 3 3 3
x3 x5 3 3 3 3 3 3 3 3 3
x3 x6 3 3 3 3 3 3 3 3 3
x4 x5 3 3 3 3 3 3 3 3 3
x4 x6 3 3 3 3 3 3 3 3 3
x5 x6 3 3 3 3 3 3 3 3 3
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
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Canonical Correlations Between the Factors by Block

Block x1 x2 x3 x4 x5 x6

1 x1 1 0.58 0 0.58 0.58 0
x2 0.58 1 0 0 0.58 0.58
x3 0 0 1 0 0 0
x4 0.58 0 0 1 0.58 0.58
x5 0.58 0.58 0 0.58 1 0.58
x6 0 0.58 0 0.58 0.58 1

2 x1 1 0.58 0 0.58 0.58 0
x2 0.58 1 0 0 0.58 0.58
x3 0 0 1 0 0 0
x4 0.58 0 0 1 0.58 0.58
x5 0.58 0.58 0 0.58 1 0.58
x6 0 0.58 0 0.58 0.58 1

3 x1 1 0.58 0 0.58 0.58 0
x2 0.58 1 0 0 0.58 0.58
x3 0 0 1 0 0 0
x4 0.58 0 0 1 0.58 0.58
x5 0.58 0.58 0 0.58 1 0.58
x6 0 0.58 0 0.58 0.58 1

Notice that even with a perfect blocking variable like we have in this example, canonical correlations
within each block will not be all zero.

Here is the blocked linear design (3 blocks of nine choice sets). Note that in the linear version of the
design, there is one row for each choice set and all of the attributes of all of the alternatives are in the
same row.

Block Run x1 x2 x3 x4 x5 x6

1 1 1 1 3 1 3 1
2 1 1 1 3 1 3
3 1 2 2 1 3 2
4 3 3 2 3 2 1
5 2 1 2 2 1 3
6 3 2 1 2 3 2
7 2 3 1 1 2 1
8 2 3 3 2 1 2
9 3 2 3 3 2 3
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Block Run x1 x2 x3 x4 x5 x6

2 1 2 1 3 1 2 2
2 3 1 2 2 3 1
3 2 2 2 1 2 3
4 2 1 1 3 3 1
5 3 3 3 2 3 3
6 3 3 1 1 1 2
7 1 3 2 3 1 2
8 1 2 3 3 1 1
9 1 2 1 2 2 3

Block Run x1 x2 x3 x4 x5 x6

3 1 3 1 3 1 1 3
2 2 3 2 3 3 3
3 3 2 2 1 1 1
4 1 1 2 2 2 2
5 2 2 1 2 1 1
6 2 2 3 3 3 2
7 3 1 1 3 2 2
8 1 3 1 1 3 3
9 1 3 3 2 2 1

Next, we will create and block a choice design with two blocks of nine sets instead of blocking the linear
version of a choice design.

%mktex(3 ** 6, n=3**6)

* Create an efficient choice design;
data key;

input (x1-x3) ($);
datalines;

x1 x2 x3
x4 x5 x6
;

%mktroll(design=design, key=key, out=out)

%choiceff(data=out, model=class(x1-x3), nsets=18, nalts=2,
beta=zero, options=nodups, seed=151)

* Block the choice design. Ask for 2 blocks;
%mktblock(data=best, nalts=2, nblocks=2, factors=x1-x3, seed=472)

(Note that if this had been a branded example, and if you were running SAS version 8.2 or an earlier
release, specify id=brand; do not add your brand variable to the factor list. For SAS 9.0 and later SAS
releases, it is fine to add your brand variable to the factor list.)
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Both the design and the blocking are not as good this time. The variable names in the output are
composed of Alt, the alternative number, and the factor name. Since there are two alternatives each
composed of three factors plus one blocking variable (2 × 3 + 1 = 7), a 7 × 7 correlation matrix is
reported. Here is some of the output.

Canonical Correlations Between the Factors
There are 11 Canonical Correlations Greater Than 0.316

Block Alt1_x1 Alt1_x2 Alt1_x3 Alt2_x1 Alt2_x2 Alt2_x3

Block 1 0.13 0 0 0.15 0.13 0
Alt1_x1 0.13 1 0.36 0.33 0.63 0.29 0.26
Alt1_x2 0 0.36 1 0.47 0.34 0.59 0.47
Alt1_x3 0 0.33 0.47 1 0.37 0.30 0.60
Alt2_x1 0.15 0.63 0.34 0.37 1 0.23 0.36
Alt2_x2 0.13 0.29 0.59 0.30 0.23 1 0.35
Alt2_x3 0 0.26 0.47 0.60 0.36 0.35 1

Summary of Frequencies
There are 11 Canonical Correlations Greater Than 0.316

* - Indicates Unequal Frequencies

Frequencies

Block 9 9
* Alt1_x1 7 7 4
* Alt1_x2 8 2 8
* Alt1_x3 8 4 6
* Alt2_x1 5 5 8
* Alt2_x2 5 9 4
* Alt2_x3 4 8 6
* Block Alt1_x1 4 3 2 3 4 2
* Block Alt1_x2 4 1 4 4 1 4
* Block Alt1_x3 4 2 3 4 2 3
* Block Alt2_x1 2 3 4 3 2 4
* Block Alt2_x2 3 4 2 2 5 2
* Block Alt2_x3 2 4 3 2 4 3
* Alt1_x1 Alt1_x2 3 1 3 4 1 2 1 0 3
* Alt1_x1 Alt1_x3 4 2 1 3 1 3 1 1 2
* Alt1_x1 Alt2_x1 0 4 3 2 0 5 3 1 0
* Alt1_x1 Alt2_x2 3 3 1 1 4 2 1 2 1
* Alt1_x1 Alt2_x3 1 4 2 2 2 3 1 2 1
* Alt1_x2 Alt1_x3 4 1 3 2 0 0 2 3 3
* Alt1_x2 Alt2_x1 1 3 4 1 0 1 3 2 3



%MktBlock Macro 643

* Alt1_x2 Alt2_x2 0 5 3 1 0 1 4 4 0
* Alt1_x2 Alt2_x3 2 2 4 0 2 0 2 4 2
* Alt1_x3 Alt2_x1 3 3 2 1 1 2 1 1 4
* Alt1_x3 Alt2_x2 2 5 1 2 1 1 1 3 2
* Alt1_x3 Alt2_x3 0 5 3 1 0 3 3 3 0
* Alt2_x1 Alt2_x2 1 3 1 1 3 1 3 3 2
* Alt2_x1 Alt2_x3 0 3 2 2 2 1 2 3 3
* Alt2_x2 Alt2_x3 0 3 2 3 3 3 1 2 1

N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note that in this example, the input is a choice design (as opposed to the linear version of a choice
design) so the results are in choice design format. There is one row for each alternative of each choice
set.

Block Set Alt x1 x2 x3

1 1 1 3 1 3
2 2 3 1

1 2 1 2 1 1
2 1 2 3

.

.

.

Block Set Alt x1 x2 x3

2 1 1 2 1 1
2 3 2 3

2 2 1 2 2 1
2 1 3 2

.

.

.



644 TS-722I − Experimental Design and Choice Modeling Macros

%MktBlock Macro Options

The following options can be used with the %MktBlock macro.

Option Description
alt=variable alternative number variable
block=variable block number variable
data=SAS-data-set either the choice or linear design
factors=variable-list factors in the design
id=variable-list variables to copy to output data set
initblock=variable initial blocking variable
iter=n times to try to block the design
list=n list larger canonical correlations
maxiter=n times to try to block the design
nalts=n number of alternatives in choice set
nblocks=n number of blocks to create
next=n where to look for the next exchange
options=options-list binary options
out=SAS-data-set output data set with block numbers
outr=SAS-data-set randomized output data set
print=print-options printing options
ridge=n ridging factor
seed=n random number seed
set=variable choice set number variable
vars=variable-list factors in the design

alt= variable
specifies the alternative number variable. If this variable is in the input data set, it is excluded from
the factor list. The default is alt=Alt.

block= variable
specifies the block number variable. If this variable is in the input data set, it is excluded from the
factor list. The default is block=Block.

data= SAS-data-set
specifies either the choice or linear design. The choice design has one row for each alternative of each
choice set and one column for each of the attributes. Typically, this design is produced by either
the %ChoicEff or %MktRoll macro. For choice designs, you must also specify the nalts= option. By
default, the macro uses the last data set created. The linear design has one row for each choice set and
one column for each attribute of each alternative. Typically, this design is produced by the %MktEx
macro. This is the design that is input into the %MktRoll macro.
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factors= variable-list
vars= variable-list
specifies the factors in the design. By default, all numeric variables are used, except variables with
names matching those specified in the block=, set=, alt=, and id= options. (By default, the variables
Block, Set, Run, and Alt are excluded from the factor list.) If you are using version 8.2 or an earlier
SAS release with a branded choice design (assuming the brand factor is called Brand), specify id=Brand.
Do not add the brand factor to the factor list unless you are using SAS 9.0 or a later SAS release.

id= variable-list
specifies the data= data set variables to copy to the output data set. If you are using version 8.2 or an
earlier SAS release with a branded choice design (assuming the brand factor is called Brand), specify
id=Brand. Do not add the brand factor to the factor list unless you are using SAS 9.0 or a later SAS
release.

initblock= variable
specifies the name of the variable in the data set that is to be used as the initial blocking variable for
the first iteration.

list= r
lists canonical correlations larger than list=r. The default is r = 0.316 ≈

√
r2 = 0.1.

maxiter= n

iter= n
specifies the number of times to try to block the design starting with a different random blocking.
By default, the macro tries five random starts, and iteratively refines each until D-efficiency quits
improving, then in the end selects the blocking with the best D-efficiency.

nalts= n
specifies the number of alternatives in each choice set. If you are inputting a choice design, you must
specify nalts=, otherwise the macro assumes you are inputting a linear design.

nblocks= n
specifies the number of blocks to create. The option nblocks=1 just reports information about the
design. The nblocks= option must be specified.

next= n
specifies how far into the design to go to look for the next exchange. The specification next=1 specifies
that the macro should try exchanging the level for each run with the level for the next run and all
other runs. The specification next=2 considers exchanges with half of the other runs, which makes the
algorithm run more quickly. The macro considers exchanging the level for run i with run i + 1 then
uses the next= value to find the next potential exchanges. Other values, including nonintegers can be
specified as well. For example next=1.5 considers exchanging observation 1 with observations 2, 4, 5,
7, 8, 10, 11, and so on. With smaller values, the macro tends to find a slightly better blocking variable
at a cost of much slower run time.
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options= options-list
specifies binary options. By default, no binary options are specified. Specify the following value after
options=.

nosort
do not sort the design into blocks. This is useful anytime you want the order of the
observations in the output data set to match the order of the observations in the input
data set. You will typically not want to specify options=nosort when you are using the
%MktBlock macro to block a design. However, options=nosort is handy when you are
using the %MktBlock macro to add just another factor to the design.

out= SAS-data-set
specifies the output data set with the block numbers. The default is out=blocked. Often, you will
want to specify a two-level name to create a permanent SAS data set so the design will be available
later for analysis.

outr= SAS-data-set
specifies the randomized output data set if you would like the design randomly sorted within blocks.
Often, you will want to specify a two-level name to create a permanent SAS data set so the design will
be available later for analysis.

print= print-options
specifies both the %MktBlock and the %MktEval macro printing options, which control the printing of
the results. The default is print=normal. Specify one or more values from the following list.

all all printed output
corr canonical correlations
block canonical correlations within blocks
design blocked design
freqs long frequencies list
list list of big canonical correlations
nonzero like ordered but sets list=1e-6
noprint no printed output
normal corr list summ block design note
note blocking note
ordered like list but ordered by variable names
short corr summ note
summ frequency summaries

ridge= n
specifies the value to add to the diagonal of X′X to make it nonsingular. Usually, you will not need
to change this value. If you do, you probably will not notice any effect. Specify ridge=0 to use a
generalized inverse instead of ridging. The default is ridge=0.01.

seed= n
specifies the random number seed. By default, seed=0, and clock time is used to make the random
number seed. By specifying a random number seed, results should be reproducible within a SAS release
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for a particular operating system and for a particular version of the macro. However, due to machine
and macro differences, some results may not be exactly reproducible everywhere, although you would
expect the efficiency differences to be slight.

set= variable
specifies the choice set number variable. When nalts= is specified, the default is Set, otherwise the
default is Run. If this variable is in the input data set, it is excluded from the factor list.

%MktBlock Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktDes Macro

The %MktDes autocall macro creates efficient experimental designs. Usually, we will not need to call
the %MktDes macro directly. Instead, we will usually use the %MktEx autocall macro, which calls the
%MktDes macro as one of its many tools. At the heart of the %MktDes macro are PROC PLAN, PROC
FACTEX, and PROC OPTEX. We use a macro instead of calling these procedures directly because
the macro has a simpler syntax. You specify the names of the factors and the number of levels for each
factor. You also specify the number of runs you want in your final design. Here for example is how
you can create a design in 18 runs with 2 two-level factors (x1 and x2) and 3 three-level factors (x3,
x4, and x5).

%mktdes(factors=x1-x2=2 x3-x5=3, n=18)

You can optionally specify interactions that you want to be estimable. The macro creates a candidate
design in which every effect you want to be estimable is estimable, but the candidate design is bigger
than you want. By default, the candidate set is stored in a SAS data set called CAND1. The macro
then uses PROC OPTEX to search the candidate design for an efficient final design. By default, the
final experimental design is stored in a SAS data set called DESIGN.

When the full-factorial design is small (by default less than 2189 runs, although sizes up to 5000 or 6000
runs are reasonably small), the experimental design problem is straightforward. First, the macro uses
PROC PLAN to create a full-factorial candidate set. Next, PROC OPTEX searches the full-factorial
candidate set. For very small problems (a few hundred candidates) PROC OPTEX will often find the
optimal design, and for larger problems, it may not find the optimal design, but given sufficient iteration
(for example, specify iter=100 or more) it will find very good designs. Run time will typically be a
few seconds or a few minutes, but it could be longer. Here is a typical example of using the %MktDes
macro to find an optimal nonorthogonal design when the full-factorial design is small (108 runs):

*---2 two-level factors and 3 three-level factors in 18 runs---;
%mktdes(factors=x1-x2=2 x3-x5=3, n=18, maxiter=500)

When the full-factorial design is larger, the macro uses PROC FACTEX to create a fractional-factorial
candidate set. In those cases, the methods found in the %MktEx macro usually make better designs
than those found with the %MktDes macro.
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%MktDes Macro Options

The following options can be used with the %MktDes macro.

Option Description
big=n size of big candidate set
cand=SAS-data-set candidate design
classopts=options class statement options
coding=name coding= option
examine=I | V matrices that you want to examine
facopts=options PROC FACTEX statement options
factors=factor-list factors and levels for each factor
generate=options generate statement options
interact=interaction-list interaction terms
iter=n number of designs
keep=n number of designs to keep
maxiter=n number of designs
method=name search method
n=n | SATURATED number of runs
nlev=n number of levels for pseudo-factors
options=options-list binary options
otherfac=variable-list other factors
otherint=terms multi-step interaction terms
out=SAS-data-set output experimental design
procopts=options PROC OPTEX statement options
run=procedure-list list of procedures that may be run
seed=n random number seed
size=n | MIN candidate-set size
step=n step number
where=where-clause where clause

big= n
specifies the size at which the candidate set is considered to be big. By default, big=2188. If the size
of the full-factorial design is less than or equal to this size, and if PROC PLAN is in the run= list, the
macro uses PROC PLAN instead of PROC FACTEX to create the candidate set. The default of 2188
is max(211, 37) + 1. Specifying values as large as big=6000 or even slightly more is often reasonable.
However, run time is slower as the size of the candidate set increases. The %MktEx macro coordinate-
exchange algorithm will usually work better than a candidate-set search when the full-factorial design
has more than several thousand runs.

cand= SAS-data-set
specifies the output data set with the candidate design (from PROC FACTEX or PROC PLAN). The
default name is Cand followed by the step number, for example: Cand1 for step 1, Cand2 for step 2,
and so on. You should only use this option when you are reading an external candidate set. When
you specify step= values greater than 1, the macro assumes the default candidate set names, CAND1,
CAND2, and so on, were used in previous steps. Specify just a data set name, no data set options.
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classopts= options
specifies PROC OPTEX class statement options. The default, is classopts=param=orthref. You
probably never want to change this option.

coding= name
specifies the PROC OPTEX coding= option. This option is usually not needed.

examine= I | V
specifies the matrices that you want to examine. The option examine=I prints the information matrix,
X′X; examine=V prints the variance matrix, (X′X)−1; and examine=I V prints both. By default, these
matrices are not printed.

facopts= options
specifies PROC FACTEX statement options.

factors= factor-list
specifies the factors and the number of levels for each factor. The factors= option must be specified.
All other options are not required. Here is a simple example of creating a design with 10 two-level
factors.

%mktdes(factors=x1-x10=2)

First, a factor list, which is a valid SAS variable list, is specified. The factor list must be followed by
an equal sign and an integer, which gives the number of levels. Multiple lists can be specified. For
example, to create 5 two-level factors, 5 three-level factors, and 5 five-level factors, specify:

%mktdes(factors=x1-x5=2 x6-x10=3 x11-x15=5)

By default, this macro creates each factor in a fractional-factorial candidate set from a minimum
number of pseudo-factors. Pseudo-factors are not output; they are used to create the factors of interest
and then discarded. For example, with nlev=2, a three-level factor x1 is created from 2 two-level
pseudo-factors ( 1 and 2) and their interaction by coding down:

(_1=1, _2=1) -> x1=1
(_1=1, _2=2) -> x1=2
(_1=2, _2=1) -> x1=3
(_1=2, _2=2) -> x1=1

This creates imbalance−the 1 level appears twice as often as 2 and 3. Somewhat better balance can
be obtained by instead using three pseudo-factors. The number of pseudo-factors may be specified in
parentheses after the number of levels. Example:

%mktdes(factors=x1-x5=2 x6-x10=3(3))

The levels 1 to 8 are coded down to 1 2 3 1 2 3 1 3, which is better balanced. The cost is candidate-set
size may increase and efficiency may actually decrease. Some researchers are willing to sacrifice a little
bit of efficiency in order to achieve better balance.
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generate= options
specifies the PROC OPTEX generate statement options. By default, additional options are not added
to the generate statement.

interact= interaction-list
specifies interactions that must be estimable. By default, no interactions are guaranteed to be estimable.
Examples:
interact=x1*x2
interact=x1*x2 x3*x4*x5
interact=x1|x2|x3|x4|x5@2

The interaction syntax is like PROC GLM’s and many of the other modeling procedures. It uses
“*” for simple interactions (x1*x2 is the interaction between x1 and x2), “|” for main effects and
interactions (x1|x2|x3 is the same as x1 x2 x1*x2 x3 x1*x3 x2*x3 x1*x2*x3) and “@” to eliminate
higher-order interactions (x1|x2|x3@2 eliminates x1*x2*x3 and is the same as x1 x2 x1*x2 x3 x1*x3
x2*x3). The specification “@2” allows only main effects and two-way interactions. Only “@” values of
2 or 3 are allowed.

iter= n

maxiter= n
specifies the PROC OPTEX iter= option which creates n designs. By default, iter=10.

keep= n
specifies the PROC OPTEX keep= option which keeps the n best designs. By default, keep=5.

nlev= n
specifies the number of levels from which factors are constructed through pseudo-factors and coding
down. The value must be a prime or a power of a prime: 2, 3, 4, 5, 7, 8, 9, 11 .... This option is used
with PROC FACTEX:

factors factors / nlev=&nlev;

By default, the macro uses the minimum prime or power of a prime from the factors= list or 2 if no
suitable value is found.

method= name
specifies the PROC OPTEX method= search method option. The default is method=m Fedorov (mod-
ified Fedorov).

n= n | SATURATED
specifies the PROC OPTEX n= option, which is the number of runs in the final design. The default
is the PROC OPTEX default and depends on the problem. Typically, you will not want to use the
default. Instead, you should pick a value using the information produced by the %MktRuns macro as
guidance (see page 740). The n=saturated option creates a design with the minimum number of runs.
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options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

check
checks the efficiency of a given design, specified in cand=.

nocode
suppresses printing the PROC PLAN, PROC FACTEX, and PROC OPTEX code.

allcode
shows all code, even code that will not be run.

otherfac= variable-list
specifies other terms to mention in the factors statement of PROC FACTEX. These terms are not
guaranteed to be estimable. By default, there are no other factors.

otherint= terms
specifies interaction terms that will only be specified with PROC OPTEX for multi-step macro invo-
cations. By default, no interactions are guaranteed to be estimable. Normally, interactions that are
specified via the interact= option affect both the PROC FACTEX and the PROC OPTEX model
statements. In multi-step problems, part of an interaction may not be in a particular PROC FACTEX
step. In that case, the interaction term must only appear in the PROC OPTEX step. For example, if
x1 is created in one step and x4 is created in another, and if the x1*x4 interaction must be estimable,
specify otherint=x1*x4 on the final step, the one that runs PROC OPTEX.

%mktdes(step=1, factors=x1-x3=2, n=30, run=factex)

%mktdes(step=2, factors=x4-x6=3, n=30, run=factex)

%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex,
otherint=x1*x4)

out= SAS-data-set
specifies the output experimental design (from PROC OPTEX). By default, out=design. Often, you
will want to specify a two-level name to create a permanent SAS data set so the design will be available
later for analysis.

procopts= options
specifies PROC OPTEX statement options. By default, no options are added to the PROC OPTEX
statement.

run= procedure-list
specifies the list of procedures that the macro may run. Normally, the macro runs either PROC
FACTEX or PROC PLAN and then PROC OPTEX. By default, run=plan factex optex. You can
skip steps by omitting procedure names from this list. When both PLAN and FACTEX are in the list,
the macro chooses between them based on the size of the full-factorial design and the value of big=.
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When PLAN is not in the list, the macro generates code for PROC FACTEX.

seed= n
specifies the random number seed. By default, seed=0, and clock time is used to make the random
number seed. By specifying a random number seed, results should be reproducible within a SAS release
for a particular operating system and for a particular version of the macro. However, due to machine
and macro differences, some results may not be exactly reproducible everywhere, although you would
expect the efficiency differences to be slight.

size= n | MIN
specifies the candidate-set size. Start with the default size=min and see how big that design is. If you
want, subsequently you can specify larger values that are nlev=n multiples of the minimum size. This
option is used with PROC FACTEX:

size design=&size;

When nlev=n, increase the size= value by a factor of n each time. For example, when nlev=2, increase
the size= value by a factor of two each time. If size=min implies size=128, then 256, 512, 1024, and
2048 are reasonable sizes to try. Integer expressions like size=128*4 are allowed.

step= n
specifies the step number. By default, there is only one step. However, sometimes, a better design can
be found using a multi-step approach. Do not specify the cand= option on any step of a multi-step
run. Consider the problem of making a design with 3 two-level factors, 3 three-level factors, and 3
five-level factors. The simplest approach is to do something like this−create a design from two-level
factors using pseudo-factors and coding down.

%mktdes(factors=x1-x3=2 x4-x6=3 x7-x9=5, n=30)

However, for small problems like this, the following three-step approach will usually be better.

%mktdes(step=1, factors=x1-x3=2, n=30, run=factex)
%mktdes(step=2, factors=x4-x6=3, n=30, run=factex)
%mktdes(step=3, factors=x7-x9=5, n=30, run=factex optex)

Note however, that the following %MktEx macro call will usually be better still.

%mktex(2 2 2 3 3 3 5 5 5, n=30)

The first %MktDes macro step uses PROC FACTEX to create a fractional-factorial design for the two-
level factors. The second step uses PROC FACTEX to create a fractional-factorial design for the
three-level factors and cross it with the two-level factors. The third step uses PROC FACTEX to
create a fractional-factorial design for the five-level factors and cross it with the design for the two and
three-level factors and then run PROC OPTEX.

Each step globally stores two macro variables (&class1 and &inter1 for the first step, &class2 and
&inter2 for the second step, ...) that are used to construct the PROC OPTEX class and model
statements. When step > 1, variables from the previous steps are used in the class and model
statements. In this example, the following PROC OPTEX code is created by step 3:
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proc optex data=Cand3;
class

x1-x3
x4-x6
x7-x9
/ param=orthref;

model
x1-x3
x4-x6
x7-x9
;

generate n=30 iter=10 keep=5 method=m_fedorov;
output out=Design;
run; quit;

This step uses the previously stored macro variables &class1=x1-x3 and &class2=x4-x6.

where= where-clause
specifies a SAS where clause for the candidate design, which is used to restrict the candidates. By
default, the candidate design is not restricted.

%MktDes Macro Notes

This macro specifies options nonotes throughout much of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktDups Macro

The %MktDups autocall macro detects duplicate choice sets and duplicate alternatives within generic
choice sets. See page 406 for an example. To illustrate, consider a simple experiment with these two
choice sets. These choice sets are completely different and are not duplicates.

a b c a b c
1 2 1 1 1 1
2 1 2 2 2 2
1 1 2 2 2 1
2 1 1 1 2 2

Now consider these two choice sets:

a b c a b c
1 2 1 2 1 2
2 1 2 1 1 2
1 1 2 2 1 1
2 1 1 1 2 1

They are the same for a generic study because all of the same alternatives are there, they are just in
a different order. However, for a branded study they are different. For a branded study, there would
be a different brand for each alternative, so the choice sets would be the same only if all the same
alternatives appeared in the same order. For both a branded and generic study, these choice sets are
duplicates:

a b c a b c
1 2 1 1 2 1
2 1 2 2 1 2
1 1 2 1 1 2
2 1 1 2 1 1

Now consider these choice sets for a generic study.

a b c a b c
1 2 1 1 2 1
2 1 1 1 2 1
1 1 2 1 1 2
2 1 1 2 1 1

First, each of these choice sets has duplicate alternatives (2 1 1 in the first and 1 2 1 in the second).
Second, these two choice sets are flagged as duplicates, even though they are not exactly the same.
They are flagged as duplicates because every alternative in choice set one is also in choice set two,
and every alternative in choice set two is also in choice set one. In generic studies, two choice sets are
considered duplicates unless one has one or more alternatives that are not in the other choice set.
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Here is an example. A design is created with the %ChoicEff macro choice-set-swapping algorithm for
a branded study, then the %MktDups macro is run to check for and eliminate duplicate choice sets.

%mktex(3 ** 9, n=27, seed=424)

data key;
input (Brand x1-x3) ($);
datalines;

Acme x1 x2 x3
Ajax x4 x5 x6
Widgit x7 x8 x9
;

%mktroll(design=randomized, key=key, alt=brand, out=cand)

%choiceff(data=cand, model=class(brand x1-x3), seed=420,
nsets=18, nalts=3, beta=zero)

proc freq; tables set; run;

%mktdups(branded, data=best, factors=brand x1-x3, nalts=3, out=out)

proc freq; tables set; run;

The first PROC FREQ output shows us that several candidate choice sets occur more than once in the
design.

The FREQ Procedure

Cumulative Cumulative
Set Frequency Percent Frequency Percent
--------------------------------------------------------
1 6 11.11 6 11.11
3 3 5.56 9 16.67
4 6 11.11 15 27.78
13 6 11.11 21 38.89
15 6 11.11 27 50.00
16 3 5.56 30 55.56
21 3 5.56 33 61.11
22 3 5.56 36 66.67
23 6 11.11 42 77.78
25 9 16.67 51 94.44
27 3 5.56 54 100.00

The %MktDups macro prints the following information to the log:
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Design: Branded
Factors: brand x1-x3

Brand
x1 x2 x3

Duplicate Sets: 7

The output from the %MktDups macro contains the following table:

Duplicate
Choice Choice Sets

Set To Delete

1 5

2 16

3 9
17

7 13

8 15

11 14

The first line of the first table tells us that this is a branded design as opposed to generic. The second
line tells us the factors as specified on the factors= option. These are followed by the actual variable
names for the factors. The last line reports the number of duplicates. The second table tells us that
choice set 1 is the same as choice set 5. Similarly, 2 and 16 are the same as are 3, 9, and 17, and so
on. The out= data set will contain the design with the duplicate choice set eliminated.

Now consider an example with purely generic alternatives.

%mktex(2 ** 5, n=2**5, seed=109)
%mktlab(int=f1-f4)

%choiceff(data=final, model=class(x1-x5), seed=93,
nsets=42, flags=f1-f4, beta=zero)

%mktdups(generic, data=best, factors=x1-x5, nalts=4, out=out)

The macro produces the following tables:

Design: Generic
Factors: x1-x5

x1 x2 x3 x4 x5
Sets w Dup Alts: 1
Duplicate Sets: 1
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Duplicate
Choice Choice Sets

Set To Delete

2 25

39 Alternatives

For each choice set listed in the choice set column, either the other choice sets it duplicates are listed
or the word Alternatives is printed if the problem is with duplicate alternatives.

Here are just the choice sets with duplication problems:

proc print data=best;
var x1-x5;
id set; by set;
where set in (2, 25, 39);
run;

Set x1 x2 x3 x4 x5

2 1 2 1 1 1
2 2 1 1 1
1 1 2 2 2
2 1 2 2 2

25 1 1 2 2 2
2 1 2 2 2
2 2 1 1 1
1 2 1 1 1

39 1 1 2 1 1
1 1 2 1 1
2 2 1 2 2
2 2 1 2 2

You can see that the macro detects duplicates even though the alternatives do not always appear in
the same order in the different choice sets.

Now consider another example.

%mktex(2 ** 6, n=2**6)

data key;
input (x1-x2) ($) @@;
datalines;

x1 x2 x3 x4 x5 x6
;

%mktroll(design=design, key=key, out=cand)
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%mktdups(generic, data=cand, factors=x1-x2, nalts=3, out=out)

proc print; by set; id set; run;

Here is some of the output. The output lists, for each set of duplicates, the choice set that will be kept
(in the first column) and all the matching choice sets that will be deleted (in the second column).

Design: Generic
Factors: x1-x2

x1 x2
Sets w Dup Alts: 40
Duplicate Sets: 50

Duplicate
Choice Choice Sets

Set To Delete

1 Alternatives

2 Alternatives
5
6
17
18
21

.

.

.

Here are the unique choice sets.

Set _Alt_ x1 x2

7 1 1 1
2 1 2
3 2 1

8 1 1 1
2 1 2
3 2 2

12 1 1 1
2 2 1
3 2 2

28 1 1 2
2 2 1
3 2 2
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This next example creates a conjoint design§ and tests it for duplicates.

%mktex( 3 ** 3 2 ** 2, n=19, seed=121)

%mktdups(linear, factors=x1-x5)

Design: Linear
Factors: x1-x5

x1 x2 x3 x4 x5
Duplicate Runs: 2

Duplicate
Runs

Run To Delete

3 4

10 11

%MktDups Macro Options

The following options can be used with the %MktDups macro.

Option Description
data=SAS-data-set input choice design
factors=variable-list factors in the design
nalts=n number of alternatives
options binary options
out=SAS-data-set output data set
outlist=SAS-data-set output data set with duplicates
vars=variable-list factors in the design

Positional Parameter

The options list is a positional parameter. This means it must come first, and unlike all other param-
eters, it is not specified after a name and an equal sign.

options
For the first option, specify one or more of the following. You may specify noprint and one of the
following: generic, branded, or linear.

branded
specifies that since one of the factors is brand, the macro only needs to compare corre-
sponding alternatives in each choice set.
§Normally, we would use 18 runs and not a prime number like 19 that is not divisible by any of the numbers of levels,

2 and 3. We picked a silly number like 19 to ensure duplicates for this example.
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generic
specifies a generic design and is the default. This means that there are no brands, so
options are interchangeable, so the macro needs to compare each alternative with every
other alternative in every choice set.

linear
specifies a linear not a choice design. Specify linear for a full-profile conjoint design, for
an ANOVA design, or for the linear version of a branded choice design.

noprint
specifies no printed output. This option will be used when you are only interested in the
output data set or macro variable.

Example:

%mktdups(branded noprint, nalts=3)

Required Options

This next option is mandatory with choice designs.

nalts= n
specifies the number of alternatives. This option must be specified with generic or branded designs. It
is ignored with linear designs. For generic or branded designs, the data= data set must contain nalts=
observations for the first choice set, nalts= observations for the second choice set, and so on.

Other Options

Here are the other options.

data= SAS-data-set
specifies the input choice design. By default, the macro uses the last data set created.

out= SAS-data-set
specifies an output data set that contains the design with duplicate choice sets excluded. By default,
no data set is created, and the macro just reports on duplicates. Often, you will want to specify a
two-level name to create a permanent SAS data set so the design will be available later for analysis.

outlist= SAS-data-set
specifies the output data set with the list of duplicates. By default, outlist=outdups.

vars= variable-list
factors= variable-list
specifies the factors in the design. By default, all numeric variables are used.
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%MktDups Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktEval Macro

The %MktEval autocall macro helps you evaluate an experimental design. There are numerous examples
of its usage from pages 161 through 348. The %MktEval macro reports on balance and orthogonality.
Typically, you will call it immediately after running the %MktEx macro. The output from this macro
contains two default tables. The first table shows the canonical correlations between pairs of coded
factors. A canonical correlation is the maximum correlation between linear combinations of the coded
factors. See page 70 for more information about canonical correlations. All zeros off the diagonal show
that the design is orthogonal for main effects. Off-diagonal canonical correlations greater than 0.316
(r2 > 0.1) are listed in a separate table.

For nonorthogonal designs and designs with interactions, the canonical-correlation matrix is not a
substitute for looking at the variance matrix with the %MktEx macro. It just provides a quick and
more-compact picture of the correlations between the factors. The variance matrix is sensitive to the
actual model specified and the coding. The canonical-correlation matrix just tells you if there is some
correlation between the main effects. When is a canonical correlation too big? You will have to decide
that for yourself. In part, the answer depends on the factors and how the design will be used. A high
correlation between the client’s and the main competitor’s price factor is a serious problem meaning
you will need to use a different design. In contrast, a moderate correlation in a choice design between
one brand’s minor attribute and another brand’s minor attribute may be perfectly fine.

The macro also prints one-way, two-way and n-way frequencies. Equal one-way frequencies occur when
the design is balanced. Equal two-way frequencies occur when the design is orthogonal. Equal n-way
frequencies, all equal to one, occur when there are no duplicate runs or choice sets.

Here is a typical usage:

%mktex(2 2 3 ** 6, n=18, unbalanced=0, seed=289)
%mkteval;

Canonical Correlations Between the Factors
There is 1 Canonical Correlation Greater Than 0.316

x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.33 0 0 0 0 0 0
x2 0.33 1 0 0 0 0 0 0
x3 0 0 1 0 0 0 0 0
x4 0 0 0 1 0 0 0 0
x5 0 0 0 0 1 0 0 0
x6 0 0 0 0 0 1 0 0
x7 0 0 0 0 0 0 1 0
x8 0 0 0 0 0 0 0 1

Canonical Correlations > 0.316 Between the Factors
There is 1 Canonical Correlation Greater Than 0.316

r r Square

x1 x2 0.33 0.11
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Summary of Frequencies
There is 1 Canonical Correlation Greater Than 0.316

* - Indicates Unequal Frequencies

Frequencies

x1 9 9
x2 9 9
x3 6 6 6
x4 6 6 6
x5 6 6 6
x6 6 6 6
x7 6 6 6
x8 6 6 6

* x1 x2 3 6 6 3
x1 x3 3 3 3 3 3 3
x1 x4 3 3 3 3 3 3
x1 x5 3 3 3 3 3 3
x1 x6 3 3 3 3 3 3
x1 x7 3 3 3 3 3 3
x1 x8 3 3 3 3 3 3
x2 x3 3 3 3 3 3 3
x2 x4 3 3 3 3 3 3
x2 x5 3 3 3 3 3 3
x2 x6 3 3 3 3 3 3
x2 x7 3 3 3 3 3 3
x2 x8 3 3 3 3 3 3
x3 x4 2 2 2 2 2 2 2 2 2
x3 x5 2 2 2 2 2 2 2 2 2
x3 x6 2 2 2 2 2 2 2 2 2
x3 x7 2 2 2 2 2 2 2 2 2
x3 x8 2 2 2 2 2 2 2 2 2
x4 x5 2 2 2 2 2 2 2 2 2
x4 x6 2 2 2 2 2 2 2 2 2
x4 x7 2 2 2 2 2 2 2 2 2
x4 x8 2 2 2 2 2 2 2 2 2
x5 x6 2 2 2 2 2 2 2 2 2
x5 x7 2 2 2 2 2 2 2 2 2
x5 x8 2 2 2 2 2 2 2 2 2
x6 x7 2 2 2 2 2 2 2 2 2
x6 x8 2 2 2 2 2 2 2 2 2
x7 x8 2 2 2 2 2 2 2 2 2
N-Way 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

All factors in this design are perfectly balanced, and almost all are orthogonal, but x1 and x2 are
correlated with each other.
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%MktEval Macro Options

The following options can be used with the %MktEval macro.

Option Description
blocks=variable blocking variable
data=SAS-data-set input data set with design
factors=variable-list factors in the design
format=format format for canonical correlations
freqs=frequency-list frequencies to print
list=n minimum canonical correlation to list
outcb=SAS-data-set within-block canonical correlations
outcorr=SAS-data-set canonical correlation matrix
outfreq=SAS-data-set frequencies
outfsum=SAS-data-set frequency summaries
outlist=SAS-data-set list of largest canonical correlations
print=print-options controls the printing of the results
vars=variable-list list of the factors

blocks= variable
specifies a blocking variable. This option prints separate canonical correlations within each block. By
default, there is one block.

data= SAS-data-set
specifies the input SAS data set with the experimental design. By default, the macro uses the last data
set created.

factors= variable-list
vars= variable-list
specifies a list of the factors in the experimental design. The default is all of the numeric variables in
the data set.

freqs= frequency-list
specifies the frequencies to print. By default, freqs=1 2 n, and 1-way, 2-way, and n-way frequencies
are printed. Do not specify the exact number of ways instead of n. For ways other than n, the
macro checks for and prints zero cell frequencies. For n-ways, the macro does not output or print zero
frequencies. Only the full-factorial design will have nonzero cells, so specifying something like freqs=1
2 20 will make the macro take a long time, and it will try to create huge data sets and will probably
run out of memory or disk space before it is done. However, freqs=1 2 n runs very reasonably.

format= format
specifies the format for printing canonical correlations. The default format is 4.2.
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list= n
specifies the minimum canonical correlation to list. The default is 0.316, the square root of r2 = 0.1.

outcorr= SAS-data-set
specifies the output SAS data set for the canonical correlation matrix. The default data set name is
CORR.

outcb= SAS-data-set
specifies the output SAS data set for the within-block canonical correlation matrices. The default data
set name is CB.

outlist= SAS-data-set
specifies the output data set for the list of largest canonical correlations. The default data set name is
LIST.

outfreq= SAS-data-set
specifies the output data set for the frequencies. The default data set name is FREQ.

outfsum= SAS-data-set
specifies the output data set for the frequency summaries. The default data set name is FSUM.

print= print-options
controls the printing of the results. The default is print=short. Specify one or more values from the
following list.
all all printed output
corr prints the canonical correlations matrix
block prints the canonical correlations within block
freqs prints the frequencies, specified by the freqs= option
list prints the list of canonical correlations greater than the list= value
nonzero like ordered but sets list=1e-6
ordered like list but ordered by variable names
short is the default and is equivalent to: corr list summ block
summ prints the frequency summaries
noprint no printed output

By default, the frequency list, which contains the factor names, levels, and frequencies is not printed,
but the more compact frequency summary list, which contains the factors and frequencies but not the
levels is printed.

%MktEval Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktEx Macro

The %MktEx autocall macro is designed for researchers who need good, efficient factorial designs. There
are numerous examples of its usage from pages 158 through 465. The %MktEx macro is designed to
be very simple to use and to run in seconds for trivial problems, minutes for small problems, and in
less than an hour for larger and difficult problems. This macro is a full-featured factorial-experimental
designer that can handle simple problems like main-effects designs and more complicated problems
including designs with interactions and restrictions on which levels can appear together. The macro is
designed to easily create the kinds of designs that marketing researchers need for conjoint and choice
experiments. For most factorial-design problems, you can simply run the macro once, specifying only
the number of runs and the numbers of levels of all the factors. You will no longer have to try different
algorithms and different approaches to see which one works best. The macro does all of that for you.
We state on page 100 “The best approach to design creation is to use the computer as a tool along
with traditional design skills, not as a substitute for thinking about the problem.” With the %MktEx
macro, we try to automate some of the thought processes of the expert designer.

Here is an example of using the %MktEx macro to create a design with 5 two-level factors, 4 three-level
factors, 3 five-level factors, 2 six-level factors, all in 60 runs (row, experimental conditions, conjoint
profiles, or choice sets).

%mktex( 2 ** 5 3 ** 4 5 5 5 6 6, n=60 )

The notation m ** n means mn or n m-level factors. For example 2 ** 5 means 2× 2× 2× 2× 2 or
5 two-level factors.

The %MktEx macro creates efficient factorial designs using several approaches. The macro will try to
directly create an orthogonal design (strength-two orthogonal array), it will search a set of candidate
runs (rows of the design), and it will use a coordinate-exchange algorithm using both random initial
designs and also a partially orthogonal design initialization. The macro stops if at any time it finds a
perfect, 100% efficient, orthogonal and balanced design. This first phase is the algorithm search phase.
In it, the macro determines which approach is working best for this problem. At the end of this phase,
the macro chooses the method that has produced the best design and performs another set of iterations
using exclusively the chosen approach. Finally, the macro performs a third set of iterations where it
takes the best design it found so far and tries to improve it.

In all phases, the macro attempts to optimize D-efficiency (sometimes known as D-optimality), which is
a standard measure of the goodness of the experimental design. As D-efficiency increases, the standard
errors of the parameter estimates in the linear model decrease. A perfect design is orthogonal and
balanced and has 100% D-efficiency. A design is orthogonal when all of the parameter estimates are
uncorrelated. A design is balanced when all of the levels within each of the factors occur equally often.
A design is orthogonal and balanced when the variance matrix, which is proportional to (X′X)−1 is
diagonal, where X is a suitable orthogonal coding (see page 64) of the design matrix. See pages 47 and
99, for more information on efficient experimental designs.

For most problems, you only need to specify the levels of all the factors and the number of runs.
For more complicated problems, you may need to also specify the interactions that you want to be
estimable or restrictions on which levels may not appear together. Other than that, you should not
need any other options for most problems. This macro is not like other design tools that you have to
tell what to do. With this macro, you just tell it what you want, and it figures out a good way to do
it. For some problems, the sophisticated user, with a lot of work, may be able to adjust the options
to come up with a better design. However, this macro should always produce a very good design with
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minimal effort for even the most unsophisticated users.

The %MktEx macro has the world’s largest catalog of strength-two (main effects) orthogonal arrays. The
orthogonal arrays are constructed using methods and arrays from a variety of sources, including: Addel-
man (1962a,b); Bose (1947); Dawson (1985); De Cock and Stufken (2000); de Launey (1986, 1987a,b);
Dey (1985); Hadamard (1893); Hedayat, Sloane, and Stufken (1999); Kharaghania and Tayfeh-Rezaiea
(2004); Kuhfeld (2004); Paley (1933); Rao (1947); Sloane (2004); Suen (1989a,b, 2003a,b,c); Suen
and Kuhfeld (2004); Taguchi (1987); Wang and Wu (1989, 1991); Wang (1996a,b); Williamson(1944);
Xu (2002); Zhang, Lu and Pang(1999); Zhang, Pang and Wang (2001); Zhang, Weiguo, Meixia and
Zheng (2004); and the SAS FACTEX procedure. Most of the newest designs come from new difference
schemes, and in particular, new generalized Hadamard matrices based on work by de Launey, Dawson,
and Zhang and colleagues.

For n’s up through 256 that are a multiple of 4, and many n’s beyond that, the %MktEx macro can
construct orthogonal designs with up to n− 1 two-level factors. The two-level designs are constructed
from Hadamard matrices (Hadamard, 1893; Paley, 1933; Williamson, 1944; Hedayat, Sloane, and
Stufken, 1999). The next table shows the available sizes up through n=1000:

Hadamard Matrix Sizes Up to n=1000
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128
132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192
196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256
264 272 276 280 284 288 296 300 304 308 312 316 320 328 332 336
344 348 352 360 364 368 376 380 384 388 392 396 400 408 416 428
420 424 428 432 440 444 448 456 460 464 468 472 480 484 488 492
496 500 504 512 516 524 528 540 544 548 552 556 560 564 568 572
576 588 592 600 608 616 620 624 628 632 636 640 644 656 660 664
672 676 684 688 692 696 700 704 708 720 728 736 740 748 752 760
768 776 780 784 788 792 796 800 804 812 816 820 828 832 840 844
848 860 864 868 880 884 888 896 900 908 912 916 920 924 928 936
944 948 960 968 972 976 984 992 1000

Larger sizes are available as well. The %MktEx macro can construct these designs when n is a multiple
of 4 and one or more of the following hold:

• n ≤ 256

• n− 1 is prime

• n/2− 1 is prime and mod(n/2, 4) = 2

• n is a power of 2 (2, 4, 8, 16, ...) times the size of a smaller Hadamard matrix that is available.

%MktEx can also make the 428-run Hadamard matrix that was recently discovered by Kharaghania and
Tayfeh-Rezaiea (2004).

When n is a multiple of 8, the macro can create orthogonal designs with a small number (say m)
four-level factors in place of 3×m of the two-level factors (for example, 270 43 in 80 runs).
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You can see more sizes of Hadamard matrices that the macro knows how to make by running the
next program. Note however that the fact that a number appears in this program’s listing, does not
guarantee that your computer will have enough memory and other resources to create it.

data x;
length Method $ 30;
do n = 4 to 10000 by 4;

HadSize = n; method = ’ ’;

do while(mod(hadsize, 8) eq 0); hadsize = hadsize / 2; end;
link paley;
if method eq ’ ’ and hadsize le 256 then method = ’Williamson’;
if method eq ’ ’ and hadsize gt 256 then do;

do while(hadsize lt n and method eq ’ ’);
hadsize = hadsize * 2;
link paley;
end;

end;
if method eq ’ ’ and hadsize = 428 then

method = ’Kharaghania and Tayfeh-Rezaiea’;
if method ne ’ ’ then do; Change = n - lag(n); output; end;
end;

return;
paley:;

ispm1 = 1; ispm2 = mod(hadsize / 2, 4) eq 2;
h = hadsize - 1;
do i = 3 to sqrt(hadsize) by 2 while(ispm1);

ispm1 = mod(h, i);
end;

h = hadsize / 2 - 1;
do i = 3 to sqrt(hadsize / 2) by 2 while(ispm2);

ispm2 = mod(h, i);
end;

if ispm1 then method = ’Paley 1’;
else if ispm2 then method = ’Paley 2’;
return;

run;

options ps=11000;
proc print label noobs;

label hadsize = ’Reduced Hadamard Matrix Size’;
var n hadsize method change;
run;
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Here is a summary of the parent and design sizes up through 513 runs that are available with the
%MktEx macro. Designs with 128, 144, 256, 432, 448, and 512 runs are listed separately from the rest
of their category since there are so many of them.

Number of Runs Parents All Designs
4- 50 86 12.03% 181 0.16%

51-100 176 24.62% 596 0.51%
101-127 129-150 154 21.54% 281 0.24%
128 21 2.94% 740 0.63%
144 16 2.24% 1,241 1.06%
151-200 43 6.01% 1,071 0.92%
201-250 41 5.73% 1,101 0.94%
251-255 257-300 32 4.48% 3,311 2.84%
256 2 0.28% 6,101 5.23%
301-350 35 4.90% 2,160 1.85%
351-400 39 5.45% 4,649 3.99%
401-431 433-447 449-450 21 2.94% 422 0.36%
432 7 0.98% 10,246 8.79%
448 4 0.56% 8,598 7.37%
451-500 32 4.48% 1,787 1.53%
501-511 513 4 0.56% 113 0.10%
512 2 0.28% 73,992 63.46%

715 116,590

Shown next are the 715 parent designs. (Listing all of the 116,590 designs in this format, at 200 designs
per page, would require 583 pages.) Many more orthogonal arrays not explicitly in this catalog can be
created as well such as full-factorial designs with more than 144 runs, Hadamard designs with more
than 512 runs, and fractional-factorial designs in 256, 512, or more runs.
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4 23

6 2131

8 2441

9 34

10 2151

12 211

2431

2261

3141

14 2171

15 3151

16 2881

45

18 2191

3661

20 219

2851

22101

4151

21 3171

22 21111

24 22041

2133141

212121

2114161

3181

25 56

26 21131

27 3991

28 227

21271

22141

4171

30 21151

31101

5161

32 216161

4881

33 31111

34 21171

35 5171

36 235

22731

22032

2183161

21362

21391

2103861

2103162

293462

2863

243163

233961

233263

223562

22181

213363

312121

3763

4191

38 21191

39 31131

40 23641

2254151

220201

21941101

5181

42 21211

31141

6171

44 243

212111

22221

41111

45 39151

5191

46 21231

48 24081

2333181

2316181

224241

31161

412121

49 78

50 21251

510101

51 31171

52 251

212131

22261

41131

54 21271

3206191

318181

55 51111

56 25241

2374171

228281

22741141

7181

57 31191

58 21291

60 259

23031

22251

21861

218101

2153151

21331101

2135161

213151

21161101

22301

31201

41151

51121

62 21311

63 312211

7191

64 232321

2541781

2541084

416161

41483

4786

89

65 51131

66 21331

31221

61111

68 267

213171

22341

41171

69 31231

70 21351

51141

71101

72 26841

2603141

2533241

251314161

2464162

2464191

24431241

243384161

243314162

242344162

2414163

23731341

237314163

236394161

236324163

236361

2353124161

235354162

23541181

234384162

234334163

23164

2303164

2283264

22731161121

2273664

2193204161

2183164162

2173124163

216384164

2123214161

21132061121

2113174162

2103204162

21031662121

2103134163

293164163

2931263121

29394164

283124164

273765121

263366121
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324241

8191

74 21371

75 31251

58151

76 275

213191

22381

41191

77 71111

78 21391

31261

61131

80 2615181

25581101

25143201

240401

410201

51161

81 327271

910

82 21411

84 283

22831

22771

22661

2203171

21831141

2186171

21361141

213211

22421

31281

41211

71121

85 51171

86 21431

87 31291

88 28441

25341111

244441

24341221

81111

90 21451

330301

3861151

51181

91101

91 71131

92 291

213231

22461

41231

93 31311

94 21471

95 51191

96 280161

27331161

27161161

248481

24441181121

24341581

2434126181

2393141481

212420241

31321

98 21491

714141

99 313331

91111

100 299

25153

24054

23453101

22955

21859101

21753102

213251

27510101

22501

41251

520201

58103

104

102 21511

31341

61171

104 210041

26141131

252521

25141261

81131

105 31351

51211

71151

106 21531

108 2107

23461

22733391

2263161

22033491

2193261

2183336191

218331181

2173162

21333061181

213271

21263

2103406191

2103336291

21033161181

293366291

2933461181

293163

2833062181

2764

243336391

2433162181

233416191

23339181

233346391

2333262181

233164

22342181

223376291

2233561181

223264

22541

213356391

2133362181

34491121

3396391

33762181

336361

3364

41271

110 21551

51221

101111

111 31371

112 210481

2897181

27981141

27543281

256561

412281

71161

114 21571

31381

61191

115 51231

116 2115

213291

22581

41291

117 313391

91131

118 21591

119 71171

120 211641

2873141

2794151

2754161

27541101

27241151

2703141101

270415161

2684161101

260601

25941301

23061201

227101121

31401

51241

81151

121 1112

122 21611

123 31411

124 2123

213311
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22621

41311

125 525251

126 21631

324141

3236171

321421

32061211

71181

91141

128 264641

2643381161

2642684161

2641987161

26412810161

2645813161

2543182161

2542485161

2541788161

25410811161

2548814

24436161

2442983161

2442286161

2441589161

2448812161

2342587

23418810

23411813

432321

816161

129 31431

130 21651

51261

101131

132 2131

24261

227111

22031111

21831221

21861111

21361221

213331

22661

31441

41331

111121

133 71191

134 21671

135 327451

32091151

51271

136 213241

27841171

268681

26741341

81171

138 21691

31461

61231

140 2139

23871

234141

22851

2275171

226101

22551141

22171101

217101141

213351

22701

41351

51281

71201

141 31471

142 21711

143 111131

144 213681

21148191

211331241

211161241

210381181

2763126481

276374165121

275334166121

274346681

272721

244311122

263366241

348481

436361

411122

127

147 77211

148 2147

150 510301

152 214841

276761

153 325171

156 2155

160 2144161

213847

213351161

2127101161

280801

416401

162 36561271

354541

164 2163

168 216441

284841

169 1314

171 328191

172 2171

175 510351

176 216881

216643

288881

412441

180 2179

330601

62301

184 218041

292921

188 2187

189 336631

192 2160321

296961

448481

88241

196 2195

714281

143

198 330661

200 219641

21001001

520401

105201

204 2203

207 325231

208 220081

219843

21041041

416521

212 2211

216 221241

21081081

211377121181

372721

36665121181

67361

220 2219

224 2208161

219371161

2183141161

21121121

456561

225 327751

520451

155

228 2227

232 222841

21161161

234 330781

236 2235

240 223281

223043

220551241

2199101241

21201201

420601

242 1122221

243 381811

927271

244 2243

245 77351

248 224441

21241241

250 550501

252 2251
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342841

62421

256 832321

1617

261 327871

264 226041

21321321

270 390901

272 226481

226243

21361361

432681

275 510551

276 2275

279 330931

280 227641

21401401

284 2283

288 2272161

225091161

2239161181

21441441

396961

436721

68481

126241

289 1718

294 714421

296 229241

297 339991

300 2299

520601

102301

304 229681

229443

2228761

416761

306 3481021

308 2307

312 230841

315 3291051

316 2315

320 2288321

2274415

2240801

440801

88401

324 3143121271

31081081

62541

325 520651

328 232441

332 2331

333 3361111

336 232881

232643

229771241

2287141241

2252841

436841

338 1326261

342 3301141

343 749491

344 234041

348 2347

350 520701

351 3391171

352 2336161

233047

2264881

432881

360 235641

3481201

66601

361 1920

363 1111331

364 2363

368 236081

235843

2276921

436921

369 3301231

375 540751

376 237241

378 3721261

380 2379

384 2320641

496961

816481

387 3481291

388 2387

392 238841

2196714281

714561

145281

396 2395

31321321

62661

400 239281

239043

23001001

4361001

580801

106401

405 3811351

408 240441

414 3481381

416 2400161

239447

23121041

4481041

420 2419

423 3301411

424 242041

425 520851

432 242481

238691241

2375181241

31441441

41081081

612721

126361

440 243641

441 34277211

714631

215

444 2443

448 2416321

23361121

4561121

856561

450 354510301

590901

154301

456 245241

459 37291171

460 2459

464 245681

245443

23481161

4361161

468 2467

349521

62781

472 246841

475 520951

477 337531

480 2464161

245847

23601201

4561201

484 2483

1122441

223

486 3216541

488 248441

490 714701

492 2491

495 34251331

496 248881

248643

23721241

4181241

500 2499

51001001

102501

504 250041

284384841

67841

512 864641

1632321

513 38191191
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Here is a simple example of using the %MktEx macro to request the L36 design, 211312, which has 11
two-level factors and 12 three-level factors.

%mktex( n=36 )

No iterations are needed, and the macro immediately creates the L36, which is 100% efficient. This
example runs in a few seconds. The factors are always named x1, x2, ... and the levels are always
consecutive integers starting with 1. You can use the %MktLab macro to assign different names and
levels (see page 712).

By default, the macro creates two output data sets with the design.

• out=Design - the experimental design, sorted by the factor levels.

• outr=Randomized - the randomized experimental design.

The two designs are equivalent and have the same D-efficiency. The out=Design data set is sorted and
hence is usually easier to look at, however the outr=Randomized design is the better one to use. The
randomized design has the rows sorted into a random order, and all of the factor levels are randomly
reassigned. For example with two-level factors, approximately half of the original (1, 2) mappings are
reassigned (2, 1). Similarly, with three level factors, the mapping (1, 2, 3) are changed to one of the
following: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), or (3, 2, 1). The reassignment of levels
is usually not critical for the iteratively derived designs, but it can be very important the orthogonal
designs, many of which have all ones in the first row.

The candidate-set search has two parts. First, either PROC PLAN is run to create a full-factorial
design for small problems, or PROC FACTEX is run to create a fractional-factorial design for large
problems. Either way, this design is a candidate set that in the second part is searched by PROC
OPTEX using the modified Fedorov algorithm. A design is built from a selection of the rows of the
candidate set (Fedorov, 1972; Cook and Nachtsheim, 1980). The modified Fedorov algorithm considers
each run in the design and each candidate run. Candidate runs are swapped in and design runs are
swapped out if the swap improves D-efficiency.

Next, the %MktEx macro uses the coordinate-exchange algorithm, based on Meyer and Nachtsheim
(1995). The coordinate-exchange algorithm considers each level of each factor, and considers the effect
on D-efficiency of changing a level (1 → 2, or 1 → 3, or 2 → 1, or 2 → 3, or 3 → 1, or 3 → 2, and so
on). Exchanges that increase efficiency are performed. Typically, the macro first tries to initialize the
design with an orthogonal (or tabled) design (Tab) and a random design (Ran) both. Levels that are
not orthogonally initialized may be exchanged for other levels if the exchange increases efficiency.

The initialization may be more complicated. Say you asked for the design 415135 in 18 runs. The
macro would use the orthogonal design 3661 in 18 runs to initialize the three-level factors orthogonally,
and the five-level factor with the six-level factor coded down to five levels (and hence unbalanced).
The four-level factor would be randomly initialized. The macro would also try the same initialization
but with a random rather than unbalanced initialization of the five-level factor, as a minor variation
on the first initialization. In the next initialization variation, the macro would use a fully random
initialization. If the number of runs requested were smaller than the number or runs in the initial
orthogonal design, the macro would initialize the design with just the first n rows of the orthogonal
design. Similarly, if the number of runs requested were larger than the number or runs in the initial
orthogonal design, the macro would initialize part of the design with the orthogonal design and the
remaining rows and columns randomly. The coordinate-exchange algorithm considers each level of each
factor that is not orthogonally initialized, and it exchanges a level if the exchange improves D-efficiency.



676 TS-722I − Experimental Design and Choice Modeling Macros

When the number or runs in the orthogonal design does not match the number of runs desired, none
of the design is initialized orthogonally.

The coordinate-exchange algorithm is not restricted by having a candidate set and hence can potentially
consider every possible design. That is, no design is precluded from consideration due to the limita-
tions of a candidate set. In practice, however, both the candidate-set-based and coordinate-exchange
algorithms consider only a tiny fraction of the possible designs. When the number of runs in the full-
factorial design is very small (say 100 or 200 runs), the modified Fedorov algorithm and coordinate
exchange algorithms usually work equally well. When the number of runs in the full-factorial design
is small (up to several thousand), the modified Fedorov algorithm is usually superior to coordinate
exchange, particularly in finding designs with interactions. When the full-factorial design is larger,
coordinate exchange is usually the superior approach. However, heuristics like these are often wrong,
which is why the macro tries both methods to see which one is really best for each problem.

Next, the %MktEx macro determines which algorithm (candidate set search, coordinate exchange with
partial orthogonal initialization, or coordinate exchange with random initialization) is working best
and tries more iterations using that approach. It starts by printing the initial (Ini) best efficiency.

Next, the %MktEx macro tries to improve the best design it found previously. Using the previous
best design as an initialization (Pre), and random mutations of the initialization (Mut) and simulated
annealing (Ann), the macro uses the coordinate-exchange algorithm to try to find a better design. This
step is important because the best design that the macro found may be an intermediate design and
may not be the final design at the end of an iteration. Sometimes the iterations deliberately make the
designs less efficient, and sometimes, the macro never finds a design as efficient or more efficient again.
Hence it is worthwhile to see if the best design found so far can be improved. At the end, PROC
OPTEX is called to print the levels of each factor and the final D-efficiency.

Random mutations involve adding random noise to the initial design before iterations start (levels are
randomly changed). This may eliminate the perfect balance that will often be in the initial design. By
default, random mutations are used with designs with fully random initializations and in the design
refinement step; orthogonal initial designs are not mutated.

Coordinate exchange can be combined with the simulated annealing optimization technique (Kirk-
patrick, Gellat, and Vecchi 1983). Annealing refers to the cooling of a liquid in a heat bath. The
structure of the solid depends on the rate of cooling. Coordinate exchange without simulated anneal-
ing seeks to maximize D-efficiency at every step. Coordinate exchange with simulated annealing allows
D-efficiency to occasionally decrease with a probability that decreases with each iteration. This is
analogous to slower cooling, and it helps overcome local optima.

For design 1, for the first level of the first factor, by default, the macro may execute an exchange (say
change a 2 to a 1) that makes the design worse with probability 0.05. As more and more exchanges
occur, this probability decreases so at the end of the processing of design 1, exchanges that decrease
efficiency are hardly ever done. For design 2, this same process is repeated, again starting by default
with an annealing probability of 0.05. This often helps the algorithm overcome local efficiency maxima.
To envision this, imagine that you are standing on a molehill next to a mountain. The only way you
can start going up the mountain is to first step down off the molehill. Once you are on the mountain,
you may occasionally hit a dead end, where all you can do is step down and look for a better place to
continue going up. Simulated annealing, by occasionally stepping down the efficiency function, often
allows the macro to go farther up it than it would otherwise. The simulated annealing is why you
will sometimes see designs getting worse in the iteration history. The macro keeps track of the best
design, not the final design in each step. By default, annealing is used with designs with fully random
initializations and in the design refinement step. Simulated annealing is not used with orthogonally
initialized designs.
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%MktEx Macro Notes

The %MktEx macro prints notes to the SAS log to show you what it is doing while it is running. Most of
the notes that would normally come out of the macro’s procedure and DATA steps are suppressed by
default by an options nonotes statement. This macro specifies options nonotes throughout most
of its execution. If you want to see all of the notes, submit the statement %let mktopts = notes;
before running the macro. To see the macro version, submit the statement %let mktopts = version;
before running the macro. This section describes the notes that are normally not suppressed.

The macro will usually start by printing one of the following notes (filling in a value after n=).

NOTE: Generating the Hadamard design, n=.
NOTE: Generating the full-factorial design, n=.
NOTE: Generating the fractional-factorial design, n=.
NOTE: Generating the orthogonal array design, n=.

These messages tell you which type of orthogonal design the macro is constructing. The design may
be the final design, or it may provide an initialization for the coordinate exchange algorithm. In some
cases, it may not have the same number of runs, n, as the final design. Usually this step is fast, but
constructing some fractional-factorial designs may be time consuming.

If the macro is going to use PROC OPTEX to search a candidate set, it will print this note.

NOTE: Generating the candidate set.

This step will usually be fast. Next, when a candidate set is searched, the macro will print this next
note, substituting in values for the ellipses.

NOTE: Performing ... searches of ... candidates.

This step may be take a while depending on the size of the candidate set and the size of the design.
When there are a lot of restrictions and a fractional-factorial candidate set is being used, the candidate
set may be so restricted that it does not contain enough information to make the design. In that case,
you will get this message.

NOTE: The candidate-set initialization failed,
but the MKTEX macro is continuing.

Even though part of the macro’s algorithm failed, it is not a problem. The macro just goes on to the
coordinate-exchange algorithm, which will almost certainly work better than searching any severely-
restricted candidate set.

For large designs, you usually will want to skip the PROC OPTEX iterations. The macro may print
this note.

NOTE: With a design this large, you may get faster results with OPTITER=0.

Sometimes you will get this note.

NOTE: Stopping since it appears that no improvement is possible.

When the macro keeps finding the same maximum D-efficiency over and over again in different designs,
it may stop early. This may mean that the macro has found the optimal design, or it may mean that
the macro keeps finding a very attractive local optimum. Either way, it is unlikely that the macro will
do any better. You can control this using the stopearly= option.

The macro has options that control the amount of time it spends trying different techniques. When
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time expires, the macro may switch to other techniques before it completes the usual maximum number
of iterations. When this happens, the macro tells you.

NOTE: Switching to a random initialization after ... minutes and
... designs.

NOTE: Quitting the algorithm search after ... minutes and ... designs.
NOTE: Quitting the design search after ... minutes and ... designs.
NOTE: Quitting the refinement step after ... minutes and ... designs.

When there are restrictions, or when you specify that you do not want duplicate runs, you may also
specify options=accept. This means that you are willing to accept designs that violate the restrictions.
With options=accept, the macro will tell you if the restrictions are not met.

NOTE: The restrictions were not met.
NOTE: The design has duplicate runs.

%MktEx optimizes a ridged efficiency criterion, that is, a small number is added to the diagonal of
(X′X)−1. Usually, the ridged criterion is virtually the same as the unridged criterion. When %MktEx
detects that this is not true, it prints these notes.

NOTE: The final ridged D-efficiency criterion is ....
NOTE: The final unridged D-efficiency criterion is ....

The macro ends with one of the following two messages.

NOTE: The MKTEX macro used ... seconds.
NOTE: The MKTEX macro used ... minutes.

%MktEx Macro Iteration History

This section provides information on interpreting the iteration history table produced by the %MktEx
macro. Here is part of a table.

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 82.2172 82.2172 Can
1 End 82.2172

2 Start 78.5039 Tab,Ran
2 5 14 83.2098 83.2098
2 6 14 83.3917 83.3917
2 6 15 83.5655 83.5655
2 7 14 83.7278 83.7278
2 7 15 84.0318 84.0318
2 7 15 84.3370 84.3370
2 8 14 85.1449 85.1449
.
.
.
2 End 98.0624
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.

.

.

12 Start 51.8915 Ran,Mut,Ann
12 End 93.0214

.

.

.

Design Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 98.8933 98.8933 Ini

1 Start 80.4296 Tab,Ran
1 End 98.8567

.

.

.

Design Refinement History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

0 Initial 98.9438 98.9438 Ini

1 Start 94.7490 Pre,Mut,Ann
1 End 92.1336

.

.

.

The first column, Design, is a design number. Each design corresponds to a complete iteration using a
different initialization. Initial designs are numbered zero. The second column is Row,Col, which shows
the design row and column that is changing in the coordinate-exchange algorithm. This column also
contains Start for displaying the initial efficiency, End for displaying the final efficiency, and Initial
for displaying the efficiency of a previously created initial design (perhaps created externally or perhaps
created in a previous step). The Current D-Efficiency column contains the D-efficiency for the design
including starting, intermediate and final values. The next column is Best D-Efficiency. Values are
put in this column for initial designs and when a design is found that is as good as or better than the
previous best design. The last column, Notes, contains assorted algorithm and explanatory details.
Values are added to the table at the beginning of an iteration, at the end of an iteration, when a
better design is found, and when a design first conforms to restrictions. Details of the candidate search
iterations are not shown. Only the D-efficiency for the best design found through candidate search is
shown.
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Here are the notes.

Can - the results of a candidate-set search
Tab - tabled (orthogonal array, full, or fractional factorial) initialization (full or in part)
Ran - random initialization (full or in part)
Unb - unbalanced initialization (usually in part)
Ini - initial design
Mut - random mutations of the initial design were performed
Ann - simulated annealing was used in this iteration
Pre - using previous best design as a starting point
Conforms - design conforms to restrictions
Violations - number of restriction violations

Often, more than one note appears. For example, the triples Ran,Mut,Ann and Pre,Mut,Ann frequently
appear together.

The iteration history consists of three tables.

Algorithm Search History - searches for a design and the best algorithm for this problem
Design Search History - uses the best algorithm to search further
Design Refinement History - tries to refine the best design
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%MktEx Macro Options

The following options can be used with the %MktEx macro.

Option Description
anneal=n1 < n2 < n3 >> starting probability for annealing
annealfun=function annealing probability function
anniter=n1 < n2 < n3 >> first annealing iteration

* balance=n maximum allowed level-frequency range
big=n < choose > size of big full-factorial design
canditer=n1 < n2 > iterations for OPTEX designs
cat=SAS-data-set input design catalog
detfuzz=n determinants change increment
examine=I | V matrices that you want to examine
exchange=n number of factors to exchange
fixed=variable indicates runs that are fixed
holdouts=n adds holdout observations
imlopts=options IML PROC statement options

* init=SAS-data-set initial (input) experimental design
interact=interaction-list interaction terms
iter=n1 < n2 < n3 >> maximum number of iterations
levels=value method for assigning final factor levels
list list of the numbers of factor levels
maxdesigns=n maximum number of designs to make
maxiter=n1 < n2 < n3 >> maximum number of iterations
maxstages=n maximum number of algorithm stages
maxtime=n1 < n2 < n3 >> approximate maximum run time

* mintry=n minimum number of rows to process
mutate=n1 < n2 < n3 >> mutation probability
mutiter=n1 < n2 < n3 >> first iteration to consider mutating
n=n number of runs in the design

* options=options-list binary options
optiter=n1 < n2 > OPTEX iterations

* order=value coordinate exchange column order
out=SAS-data-set output experimental design
outall=SAS-data-set output data set with all designs found
outr=SAS-data-set randomized output experimental design
partial=n partial-profile design

* repeat=n1 n2 n3 number of times to iterate on a row
reslist=list constant matrix list
resmac=macro-name constant matrix creation macro
restrictions=macro-name restrictions macro
ridge=n ridging factor
seed=n random number seed
stopearly=n that the macro may stop early
tabiter=n1 < n2 > tabled design iterations
tabsize=n orthogonal array size
target=n target efficiency criterion
unbalanced=n1 < n2 > unbalanced factors iterations

* - a new option or an option with new features in this release.



682 TS-722I − Experimental Design and Choice Modeling Macros

Required Options

These options are almost always required.

list
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify
either 2 2 2 or 2 ** 3. Lists of numbers, like 2 2 3 3 4 4 or a levels**number of factors syntax
like: 2**2 3**2 4**2 can be used, or both can be combined: 2 2 3**4 5 6. The specification 3**4
means 4 three-level factors. Note that the factor list is a positional parameter. This means that if it
is specified, it must come first, and unlike all other parameters, it is not specified after a name and an
equal sign. Usually, you have to specify a list. However, in some cases, you can just specify n= and
omit the list and a default list is implied. For example, n=18 implies a list of 2 3 ** 7. When the list
is omitted, and if there are no interactions, restrictions, or duplicate exclusions, then by default there
are no OPTEX iterations (optiter=0).

n= n
specifies the number of runs in the design. You must specify n=. Here is an example of using the
%MktRuns macro to get suggestions for values of n=:

%mktruns( 4 2 ** 5 3 ** 5 )

In this case, this macro suggests several sizes including orthogonal designs with n=72 and n=144 runs
and some smaller nonorthogonal designs including n=36, 24, 48, 60.

Basic Options

This next group of options contains some of the more commonly used options.

balance= n
specifies the maximum allowable level-frequency range. This option allows you to tell the macro that
it should make an extra effort to ensure that the design is nearly balanced. Specify a positive integer,
usually 1 or 2, that specifies the degree of imbalance that is acceptable. The balance=n option specifies
that for each factor, a difference between the frequencies of the most and least frequently occuring levels
should be no larger than n. You may specify balance=0, however, this usually is not a good idea because
the macro needs the flexibility to have imbalance as it refines the design. Often, the design actually
found will be better balanced than your balance=n specification would require. For this reason, it is
good to start by specifying a value larger than the minimum acceptable value. The larger the value,
the more freedom the algorithm has to optimize both balance and efficiency.

The balance= option works by adding restrictions to the design. The badness of each column (how
far each column is from conforming to the balance restrictions) is evaluated and the results stored in
a scalar bbad. When you specify other restrictions, this is added to the bad value created by your
restrictions macro. You can use your restrictions macro to change or differentially weight bbad before
the final addition of the components of design badness takes place (see page 688).

The %MktEx macro usually does a good job of producing nearly balanced designs, but if balance is
critically important, and your designs are not balanced enough, you can sometimes achieve better
balance by specifying balance=, but usually at the price of worse efficiency, sometimes much worse.
By default, no additional restrictions are added. Another approach is to instead use the %MktBal
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macro, which for main effects plans with no restrictions, produces designs that are guaranteed to have
optimal balance.

The balance= option has changed in this release. It now uses the new mintry= option, and it usually
makes better designs than it used to. When you specify balance=, you should also specify mintry=
(perhaps something like mintry=5 * n, or mintry=10 * n). When balance= and mintry=mt are both
specified, then the balance restrictions are ignored for the first mt - 3 * n / 2 passes through the
design. During this period, the badness function for the balance restrictions is set to 1 so that %MktEx
knows that the design does not conform. After that, all restrictions are considered. The balance=
option works best when its restrictions are imposed on a reasonably efficient design not an inefficient
initial design.

examine= I | V
specifies the matrices that you want to examine. The option examine=I prints the information matrix,
X′X; examine=V prints the variance matrix, (X′X)−1; and examine=I V prints both. By default, these
matrices are not printed.

interact= interaction-list
specifies interactions that must be estimable. By default, no interactions are guaranteed to be estimable.
Examples:
interact=x1*x2
interact=x1*x2 x3*x4*x5
interact=x1|x2|x3|x4|x5@2

The interaction syntax is like PROC GLM’s and many of the other modeling procedures. It uses
“*” for simple interactions (x1*x2 is the interaction between x1 and x2), “|” for main effects and
interactions (x1|x2|x3 is the same as x1 x2 x1*x2 x3 x1*x3 x2*x3 x1*x2*x3) and “@” to eliminate
higher-order interactions (x1|x2|x3@2 eliminates x1*x2*x3 and is the same as x1 x2 x1*x2 x3 x1*x3
x2*x3). The specification “@2” allows only main effects and two-way interactions. Only “@” values of 2
or 3 are allowed. For the factor names, you must specify either the actual variable names (for example,
x1 x2 ...) or you can just specify the number without the “x” (for example, x1*x2 is equivalent to
1*2). You can also specify interact=@2 for all main effects and two-way interactions. For example,
these two specifications are equivalent:

%mktex(2 ** 5, interact=@2, n=32)
%mktex(2 ** 5, interact=1|2|3|4|5@2, n=32)

mintry= n
specifies the minimum number of rows to process before giving up for each design. For example,
to ensure that the macro passes through each row of the design at least five times, you can specify
mintry=5 * n. You can specify a number or a DATA step expression involving n (rows) and m
(columns). By default, the macro will always consider at least n rows. This option can be useful with
certain restrictions, particularly with balance=. When balance= and mintry=mt are both specified,
then the balance restrictions are ignored for the first mt - 3 * n / 2 passes through the design.
During this period, the badness function for the balance restrictions is set to 1 so that %MktEx knows
that the design does not conform. After that, all restrictions are considered. The balance= option
works best when its restrictions are imposed on a reasonably efficient design not an inefficient initial
design.
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The %MktEx macro sometimes prints:

WARNING: It may be impossible to meet all restrictions.

In previous releases, it did this when %MktEx passed through the entire design (n rows) without suc-
ceeding in minimizing the badness in any of the rows. Now, the message is printed after mintry=n
rows are passed without any success. Sometimes, it is premature to expect any success during the first
pass. When you know this, you can specify this option to prevent that warning from coming out.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

accept
allows the macro to output designs that violate restrictions imposed by restrictions=,
balance=, or partial=, or have duplicates with options=nodups. Normally, the macro
will not output such designs. With options=accept, a design becomes eligible for output
when the macro can no longer improve on the restrictions or eliminate duplicates. Without
options=accept, a design is only eligible when all restrictions are met and all duplicates
are eliminated.

check
checks the efficiency of a given design, specified in init=, and disables the out=, outr=,
and outall= options. If init= is not specified, options=check is ignored.

file
render to a generated file name, e.g.: OA(36,2∧11,3∧12).

int
add an intercept to the design, variable, x0.

justinit
specifies that the macro should stop processing as soon as it is done making the initial
design, even if that design would not normally be the final design. Usually, this design
will be an orthogonal array or some function of an orthogonal array (e.g. some three-level
factors could be recoded into two-level factors), but there are no guarantees. Use this
option when you want to output the initial tabled design, for example, if you want to see
an orthogonal but unbalanced design that %MktEx sometimes uses as an initial design. The
options=justinit specification implies optiter=0 and outr=, and options=justinit
nofinal both stops processing and prevents the final design from being evaluated. Partic-
ularly when you specify options=nofinal, you must ensure that this design has a suitable
efficiency.
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largedesign
allows the macro to stop after maxtime= minutes have elapsed in the coordinate exchange
algorithm. Typically, you would use this with maxstages=1 and other options that make
the algorithm run faster. By default, the macro checks time after it finishes with a design.
With this option, the macro checks the time at the end of each row, after it has completed
the first full pass through the design, and after any restrictions have been met, so the macro
may stop before D-efficiency has converged. For really large problems and problems with
restrictions, this option may make the macro run much faster but at a price of lower D-
efficiency. For example, for large problems with restrictions, you might just want to try one
run through the coordinate exchange algorithm with no candidate set search, orthogonal
arrays, or mutations.

lineage
prints the lineage or “family tree” of the orthogonal array. For example, the lineage of the
design 21325 in 54 runs is 54 ** 1 : 54 ** 1 > 3 ** 20 6 ** 1 9 ** 1 : 9 ** 1
> 3 ** 4 : 6 ** 1 > 2 ** 1 3 ** 1. This states that the design starts as a single 54-
level factor, then 541 is replaced by 3206191, 91 is replaced by 34, and finally 61 is replaced
by 2131 to make the final design.

nodups
eliminates duplicate runs.

nofinal
skips calling PROC OPTEX to print the efficiency of the final experimental design.

nohistory
does not print the iteration history.

nosort
does not sort the design. One use of this option is with Hadamard matrices. Hadamard
matrices are generated with a banded structure that is lost when the design is sorted. If
you want to see the original Hadamard matrix, and not just a design constructed from the
Hadamard matrix, specify options=nosort.

render
print the design compactly.

refine
specifies that with an init= design data set with at least one nonpositive entry, each
successive design iteration tries to refine the best design from before. By default, the part
of the design that is not fixed is randomly reinitialized each time. The default strategy is
usually superior.

resrep
reports on the progress of the restrictions. You may want to specify this option with large
problems with lots of restrictions or if you try to create a design and find that %MktEx is
unable to make a design that conforms to the restrictions. By default, the iteration history
is not printed for the stage where %MktEx is trying to make the design conform to the
restrictions. Specify options=resrep when you want to see the progress in making the
design conform.
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+-
with render, print -1 as ’-’ and 1 as ’+’ in two-level factors. This option is typically used
with levels=i for printing Hadamard matrices.

3
modifies options=+- to apply to three-level factors as well: -1 as ’-’, 0 as ’0’, and 1 as ’+’.

512
adds some larger designs in 512 runs with mixes of 16, 8, 4, and 2-level factors to the catalog,
which gives added flexibility in 512 runs at a cost of potentially much slower run time. This
option replaces the default 4160321 parent with 1632321 and adds over 60,000 new designs
to the catalog. Many of these designs are automatically available with FACTEX, so do not
use this option unless you have first tried and failed to find the design without it.

partial= n
specifies a partial-profile design (Chrzan and Elrod, 1995). The default is an ordinary linear design.
Specify for example partial=4 if you only want 4 attributes to vary in each row of the design (ex-
cept the first run, in which none vary). This option works by adding restrictions to the design (see
restrictions=) and specifying order=random and exchange=2. The badness of each row (how far
each row is from conforming to the partial-profile restrictions) is evaluated and the results stored in
a scalar pbad. When you specify other restrictions, this is added to the bad value created by your
restrictions macro. You can use your restrictions macro to change or differentially weight pbad before
the final addition of the components of design badness takes place (see page 688). Because of the
default exchange=2 with partial-profile designs, the construction is slow, so you may want to specify
maxdesigns=1 or other options to make %MktEx run faster. For large problems, you may get faster but
less good results by specifying order=seqran. Specifying options=accept or balance= with partial=
is not a good idea. Here is the first part of a partial-profile design with twelve factors, each of which
has three levels that vary and one level that means the attribute is not shown.

%mktex(4 ** 12, n=48, partial=4, seed=205, maxdesigns=1)
%mktlab(values=. 1 2 3, nfill=99)
options missing=’ ’;
proc print data=final(obs=10); run;
options missing=’.’;

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1
2 1 2 1 2
3 3 2 3 1
4 1 2 1 1
5 2 2 1 2
6 1 2 1 2
7 3 2 1 3
8 1 1 3 3
9 2 2 2 2
10 3 3 3 1
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reslist= list
specifies a list of constant matrices. Begin all names with an underscore to ensure that they do not
conflict with any of names that %MktEx uses. If you specify more than one name, then names must be
separated by commas. Example: reslist=%str( a, b).

resmac= macro-name
specifies the name of a macro that creates the matrices named on the reslist= option. Begin all
names including all intermediate matrix names with an underscore to ensure that they do not conflict
with any of the names that %MktEx uses.

The reslist= and resmac= options can be used jointly for certain complicated restrictions to set up
some constant matrices that the restrictions macro can use. Since the restrictions macro is called a lot,
anything you can do only once helps speed up the algorithm.

Another way you can use these options is when you want to access a %MktEx matrix in your restrictions
macro that you normally could not access. This would require knowledge of the internal workings of
the %MktEx macro, so it is not a capability that you would usually need. Note that the %MktEx matrix
try is now automatically available.

restrictions= macro-name
specifies the name of a macro that places restrictions on the design. By default, there are no restrictions.
If you have restrictions on the design, what combinations can appear with what other combinations,
then you must create a macro that creates a variable called bad that contains a numerical summary
of how bad the row of the design is. When everything is fine, set bad to zero. Otherwise set bad to a
larger value that is a function of the number of restriction violations. The bad variable must not be
binary (0 - ok, 1 - bad) unless there is only one simple restriction. You must set bad so that the macro
knows if the changes it is considering are moving the design in the right direction. See page 700 for
examples of restrictions. The macro must consist of PROC IML statements and possibly some macro
statements.

When you have restrictions, you should usually specify options=resrep so that you can get a report on
the restriction violations in the iteration history. This can be a great help in debugging your restrictions
macro. Also, be sure to check the log when you specify restrictions=. The macro cannot always
ensure that your statements are syntax-error free and stop if they are not. There are many options
that can impose restrictions, including restrictions=, options=nodups, balance=, partial=, and
init=. If you specify more than one of these options, be sure that the combination makes sense, and
be sure that it is possible to simultaneously satisfy all of the restrictions.

Your macro can look at several things in quantifying badness, and it must store its results in bad.

i - is a scalar that contains the number of the row currently being changed or evaluated.
If you are writing restrictions that use the variable i, you almost certainly should specify
options=nosort.

try - is a scalar similar to i, which contains the number of the row currently being changed.
However, try, starts at zero and is incremented for each row, but it is only set back to
zero when a new design starts, not when %MktEx reaches the last row. Use i as a matrix
index and try to evaluate how far %MktEx is into the process of constructing the design.
In previous releases, try was not automatically available.
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x - is a row vector of factor levels for row i that always containing integer values beginning
with 1 and continuing on to the number of levels for each factor. These values are always
one-based, even if levels= is specified.

x1 is the same as x[1], x2 is the same as x[2], and so on.

j1 - is a scalar that contains the number of the column currently being changed. In the
steps where the badness macro is called once per row, j1 = 1.

j2 - is a scalar that contains the number of the other column currently being changed
(along with j1) with exchange=2 and larger exchange= values. This scalar will not exist
with exchange=1. In the steps where the badness macro is called once per row, j1 = j21
= 1.
j3 - is a scalar that contains the number of the third column currently being changed
(along with j1 and j2) with exchange=3 and larger exchange= values. This scalar will
not exist with exchange=1 and exchange=2. If and only if the exchange=value is greater
than 3, there will be a j4 and so on. In the steps where the badness macro is called once
per row, j1 = j2 = j3 = 1.

xmat - is the entire x matrix. Note that the ith row of xmat may not be x since x will
contain information on the exchanges being considered, whereas xmat contains the current
design.

bad - results: 0 - fine, or the number of violations of restrictions. This value can be large
or small and integers or real numbers. However, the values should always be nonnegative.
When there are multiple sources of design badness, it is sometimes good to scale the
different sources on different scales so that they do not trade off against each other. For
example, for one source, you may multiply the number of violations by 1000, by 100 for
another source, by 10 for another source, by 1 for another source, and even sometimes by
0.1 or 0.01 for another source. The final badness is the sum of bad, pbad (when it exists),
and bbad (when it exists). The scalars pbad and bbad are explained next.

pbad - is the badness from the partial= option. When partial= is not specified, this
scalar does not exist. Your macro can weight this value, typically by multiplying it times a
constant, to differentially weight the contributors to badness, e.g.: pbad = pbad * 10.

bbad - is the badness from the balance= option. When balance= is not specified, this
scalar does not exist. Your macro can weight this value, typically by multiplying it times
a constant, to differentially weight the contributors to badness, e.g.: bbad = bbad *
100.

Do not use these names (other than bad) for intermediate values!

Other than that, you can create intermediate variables without worrying about conflicts with the names
in the macro. The levels of the factors for one row of the experimental design are stored in a vector
x, and the first level is always 1, the second always 2, and so on. All restrictions must be defined in
terms of x[j] (or alternatively, x1, x2, ..., and perhaps the other matrices). For example, if there are 5
three-level factors and if it is bad if the level of a factor equals the level for the following factor, create
a macro restrict as follows and specify restrictions=restrict.

%macro restrict;
bad = (x1 = x2) +

(x2 = x3) +
(x3 = x4) +
(x4 = x5);

%mend;
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Note that you specify just the macro name and no percents on the restrictions= option. Also note
that IML does not have the full set of Boolean operators that the DATA step and other parts of SAS
have. For example, these are not available: OR AND NOT GT LT GE LE EQ NE. Here are the operators
you can use along with their meaning.

Do Not
Specify For Specify
= equals EQ
∧ = or ¬ = not equals NE
< less than LT
<= less than or equal to LE
> greater than GT
>= greater than or equal to GE
& and AND
| or OR
∧ or ¬ not NOT

Restrictions can substantially slow down the algorithm.

With restrictions, the Current D-Efficiency column of the iteration history table may contain values
larger than the Best D-Efficiency column. This is because the design corresponding to the current
D-efficiency may have restriction violations. Values are only reported in the best D-efficiency col-
umn after all of the restriction violations have been removed. You can specify options=accept with
restrictions= when it is okay if the restrictions are not met.

See page 700 for more information on restrictions. See pages 286 and 403 for examples of restrictions.
There are many examples of restrictions in the partial-profile examples starting on page 397.

seed= n
specifies the random number seed. By default, seed=0, and clock time is used to make the random
number seed. By specifying a random number seed, results should be reproducible within a SAS release
for a particular operating system and for a particular version of the macro. However, due to machine
and macro differences, some results may not be exactly reproducible everywhere. For most orthogonal
and balanced designs, the results should be reproducible. When computerized searches are done, it is
likely that you will not get the same design across different computers, operating systems and different
SAS and macro releases, although you would expect the efficiency differences to be slight.

Data Set Options

These next options specify the names of the input and output data sets.

cat= SAS-data-set
specifies the input design catalog. By default, the %MktEx macro automatically runs the %MktOrth
macro to get this catalog. However, many designs can be made in multiple ways, so you can instead
run %MktOrth yourself, and select the exact design you want and specify the resulting data set on
the cat= option. Be sure to specify options=dups lineage when you run the %MktOrth macro. For
example, the design 271 in 72 runs can be made from either 236361 or 26841: This example selects the
236361 method:
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%mktorth(range=n=72, options=dups lineage)

proc print data=mktdeslev; var lineage; run;

data lev;
set mktdeslev(where=(x2 = 71 and index(lineage, ’2 ** 36 36 ** 1’)));
run;

%mktex(2 ** 71, n=72, cat=lev, out=b)

Running these next steps shows that you are in fact getting a design that is different from the default.

%mktex(2 ** 71, n=72, out=a)

proc compare data=a compare=b noprint note;
run;

init= SAS-data-set
specifies the initial (input) experimental design. If all values in the initial design are positive, then a
first step evaluates the design, the next step tries to improve it, and subsequent steps try to improve
the best design found. However, if any values in the initial design are nonpositive (or missing) then a
different approach is used. The initial design can have three types of values:

• positive integers are fixed and constant and will not change throughout the course of the iterations.

• zero and missing values are replaced by random values at the start of each new design search and
can change throughout the course of the iterations.

• negative values are replaced by their absolute value at the start of each new design attempt and
can change throughout the course of the iterations.

When absolute orthogonality and balance are required in a few factors, you can fix them in advance.
This example illustrates how.

* Get first four factors;
%mktex(8 6 2 2, n=48)

* Flag the first four as fixed and set up to solve for the next six;
data init;

set design;
retain x5-x10 .;
run;

* Get the last factors holding the first 4 fixed;
%mktex(8 6 2 2 4 ** 6, n=48, init=init, maxiter=100)

%mkteval;

Alternatively you can use HOLDOUTS= or FIXED= to fix just certain rows.
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out= SAS-data-set
specifies the output experimental design. The default is out=Design. By default, this design is sorted
unless you specify options=nosort. This is the output data set to look at in evaluating the design.
See the outr= option for a randomized version of the same design, which is generally more suitable for
actual use. Specify a null value for out= if you do not want this data set created. Often, you will want
to specify a two-level name to create a permanent SAS data set so the design will be available later for
analysis.

outall= SAS-data-set
specifies the output data set containing all designs found. By default, this data set is not created.

outr= SAS-data-set
specifies the randomized output experimental design. The default is outr=Randomized. Levels are
randomly reassigned within factors, and the runs are sorted into a random order. Neither of these
operations affects efficiency. When restrictions= or partial= is specified, only the random sort is
performed. Specify a null value for outr= if you do not want a randomized design created. Often, you
will want to specify a two-level name to create a permanent SAS data set so the design will be available
later for analysis.

Iteration Options

These next options control some of the details of the iterations. Some of these options can take
three arguments, one for each set of iterations. The macro can perform three sets of iterations. The
Algorithm Search set of iterations looks for efficient designs using three different approaches. It then
determines which approach appears to be working best and uses that approach exclusively in the second
set of Design Search iterations. The third set or Design Refinement iterations tries to refine the
best design found so far by using level exchanges combined with random mutations and simulated
annealing.

The first set of iterations can have up to three parts. The first part uses either PROC PLAN or
PROC FACTEX followed by PROC OPTEX, called through the %MktDes macro, to create and search
a candidate set for an optimal initial design. The second part may use an orthogonal array or fractional-
factorial design as an initial design. The next part consists of level exchanges starting with random
initial designs.

In the first part, if the full-factorial design is manageable (arbitrarily defined as < 5185 runs), it is used
as a candidate set, otherwise a fractional-factorial candidate set is used. The macro tries optiter=
iterations to make an optimal design using the %MktDes macro and PROC OPTEX.

In the second part, the macro will try to generate and improve a standard orthogonal array or fractional-
factorial design. Sometimes, this can lead immediately to an optimal design, for example with 211312

and n = 36. In other cases, when only part of the desired design matches some standard design, only
part of the design is initialized with the standard design and multiple iterations are run using the
standard design as a partial initialization with the rest of the design randomly initialized.

In the third part, the macro uses the coordinate-exchange algorithm with random initial designs.
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anneal= n1 < n2 < n3 >>
specifies the starting probability for simulated annealing in the coordinate-exchange algorithm. The
default is anneal=.05 .05 .01. Specify a zero or null value for no annealing. You can specify more
than one value if you would like to use a different value for the algorithm search, design search, and
design refinement iterations. Specifying a value (greater than zero and less than one, for example 0.1)
allows the design to get worse with decreasing probability as the number of iterations increases. This
often helps the algorithm overcome local efficiency maxima. Allowing efficiency to decrease can help
get past the bumps on the efficiency function.

Examples: anneal= or anneal=0 specifies no annealing, anneal=0.1 specifies an annealing probability
of 0.1 during all three sets of iterations, mutate=0 0.1 0.05 specifies no annealing during the initial
iterations, an annealing probability of 0.1 during the search iterations, and an annealing probability of
0.05 during the refinement iterations.

anniter= n1 < n2 < n3 >>
specifies the first iteration to consider using annealing on the design. The default is anniter=. . .,
which means that the macro chooses values to use. The default is the first iteration that uses a fully
random initial design in each of the three sets of iterations. Hence by default, there is no random
annealing in any part of the initial design when part of the initial design comes from an orthogonal
design.

canditer= n1 < n2 >
specifies the number of coordinate-exchange iterations that will be used to try to improve a candidate-
set based, OPTEX-generated initial design. The default is canditer=1 1. Note that optiter= controls
the number of OPTEX iterations. Unless you are using annealing or mutation in the canditer=
iterations (by default you are not) or unless you are using options=nodups, do not change theses
values. The default value of canditer=1 1, along with the default mutiter= and anniter= values of
missing, mean that the results of the OPTEX iterations are presented once in the algorithm iteration
history, and if appropriate, once in the design search iteration history. Furthermore, by default, OPTEX
generated designs are not improved with level exchanges except in the design refinement phase.

maxdesigns= n
specifies that the macro should stop after maxdesigns= designs have been created. This option may
be useful for big, slow problems with restrictions. You could specify for example maxdesigns=3 and
maxtime=0 and the macro would perform one candidate-set-based iteration, one orthogonal design
initialization iteration, and one random initialization iteration and then stop. By default, this option
is ignored and stopping is based on the other iteration options. For large designs with restrictions, a
typical specification is optiter=0, tabiter=0, maxdesigns=1, options=largedesign.

maxiter= n1 < n2 < n3 >>

iter= n1 < n2 < n3 >>
specifies the maximum number of iterations or designs to generate. The default is maxiter=21 25
10. With larger values, the macro tends to find better designs at a cost of slower run times. You can
specify more than one value if you would like to use a different value for the algorithm search, design
search, and design refinement iterations. The second value is only used if the second set of iterations
consists of coordinate-exchange iterations. Otherwise, the number of iterations for the second set is
specified with the tabiter=, or canditer= and optiter= options. If you want more iterations, be sure
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to set the maxtime= option as well, because iteration stops when the maximum number of iterations is
reached or the maximum amount of time, whichever comes first. Examples: maxiter=10 specifies 10
iterations for the initial, search, and refinement iterations, and maxiter=10 10 5 specifies 10 initial
iterations, followed by 10 search iterations, followed by 5 refinement iterations.

maxstages= n
specifies that the macro should stop after maxstages= algorithm stages have been completed. This
option may be useful for big, slow problems with restrictions. You could specify maxstages=1 and the
macro will stop after the algorithm search stage, or maxstages=2 and the macro will stop after the
design search stage. The default is maxstages=3, which means the macro will stop after the design
refinement stage.

maxtime= n1 < n2 < n3 >>
specifies the approximate maximum amount of time in minutes to run each phase. The default is
maxtime=10 20 5. When an iteration completes (a design is completed), if more than the specified
amount of time has elapsed, the macro quits iterating in that phase. Usually, run time will be no more
than 10% or 20% larger than the specified values. However, for large problems, with restrictions, and
with exchange= values other than 1, run time may be quite a bit larger than the specified value, since
the macro only checks time after a design finishes. You can specify more than one value if you would
like to use a different value for the algorithm search, design search, and design refinement iterations.
By default, the macro spends up to 10 minutes on the algorithm search iterations, 20 minutes on the
design search iterations, and 5 minutes in the refinement stage. Most problems run in much less time
than this. Note that the second value is ignored for OPTEX iterations since OPTEX does not have any
timing options. This option also affects, in the algorithm search iterations, when the macro switches
between using an orthogonal initial design to using a random initial design. If the macro is not done
using orthogonal initializations, and one half of the first time value has passed, it switches. Examples:
maxtime=60 specifies up to one hour for each phase. maxtime=20 30 10 specifies 20 minutes for the
first phase and 30 minutes for the second, and 10 for the third. The option maxtime=0 provides a way
to get a quick run, with no more than one iteration in each phase. However, even with maxtime=0,
run time can be several minutes or more for large problems. See the maxdesigns= and maxstages=
options for other ways to drastically cut run time for large problems.

If you specify really large time values (anything more than hours), you probably need to also specify
optiter= since the default values depend on maxtime=.

mutate= n1 < n2 < n3 >>
specifies the probability at which each value in an initial design may mutate or be assigned a different
random value before the coordinate-exchange iterations begin. The default is mutate=.05 .05 .01.
Specify a zero or null value for no mutation. You can specify more than one value if you would
like to use a different value for the algorithm search, design search, and design refinement iterations.
Examples: mutate= or mutate=0 specifies no random mutations. The mutate=0.1 option specifies a
mutation probability of 0.1 during all three sets of iterations. The mutate=0 0.1 0.05 option specifies
no mutations during the first iterations, a mutation probability of 0.1 during the search iterations, and
a mutation probability of 0.05 during the refinement iterations.
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mutiter= n1 < n2 < n3 >>
specifies the first iteration to consider mutating the design. The default is mutiter=. . ., which
means that the macro chooses values to use. The default is the first iteration that uses a fully random
initial design in each of the three sets of iterations. Hence by default, there are no random mutations
of any part of the initial design when part of the initial design comes from an orthogonal design.

optiter= n1 < n2 >
specifies the number of iterations to use in the OPTEX candidate-set based searches in the algorithm
and design search iterations. The default is optiter=. ., which means that the macro chooses values
to use. When the first value is “.” (missing), the macro will choose a value usually no smaller than
20 for larger problems and usually no larger than 200 for smaller problems. However, maxtime= values
other than the defaults can make the macro choose values outside this range. When the second value
is missing, the macro will choose a value based on how long the first OPTEX run took and the value
of maxtime=, but no larger than 5000. When a missing value is specified for the first optiter= value,
the default, the macro may choose to not perform any OPTEX iterations to save time if it thinks it
can find a perfect design without them.

repeat= n1 n2 n3
specifies the maximum number of times to repeatedly work on a row to eliminate restriction violations.
The default value of repeat=25 . ., specifies that a row should be worked on up to 25 times to
eliminate violations. The second value is the place in the design refinement where this processing
starts. This is based on a zero-based total number of rows processed so far. This is like a zero-based
row index, but it never resets within a design. The third value is the place where this extra repeated
processing stops. Let m be the mintry=m value, which by default is n, the number of rows. By
default, when the second value is missing, the process starts after m rows have been processed (the
second complete pass through the design). By default, the process stops after m + 10 * n rows have
been processed where m is the second (specified or derived) repeat= value.

tabiter= n1 < n2 >
specifies the number of times to try to improve an orthogonal or fractional-factorial initial design. The
default is tabiter=10 200, which means 10 iterations in the algorithm search and 200 iterations in
the design search.

unbalanced= n1 < n2 >
specifies the proportion of the tabiter= iterations to consider using unbalanced factors in the initial
design. The default is unbalanced=.2 .1. One way that unbalanced factors occur is through coding
down. Coding down for example creates a three-level factor from a four-level factor: (1 2 3 4) ⇒
(1 2 3 3) or a two-level factor from a three-level factor: (1 2 3) ⇒ (1 2 2). For any particular problem,
this strategy is probably either going to work really well or not well at all, without much variability
in the results, so it is not tried very often by default. This option will try to create two-level through
five-level factors from three-level through six-level factors. It will not attempt for example to code
down a twenty-level factor into a nineteen-level factor (although the macro is often capable of in effect
doing just that through level exchanges).
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Miscellaneous Options

This section contains some miscellaneous options that some users may occasionally find useful.

big= n < choose >
specifies the full-factorial-design size that is considered to be big. The default is big=5185 choose. The
default value was chosen because 5185 is approximately 5000 and greater than 2634 = 5184, 212 = 4096,
and 2 × 37 = 4374. When the full-factorial design is smaller than the big= value, the %MktEx macro
searches a full-factorial candidate set. Otherwise, it searches a fractional-factorial candidate set. When
choose is specified as well (the default), the macro is allowed to choose to use a fractional-factorial
even if the full-factorial design is not too big if it appears that the final design can be created from
the fractional-factorial design. This may be useful for example when you are requesting a fractional-
factorial design with interactions. Using FACTEX to create the fractional-factorial design may be a
better strategy than searching a full-factorial design with PROC OPTEX.

exchange= n
specifies the number of factors to consider at a time when exchanging levels. You can specify exchange=2
to do pair-wise exchanges. Pair-wise exchanges are much slower, but may produce better designs. For
this reason, you may want to specify maxtime=0 or maxdesigns=1 or other iteration options to make
fewer designs and make the macro run faster. The exchange= option interacts with the order= option.
The order=seqran option is faster with exchange=2 than order=sequential or order=random. The
default is exchange=2 when partial= is specified. With order=matrix, the exchange= value is the
number of matrix columns. Otherwise, the default is exchange=1.

With partial-profile designs and certain other highly restricted designs, it is important to do pair-wise
exchanges. Consider for example, the following design row with partial=4

1 1 2 3 1 1 1 2 1 1 1 3

The %MktEx macro cannot consider changing a 1 to a 2 or 3 unless it can also consider changing one of
the current 2’s or 3’s to 1 to maintain the partial-profile restriction of exactly four values not equal to
1. Specifying the exchange=2 option gives %MktEx that flexibility.

fixed= variable
specifies an init= data set variable that indicates which runs are fixed (cannot be changed) and which
ones may be changed. By default, no runs are fixed.

1 - (or any nonmissing) means this run may never change.
0 - means this run is used in the initial design, but it may be swapped out.
. - means this run should be randomly initialized, and it may be swapped out.

This option can be used to add holdout runs to a conjoint design, but see holdouts= for an easier way.
To more generally fix parts of the design, see the init= option.
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holdouts= n
adds holdout observations to the init= data set. This option augments an initial design. Specifying
holdouts=n optimally adds n runs to the init= design. The option holdouts=n works by adding a
fixed= variable and extra runs to the init= data set. Do not specify both fixed= and holdouts=.
The number of rows in the init= design, plus the value specified in holdouts= must equal the n=
value.

levels= value
specifies the method of assigning the final factor levels. This recoding occurs after the design is created,
so all restrictions must be expressed in terms of one-based factors, regardless of what is specified in the
levels= option.

Values:

1 - default, one based, the levels are 1, 2, ...

0 - zero based, the levels are 0, 1, ...

c - centered, possibly resulting in nonintegers 1 2 → -0.5 0.5, 1 2 3 → -1 0 1.

i - centered and scaled to integers. 1 2 → -1 1, 1 2 3 → -1 0 1.

You can also specify separate values for two- and three-level factors by preceding a value by “2” or
“3”. For example, levels=2 i 3 0 c means two-level factors are coded -1, 1 and three-level factors
are coded 0, 1, 2. The remaining factors are centered. Note that the centering is based on centering the
level values not on centering the (potentially unbalanced) factor. So for example the centered levels for
a two-level factor in five runs (1 2 1 2 1) are (-0.5 0.5 -0.5 0.5 -0.5) not (-0.4 0.6 -0.4 0.6 -0.4). If you
want the latter form of centering, use proc standard m=0. See the %MktLab macro for more general
level setting.

You can also specify three other values:

first - means the first row of the design should consist entirely of the first level.

last - means the first row of the design should consist entirely of the last level, which is useful for
Hadamard matrices.

int - adds an intercept column to the design.

order= col=n | matrix=SAS-data-set| random | random=n | ranseq | sequential
specifies the order in which the columns are worked on in the coordinate exchange algorithm. Valid
values include:

col=n - process n random columns in each row
matrix=SAS-data-set - read the order from a data set
random - random order
random=n - random order with partial-profile exchanges
ranseq - sequential from a random first column
seqran - alias for ranseq
sequential - 1, 2, 3, ...
null - (the default) random when there are partial-profile restrictions, ranseq when there are other
restrictions, and sequential otherwise.
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For order=col=n, specify an integer for n, for example order=col=2. This option should only be used
for huge problems where you do not care if you hit every column. Typically, this option will be used
in conjunction with options=largedesign, maxdesigns=1, optiter=0, tabiter=0. You would use
it when you have a large problem and you do not have enough time for one complete pass through
the design. You just want to iterate for approximately the maxtime= amount of time then stop. You
should not use order=col= with restrictions.

The options order=random=n is like order=random, but with an adaptation that is particularly useful
for partial-profile choice designs. Use this option with exchange=2. Say you are making a partial-profile
design with ten attributes and three alternatives. Then attribute 1 is made from x1, x11, and x21;
attribute 2 is made from x2, x12, and x22; and so on. Specifying order=random=10 means that the
columns, as shown by column index j1, are traversed in a random order. A second loop (with variable
j2) traverses all of the factors in the current attribute. So for example when j1 is 13, then j2 = 3, 13,
23. This allows pair-wise exchanges within choice attributes.

The order= option interacts with the exchange= option. With a random order and exchange=2, the
variable j1 loops over the columns of the design in a random order and for each j1, j2 loops over the
columns greater than j1 in a random order. With a sequential order and exchange=2, the variable j1
loops over the columns in 1, 2, 3 order and for each j1, j2 loops over the columns greater than j1 in a
j1+1, j1+2, j1+3 order. The order=ranseq option is a bit different. With exchange=2, the variable
j1 loops over the columns in an order r, r+1, r+2, ..., m, 1, 2, ..., r-1 (for random r), and for each
j1 there is a single random j2. Hence, order=ranseq is the fastest option since it does not consider
all pairs, just one pair. The order=ranseq option provides the only situation where you might try
exchange=3.

The order=matrix=SAS-data-set option allows you to specify exactly what columns are worked on
in what order and in what groups. The SAS data set provides one row for every column grouping. Say
you wanted to use this option to work on columns in pairs. (Note that you could just use exchange=2
to do this.) Then the data set would have two columns. The first variable would contain the number
of a design column, and the second variable would contain the number of a second column that is to
be exchanged with the first. The names of the variables are arbitrary. Here is an example data set for
five factors.

%let m = 5;
data ex;

do i = 1 to &m;
do j = i + 1 to &m;

output;
end;

end;
run;

proc print noobs; run;
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i j

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

The specified exchange= value is ignored, and the actual exchange= value is set to two because the
data set has two columns. The values must be integers between 1 and m, where m is the number of
factors. The values may also be missing except in the first column. Missing values are replaced by a
random column (potentially a different random column each time).

In a model with interactions, you can use this option to ensure that the terms that enter into interactions
together get processed together. Here is an example.

data mat;
input x1-x3;
datalines;

1 1 1
2 3 .
2 4 .
3 4 .
2 3 4
5 5 .
6 7 .
8 . .
;

%mktex( 4 4 2 2 3 3 2 3, n=36, order=matrix=mat,
interact=x2*x3 x2*x4 x3*x4 x6*x7, seed=472 )

The data set MAT contains eight rows, so there will be eight column groupings processed. The data
set contains three columns, so up to three-way exchanges will be considered. The first row mentions
column 1 three times. Any repeats of a column number are ignored, so the first group of columns
simply consists of column 1. The second column consists of 2, 3, and ., so the second group consists of
columns 2, 3, and some random column. The random column could be any of the columns including
2 and 3, so this will sometimes be a two-way and sometimes be a three-way exchange. This group
was specified since x2*x3 is one of the interaction terms. Similarly, other groups consist of the other
two-way interaction terms and a random factor: 2 and 4, 3 and 4, and 6 and 7. In addition, to help
with the 3 two-way interactions involving x2, x3, and x4, there is one three-way term. Each time, this
will consider 4× 2× 2 exchanges, the product of the three numbers of levels. In principle, there is no
limit on the number of columns, but in practice, this number could easily get too big to be useful with
more than a few exchanges at a time. The row 5 5 . requests an exchange between column 5 and a
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random factor. The row 8 . . requests an exchange between column 8 and two random factors.

stopearly= n
specifies that the macro may stop early when it keeps finding the same maximum D-efficiency over
and over again in different designs. The default is stopearly=5. By default, during the design search
iterations and refinement iterations, the macro will stop early if 5 times, the macro finds a D-efficiency
essentially equal to the maximum but not greater than the maximum. This may mean that the macro
has found the optimal design, or it may mean that the macro keeps finding a very attractive local
optimum. Either way, it is unlikely it will do any better. When the macro stops for this reason, the
macro will print

NOTE: Stopping since it appears that no improvement is possible.

Specify either 0 or a very large value to turn off the stop-early checking.

tabsize= n
allows you some control on which tabled (OA, FACTEX or Hadamard) design is used for the partial
initialization when an exact match to a tabled design is not found. Specify the number of runs in the
tabled design. By default, the macro chooses an orthogonal design that bests matches the specified
design. See the cat= option for more detailed control.

target= n
specifies the target efficiency criterion. The default is target=100. The macro stops when it finds
an efficiency value greater than or equal to this number. If you know what the maximum efficiency
criterion is, or you know how big is big enough, you can sometimes make the macro run faster by
allowing it to stop when it reaches the specified efficiency. You can also use this option if you just
want to see the initial design that %MktEx is using: target=1, optiter=0. By specifying target=1,
the macro will stop after the initialization as long as the initial efficiency is ≥ 1.

Esoteric Options

This last set of options contains all of the other miscellaneous options. Most of the time, most users
should not specify options from this list.

annealfun= function
specifies the function that controls how the simulated annealing probability changes with each pass
through the design. The default is annealfun=anneal * 0.85. Note that the IML operator # performs
ordinary (scalar) multiplication. Most users will never need this option.

detfuzz= n
specifies the value used to determine if determinants are changing. The default is detfuzz=1e-8. If
newdeter > olddeter * (1 + detfuzz) then the new determinant is larger. Otherwise if newdeter
> olddeter * (1 - detfuzz) then the new determinant is the same. Otherwise the new determinant
is smaller. Most users will never need this option.
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imlopts= options
specifies IML PROC statement options. For example, for very large problems, you can use this option
to specify the IML symsize= or worksize= options: imlopts=symsize=n worksize=m, substituting
numeric values for n and m. The defaults for these options are host dependent. Most users will never
need this option.

ridge= n
specifies the value to add to the diagonal of X′X to make it nonsingular. The default is ridge=1e-7.
Usually, for normal problems, you will not need to change this value. If you want the macro to create
designs with more parameters than runs, you must specify some other value, usually something like
0.01. By default, the macro will quit when there are more parameters than runs. Specifying a ridge=
value other than the default (even if you just change the “e” in 1e-7 to “E”) allows the macro to
create a design with more parameters than runs. This option is sometimes needed for advanced design
problems.

Advanced Restrictions

It is extremely important with restrictions to appropriately quantify the badness of the run. The
%MktEx macro has to know when it considers an exchange if it is considering

• eliminating restriction violations making the design better,

• causing more restriction violations making the design worse,

• a change that neither increases nor decreases the number of violations.

Your restrictions macro must tell %MktEx when it is making progress in the right direction. If it does
not, %MktEx will probably not find an acceptable design.

Complicated Restrictions

Consider designing a choice experiment with two alternatives each composed of 25 attributes, the first
22 of which will have restrictions on them. Attribute one in the choice design will be made from x1
and x23, attribute two in the choice design will be made from x2 and x24, ..., and attribute 22 in the
choice design will be made from x22 and x44. The remaining attributes will be made from x45 - x50.
The restrictions are as follows: each choice attribute must contain two 1’s between 5 and 9 times, each
choice attribute must contain exactly one 1 between 5 and 9 times, and each choice attribute must
contain two 2’s between 5 and 9 times. Here is an example of how NOT to accomplish this.

%macro sumres;
allone = 0; oneone = 0; alltwo = 0;
do k = 1 to 22;

if (x[k] = 1 & x[k+22] = 1) then allone = allone + 1;
else if (x[k] = 1 | x[k+22] = 1) then oneone = oneone + 1;
else if (x[k] = 2 & x[k+22] = 2) then alltwo = alltwo + 1;
end;
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* Bad example. Need to quantify badness.;
bad = (^((5 <= allone & allone <= 9) &

(5 <= oneone & oneone <= 9) &
(5 <= alltwo & alltwo <= 9)));

%mend;

%mktex(3 ** 50, n=135, optiter=0, tabiter=0, maxdesigns=1,
restrictions=sumres, seed=289, options=resrep)

The problem with the preceding code is there are complicated restrictions but badness is binary. If
all the counts are in the right range, badness is 0, otherwise it is 1. You need write a macro that lets
%MktEx know when it is going in the right direction or it will probably never find a suitable design.
One thing that is correct about the preceding code is the compound Boolean range expressions like (5
<= allone & allone <= 9). Abbreviated expressions like (5 <= allone <= 9) that work correctly
in the DATA step work incorrectly and without warning in IML. Another thing that is correct is the
way the sumres macro creates new variables, k, allone, oneone, and alltwo. Care was taken to avoid
using names like i and x that conflict with the matrices that you are allowed to examine in quantifying
badness. The full list of names that you must avoid are i, try, x, x1, x2, ..., through xn for n factors,
j1, j2, j3, and xmat. Here is a slightly better but still bad example of the macro.

%macro sumres;
allone = 0; oneone = 0; alltwo = 0;
do k = 1 to 22;

if (x[k] = 1 & x[k+22] = 1) then allone = allone + 1;
else if (x[k] = 1 | x[k+22] = 1) then oneone = oneone + 1;
else if (x[k] = 2 & x[k+22] = 2) then alltwo = alltwo + 1;
end;

* Better, badness is quantified, and almost correctly too!;
bad = (^((5 <= allone & allone <= 9) &

(5 <= oneone & oneone <= 9) &
(5 <= alltwo & alltwo <= 9))) #

(abs(allone - 7) + abs(oneone - 7) + abs(alltwo - 7));
%mend;

%mktex(3 ** 50, n=135, optiter=0, tabiter=0, maxdesigns=1,
restrictions=sumres, seed=289, options=resrep)

This restrictions macro seems at first glance to do everything right−it quantifies badness. We need to
examine this macro more closely. It counts in allone, oneone, and alltwo the number of times choice
attributes are all one, have exactly one 1, or are all two. Everything is fine when the all one count is in
the range 5 to 9 (5 <= allone & allone <= 9), and the exactly one 1 count is in the range 5 to 9 (5
<= oneone & oneone <= 9), and the all two count is in the range 5 to 9 (5 <= alltwo & alltwo <=
9). It is bad when this is not true (∧((5 <= allone & allone <= 9) & (5 <= oneone & oneone <=
9) & (5 <= alltwo & alltwo <= 9))), the Boolean not operator “∧” performs the logical negation.
This Boolean expression is 1 for bad and 0 for OK. It is multiplied times a quantitative sum of how
far these counts are outside the right range (abs(allone - 7) + abs(oneone - 7) + abs(alltwo -
7)). When the run meets all restrictions, this sum of absolute differences will be multiplied by zero.
Otherwise badness gets larger as the counts get farther away from the middle of the 5 to 9 interval.

In the %MktEx macro, we specified options=resrep which produces a report in the iteration history
on the process of meeting the restrictions. When you run %MktEx and it is having trouble making a
design that conforms to restrictions, this report can be extremely helpful. Next, we will examine some
of the output from running the preceding macros.
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Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 59.7632 Ran,Mut,Ann
1 1 60.0363 0 Violations
1 2 60.3715 0 Violations
1 3 60.9507 0 Violations
1 4 61.2319 5 Violations
1 5 61.6829 0 Violations
1 6 62.1529 0 Violations
1 7 62.4004 0 Violations
1 8 62.9747 3 Violations

.

.

.

1 132 70.4482 6 Violations
1 133 70.3394 4 Violations
1 134 70.4054 0 Violations
1 135 70.4598 0 Violations

So far we have seen the results from the first pass through the design. With options=resrep the
macro prints one line per row with the number of violations when it is done with the row. Notice that
the macro is succeeding in eliminating violations in some but not all rows. This is the first thing you
should look for. If it is not succeeding in any rows, you may have written a set of restrictions that is
impossible to satisfy. Let’s look next at some of the output from the second pass through the design.

1 1 70.5586 0 Violations
1 2 70.7439 0 Violations
1 3 70.7383 0 Violations
1 4 70.7429 5 Violations
1 4 70.6392 4 Violations
1 4 70.7081 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7202 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
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1 4 70.7264 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7717 4 Violations
1 4 70.7274 4 Violations
1 4 70.7717 4 Violations
1 4 70.7515 4 Violations
1 4 70.7636 4 Violations
1 4 70.7717 4 Violations
1 4 70.7591 4 Violations
1 4 70.7717 4 Violations
1 5 70.7913 0 Violations
1 6 70.9467 0 Violations
1 7 71.0102 0 Violations
1 8 71.0660 0 Violations

In the second pass, in situations where the macro had some reasonable success in the first pass, %MktEx
tries extra hard to impose restrictions. We see it trying over and over again without success to impose
the restrictions in the fourth row. All it manages to do is lower the number of violations from 5 to
4. We also see it has no trouble removing all violations in the eighth row that were still there after
the first pass. The macro produces volumes of output like this. For several iterations, it will devote
extra attention to rows with some violations but in this case without complete success. When you
see this pattern, some success but also some stubborn rows that the macro cannot fix, there may be
something wrong with your restrictions macro. Are you really telling %MktEx when it is doing a better
job? These preceding steps illustrate some of the things that can go wrong with restrictions macros. It
is important to carefully evaluate the results−look at the design, look at the iteration history, specify
options=resrep, and so on to ensure your restrictions are doing what you want. The problem in this
case is in the quantification of badness, which is shown again next.

bad = (^((5 <= allone & allone <= 9) &
(5 <= oneone & oneone <= 9) &
(5 <= alltwo & alltwo <= 9))) #

(abs(allone - 7) + abs(oneone - 7) + abs(alltwo - 7));

For one thing, notice that we have three nonindependent contributors to the badness function, the
three counts. As a level gets changed, it could increase one count and decrease another. There is
a larger problem too. Say that allone and oneone are in the right range but alltwo is not. Then
the function fragments abs(allone - 7) and abs(oneone - 7) incorrectly contribute to the badness
function. The fix is to clearly differentiate the three sources of badness and weight the pieces so that
one part never trades off against the other. Here is an example.

%macro sumres;
allone = 0; oneone = 0; alltwo = 0;
do k = 1 to 22;

if (x[k] = 1 & x[k+22] = 1) then allone = allone + 1;
else if (x[k] = 1 | x[k+22] = 1) then oneone = oneone + 1;
else if (x[k] = 2 & x[k+22] = 2) then alltwo = alltwo + 1;
end;
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bad = 100 # (^(5 <= allone & allone <= 9)) # abs(allone - 7) +
10 # (^(5 <= oneone & oneone <= 9)) # abs(oneone - 7) +

(^(5 <= alltwo & alltwo <= 9)) # abs(alltwo - 7);
%mend;

%mktex(3 ** 50, n=135, optiter=0, tabiter=0, maxdesigns=1,
restrictions=sumres, seed=289, options=resrep)

Now a component of the badness only contributes to the function when it is really part of the problem.
We gave the first part weight 100 and the second part weight 10. Now the macro will never change
oneone or alltwo if that causes a problem for allone, and it will never change alltwo if that causes
a problem for oneone. Previously the macro was getting stuck in some rows because it could never
figure out how to fix one component of badness without making another component worse. For some
problems, figuring out how to differentially weight the components of badness so that they never trade
off against each other is the key to writing a successful restrictions macro. Often, it does not matter
which component gets the most weight, what is important is that each component gets a different
weight so that %MktEx does not get caught cycling back and forth making A better and B worse then
making B better and A worse. Here is some of the output from the first pass through the design.

The SAS System

Algorithm Search History

Current Best
Design Row,Col D-Efficiency D-Efficiency Notes
----------------------------------------------------------

1 Start 59.7632 Ran,Mut,Ann
1 1 60.1415 0 Violations
1 2 60.5303 0 Violations
1 3 61.0148 0 Violations
1 4 61.4507 0 Violations
1 5 61.7717 0 Violations
1 6 62.2353 0 Violations
1 7 62.5967 0 Violations
1 8 63.1628 3 Violations

.

.

.

1 126 72.3566 4 Violations
1 127 72.2597 0 Violations
1 128 72.3067 0 Violations
1 129 72.3092 0 Violations
1 130 72.0980 0 Violations
1 131 71.8163 0 Violations
1 132 71.3795 0 Violations
1 133 71.4446 0 Violations
1 134 71.2805 0 Violations
1 135 71.3253 0 Violations
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We can see that in the first pass, the macro is imposing all restrictions for most but not all of the rows.
Here is some of the output from the second pass.

1 1 71.3968 0 Violations
1 2 71.5017 0 Violations
1 3 71.7295 0 Violations
1 4 71.7839 0 Violations
1 5 71.8671 0 Violations
1 6 71.9544 0 Violations
1 7 72.0444 0 Violations
1 8 72.0472 0 Violations

.

.

.

1 126 77.1597 0 Violations
1 127 77.1604 0 Violations
1 128 77.1323 0 Violations
1 129 77.1584 0 Violations
1 130 77.0708 0 Violations
1 131 77.1013 0 Violations
1 132 77.1721 0 Violations
1 133 77.1651 0 Violations
1 134 77.1651 0 Violations
1 135 77.2061 0 Violations

In the second pass, %MktEx has imposed all the restrictions in rows 8 and 126, the rows that still had
violations after the first pass (and all of the other not shown rows too). The third pass ends like this.

1 126 78.7813 0 Violations
1 127 1 78.7813 78.7813 Conforms
1 127 18 78.7899 78.7899
1 127 19 78.7923 78.7923
1 127 32 78.7933 78.7933
1 127 40 78.7971 78.7971
1 127 44 78.8042 78.8042
1 127 47 78.8250 78.8250
1 127 50 78.8259 78.8259
1 127 1 78.8296 78.8296
1 127 5 78.8296 78.8296
1 127 8 78.8449 78.8449
1 127 10 78.8456 78.8456
1 128 48 78.8585 78.8585
1 128 49 78.8591 78.8591
1 128 7 78.8591 78.8591

The %MktEx macro completes a full pass through row 126, the place of the last violation, without
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finding any new violations so the macro states in row 127 that the design conforms to the restrictions
and the iteration history proceeds in the normal fashion from then on (not shown). Here is the final
efficiency.

The OPTEX Procedure

Average
Prediction

Design Standard
Number D-Efficiency A-Efficiency G-Efficiency Error
------------------------------------------------------------------------

1 85.0645 72.2858 95.6858 0.8650

This next code creates the choice design. Notice the slightly unusual arrangement of the KEY data set
due to the fact that the first 22 attributes get made from the first 44 factors of the linear design.

%mktkey(x1-x50)

data key;
input (x1-x25) ($);
datalines;

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
x14 x15 x16 x17 x18 x19 x20 x21 x22 x45 x46 x47
x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34
x35 x36 x37 x38 x39 x40 x41 x42 x43 x44 x48 x49 x50
;

%mktroll(design=design, key=key, out=chdes)

proc print; by set; id set; where set le 2 or set ge 134; run;

Here are a few of the choice sets.
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_
A

S l x x x x x x x x x x x x x x x x
e t x x x x x x x x x 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
t _ 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

1 1 1 1 1 1 1 2 1 3 1 1 2 3 2 3 2 3 2 2 2 1 2 2 1 1 1
2 2 2 1 1 3 2 1 3 3 1 3 2 2 3 2 1 2 3 3 1 1 2 3 2 3

2 1 1 1 1 1 1 3 1 1 2 2 3 2 2 2 1 2 3 1 1 3 1 2 1 1 2
2 3 3 1 1 1 1 3 3 2 2 2 1 2 2 2 3 1 1 3 3 1 2 1 2 2

134 1 3 3 2 3 3 2 1 1 1 1 1 1 2 2 1 3 2 2 1 3 3 1 2 1 2
2 1 1 2 2 1 2 1 1 1 1 1 3 2 2 3 1 1 2 1 1 3 3 1 3 3

135 1 3 3 3 1 3 1 1 1 1 2 2 3 1 2 3 3 1 3 2 1 2 1 2 3 1
2 2 1 1 1 1 1 1 3 1 2 2 1 3 2 1 3 3 1 2 1 2 1 2 2 2

Where the Restrictions Macro Gets Called

There is one more aspect to restrictions that must be understood for the most sophisticated usages
of restrictions. The macro that imposes the restrictions is defined and called in four distinct places
in the %MktEx macro. First, the restrictions macro is called in a separate, preliminary IML step,
just to catch some syntax errors that you might have made. Next, it is called in between calling
PROC PLAN or PROC FACTEX and calling PROC OPTEX. Here, the restrictions macro is used to
impose restrictions on the candidate set. Next, it is used in the obvious way during design creation
and the coordinate-exchange algorithm. Finally, when options=accept is specified, which means that
restriction violations are acceptable, the macro is called after all of the iterations have completed to
report on restriction violations in the final design. For some advanced restrictions, we may not want
exactly the same code running in all four places. When the restrictions are purely written in terms of
restrictions on x, which is the ith row of the design matrix, there is no problem. The same macro will
work fine for all uses. However, when xmat (the full x matrix) or i or j1 (the row or column number)
are used, the same code typically cannot be used for all applications, although sometimes it does not
matter. Next are some notes on each of the four phases.

Syntax Check. In this phase, the macro is defined and called just to check for syntax errors. When
there are errors, having this separate step, allows the macro to end more gracefully and provide better
information about the nature of the error than it would otherwise. Your restrictions macro can recognize
when it is in this phase because the macro variable &main is set to 0 and the macro variable &pass is
set to null. The pass variable is null before the iterations begin, 1 for the algorithm search phase, 2
for the design search phase, 3 for the design refinement stage, and 4 after the iterations end. You can
conditionally execute code in this step or not using the following macro statements.

%if &main eq 0 and &pass eq %then %do; /* execute in syntax check */
%if not (&main eq 0 and &pass eq) %then %do; /* not execute in syntax check */
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You will usually not need to worry about this step. It just calls the macro once and ignores the results
to check for syntax errors. For this step, xmat is a matrix of ones, and x is a vector of ones (since the
design does not exist yet) and j1 = j2 = j3 = i = 1. If you have complicated restrictions involving
the row or column exchange indices (i, j1, j2, j3) you may need to worry about this step. You
may need to either not execute your restrictions in this step or conditionally execute some assignment
statements (just for this step) that set up j1, j2, and j3 more appropriately. Sometimes you can set
things up appropriately by using the resmac= option. Be aware however, that this step checks (i, try,
j1, j2, j3, x, and xmat after your macro is called to ensure that you are not changing them because
this is usually a sign of an error. If you get the following warning

WARNING: Restrictions macro is changing i, try, j1, j2, j3, x, or xmat.
This might be a serious problem. Check your macro.

make sure you are not incorrectly changing one of the matrices that you should not be changing. If
this step detects a syntax error, it will try to tell you where it is and what the problem is. If you have
syntax errors in your restrictions macro and you cannot figure out what they are, sometimes the best
thing to do is directly submit the statements in your restrictions macro to so you can see the syntax
errors. First submit the following statements.

%let n = 27; /* substitute number of runs */
%let m = 10; /* substitute number of factors */
proc iml;

xmat = j(&n, &m, 1);
i = 1; j1 = 1; j2 = 1; j3 = 1; bad = 0; x = xmat[i,];

Candidate Check. In this phase, the macro is used to impose restrictions on the candidate set created
by PROC PLAN or PROC FACTEX before it is searched by PROC OPTEX. The macro is called
once for each row with the column index, j1 set to 1. For some problems, such as most partial-
profile problems, the restrictions are so severe that virtually none of the candidates will conform. Also,
restrictions that are based on row number and column number do not make sense in the context of a
candidate design. Your restrictions macro can recognize when it is in this phase because the macro
variable &main is set to 0 and the macro variable &pass is set to 1 or 2. You can conditionally execute
code in this step or not using the following macro statements.

%if &main eq 0 and &pass ge 1 and &pass le 2
%then %do; /* execute on candidates */

%if not (&main eq 0 and &pass ge 1 and &pass le 2)
%then %do; /* not execute on candidates */

For simple restrictions, not involving the column exchange indices (j1, j2, j3), you probably do not
need to worry about this step. If you use j1, j2, or j3, you will need to either not execute your
restrictions in this step or conditionally execute some assignment statements that set up j1, j2, and
j3 appropriately. Ordinarily for this step, xmat contains the candidate design, x contains the ith row,
j1 = 0; j2 = 0; j3 = 0; try = 1; i is set to the candidate row number.
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Main Coordinate-Exchange Algorithm. In this phase, the macro is used to impose restrictions on the
design as it is being built in the coordinate-exchange algorithm. Your restrictions macro can recognize
when it is in this phase because the macro variable &main is set to 1 and the macro variable &pass
is set to 1, 2, or 3. You can conditionally execute code in this step or not using the following macro
statements.

%if &main eq 1 and &pass ge 1 and &pass le 3
%then %do; /* execute on coordinate exchange */

%if not (&main eq 1 and &pass ge 1 and &pass le 3)
%then %do; /* not execute on coordinate exchange */

For this step, xmat contains the candidate design, x contains the ith row, j1, j2, and j3 typically
contain the column indices, i is the row number, and try is the zero-based cumulative row number.
With exchange=1, j1 exists, with exchange=2, j1 and j2 exist, and so on. Sometimes in this phase,
the restrictions macro is called once per row with the j* indices all set to 1. If you use the j* indices
in your restrictions, you may need to allow for this. For example, if you are checking the current j1
column for balance, and you used an init= data set with column one fixed and unbalanced, you will not
want to perform the check when j1 = 1. Note that for some designs that are partially initialized with
an orthogonal array and for some uses of init=, not all columns or cells in the design are evaluated.

Restrictions Violations Check. In this phase, the macro is used to check the design when there
are restrictions and options=accept. The macro is called once for each row of the design. Your
restrictions macro can recognize when it is in this phase because the macro variable &main is set to 1
and the macro variable &pass is greater than 3. You can conditionally execute code in this step or not
using the following macro statements.

%if &main eq 1 and &pass gt 3 %then %do; /* execute on final check */
%if not (&main eq 1 and &pass gt 3) %then %do; /* not execute on final check */

For this step, xmat contains the candidate design, x contains the ith row, j1 = 1; j2 = 1; j3 = 1;
try = 1; and i is the row number.

Here is an example of a partial-profile macro that does what the partial=4 option does.

%macro partprof;
nvary = sum(x ^= 1);
%if &main %then %do;

if i = 1 then bad = nvary;
else bad = abs(nvary - 4);
%end;

%else %do;
bad = ^ (nvary = 0 | nvary = 4);
%end;

%mend;

In the main algorithm, when imposing restrictions on the design, we restrict the first run to be constant
and all other runs to have four attributes varying. For the candidate-set restrictions, when MAIN is
zero, any observation with zero or four varying factors is acceptable. For the candidate-set restrictions,
there is no reason to count the number of violations. A candidate run is either acceptable or not. We
do not worry about the syntax error or final check steps; both versions will work fine in either.
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%MktKey Macro

The %MktKey macro creates expanded lists of variable names.

%mktkey(x1-x15)

The %MktKey macro produced the following line.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

You can cut and paste this list to make it easier to construct the key= data set for the %MktRoll macro.

data key;
input (x1-x5) ($);
datalines;

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10
x11 x12 x13 x14 x15

. . . . .
;

The %MktKey macro has an alternative syntax as well. You can specify the number of rows followed by
a number of columns. The output is a data set called KEY. Here is an example.

%mktkey(5 10)

Here is the output data set KEY with 5 rows and 10 columns and 5× 1 = 50 variable names, x1-x50.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
x21 x22 x23 x24 x25 x26 x27 x28 x29 x30
x31 x32 x33 x34 x35 x36 x37 x38 x39 x40
x41 x42 x43 x44 x45 x46 x47 x48 x49 x50

Alternatively, you can specify the number of rows and number of columns followed by a t or T and get
the transpose of this data set. The output data set is again called KEY. Here is an example.

%mktkey(5 10 t)

Here is the output data set KEY with 5 rows and 10 columns and 5× 1 = 50 variable names, x1-x50,
but this time the names progress down the columns instead of across the rows.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x6 x11 x16 x21 x26 x31 x36 x41 x46
x2 x7 x12 x17 x22 x27 x32 x37 x42 x47
x3 x8 x13 x18 x23 x28 x33 x38 x43 x48
x4 x9 x14 x19 x24 x29 x34 x39 x44 x49
x5 x10 x15 x20 x25 x30 x35 x40 x45 x50
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%MktKey Macro Options

The only argument to the %MktKey macro is a variable list.

list
specifies a variable list. Note that the variable list is a positional parameter and it is not specified after
a name and an equal sign.

Alternatively, the list contains the number of rows followed by the number of columns, optionally
followed by a t or T (for transpose). Without the t the names go x1, x2, x3, ..., across each row. With
the t the names go x1, x2, x3, ..., down each column.
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%MktLab Macro

The macro %MktLab is used to process an experimental design, usually created by the %MktEx macro,
and assign the final variable names and levels. There are numerous examples of its usage from pages
178 through 401. For example, say you used the %MktEx macro to create a design with 11 two-level
factors (with default levels of 1 and 2).

%mktex(n=12, options=nosort)

proc print noobs; run;

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 1 1 2 1 1 2 2
2 2 1 1 2 1 2 2 1 2 1
1 1 1 2 1 2 2 2 2 2 1
1 2 2 2 2 1 1 2 2 1 1
1 2 1 1 2 2 2 1 2 1 2
2 2 1 2 1 2 1 2 1 1 2
2 1 1 2 2 1 1 1 2 2 2
2 1 2 2 2 2 2 1 1 1 1
1 1 2 1 2 2 1 2 1 2 2
2 2 2 1 1 2 1 1 2 2 1
2 1 2 1 1 1 2 2 2 1 2

Either the %MktEx macro or the %MktLab macro can be used to assign levels of -1 and 1 and add an
intercept. Here is how you can do it directly with the %MktEx macro, using levels=i int. The value
of i specifies centered integer levels, and int adds the intercept.

%mktex(n=12, options=nosort, levels=i int)

However, if you want to change the factor names, and for more complicated relabeling of the levels,
you need to use the %MktLab macro.

%mktex(n=12, options=nosort)
%mktlab(data=design, values=1 -1, int=Had0, prefix=Had)

The %MktLab macro assigns levels of -1 and 1, adds an intercept named Had0, and changes the variable
name prefixes from x to Had. This creates a Hadamard matrix (although, of course, the Hadamard
matrix can have any set of variable names).

%mktlab(data=design, values=1 -1, int=Had0, prefix=Had)

proc print noobs; run;

Here is the resulting Hadamard matrix:
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Had0 Had1 Had2 Had3 Had4 Had5 Had6 Had7 Had8 Had9 Had10 Had11

1 1 1 1 1 1 1 1 1 1 1 1
1 1 -1 -1 -1 1 1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 1 -1 -1 1 -1 1
1 1 1 1 -1 1 -1 -1 -1 -1 -1 1
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1 1 -1 1 1 -1 -1 -1 1 -1 1 -1
1 -1 -1 1 -1 1 -1 1 -1 1 1 -1
1 -1 1 1 -1 -1 1 1 1 -1 -1 -1
1 -1 1 -1 -1 -1 -1 -1 1 1 1 1
1 1 1 -1 1 -1 -1 1 -1 1 -1 -1
1 -1 -1 -1 1 1 -1 1 1 -1 -1 1
1 -1 1 -1 1 1 1 -1 -1 -1 1 -1

Here is an alternative way of doing the same thing using a key= data set.

data key;
array Had[11];
input Had1 @@;
do i = 2 to 11; Had[i] = Had1; end;
drop i;
datalines;

1 -1
;

proc print data=key; run;

Here is the key= data set.

Obs Had1 Had2 Had3 Had4 Had5 Had6 Had7 Had8 Had9 Had10 Had11

1 1 1 1 1 1 1 1 1 1 1 1
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

%mktlab(data=design, key=key, int=Had0)

The Hadamard matrix from this step (not shown) is exactly the same as the one just shown previously.

The key= data set contains all of the variables that you want in the design and all of their levels. This
information will be applied to the design, by default the one stored in a data set called RANDOMIZED,
which is the default outr= data set name from the %MktEx macro. The results are stored in a new data
set, FINAL, with the desired factor names and levels.

Consider the consumer food product example from page 111. Here is one possible design.
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data randomized;
input x1-x8 @@;
datalines;

4 2 1 1 1 2 2 2 2 1 1 2 1 3 1 3 3 4 2 2 1 3 2 3 4 3 2 1 3 2 2 3 4 1 2 1
1 1 1 1 2 4 1 2 1 2 1 1 1 2 1 2 3 3 2 1 2 2 2 2 2 2 2 3 1 4 2 1 1 2 2 2
3 2 2 1 3 1 2 1 1 4 1 2 2 3 1 2 1 3 2 2 1 3 1 1 3 2 1 2 2 1 2 3 3 4 1 1
3 1 1 3 4 1 2 2 2 1 2 1 2 3 2 1 2 3 2 2 2 1 2 1 3 3 1 3 4 2 2 2 1 3 1 2
2 4 2 2 3 1 1 2 3 1 2 2 3 2 1 2 3 3 1 1 2 3 1 1 4 4 2 1 2 2 1 3 1 1 1 1
3 2 1 2 4 3 1 2 3 3 2 2 1 2 2 1 2 1 1 3 1 3 1 1 1 1 2 3
;

Designs created by the %MktEx macro always have factor names x1, x2, ..., and so on, and the levels
are consecutive integers beginning with 1 (1, 2 for two-level factors; 1, 2, 3 for three-level factors; and
so on). The %MktLab macro provides you with a convenient way to change the names and levels to
more meaningful values. The data set KEY contains the variable names and levels that you ultimately
want.

data key;
missing N;
input Client ClientLineExtension ClientMicro $ ShelfTalker $

Regional Private PrivateMicro $ NationalLabel;
format _numeric_ dollar5.2;
datalines;

1.29 1.39 micro Yes 1.99 1.49 micro 1.99
1.69 1.89 stove No 2.49 2.29 stove 2.39
2.09 2.39 . . N N . N
N N . . . . . .
;

%mktlab(key=key)

proc sort; by shelftalker; run;

proc print; by shelftalker; run;

The variable Client with 4 levels will be made from x1, ClientLineExtension with 4 levels will be
made from x2, ClientMicro with 2 levels will be made from x3. The N (for not available) is treated
as a special missing value. The KEY data set has four rows because the maximum number of levels is
four. Factors with fewer than four levels are filled in with ordinary missing values. The %MktLab macro
takes the default data=randomized data set from %MktEx and uses the rules in the key=key data set,
to create the information in the out=final data set, which is shown next, sorted by the shelf talker
variable.

Here is some of the design:
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----------------------------- ShelfTalker=No ------------------------------

Client
Line Client Private National

Obs Client Extension Micro Regional Private Micro Label

1 $1.69 $1.39 micro $1.99 N micro N
2 $2.09 N stove $1.99 N stove N
3 $1.69 N micro $1.99 $2.29 micro $1.99
.
.
.

----------------------------- ShelfTalker=Yes -----------------------------

Client
Line Client Private National

Obs Client Extension Micro Regional Private Micro Label

14 N $1.89 micro $1.99 $2.29 stove $2.39
15 N $2.39 stove N $2.29 stove N
16 N $1.39 stove $1.99 $1.49 micro $1.99
.
.
.

This macro creates the out= data set by repeatedly reading and rereading the key= data set, one datum
at a time, using the information in the data= data set to determine which levels to read from the key=
data set. In this example, for the first observation, x1=4 so the fourth value of the first key= variable
is read, then x2=2 so the second value of the second key= variable is read, then x3=1 so the first value
of the third key= variable is read, ..., then x8=2 so the second value of the eighth key= variable is
read, then the first observation is output. This continues for all observations. This is why the data=
data set must have been created with the default levels= specification, and must have integer values
beginning with 1.

This example creates the L36, renames the two-level factors two1-two11 and assigns them values -1,
1, and renames the three-level factors thr1-thr12 and assigns them values -1, 0, 1.
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%mktex(n=36, seed=420)

data key;
array x[23] two1-two11 thr1-thr12;
input two1 thr1;
do i = 2 to 11; x[i] = two1; end;
do i = 13 to 23; x[i] = thr1; end;
drop i;
datalines;

-1 -1
1 0
. 1
;

%mktlab(key=key)

proc print data=key noobs; var two:; run;
proc print data=key noobs; var thr:; run;

proc print data=final(obs=5) noobs; var two:; run;
proc print data=final(obs=5) noobs; var thr:; run;

Here is the KEY data set.

two1 two2 two3 two4 two5 two6 two7 two8 two9 two10 two11

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 1 1 1 1 1 1 1
. . . . . . . . . . .

thr1 thr2 thr3 thr4 thr5 thr6 thr7 thr8 thr9 thr10 thr11 thr12

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1

Here are the first five rows of the design.

two1 two2 two3 two4 two5 two6 two7 two8 two9 two10 two11

-1 -1 1 1 1 1 1 1 1 1 -1
1 1 1 1 -1 1 1 -1 -1 1 1
-1 -1 -1 1 -1 -1 -1 -1 -1 1 -1
-1 -1 -1 -1 1 1 1 -1 -1 -1 1
-1 1 -1 -1 -1 -1 1 1 1 1 1
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thr1 thr2 thr3 thr4 thr5 thr6 thr7 thr8 thr9 thr10 thr11 thr12

0 0 0 1 1 1 -1 1 1 1 -1 -1
1 -1 -1 1 0 0 -1 1 1 0 1 0
0 -1 0 0 -1 -1 -1 0 -1 0 -1 0
0 1 0 1 1 0 1 -1 -1 -1 1 0
1 -1 1 1 1 1 0 -1 -1 0 -1 1

This next step creates a design and blocks it. This example shows that it is okay if not all of the
variables in the input design are used. The variables Block, Run, and x4 are just copied from the input
to the output.

%mktex(n=18, seed=396)

%mktblock(nblocks=2, factors=x1-x4, seed=292)

data key;
input Brand $ Price Size;
format price dollar5.2;
datalines;

Acme 1.49 6
Apex 1.79 8
. 1.99 12
;

%mktlab(data=blocked, key=key)

Here are the results:

Block Run Brand Price Size x4

1 1 Acme $1.49 12 2
2 Acme $1.79 6 3
3 Acme $1.79 8 2
4 Acme $1.99 8 1
5 Acme $1.99 12 1
6 Apex $1.49 8 3
7 Apex $1.49 12 3
8 Apex $1.79 6 1
9 Apex $1.99 6 2

2 1 Acme $1.49 6 1
2 Acme $1.49 6 2
3 Acme $1.79 8 3
4 Acme $1.99 12 3
5 Apex $1.49 8 1
6 Apex $1.79 12 1
7 Apex $1.79 12 2
8 Apex $1.99 6 3
9 Apex $1.99 8 2
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This next example illustrates using the labels= option. This option is more typically used with
values= input, rather than when you construct the key= data set yourself, but it can be used either
way. This example is from a vacation choice example.

%mktex(3 ** 15, n=36, seed=17, maxtime=0)

%mktblock(data=randomized, nblocks=2, factors=x1-x15, seed=448)

%macro lab;
label X1 = ’Hawaii, Accommodations’

X2 = ’Alaska, Accommodations’
X3 = ’Mexico, Accommodations’
X4 = ’California, Accommodations’
X5 = ’Maine, Accommodations’
X6 = ’Hawaii, Scenery’
X7 = ’Alaska, Scenery’
X8 = ’Mexico, Scenery’
X9 = ’California, Scenery’
X10 = ’Maine, Scenery’
X11 = ’Hawaii, Price’
X12 = ’Alaska, Price’
X13 = ’Mexico, Price’
X14 = ’California, Price’
X15 = ’Maine, Price’;

format x11-x15 dollar5.;
%mend;

data key;
length x1-x5 $ 16 x6-x10 $ 8 x11-x15 8;
input x1 & $ x6 $ x11;
x2 = x1; x3 = x1; x4 = x1; x5 = x1;
x7 = x6; x8 = x6; x9 = x6; x10 = x6;
x12 = x11; x13 = x11; x14 = x11; x15 = x11;
datalines;

Cabin Mountains 999
Bed & Breakfast Lake 1249
Hotel Beach 1499
;

%mktlab(data=blocked, key=key, labels=lab)

proc contents p; ods select position; run;

Here is the variable name, label, and format information.
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The CONTENTS Procedure

Variables in Creation Order

# Variable Type Len Format Label

1 x1 Char 16 Hawaii, Accommodations
2 x2 Char 16 Alaska, Accommodations
3 x3 Char 16 Mexico, Accommodations
4 x4 Char 16 California, Accommodations
5 x5 Char 16 Maine, Accommodations
6 x6 Char 8 Hawaii, Scenery
7 x7 Char 8 Alaska, Scenery
8 x8 Char 8 Mexico, Scenery
9 x9 Char 8 California, Scenery
10 x10 Char 8 Maine, Scenery
11 x11 Num 8 DOLLAR5. Hawaii, Price
12 x12 Num 8 DOLLAR5. Alaska, Price
13 x13 Num 8 DOLLAR5. Mexico, Price
14 x14 Num 8 DOLLAR5. California, Price
15 x15 Num 8 DOLLAR5. Maine, Price
16 Block Num 8
17 Run Num 8

%MktLab Macro Options

The following options can be used with the %MktLab macro.

Option Description
cfill=character-string character fill value
data=SAS-data-set input design data set
dolist=do-list new values using a do-list syntax
int=variable-list name of an intercept variable
key=SAS-data-set key data set
labels=macro-name macro that provides labels and formats
nfill=number numeric fill value
out=SAS-data-set output data set with recoded design
prefix=variable-prefix prefix for naming variables
statements=SAS-code add extra statements
values=value-list the new values for all of the variables
vars=variable-list list of variable names
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cfill= character-string
specifies the fill value in the key= data set for character variables. See the nfill= option for more
information on fill values. The default is cfill=’ ’.

data= SAS-data-set
specifies the input data set with the experimental design, usually created by the %MktEx macro. The
default is data=Randomized. The factor levels in the data= data set must be consecutive integers
beginning with 1.

dolist= do-list
specifies the new values, using a do-list syntax (n TO m <BY p>), for example: dolist=1 to 10 or
dolist=0 to 9. With asymmetric designs (not all factors have the same levels), specify the levels for
the largest number of levels. For example, with two-level and three-level factors and dolist= 0 to 2,
the two-level factors will be assigned levels 0 and 1, and the three-level factors will be assigned levels 0,
1, and 2. Do not specify both values= and dolist=. By default, when key=, values=, and dolist=
are all not specified, the default value list comes from dolist=1 to 100.

int= variable-list
specifies the name of an intercept variable (column of ones), if you want an intercept added to the out=
data set. You can also specify a variable list instead of a variable name if you would like to make a list
of variables with values all one. This can be useful, for example, for creating flag variables for generic
choice models when the design is going to be used as a candidate set for the %ChoicEff macro.

key= SAS-data-set
specifies the input data set with the key to recoding the design. When values= or dolist= is specified,
this data set is made for you. By default, when key=, values=, and dolist= are all not specified, the
default value list comes from dolist=1 to 100.

labels= macro-name
specifies the name of a macro that provides labels, formats, or other additional information to the
key= data set. For a simple format specification, it is easier to use statements=. For more involved
specifications, use labels=. Note that you specify just the macro name, no percents on the labels=
option. Example:

%mktex(3 ** 4, n=18, seed=205)

%macro labs;
label x1 = ’Sploosh’ x2 = ’Plumbob’

x3 = ’Platter’ x4 = ’Moosey’;
format x1-x4 dollar5.2;
%mend;

%mktlab(values=1.49 1.99 2.49, labels=labs)

proc print label; run;
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Obs Sploosh Plumbob Platter Moosey

1 $2.49 $2.49 $2.49 $1.49
2 $2.49 $2.49 $1.99 $1.99
3 $1.49 $1.49 $1.49 $1.49
4 $1.99 $1.99 $2.49 $2.49
.
.
.

nfill= number
specifies the fill value in the key= data set for numeric variables. For example when the maximum
number of levels is three, the last value in the key= data set for numeric two-level factors should have a
value of nfill=, which by default is ordinary missing. If the macro tries to access one of these values,
it prints a warning. If you would like ordinary missing (.) to be a legitimate level, specify a different
nfill= value and use it for the extra places in the key= data set.

out= SAS-data-set
specifies the output data set with the final, recoded design. The default is out=final. Often, you will
want to specify a two-level name to create a permanent SAS data set so the design will be available
later for analysis.

prefix= variable-prefix
specifies a prefix for naming variables when values= is specified. For example prefix=Var creates
variables Var1, Var2, and so on. By default, the variables are x1, x2, .... This option is ignored when
vars= is specified.

statements= SAS-code
is an alternative to labels= that you can use to add extra statements to the key= data set. For a simple
format specification, it is easier to use statements=. For more involved specifications, use labels=.
Example:

%mktex(3 ** 4, n=18, seed=205)

%mktlab(values=1.49 1.99 2.49,
vars=Sploosh Plumbob Platter Moosey,
statements=format Sploosh Plumbob Platter Moosey dollar5.2)

proc print; run;
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Obs Sploosh Plumbob Platter Moosey

1 $2.49 $2.49 $2.49 $1.49
2 $2.49 $2.49 $1.99 $1.99
3 $1.49 $1.49 $1.49 $1.49
4 $1.99 $1.99 $2.49 $2.49
.
.
.

values= value-list
specifies the new values for all of the variables. If all variables will have the same value, it is easier to
specify values= or dolist= than key=. When you specify values=, the key= data set is created for
you. Specify a list of levels separated by blanks. If your levels contain blanks, separate them with two
blanks. With asymmetric designs (not all factors have the same levels) specify the levels for the largest
number of levels. For example, with two-level and three-level factors and values=a b c, the two-level
factors will be assigned levels ’a’ and ’b’, and the three-level factors will be assigned levels ’a’, ’b’,
and ’c’. Do not specify both values= and dolist=. By default, when key=, values=, and dolist=
are all not specified, the default value list comes from dolist=1 to 100.

vars= variable-list
specifies a list of variable names when values= or dolist= is specified. If vars= is not specified with
values=, then prefix= is used.

%MktLab Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.



%MktMerge Macro 723

%MktMerge Macro

The %MktMerge autocall macro merges a data set containing an experimental design for a choice model
with the data for the choice model. There are numerous examples of its usage from pages 171 through
339. Here is a typical usage of the macro.

%mktmerge(design=rolled, data=results, out=res2,
nsets=18, nalts=5, setvars=choose1-choose18)

The design= data set comes from the %MktRoll macro. The data= data set contains the data, and
the setvars= variables in the data= data set contain the numbers of the chosen alternatives for each
of the 18 choice sets. The nsets= option specifies the number of choice sets, and the nalts= option
specifies the number of alternatives. The out= option names the output SAS data set that contains
the experimental design and a variable c that contains 1 for the chosen alternatives (first choice) and
2 for unchosen alternatives (second or subsequent choice).

When the data= data set contains a blocking variable, name it on the blocks= option. When there
is blocking, it is assumed that the design= data set contains blocks of nalts × nsets observations.
The blocks= variable must contain values 1, 2, ..., n for n blocks. Here is an example of using the
%MktMerge macro with blocking.

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=18, nalts=5, setvars=choose1-choose18)

%MktMerge Macro Options

The following options can be used with the %MktMerge macro.

Option Description
blocks=1 | variable blocking variable
data=SAS-data-set input SAS data set
design=SAS-data-set input SAS choice design data set
nalts=n number of alternatives
nsets=n number of choice sets
out=SAS-data-set output SAS data set
setvars=variable-list variables with the data
statements=SAS-statements additional statements

You must specify the design=, nalts=, nsets=, and setvars= options.

blocks= 1 | variable
specifies either a 1 (the default) if there is no blocking or the name of a variable in the data= data
set that contains the block number. When there is blocking, it is assumed that the design= data set
contains blocks of nalts × nsets observations, one set per block. The blocks= variable must contain
values 1, 2, ..., n for n blocks.
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data= SAS-data-set
specifies an input SAS data set with data for the choice model. By default, the data= data set is the
last data set created.

design= SAS-data-set
specifies an input SAS data set with the choice design. This data set could have been created for
example with the %MktRoll macro. This option must be specified.

nalts= n
specifies the number of alternatives. This option must be specified.

nsets= n
specifies the number of choice sets. This option must be specified.

out= SAS-data-set
specifies the output SAS data set. If out= is not specified, the DATAn convention is used. This data
set contains the experimental design and a variable c that contains 1 for the chosen alternatives (first
choice) and 2 for unchosen alternatives (second or subsequent choice).

setvars= variable-list
specifies a list of variables, one per choice set, in the data= data set that contains the numbers of the
chosen alternatives. It is assumed that the values of these variables range from 1 to nalts. This option
must be specified.

statements= SAS-statements
specifies additional statements like format and label statements. Example:

%mktmerge(design=rolled, data=results, out=res2, blocks=form,
nsets=&n, nalts=&m, setvars=choose1-choose&n,
statements=%str(price = input(put(price, price.), 5.);

format scene scene. lodge lodge.;))

%MktMerge Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktOrth Macro

The %MktOrth macro lists some of the 100% orthogonal main-effects plans that the %MktEx macro can
generate. See page 187 for an example. The %MktOrth macro can help you see what orthogonal designs
are available and decide which ones to use. Here is a typical usage. This line requests all the designs in
the catalog with 100 or fewer runs and two-level through six-level factors (with no higher-level factors.)

%mktorth(maxn=100, maxlev=6)

The macro creates data sets and no printed output except log notes.

NOTE: The data set WORK.MKTDESLEV has 345 observations and 9 variables.
NOTE: The data set WORK.MKTDESCAT has 345 observations and 3 variables.

This next step generates the entire catalog of 116,590 designs including an additonal 60,000 designs in
512 runs that are not generated by default.

%mktorth(maxlev=144, options=512)

This next step generates the catalog of 54,010 designs inlucing designs with up to 144-level factors.
This step may take on the order of several minutes to run. Unless you really want to see all of the
designs, you can make the %MktOrth macro run much faster by specifying smaller values for range=
or maxn= (which control the number of runs) and maxlev= (which controls the maximum number of
factor levels and the number of variables in the MKTDESLEV data set) than the defaults (range=n
le 513, maxn=513, maxlev=50). The maximum number of runs is 513, and the maximum number of
levels you can specifiy is 144.

%mktorth(maxlev=144)

Here are the first few and some of the last few designs in the catalog.

proc print data=mktdeslev(where=(n le 12 or n eq 512 and x2 le 4));
var design reference;
id n; by n;
run;

n Design Reference

4 2 ** 3 Hadamard

6 2 ** 1 3 ** 1 Full-Factorial

8 2 ** 7 Hadamard
2 ** 4 4 ** 1 Fractional-Factorial

9 3 ** 4 Fractional-Factorial

10 2 ** 1 5 ** 1 Full-Factorial

12 2 ** 11 Hadamard
2 ** 4 3 ** 1 Orthogonal Array
2 ** 2 6 ** 1 Orthogonal Array

3 ** 1 4 ** 1 Full-Factorial
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512 2 ** 4 4 **169 Fractional-Factorial
2 ** 4 4 ** 22 8 ** 63 Fractional-Factorial
2 ** 4 4 ** 17 8 ** 63 16 ** 1 Fractional-Factorial
2 ** 4 4 ** 15 8 ** 66 Fractional-Factorial
2 ** 4 4 ** 8 8 ** 69 Fractional-Factorial
2 ** 4 4 ** 1 8 ** 72 Fractional-Factorial
2 ** 4 4 ** 1 8 ** 63 64 ** 1 Fractional-Factorial
2 ** 3 4 **167 8 ** 1 Fractional-Factorial
2 ** 3 4 **159 32 ** 1 Fractional-Factorial
2 ** 3 4 ** 20 8 ** 64 Fractional-Factorial
2 ** 3 4 ** 15 8 ** 64 16 ** 1 Fractional-Factorial
2 ** 3 4 ** 13 8 ** 67 Fractional-Factorial
2 ** 3 4 ** 6 8 ** 70 Fractional-Factorial

8 ** 73 Fractional-Factorial
8 ** 64 64 ** 1 Fractional-Factorial
4 **168 8 ** 1 Fractional-Factorial
4 **160 32 ** 1 Fractional-Factorial
4 ** 21 8 ** 64 Fractional-Factorial
4 ** 16 8 ** 64 16 ** 1 Fractional-Factorial
4 ** 14 8 ** 67 Fractional-Factorial
4 ** 7 8 ** 70 Fractional-Factorial

Here are the first few designs and variables in the MKTDESLEV data set.

proc print data=mktdeslev(where=(n le 12));
var design reference x1-x6;
id n; by n;
run;

n Design Reference x1 x2 x3 x4 x5 x6

4 2 ** 3 Hadamard 0 3 0 0 0 0

6 2 ** 1 3 ** 1 Full-Factorial 0 1 1 0 0 0

8 2 ** 7 Hadamard 0 7 0 0 0 0
2 ** 4 4 ** 1 Fractional-Factorial 0 4 0 1 0 0

9 3 ** 4 Fractional-Factorial 0 0 4 0 0 0

10 2 ** 1 5 ** 1 Full-Factorial 0 1 0 0 1 0

12 2 ** 11 Hadamard 0 11 0 0 0 0
2 ** 4 3 ** 1 Orthogonal Array 0 4 1 0 0 0
2 ** 2 6 ** 1 Orthogonal Array 0 2 0 0 0 1

3 ** 1 4 ** 1 Full-Factorial 0 0 1 1 0 0



%MktOrth Macro 727

If you just want to display a list of designs, possibly selecting on n, the number of runs, you can use
the MKTDESCAT data set. However, if you would like to do more advanced processing, based on the
numbers of levels of some of the factors, you can use the outlev=mktdeslev data set to select potential
designs. You can look at the level information in MKTDESLEV and see the number of two-level factors
in x2, the number of three-level factors in x3, ..., the number of fifty-level factors is in x50, ..., and
the number of 144-level factors in x144. The number of one-level factors, x1, is always zero, but x1 is
available so you can make arrays (for example, array x[50]) and have x[2] refer to x2, the number
of two-level factors, and so on.

Say you are interested in the design 253541. Here are some of the ways in which it is available.

%mktorth(maxn=100)

proc print data=mktdeslev noobs;
where x2 ge 5 and x3 ge 5 and x4 ge 1;
var n design reference;
run;

n Design Reference

72 2 ** 44 3 ** 12 4 ** 1 Orthogonal Array
72 2 ** 43 3 ** 8 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 37 3 ** 13 4 ** 1 Orthogonal Array
72 2 ** 36 3 ** 9 4 ** 1 6 ** 1 Orthogonal Array
72 2 ** 35 3 ** 12 4 ** 1 6 ** 1 Orthogonal Array
.
.
.

Here is one way that you can see all the designs in a certain range of sizes.

%mktorth(range=12 le n le 20)

proc print; id n; by n; run;

n Design Reference

12 2 ** 11 Hadamard
2 ** 4 3 ** 1 Orthogonal Array
2 ** 2 6 ** 1 Orthogonal Array

3 ** 1 4 ** 1 Full-Factorial

14 2 ** 1 7 ** 1 Full-Factorial

15 3 ** 1 5 ** 1 Full-Factorial

16 2 ** 15 Hadamard
2 ** 12 4 ** 1 Fractional-Factorial
2 ** 9 4 ** 2 Fractional-Factorial
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2 ** 8 8 ** 1 Fractional-Factorial
2 ** 6 4 ** 3 Fractional-Factorial
2 ** 3 4 ** 4 Fractional-Factorial

4 ** 5 Fractional-Factorial

18 2 ** 1 3 ** 7 Orthogonal Array
2 ** 1 9 ** 1 Full-Factorial

3 ** 6 6 ** 1 Orthogonal Array

20 2 ** 19 Hadamard
2 ** 8 5 ** 1 Orthogonal Array
2 ** 2 10 ** 1 Orthogonal Array

4 ** 1 5 ** 1 Full-Factorial

The %MktOrth macro can output the lineage of each design, which is the set of steps that the %MktEx
macro uses to create it. Here is an example.

%mktorth(range=n=36, options=lineage)

proc print noobs;
where index(design, ’2 ** 11’) and index(design, ’3 ** 12’);
run;

n Design Reference

36 2 ** 11 3 ** 12 Orthogonal Array

Lineage

36 ** 1 : 36 ** 1 > 3 ** 12 12 ** 1 : 12 ** 1 > 2 ** 11

The design 211312 in 36 runs starts out as a single 36-level factor, 361. Then 361 is replaced by 312121.
Finally, 121 is replaced by 211 resulting in 211312.

%MktOrth Macro Options

The following options can be used with the %MktOrth macro.

Option Description
maxn=n maximum number of runs of interest
maxlev=n maximum number of levels
options=options-list binary options
outall=SAS-data-set output data set with all designs
outcat=SAS-data-set design catalog data set
outlev=SAS-data-set output data set with the list of levls
range=range-specification number of runs of interest
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maxlev= n
specifies the maximum number of levels to consider. Specify a value n, such that 2 ≤ n ≤ 144. The
default is maxlev=50. This option controls the number of x variables in the outlev= data set. It also
excludes from consideration designs with factors of more than maxlev= levels so it affects the number
of rows in the output data sets. Note that specifying maxlev=n does not preclude designs with more
than n-level factors from being used as parents for other designs, it just precludes the larger designs
from being output. For example, with maxlev=3, the design 312121 in 36 runs is used to make 211312

before the 312121 design is discarded. Specifying smaller values will make the macro run faster. With
the maximum, maxlev=144, run time to generate the entire catalog can be on the order of several
minutes.

maxn= n
specifies the maximum number of runs of interest. Specifying small numbers (e.g. n ≤ 200) will make
the macro run faster.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

lineage
construct the design lineage, which is the set of instructions on how the design is made.

mktex
specifies that the macro is being called from the %MktEx macro and just the outlev= data
set is needed. The macro takes short cuts to make it run faster doing only what the %MktEx
macro needs.

mktruns
specifies that the macro is being called from the %MktRuns macro and just the outlev=
data set is needed. The macro takes short cuts to make it run faster doing only what
%MktRuns needs.

parent
specifies that only parent designs should be output.

dups
specifies that the %MktRuns macro should not filter out duplicate and inferior designs from
the catalog. This can be useful when you are creating a data set for the cat= option in the
%MktEx macro.

512
adds some larger designs in 512 runs with mixes of 16, 8, 4, and 2-level factors to the
catalog, which gives added flexibility in 512 runs at a cost of much slower run time. This
option replaces the default 4160321 parent with 1632321.

outall= SAS-data-set
specifies the output data set with all designs. This data set is not created by default. This data set
is like the outlev= data set, except larger. The outall= data set includes all of the %MktEx design
catalog, including all of the smaller designs that can be trivially made from larger designs by dropping
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factors. For example, when the outlev= data set has x2=2 x3=2, then the outall= data set has that
design and also x1=2 x3=1, x1=1 x3=2, and x1=1 x2=1. When you specify outall= you must also
specify a reasonably small range= or maxn= value. Otherwise, the outall= specification will take a
long time and create a huge data set, which will very likely be too large to store on your computer.

outcat= SAS-data-set
specifies the output data set with the catalog of designs that the %MktEx macro can create. The default
is outcat=MktDesCat.

outlev= SAS-data-set
specifies the output data set with the list of designs and 50 (by default) more variables, x1-x50, which
includes: x2 - the number of two-level factors, x3 - the number of three-level factors, and so on. The
default is outlev=MktDesLev. The number of x variables is determined by the maxlev= option.

range= range-specification
specifies the number of runs of interest. Specify a range involving n, where n is the number of runs.
Your range specification must be a logical expression involving n. Examples:
range=n=36
range=18 le n le 36
range=n eq 18 or n eq 36

%MktOrth Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktPPro Macro

The %MktPPro macro is used to make a partial-profile design from an incomplete blocks design and an
orthogonal array. This macro reads an orthogonal array and an incomplete blocks design and makes
an optimal partial-profile choice design. This example uses a known balanced incomplete blocks design
(BIBD). An IBD is balanced when each attribute pair appears equally often. In the context of partial
profiles, an IBD is used to determine which attributes to vary in each choice set. This example makes
an optimal partial-profile choice design with 16 binary attributes, four of which vary, and it does so in
80 choice sets.

%mktex(2 4 2 2 2, n=8)

proc print; run;

data design; set design; drop x2; run;

proc iml;
b = { 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 7 ,

2 5 8 11 14 5 6 7 10 5 6 7 9 5 6 7 8 9 10 8 ,
3 6 9 12 15 8 12 9 13 13 8 10 11 10 9 11 12 12 11 13 ,
4 7 10 13 16 11 14 15 16 15 16 12 14 14 13 16 15 16 15 14 }‘;

create b from b; append from b;
quit;

%mktppro(ibd=b, print=f p)

%choiceff(data=chdes, model=class(x1-x16), nsets=80, nalts=2,
beta=zero, init=chdes, initvars=x1-x16)

In this example code, a BIBD is entered through IML and it is transposed, so the BIBD has 20 rows
and 4 columns, and the first row is (1 2 3 4). This says that in the first block of m = 4 choice sets,
attributes 1, 2, 3, and 4 will vary; in the second block of 4 choice sets, attributes 1, 5, 6, and 7 will
vary; and so on. Alternative k = 1, ..., p, in each block of m choice sets will be made from a block of m
runs in the orthogonal array. For example, alternative 1 of the first m choice sets will be made from
the first m runs in the orthogonal array, and alternative 2 will be made from the next m runs in the
orthogonal array, and so on. The on-diagonal and above-diagonal elements of this matrix show how
often each attribute appears with every other apptribute in our design. Each attribute must appear
an equal number of times in an IBD, and this is shown on the diagonal. When every element above
the diagonal is 1, as it is in this case, the IBD is balanced or a BIBD. If the diagonal were constant (4,
3, 2, 1) and the above-diagonal entries were ones and zeros, then we would have an IBD.
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Attribute Frequencies

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 5 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 5 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 5 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 5 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 5 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 5 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 5 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 5 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 5 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 5 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

The number of choice sets is m times the number of rows in the IBD (in this case, 4× 20 = 80). The
number of attributes is the maximum value in the IBD (in this case 16). The number of attributes
that vary at any one time is m. All factors have p levels, and all choice sets have p alternatives.

Two designs are input to the %MktPPro macro. The second is an orthogonal array. The orthogonal
array must be a pm subset of the design pmm1 in p ×m runs. Examples: 24 in 8 runs, selected from
2441 in 8 runs; 33 in 9 runs, selected from 3331 in 9 runs; 44 in 16 runs, selected from 4441 in 16 runs
The number of levels, p, must be a prime or a power of a prime: 2, 3, 4, 5, 7, 8, 9, 11, .... You can use
the %MktOrth macro to see if the orthogonal array of interest exists.

The rows of the orthogonal array design must be sorted into the right order. The easiest way to do
this is to first request one of the m p-level factors, then request the m-level factor, then request the
remaining (m − 1) p-level factors. Then after the design is created, discard x2, the m-level factor, as
shown in the example code.

All but the most interested readers may skip this paragraph. Our goal is to create an orthogonal array
with p blocks of m rows. Each block is a difference scheme, and blocks 2 through p are obtained from
the preceding block by adding 1 (in the appropriate Galois field). For example, when p is 2, add 1
modulo 2; and when p is 3, add 1 modulo 3. You will not get optimal results if you stick in any other
kind of orthogonal array.

The approach of asking for m1 as the second factor and then dropping it always works. Sometimes
it is possible to not ask for m1 and still get the right results, but you must ensure that you made
the right design. Note that you cannot drop the second factor in the %MktEx step by specifying
out=design(drop=x2) because %MktEx will drop the variable and then sort, and your rows will be in
the wrong order.

Here is an example of using %MktEx with restrictions to find an IBD, using %MktEx to find the orthogonal
array, using %MktPPro to create the partial-profile choice design, and using %ChoicEff to evaluate the
partial-profile design. The restrictions that are used to get the IBD are discussed in detail starting on
page 445.
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%let lev = 4; /* levels */
%let attr = 16; /* total attributes */
%let vary = 4; /* number of attributes that vary */
%let rep = 2; /* number of times each attribute must appear */
%let seed = 17; /* random number seed */

%let b = %sysevalf((&attr * &rep) / &vary);
%let sets = %eval(&b * &vary);

data _null_;
if &b ne floor(&b) then do;

put "ERROR: b = attr * rep / vary = &b must be an integer.";
put ’ERROR: Try changing rep or attr.’;
end;

put "NOTE: attr=&attr, rep=&rep, vary=&vary, sets=&sets, b=&b..";
run;

%macro con;
_d = &rep # i(&m);
_f = ((1:&m) @ j(&m, 1, 1) > j(1, &m, 1) @ (1:&m)‘) + _d;
_p = (_f = &rep) + 10 # (_f = 1);
%mend;

%macro res;
bad = 1000 # abs(sum(x = 2) - &vary);
f = j(&m, &m, 0);
do ii = 1 to &n;

if ii = i then l = loc(x = 2);
else l = loc(xmat[ii,] = 2);
if ncol(l) then f[l, l] = f[l, l] + 1;
end;

bad = bad + sum((abs(f - _f) >< abs(f - _d)) # _p);
%mend;

%mktex(2 ** &attr, n=&b, tabiter=0, optiter=0,
restrictions=res, resmac=con, reslist=%str(_f, _p, _d),
order=random, options=resrep nofinal, exchange=2,
seed=&seed, maxdesigns=1, out=ibd, ridge=0.01)

%mktex(&lev &vary &lev ** %eval(&vary - 1), n=&lev * &vary)

data design; set design; drop x2; run;

%mktppro(x=ibd)

%choiceff(data=chdes, model=class(x1-x&attr), nsets=&sets, nalts=&lev,
beta=zero, init=chdes, initvars=x1-x&attr)
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%MktPPro Macro Options

The following options can be used with the %MktPPro macro.

Option Description
ibd=SAS-data-set incomplete blocks design
design=SAS-data-set orthogonal array
out=SAS-data-set output partial-profile design
print=print-options printing options
x=SAS-data-set binary BIBD from %MktEx

You must specify either ibd= or x= but not both.

ibd= SAS-data-set
specifies an incomplete blocks design.

design= SAS-data-set
specifies the orthogonal array design from the %MktEx macro.

out= SAS-data-set
specifies the output choice design.

print= print-options
specifies both of the printing options, which control the printing of the results. The default is print=f.
Specify one or more values from the following list.

x= SAS-data-set
specifies the x-matrix version of the BIBD, which is a binary coding of the BIBD (or more typically a
subset of the BIBD) and is typically created by the %MktEx macro.

i incomplete blocks design
f crosstabulation of attribute frequencies
p partial-profile design

%MktPPro Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktRoll Macro

The %MktRoll autocall macro is used for manipulating the experimental design for choice experiments.
There are numerous examples of its usage from pages 165 through 406. The %MktRoll macro takes
as input a SAS data set containing an experimental design with one row per choice set, the linear
design, for example a design created by the %MktEx macro. This data set is specified in the design=
option. This data set has one variable for each attribute of each alternative in the choice experiment.
The output from this macro is an out= SAS data set is the choice design containing the experimental
design with one row per alternative per choice set. There is one column for each different attribute.
For example, in a simple branded study, design= could contain the variables x1-x5 which contain
the prices of each of five alternative brands. The output data set would have one factor, Price, that
contains the price of each of the five alternatives. In addition, it would have the number (or optionally
the name) of each alternative.¶

The rules for determining the mapping between factors in the design= data set and the out= data
set are contained in the key= data set. For example, assume that the design= data set contains the
variables x1-x5 which contain the prices of each of five alternative brands: Brand A, B, C, D, and E.
Here is how you would create the key= data set. The choice design has two factors, Brand and Price.
Brand A price is made from x1, Brand B price is made from x2, ..., and Brand E price is made from
x5.

A convenient way to get all the names in a variable list like x1-x5 is with the %MktKey macro. This
askes for five names in a single column.

%mktkey(5 1)

The %MktKey macro produced the following data set.

x1

x1
x2
x3
x4
x5

Here is the KEY data set.
data key;

input (Brand Price) ($);
datalines;

A x1
B x2
C x3
D x4
E x5
;

¶See page 60 for an illustration of linear versus choice designs.
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This data set has two variables. Brand contains the brand names, and Price contains the names of
the factors that are used to make the price effects for each of the alternatives. The out= data set will
contain the variables with the same names as the variables in the key= data set.

Here is how you can create the linear design with one row per choice set:

%mktex(3 ** 5, n=12)

Here is how you can create the choice design with one row per alternative per choice set:

%mktroll(design=randomized, key=key, out=sasuser.design, alt=brand)

For example, if the data set RANDOMIZED contains the row:

Obs x1 x2 x3 x4 x5

9 3 1 1 2 1

then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price

41 9 A 3
42 9 B 1
43 9 C 1
44 9 D 2
45 9 E 1

The price for Brand A is made from x1=3, ..., and the price for Brand E is made from x5=1.

Now assume that there are three alternatives, each a different brand, and each composed of four factors:
Price, Size, Color, and Shape. In addition, there is a constant alternative. First, the %MktEx macro
is used to create a design with 12 factors, one for each attribute of each alternative.

%mktex(2 ** 12, n=16, seed=109)

Next, the key= data set is created. It shows that there are three brands, A, B, and C, and also None.

data key;
input (Brand Price Size Color Shape) ($); datalines;

A x1 x2 x3 x4
B x5 x6 x7 x8
C x9 x10 x11 x12
None . . . .

;

Brand A is created from Brand = “A”, Price = x1, Size = x2, Color = x3, Shape = x4.

Brand B is created from Brand = “B”, Price = x5, Size = x6, Color = x7, Shape = x8.

Brand C is created from Brand = “C”, Price = x9, Size = x10, Color = x11, Shape = x12.



%MktRoll Macro 737

The constant alternative is created from Brand = “None” and none of the attributes. The “.” notation
is used to indicate missing values in input data sets. The actual values in the KEY data set will be
blank (character missing).

Here is how you create the design with one row per alternative per choice set:

%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand)

For example, if the data set RANDOMIZED contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

8 2 2 2 2 2 1 1 2 2 2 1 2

then the data set SASUSER.DESIGN contains the rows:

29 8 A 2 2 2 2
30 8 B 2 1 1 2
31 8 C 2 2 1 2
32 8 None . . . .

Now assume like before that there are three branded alternatives, each composed of four factors: Price,
Size, Color, and Shape. In addition, there is a constant alternative. Also, there is an alternative-
specific factor, Pattern, that only applies to Brand A and Brand C. First, the %MktEx macro is used
to create a design with 14 factors, one for each attribute of each alternative.

%mktex(2 ** 14, n=16, seed=114)

Next, the key= data set is created. It shows that there are three brands, A, B, and C, plus None.

data key;
input (Brand Price Size Color Shape Pattern) ($);
datalines;

A x1 x2 x3 x4 x13
B x5 x6 x7 x8 .
C x9 x10 x11 x12 x14
None . . . . .
;

Brand A is created from Brand = “A”, Price = x1, Size = x2, Color = x3, Shape = x4, Pattern =
x13.

Brand B is created from Brand = “B”, Price = x5, Size = x6, Color = x7, Shape = x8.

Brand C is created from Brand = “C”, Price = x9, Size = x10, Color = x11, Shape = x12, Pattern
= x14.

The constant alternative is Brand = “None” and none of the attributes.

Here is how you can create the design with one row per alternative per choice set:

%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand)



738 TS-722I − Experimental Design and Choice Modeling Macros

For example, if the data set RANDOMIZED contains the row:

Obs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

8 2 1 1 2 1 2 1 2 1 1 1 2 1 2

then the data set SASUSER.DESIGN contains the rows:

Obs Set Brand Price Size Color Shape Pattern

29 8 A 2 1 1 2 1
30 8 B 1 2 1 2 .
31 8 C 1 1 1 2 2
32 8 None . . . . .

Now assume we are going to fit a model with price cross effects so we need x1, x5, and x9 (the three
price effects) available in the out= data set. See pages 261 and 283 for other examples of cross effects.

%mktroll(key=key, design=randomized, out=sasuser.design, alt=brand,
keep=x1 x5 x9)

Now the data set also contains the three original price variables.

Obs Set Brand Price Size Color Shape Pattern x1 x5 x9

29 8 A 2 1 1 2 1 2 1 1
30 8 B 1 2 1 2 . 2 1 1
31 8 C 1 1 1 2 2 2 1 1
32 8 None . . . . . 2 1 1

Every value in the key= data set must appear as a variable in the design= data set. The macro prints
a warning if it encounters a variable name in the design= data set that does not appear as a value in
the key= data set.

%MktRoll Macro Options

The following options can be used with the %MktRoll macro.

Option Description
alt=variable variable with name of each alternative
design=SAS-data-set input SAS data set
keep=variable-list factors to keep
key=SAS-data-set key data set
options=options-list binary options
out=SAS-data-set output SAS data set
set=variable choice set number variable
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You must specify the design= and key= options.

alt= variable
specifies the variable in the key= data set that contains the name of each alternative. Often this will
be something like alt=Brand. When alt= is not specified, the macro creates a variable Alt that
contains the alternative number.

design= SAS-data-set
specifies an input SAS data set with one row per choice set. The design= option must be specified.

keep= variable-list
specifies factors from the design= data set that should also be kept in the out= data set. This option
is useful to keep terms that will be used to create cross effects.

key= SAS-data-set
specifies an input SAS data set containing the rules for mapping the design= data set to the out= data
set. The key= option must be specified.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one or more of the
following values after options=.

nowarn
do not print a warning when the design= data set contains variables not mentioned in the
key= data set. Sometimes this is perfectly fine.

out= SAS-data-set
specifies the output SAS data set. If out= is not specified, the DATAn convention is used.

set= variable
specifies the variable in the out= data set that will contain the choice set number. By default, this
variable is named Set.

%MktRoll Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%MktRuns Macro

runs

The %MktRuns autocall macro suggests reasonable sizes for experimental designs. There are numerous
examples of its usage from pages 156 through 364. The %MktRuns macro tries to find sizes in which
perfect balance and orthogonality can occur, or at least sizes in which violations of orthogonality and
balance are minimized. Typically, the macro takes one argument, a list of the number of levels of each
factor.

For example, with 3 two-level and 4 three-level factors, specify either of the following.

%mktruns( 2 2 2 3 3 3 3 )

%mktruns( 2 ** 3 3 ** 4 )

The output from the macro in this example is:

Design Summary

Number of
Levels Frequency

2 3
3 4

Saturated = 12
Full Factorial = 648

Some Reasonable Cannot Be
Design Sizes Violations Divided By

36 * 0
72 * 0
18 3 4
54 3 4
12 6 9
24 6 9
48 6 9
60 6 9
30 9 4 9
42 9 4 9

* - 100% Efficient Design can be made with the MktEx Macro.

n Design Reference

36 2 ** 13 3 ** 4 Orthogonal Array
36 2 ** 11 3 ** 12 Orthogonal Array
36 2 ** 10 3 ** 8 6 ** 1 Orthogonal Array
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36 2 ** 9 3 ** 4 6 ** 2 Orthogonal Array
36 2 ** 4 3 ** 13 Orthogonal Array
36 2 ** 3 3 ** 9 6 ** 1 Orthogonal Array
72 2 ** 49 3 ** 4 Orthogonal Array
72 2 ** 47 3 ** 12 Orthogonal Array
72 2 ** 46 3 ** 8 6 ** 1 Orthogonal Array
72 2 ** 46 3 ** 4 4 ** 1 Orthogonal Array
72 2 ** 45 3 ** 4 6 ** 2 Orthogonal Array
.
.
.

The macro reports that the saturated design has 12 runs and that 36 and 72 are optimal design sizes.
The macro picks 36, because it is the smallest integer >= 12 that can be divided by 2, 3, 2× 2, 2× 3,
and 3× 3. The macro also reports 18 as a reasonable size. There are three violations with 18, because
18 cannot be divided by each of the three pairs of 2×2, so perfect orthogonality in the two-level factors
will not be possible with 18 runs. Larger sizes are reported as well. The macro prints orthogonal
designs that are available from the %MktEx macro that match your specification.

To see every size the macro considered, simply run PROC PRINT after the macro finishes. The output
from this step is not shown.

proc print label data=nums split=’-’;
id n;
run;

For 2 two-level factors, 2 three-level factors, 2 four-level factors, and 2 five-level factors specify:

%mktruns( 2 2 3 3 4 4 5 5 )

Here are the results:

Design Summary

Number of
Levels Frequency

2 2
3 2
4 2
5 2

Saturated = 21
Full Factorial = 14,400
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Some Reasonable Cannot Be
Design Sizes Violations Divided By

120 3 9 16 25
180 6 8 16 25
60 7 8 9 16 25
144 15 5 10 15 20 25
48 16 5 9 10 15 20 25
72 16 5 10 15 16 20 25
80 16 3 6 9 12 15 25
96 16 5 9 10 15 20 25
160 16 3 6 9 12 15 25
192 16 5 9 10 15 20 25

Among the smaller design sizes, 60 or 48 look like good possibilities.

The macro has an optional keyword parameter: max=. It specifies the maximum number of sizes to
try. Usually you will not need to specify the max= option. The smallest design that is considered is the
saturated design. This next specification tries 5000 sizes (21 to 5020) and reports that a perfect design
can be found with 3600 runs The %MktEx macro does not explicitly know how to make this design,
however, it can usually find it or come extremely close with the coordinate exchange algorithm.

%mktruns(2 2 3 3 4 4 5 5, max=5000)

Design Summary

Number of
Levels Frequency

2 2
3 2
4 2
5 2

Saturated = 21
Full Factorial = 14,400

Some Reasonable Cannot Be
Design Sizes Violations Divided By

3600 0
720 1 25
1200 1 9
1440 1 25
1800 1 16
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2160 1 25
2400 1 9
2880 1 25
4320 1 25
4800 1 9

Now consider again the problem with 3 two-level and 4 three-level factors, but this time we want to be
estimable the interaction of two of the two-level factors.

%mktruns( 2 2 2 3 3 3 3, interact=1*2, options=source )

Since options=source was specified, the first part of the output lists the sources for orthogonality
violations that the macro will consider. We see that n must be divided by: 2 since x1-x3 are two-level
factors, 3 since x4-x7 are three-level factors, 4 since x1*x2, x1*x3, and x2*x3 interactions are specified,
6 since we have two-level and three-level factors, 8 since we have the two-way interaction of 2 two-level
factors and the main-effect of an additional two-level factor, 9 since we have multiple three-level factors,
and 12 since we have the two-way interaction of 2 two-level factors and the main-effect of additional
three-level factors.

N Must Be
Divided By Source Variables

2 2 1
2
3

3 3 4
5
6
7

4 2*2 1 2
1 3
2 3

6 2*3 1 4
1 5
1 6
1 7
2 4
2 5
2 6
2 7
3 4
3 5
3 6
3 7

8 2*2*2 1 2 3
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9 3*3 4 5
4 6
4 7
5 6
5 7
6 7

12 2*2*3 1 2 4
1 2 5
1 2 6
1 2 7

Number of
Levels Frequency

2 1
3 4

Saturated = 13
Full Factorial = 648

Some Reasonable Cannot Be
Design Sizes Violations Divided By

72 0
144 0
36 1 8

108 1 8
24 6 9
48 6 9
96 6 9

120 6 9
60 7 8 9
84 7 8 9

Now we need 72 runs for perfect balance and orthogonality although the %MktEx design catalog does
not contain designs with interactions.
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%MktRuns Macro Options

The following options can be used with the %MktRuns macro.

Option Description
interact=interaction-list interaction terms
list numbers of levels of all the factors
max=n < m > maximum number of design sizes to try
n=n design size to evaluate
maxlev=n maximum number of levels
options=options-list binary options
out=SAS-data-set data set with the suggested sizes

The %MktRuns macro has one positional parameter, list, and several keyword parameters.

list
specifies a list of the numbers of levels of all the factors. For example, for 3 two-level factors specify
either 2 2 2 or 2 ** 3. Lists of numbers, like 2 2 3 3 4 4 or a levels**number of factors syntax like:
2**2 3**2 4**2 can be used, or both can be combined: 2 2 3**4 5 6. The specification 3**4 means
4 three-level factors. You must specify a list. Note that the factor list is a positional parameter. This
means it must come first, and unlike all other parameters, it is not specified after a name and an equal
sign.

interact= interaction-list
specifies interactions that must be estimable. By default, no interactions are guaranteed to be estimable.
Examples:
interact=x1*x2
interact=x1*x2 x3*x4*x5
interact=x1|x2|x3|x4|x5@2

The interaction syntax is like PROC GLM’s and many of the other modeling procedures. It uses
“*” for simple interactions (x1*x2 is the interaction between x1 and x2), “|” for main effects and
interactions (x1|x2|x3 is the same as x1 x2 x1*x2 x3 x1*x3 x2*x3 x1*x2*x3) and “@” to eliminate
higher-order interactions (x1|x2|x3@2 eliminates x1*x2*x3 and is the same as x1 x2 x1*x2 x3 x1*x3
x2*x3). The specification “@2” allows only main effects and two-way interactions. Only “@” values of
2 or 3 are allowed.

max= n < m >
specifies the maximum number of design sizes to try. By default, max=200 2. The macro tries up to
n sizes starting with the saturated design. The macro stops trying larger sizes when it finds a design
size with zero violations that is m times as big as a previously found size with zero violations. The
macro reports the best 10 sizes. For example, if the saturated design has 10 runs, and there are zero
violations in 16 runs, then by default, the largest size that the macro will consider is 32 = 2× 16 runs.



746 TS-722I − Experimental Design and Choice Modeling Macros

maxlev= n
specifies the maximum number of levels to consider when generating the orthogonal array list. The
default is maxlev=50, and the actual maximum is the max of the specified maxlev= value and the
maximum number of levels in the factor list. Specify a value 2 ≤ n ≤ 144.

n= n
specifies the design size to evaluate. By default, this option is not specified, and the max= option
specification provides a range of design sizes to evaluate.

options= options-list
specifies binary options. By default, none of these options are specified. Specify one the following
values after options=.

justparse
is used by other Mkt macros to have this macro just parse the list argument and return it
as a simple list of integers.

multiple
specifies that a term that is required for orthogonality may be counted multiple times
when counting orthogonality violations. For example, combinations of levels for the pair
of variable 1 and variable 2 must have equal frequencies for orthogonality in the main
effects, and if two-way interactions are required as well, then the (1, 2) pair must have
equal frequencies again. By default, each combination of variables is only counted once.
The difference between the single and multiple sources is the single source method just
counts the places in the design where equal frequencies must occur. The multiple source
method weights this count by the number of times each of these terms is important for
achieving orthogonality. The results for the two methods are often highly correlated, but
they can be different.

multiple2
specifies both option=multiple and more detailed output including the reason each term
appears is added to the source table when options=source multiple2 is specified.

source
prints the source of all of the numbers in the table of reasonable design sizes.

512
adds some larger designs in 512 runs with mixes of 16, 8, 4, and 2-level factors to the
catalog, which gives added flexibility in 512 runs at a cost of much slower run time. This
option replaces the default 4160321 parent with 1632321.

out= SAS-data-set
specifies the name of a SAS data set with the suggested sizes. The default is out=nums.
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%MktRuns Macro Notes

This macro specifies options nonotes throughout most of its execution. If you want to see all of the
notes, submit the statement %let mktopts = notes; before running the macro. To see the macro
version, submit the statement %let mktopts = version; before running the macro.
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%PhChoice Macro

The %PhChoice autocall macro is used to customize the discrete choice output from PROC PHREG.
Typically, you run the following macro once to customize the PROC PHREG output.

%phchoice(on)

The macro uses PROC TEMPLATE and ODS (Output Delivery System) to customize the output from
PROC PHREG. Running this code edits the templates and stores copies in SASUSER. These changes
will remain in effect until you delete them. Note that these changes assume that each effect in the
choice model has a variable label associated with it so there is no need to print variable names. If you
are coding with PROC TRANSREG, this will usually be the case. To return to the default output
from PROC PHREG, run the following macro.

%phchoice(off)

If you ever have errors running this macro, like invalid page errors, see “Macro Errors” on page 784.
The rest of this section discusses the details of what the %PhChoice macro does and why. Unless you
are interested in further customization of the output, you should skip to “%PhChoice Macro Options”
on page 752.

We are most interested in the Analysis of Maximum Likelihood Estimates table, which contains
the parameter estimates. We can first use PROC TEMPLATE to identify the template for the pa-
rameter estimates table and then edit the template. First, let’s have PROC TEMPLATE display the
templates for PROC PHREG. The source stat.phreg statement specifies that we want to see PROC
TEMPLATE source code for the STAT product and the PHREG procedure.

proc template;
source stat.phreg;
run;

If we search the results for the Analysis of Maximum Likelihood Estimates table we find the fol-
lowing code, which defines the Stat.Phreg.ParameterEstimates table.

define table Stat.Phreg.ParameterEstimates;
notes "Parameter Estimates Table";
dynamic Confidence NRows;
column Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio

HRLowerCL HRUpperCL Label;
header h1 h2;

define h1;
text "Analysis of Maximum Likelihood Estimates";
space = 1;
spill_margin;

end;

define h2;
text Confidence BEST8. %nrstr("%% Hazard Ratio Confidence Limits");
space = 0;
end = HRUpperCL;
start = HRLowerCL;
spill_margin = OFF;

end;
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define Variable;
header = "Variable";
style = RowHeader;
id;

end;

define DF;
parent = Common.ParameterEstimates.DF;

end;

define Estimate;
header = ";Parameter;Estimate;";
format = D10.;
parent = Common.ParameterEstimates.Estimate;

end;

define StdErr;
header = ";Standard;Error;";
format = D10.;
parent = Common.ParameterEstimates.StdErr;

end;

define StdErrRatio;
header = ";StdErr;Ratio;";
format = 6.3;

end;

define ChiSq;
parent = Stat.Phreg.ChiSq;

end;

define ProbChiSq;
parent = Stat.Phreg.ProbChiSq;

end;

define HazardRatio;
header = ";Hazard;Ratio;";
glue = 2;
format = 8.3;

end;

define HRLowerCL;
glue = 2;
format = 8.3;
print_headers = OFF;

end;

define HRUpperCL;
format = 8.3;
print_headers = OFF;

end;

define Label;
header = "Variable Label";

end;
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col_space_max = 4;
col_space_min = 1;
required_space = NRows;

end;

It contains header, format, spacing and other information for each column in the table. Most of this
need not concern us now. The template contains this column statement, which lists the columns of the
table.

column Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio
HRLowerCL HRUpperCL Label;

Since we will usually have a label that adequately names each parameter, we do not need the variable
column. We also do not need the hazard information. If we move the label to the front of the list and
drop the variable column and the hazard columns, we get this.

column Label DF Estimate StdErr ChiSq ProbChiSq;

We use the edit statement to edit the template. We can also modify some headers. We specify
the new column statement and the new headers. We can also modify the Summary table, which
is Stat.Phreg.CensoredSummary, to use the vocabulary of choice models instead of survival analysis
models. The code is grabbed from the PROC TEMPLATE step with the source statement. The overall
header “Summary of the Number of Event and Censored Values” is changed to “Summary of Subjects,
Sets, and Chosen and Unchosen Alternatives”, “Total” is changed to “Number of Alternatives”, “Event”
is changed to “Chosen Alternatives”, “Censored” is changed to “Not Chosen”, and “Percent Censored”
is dropped. Finally Style=RowHeader was specified on the label column. This sets the color, font, and
general style for HTML output. The RowHeader style is typically used on first columns that provide
names or labels for the rows. Here is the code that the %phchoice(on) macro runs.

proc template;
edit stat.phreg.ParameterEstimates;

column Label DF Estimate StdErr ChiSq ProbChiSq;
header h1;

define h1;
text "Multinomial Logit Parameter Estimates";
space = 1;
spill_margin;
end;

define Label;
header = " " style = RowHeader;
end;

end;

edit Stat.Phreg.CensoredSummary;
column Stratum Pattern Freq GenericStrVar Total

Event Censored;
header h1;
define h1;

text "Summary of Subjects, Sets, "
"and Chosen and Unchosen Alternatives";

space = 1;
spill_margin;
first_panel;

end;
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define Freq;
header=";Number of;Choices" format=6.0;

end;

define Total;
header = ";Number of;Alternatives";
format_ndec = ndec;
format_width = 8;

end;

define Event;
header = ";Chosen;Alternatives";
format_ndec = ndec;
format_width = 8;

end;

define Censored;
header = "Not Chosen";
format_ndec = ndec;
format_width = 8;

end;
end;

run;

Here is the code that %phchoice(off) runs.

* Delete edited templates, restore original templates;
proc template;

delete Stat.Phreg.ParameterEstimates;
delete Stat.Phreg.CensoredSummary;
run;

Our editing of the multinomial logit parameter estimates table assumes that each independent variable
has a label. If you are coding with PROC TRANSREG, this will be true of all variables created by
class expansions. You may have to provide labels for identity and other variables. Alternatively, if
you want variable names to appear in the table, you can do that as follows. This may be useful when
you are not coding with PROC TRANSREG.

%phchoice(on, Variable DF Estimate StdErr ChiSq ProbChiSq Label)

The optional second argument provides a list of the column names to print. The available columns are:
Variable DF Estimate StdErr StdErrRatio ChiSq ProbChiSq HazardRatio HRLowerCL HRUpperCL
Label. (HRLowerCL and HRUpperCL are confidence limits on the hazard ratio.) For very detailed cus-
tomizations, you may have to run PROC TEMPLATE directly.
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%PhChoice Macro Options

The %PhChoice macro has two positional parameters, onoff and column. Positional parameters must
come first, and unlike all other parameters, are not specified after a name and an equal sign.

onoff
ON specifies choice model customization.
OFF turns off the choice model customization and returns to the default PROC PHREG templates.
EXPB turns on choice model customization and adds the hazard ratio to the output.

Upper/lower case does not matter.

column
specifies an optional column list for more extensive customizations.
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%PlotIt Macro

The %PlotIt macro is used to make graphical scatter plots of labeled points. It is particularly designed
to display raw data and results from analyses such as regression, correspondence analysis, MDPREF,
PREFMAP, and MDS. However, it can make many other types of graphical displays as well. It can
plot points, labeled points, vectors, circles and density. See pages 21–34 and 803–828 for example plots
and more on these methods.

By default, the %PlotIt macro creates a graphical scatter plot on your screen. The macro will by
default use the last data set created, so you must specify data= if you run %PlotIt a second time. The
macro creates an output Annotate data set that cannot be used as input to the macro. If no graphics
device has been previously specified (either directly or indirectly), you will be prompted for a device
as follows:

No device name has been given--please enter device name:

Enter your graphics device. This name will be remembered for the duration of your SAS session or until
you change the device. You can modify the gopprint= and gopplot= options to set default devices
so that you will not be prompted. Note that all graphics options specified on a goptions statement
(except device=) are ignored by default. Use the macro options gopprint=, gopplot=, gopts2=, and
gopts= to set goptions.

To display a plot on your screen using the default goptions, specify:

%plotit(data=coor, datatype=corresp)

To create a color postscript file named myplot.ps, suitable for printing on a cljps device, specify:

%plotit(data=coor, datatype=corresp,
method=print, post=myplot.ps, gopts=device=cljps)

Alternatively, change the default for gopprint= below to name your typical device, for example from

gopprint=gsfmode=replace gaccess=gsasfile,

to

gopprint=gsfmode=replace gaccess=gsasfile device=cljps,

Then to create a postscript file, specify:

%plotit(data=coor, datatype=corresp, method=print, post=myplot.ps)

Then the file may be previewed and printed. Another alternative is to send the plot directly to the
printer. In this example, MyPrinter is a printer that prints on ordinary 8.5 × 11 paper.

%plotit(data=coor, datatype=corresp, gopts=device=MyPrinter)

To just see the printer plot, specify method=plot. Use gout= to write the plot to a catalogue.

With this release, a number of the default colors and options has changed. The new default displays
a border box with a gray background outside the plot, a white background inside the plot, and black
axes. Also, the color magenta is moved up ahead of cyan in the colors list since magenta displays better
than cyan on a white background. If you prefer the old style, change the default of the style= option
to style=a. The new default style is style=b, see page 777. If you do not like the default background
color, specify gopplot=cback=some-color (substituting your favorite color for some-color) or gopplot=
to use the default background. Similarly, you can change the color defaults with color=, and colors=,
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as you see fit.

Sample Usage

This example performs a simple correspondence analysis. For many plots, you only the need to specify
the data= and datatype= options.

*------Simple Correspondence Analysis------;
proc corresp all data=cars outc=coor;

tables marital, origin;
title ’Simple Correspondence Analysis’;
run;

%plotit(data=coor, datatype=corresp)

This next example performs multiple correspondence analysis.

*------Multiple Correspondence Analysis------;
proc corresp mca observed data=cars outc=coor;

tables origin size type income home marital sex;
title ’Multiple Correspondence Analysis’;
run;

%plotit(data=coor, datatype=mca)

This next example performs multidimensional preference analysis. The vector lengths are increased by
a factor of 2.5 to make a better graphical display.

*------MDPREF------;
proc prinqual data=carpref out=results n=2

replace standard scores correlations;
id model mpg reliable ride;
transform ide(judge1-judge25);
title ’Multidimensional Preference (MDPREF) Analysis’;
run;

%plotit(data=results, datatype=mdpref 2.5)

This next example performs a preference mapping, vector model. Again, the vector lengths are in-
creased by a factor of 2.5 to make a better graphical display.

*------PREFMAP, Vector Model------;
proc transreg data=results(where=(_type_ = ’SCORE’));

model ide(mpg reliable ride)=identity(prin1 prin2);
output tstandard=center coefficients replace out=tresult1;
id model;
title ’Preference Mapping (PREFMAP) Analysis - Vector’;
run;

%plotit(data=tresult1,datatype=vector 2.5)

This next example performs a preference mapping, ideal point model. The antiidea=1 option is
specified to handle anti-ideal points when large data values are positive or ideal.
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*------PREFMAP, Ideal Point------;
proc transreg data=results(where=(_type_ = ’SCORE’));

model identity(mpg reliable ride)=point(prin1 prin2);
output tstandard=center coordinates replace out=tresult1;
id model;
title ’Preference Mapping (PREFMAP) Analysis - Ideal’;
run;

%plotit(data=tresult1,datatype=ideal,antiidea=1)

This next example performs multidimensional preference analysis. The mdpref2 specification means
MDPREF and label the vectors too. The vector lengths are increased by a factor of 3 to make a better
graphical display. The symlen=2 option specifies two-character symbols. The specification vechead=,
(a null value) means no vector heads since there are labels. The adjust1= option is used to add full
SAS DATA step statements to the preprocessed data set. This example processes type = ’CORR’
observations (those that contain vector the coordinates) the original variable names (sub1, sub2, sub3,
..., from the activity variable) and creates symbol values (1, 2, 3, ...) of size 0.7. The result is a plot
with each vector labeled with a subject number.

*------MDPREF, labeled vector end points------;
proc prinqual cor data=recreate out=rec score std rep;

transform identity(sub:);
id activity active relaxing spectato;
title ’MDPREF of Recreational Activities’;
run;

%plotit(data=rec,datatype=mdpref2 3,
symlen=2,vechead=,adjust1=%str(
if _type_ = ’CORR’ then do;

__symbol = substr(activity,4);
__ssize = 0.7;
activity = ’ ’;
end;))

This next example creates a contour plot, displaying density with color. The paint=z white blue
magenta red option specifies that color interpolation is based on the variable z, going from white (zero
density) through blue, magenta, and to red (maximum density). This color list is designed for the
default style with a background of white. The option extend=close is used with contour plots so that
the plot boundaries appear exactly at the edge of the contour data. By default, %PlotIt usually adds
a bit of extra white space between the data and the plot boundaries which provides extra room for
labels, which are not used in this example.

*------Bivariate Normal Density Function------;
proc iml;

title ’Bivariate Normal Density Function’;
s = inv({1 0.25 , 0.25 1});
m = -2.5; n = 2.5; inc = 0.05; k = 0;
x = j((1 + (n - m) / inc) ** 2, 3, 0);
c = sqrt(det(s)) / (2 * 3.1415);
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do i = m to n by inc;
do j = m to n by inc;

v = i || j; z = c * exp(-0.5 * v * s * v‘);
k = k + 1; x[k,] = v || z;
end;

end;
create x from x[colname={’x’ ’y’ ’z’}]; append from x;
quit;

%plotit(datatype=contour, data=x, extend=close,
paint=z white blue magenta red)

The goal of this next example is to create a plot of the Fisher iris data set with each observation
identified by its species. Species name is centered at each point’s location, and each species name is
plotted in a different color. This scatter plot is overlaid on the densities used by PROC DISCRIM to
classify the observations. There are three densities, one for each species. Density is portrayed by a
color contour plot with white (the assumed background color) indicating a density of essentially zero.
Yellow, orange, and red indicate successively increasing density.

The data= option names the input SAS data set. The plotvars= option names the y-axis and x-
axis variables. The labelvar= blank option specifies that all labels are blank. This example does
not use any of PROC PLOT’s label collision avoidance code. It simply uses PROC PLOT to figure
out how big to make the plot, and then the macro puts everything inside the plot independently of
PROC PLOT, so the printer plot is blank. The symlen=4 option specifies that the maximum length
of a symbol value is 4 characters. This is because we want the first four characters of the species
names as symbols. The exttypes=symbol contour option explicitly specifies that PROC PLOT will
know nothing about the symbols or the contours. They are external types that will be added to the
graphical plot by the macro after PROC PLOT has finished. The ls=100 option specifies a constant
line size. Since no label avoidance is done, there can be no collisions, and the macro will not iteratively
determine the plot size. The default line size of 65 is too small for this example, whereas ls=100
makes a better display. The paint= option specifies that based on values the variable density, colors
should be interpolated ranging from white (minimum density) to yellow to orange to red (maximum
density). The rgbtypes=contour option specifies that the paint= option should apply to contour
type observations.

The grid (created with the loops: do sepallen = 30 to 90 by 0.6; and do petallen = 0 to 80
by 0.6;) is not square, so for optimal results the macro must be told the number of horizontal and
vertical positions. The PLOTDATA DATA step creates these values and stores them in macro variables
&hnobs and &vnobs, so the specification hnobs=&hnobs, vnobs=&vnobs, specifies the grid size. Of
course these values could have been specified directly instead of through symbolic variables. The
excolors=CXFFFFFF option is included for efficiency. The input data consist of a large grid for the
contour plot. Most of the densities are essentially zero, so many of the colors will be CXFFFFFF, which
is white, computed by paint=, which is the same color as the background. (See the paint= option,
page 778 for information on CXrrggbb color specifications.) Excluding them from processing makes
the macro run faster and creates smaller datasets.

This example shows how to manually do the kinds of things that the datatype= option does for you
with standard types of data sets. The macro expects the data set to contain observations of one or
more types. Each type is designated by a different value in a variable, usually named type . In this
example, there are four types of observations, designated by the type variable’s four values, 1, 2,
3, 4, which are specified in the types= option. The symtype= option specifies the symbol types for
these four observation types. The first three types of observations are symbol and the last type, type
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= 4, designates the contour observations. The first three symbols are the species names (symbols=
values) printed in symfont=swiss font. The last symbol is null because contours do not use symbols.
The first three symbols, since they are words as opposed to a single character, are given a small size
(symsize=0.7). A value of 1 is specified for the symbol size for contour type observations. The macro
determines the optimal size for each color rectangle of the contour plot. Constant colors are only
specified for the noncontour observations since a variable color is computed for contour observations.

*------Discriminant Analysis------;
data plotdata; * Create a grid over which DISCRIM outputs densities.;

do SepalLength = 30 to 90 by 0.6;
h + 1; * Number of horizontal cells;
do PetalLength = 0 to 80 by 0.6;

n + 1; * Total number of cells;
output;
end;

end;
call symput(’hnobs’, compress(put(h , best12.))); * H grid size;
call symput(’vnobs’, compress(put(n / h, best12.))); * V grid size;
drop n h;
run;

proc discrim data=iris testdata=plotdata testoutd=plotd
method=normal pool=no short noclassify;

class species;
var PetalLength SepalLength;
title ’Discriminant Analysis of Fisher (1936) Iris Data’;
title2 ’Using Normal Density Estimates with POOL=NO’;
run;

data all;
* Set the density observations first so the scatter plot points

will be on top of the contour plot. Otherwise the contour plot
points will hide the scatter plot points.;

set plotd iris(in=iris);
if iris then do;

_type_ = species; * unformatted species number 1, 2, 3;
output;
end;

else do;
_type_ = 4; * density observations;
density = max(setosa,versicolor,virginica);
output;
end;

run;
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%plotit(data=all,plotvars=PetalLength SepalLength,labelvar=_blank_,
symlen=4,exttypes=symbol contour,ls=100,
paint=density white yellow orange red,rgbtypes=contour,
hnobs=&hnobs,vnobs=&vnobs,excolors=CXFFFFFF,
types =1 2 3 4,
symtype=symbol symbol symbol contour,
symbols=Set Vers Virg ’’,
symsize=0.7 0.7 0.7 1,
symfont=swiss swiss swiss solid,
colors =blue magenta green
)

How %PlotIt Works

You create a data set either with a DATA step or with a procedure. Then you run the macro to create a
graphical scatter plot. This macro is not a SAS/GRAPH procedure and does not behave like a typical
SAS/GRAPH procedure. The %PlotIt macro performs the following steps.

1. The %PlotIt macro reads an input data set and preprocesses it. The preprocessed data set con-
tains information such as the axis variables, the point-symbol and point-label variables, and sym-
bol and label types, sizes, fonts, and colors. The nature of the preprocessing depends on the type
of data analysis that generated the input data set. For example, if the option datatype=mdpref
was specified with an input data set created by PROC PRINQUAL for a multidimensional pref-
erence analysis, then the %PlotIt macro creates blue points for type = ’SCORE’ observations
and red vectors for type = ’CORR’ observations.

2. A DATA step, using the DATA Step Graphics Interface, determines how big to make the graphical
plot.

3. PROC PLOT determines where to position the point labels. By default, if some of the point
label characters are hidden, the %PlotIt macro recreates the printer plot with a larger line and
page size, and hence creates more cells and more room for the labels. Note that when there are
no point labels, the printer plot may be empty. All of the information that is in the graphical
scatter plot may be stored in the extraobs= data set. All results from PROC PLOT are written
to data sets with ODS. The macro will clear existing ods select and ods exclude statements.

4. The printer plot is read and information from it, the preprocessed data set, and the extra obser-
vations data set are combined to create an Annotate data set. The label position information is
read from the PROC PLOT output, and all of the symbol, size, font, and color information is
extracted from the preprocessed (or extra observations) data set. The Annotate data set contains
all of the instructions for drawing the axes, ticks, tick marks, titles, point symbols, point labels,
axis labels, and so on. Circles can be drawn around certain locations, and vectors can be drawn
from the origin to other locations.

5. The Annotate data set is displayed with the GANNO procedure. The %PlotIt macro does not
use PROC GPLOT.
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Debugging

When you have problems, try debug=vars to see what the macro thinks you specified. It is also helpful
to specify: debug=mprint notes. You can also print the final Annotate data set and the preprocessing
data set:

options ls=180;
proc print data=anno uniform;

format text $20. comment $40.;
run;

proc print data=preproc uniform;
run;

Advanced Processing

You can post-process the Annotate DATA step to change colors, fonts, undesirable placements, and
so on. Sometimes, this can be done with the adjust4= option. Alternatively, when you specify
method=none, you create an Annotate data set without displaying it. The data set name is by default
WORK.ANNO. You can then manipulate it further with a DATA step or PROC FSEDIT to change
colors, fonts, or sizes for some labels; move some labels; and so on. If the final result is a new data set
called ANNO2, display it by running:

proc ganno annotate=anno2;
run;

Notes

With method=print, the macro creates a file. See the filepref= and post= options and make sure
that the file name does not conflict with existing names.

This macro creates variable names that begin with two underscores and assumes that these names will
not conflict with any input data set variable names.

It is not feasible with a macro to provide the full range of error checking that is provided with a
procedure. Extensive error checking is provided, but not all errors will be diagnosed.

Not all options will work with all other options. Some combinations of options may produce macro
errors or Annotate errors.

This macro may not be fully portable. When you switch operating systems or graphics devices, some
changes may be necessary to get the macro to run successfully again.

Graphics device differences may also be a problem. We do not know of any portability problems, but
the macro has not been tested on all supported devices.

This macro tries to create a plot with equated axes, where a centimeter on one axis represents the same
data range as a centimeter on the other axis. The only way to accomplish this is by explicitly and
jointly controlling the hsize=, vsize=, hpos=, and vpos= goptions. By default, the macro tries to
ensure that all of the values work for the specific device. See makefit=, xmax=, and ymax=. By default
the macro uses GASK to determine xmax and ymax. If you change any of these options, your axes may
not be equated. Axes are equated when vsize × hpos / hsize × hpos = vtoh.
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When you are plotting variables that have very different scales, you may need to specify appropriate
tick increments for both axes to get a reasonable plot. Here is an example: plotopts=haxis=by 20
vaxis=by 5000. Alternatively, just specifying the smaller increment is often sufficient: plotopts=haxis=by
20. Alternatively, specify vtoh=, (null value) to get a plot like PROC GPLOT’s, with the window filled.

By default, the macro iteratively creates and recreates the plot, increasing the line size and the flexibility
in the placement= list until there are no penalties.

The SAS system option ovp (overprint) is not supported by this macro.
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%PlotIt Macro Options

The following options can be used with the %PlotIt macro.

Option Description
adjust1=SAS-statements adjust the preprocessing data set
adjust2=SAS-statements includes statements with PROC PLOT
adjust3=SAS-statements extra statements for the final DATA step
adjust4=SAS-statements extra statements for the final DATA step
adjust5=SAS-statements extra statements for the final DATA step
antiidea=n eliminates PREFMAP anti-ideal points
blue=expression blue part of RGB colors
bright=n generates random label colors
britypes=type types to which bright= applies
cframe=color color of background within the frame
cirsegs=n circle smoothness parameter
color=color default color
colors=colors-list default label and symbol color list
cursegs=n number of segments in a curve
curvecol=color color of curve
data=SAS-data-set input data set
datatype=data-type data analysis that generated data set
debug=values debugging output
excolors=color-list excludes from the Annotate data set
extend=axis-extensions extend the x and y axes
extraobs=SAS-data-set extra observations data set
exttypes=type types for extraobs= data set
filepref=prefix file name prefix
font=font default font
framecol=color color of frame
gdesc=description catalog description
gname=name catalog entry
gopplot=goptions goptions for plotting to screen
gopprint=goptions goptions for printing
gopts2=goptions goptions that are always used
gopts=goptions additional goptions
gout=catalog proc anno gout= catalog
green=expression green part of RGB colors
hminor=n | do-list horizontal axis minor tick marks
hnobs=n horizontal observations for contour plots
hpos=n horizontal positions in graphics area
href=do-list horizontal reference lines
hsize=n horizontal graphics area size
inc=n haxis=by inc, vaxis=by inc
interpol=method axis interpolation method
labcol=label-colors colors for the point labels
label=label-statement label statement
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labelcol=color color of variable labels
labelvar=label-variable point label variable
labfont=label-fonts fonts for the point labels
labsize=label-sizes sizes for the point labels
ls=n how line sizes are generated
lsinc=n increment to line size
lsizes=number-list line sizes (thicknesses)
makefit=n proportion of graphics window to use
maxiter=n maximum number of iterations
maxokpen=n maximum acceptable penalty sum
method=value where to send the plot
monochro=color overrides all other colors
nknots=n number of knots option
offset=n move symbols for coincident points
options=options-list binary options
out=SAS-data-set output Annotate data set
outward=none | ’c’ PLOT statement outward=
paint=interpolation color interpolation
place=placement generates a placement= option
plotopts=options PLOT statement options
plotvars=variable-list y-axis and x-axis variables
post=filename graphics stream file name
preproc=SAS-data-set preprocessed data= data set
procopts=options PROC PLOT statement options
ps=n page size
radii=do-list radii of circles
red=expression red part of RGB colors
regdat=SAS-data-set intermediate regression results data set
regopts=options regression curve fitting options
regprint=regression-option regression options
rgbround=RGB-rounding paint= rounding factors
rgbtypes=type types to which RGB options apply
style=style controls several colors and options
symbols=symbol-list plotting symbols
symcol=symbol-colors colors of the symbols
symfont=symbol fonts symbol fonts
symlen=n length of the symbols
symsize=symbol-sizes sizes of symbols
symtype=symbol-types types of symbols
symvar=symbol-variable plotting symbol variable
tempdat1=SAS-data-set intermediate results data set
tempdat2=SAS-data-set intermediate results data set
tempdat3=SAS-data-set intermediate results data set
tempdat4=SAS-data-set intermediate results data set
tempdat5=SAS-data-set intermediate results data set
tempdat6=SAS-data-set intermediate results data set
tickaxes=axis-string axes to draw tick marks
tickcol=color color of ticks
tickfor=format tick format used by interpol=tick
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ticklen=n length of tick mark in horizontal cells
titlecol=color color of title
tsize=n default text size
types=observation-types observations types
typevar=variable observation types variable
unit=in | cm hsize= and vsize= unit
vechead=vector-head-size how to draw vector heads
vminor=n | do-list vertical axis minor tick marks
vnobs=n vertical observations for contour plots
vpos=n vertical positions in graphics area
vref=do-list vertical reference lines
vsize=n vertical graphics area size
vtoh=n PROC PLOT vtoh= option
xmax=n maximum horizontal graphics area size
ymax=n maximum vertical graphics area size

Note that for many analyses, the only options you need to specify are data=, datatype=, and sometimes
method=. To specify variables to plot, specify plotvars=, labelvar=, and symvar=.

Overriding Options

This macro looks for a special global macro variable named plotitop. If it exists, its values are used
to override the macro options. Say you have a series of calls to the plotting macro and you want to
route them all to a postscript file, you can specify this once:

%let plotitop = gopts=gsfmode=append gaccess=gsasfile device=qmscolor;

and then run the macro repeatedly without change. The value of the plotitop macro variable must
consist of a name, followed by an equal sign, followed by a value. Optionally, it may continue with a
comma, followed by a name=value, and so on, just like the way options are specified with the macro.
Option values must not contain commas. Here is another example:

%let plotitop = color=black, gopts=cback=cyan;

Destination and GOPTIONS

The options in this section specify the plot destination and SAS goptions. Note that with the %PlotIt
macro, you do not specify a goptions statement. If you do, it will be overridden. All goptions (except
device=) are specified with macro options. If you would prefer to specify your own goptions statement
and have the macro use it, just specify or change the default for these four options to null: gopplot=,
gopprint=, gopts2=, gopts=. If you use a locally installed copy of the macro, you can modify the
gopprint= and gopplot= options defaults to include the devices that you typically use. Otherwise,
the macro checks the goptions to get a device.

gopplot= goptions
specifies the goptions for directly plotting on the screen. There are no default goptions for gopplot=.

gopprint= goptions
specifies the goptions for printing (creating a graphics stream file). The default is
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gopprint=gsfmode=replace gaccess=gsasfile.

Here is an example of how you might modify the defaults for gopprint= and gopplot= option defaults
to set default devices.

gopprint=gsfmode=replace gaccess=gsasfile device=qmscolor,
gopplot=cback=black device=win,

gopts= goptions
provides a way to specify additional goptions that are always used. There are no default goptions
for gopts=. For example, to rotate to a landscape orientation with a black background color, specify
gopts=rotate cback=black.

gopts2= goptions
specifies the goptions that are always used, no matter which method= is specified. The default is
gopts2=reset=goptions erase.

method= gplot | plot | print | none
specifies where to send the plot. The default is method=gplot.

gplot - displays a graphical scatter plot on your screen using the goptions from gopplot=.
The gopplot= option should contain the goptions that only apply to plots displayed on
the screen.
plot - creates a printer plot only.

print - routes the plot to a graphics stream file, such as a postscript file, using the goptions
from gopprint=. The gopprint= option should contain the goptions that only apply to
hard-copy plots. Specify the file name with post=.

none - just creates the Annotate data set and sets up goptions using gopplot=.

Data Set and Catalog Options

These options specify the input SAS data set, output Annotate data set, and options for writing plots
to files and catalogs.

data= SAS-data-set
specifies the input data set. The default input data set is the last data set created. You should always
specify the data= option since the macro creates data sets that are not suitable for use as input.

filepref= file-name-prefix
specifies the file name prefix. The default is filepref=sasplot.

gdesc= description
specifies the name of a catalog description. This option can optionally be used with proc anno gout=
to provide the description=.
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gname= name
specifies the name of a catalog entry. This option can optionally be used with proc anno gout= to
provide the name=.

gout= catalog
specifies the proc anno gout= catalog. With gout=gc.slides, first specify: libname gc ’.’; Then
to replay, run: proc greplay igout=gc.slides; run; Note that replayed plots will not in general
have the correct aspect ratio.

out= SAS-data-set
specifies the output Annotate data set. This data set contains all of the instructions for drawing the
graph. The default is out=anno.

post= filename
specifies the graphics stream file name. The default name is constructed from the filepref= value
and ’ps’ in a host-specific way.

Typical Options

These are some of the most frequently used options.

datatype= data-type
specifies the type of data analysis that generated the data set. This option is used to set defaults for
other options and to do some preprocessing of the data.

When the data type is corresp, mds, mca, row, column, mdpref, mdpref2, vector, or ideal, the
label=typical option is implied when label= is not otherwise specified. The default point label
variable is the last character variable in the data set.

Some data types (mdpref, vector, ideal, corresp, row, mca, column, mds) expect certain observation
types and set the types= list accordingly. For example, mdpref expects type = ’SCORE’ and type
= ’CORR’ observations. The remaining data types do not expect any specific value of the typevar=
variable. So if you do not get the right data types associated with the right observation types, specify
types=, and specify the types= values in an order that corresponds to the order of the symbol types
in the Types Legend table. Unlike symtype=, the order in which you specify datatype= values is
irrelevant.

A null value (datatype=, the default) specifies no special processing, and the default plotting variables
are the first two numeric variables in the data set. Specifying corresp, mds, mca, row, or column will
set the default plotvars to dim2 and dim1. Otherwise, when a nonnull value is specified, the default
plotvars are prin2 and prin1.
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Here are the various data types.

datatype=column
specifies a proc corresp profile=column analysis. Row points are plotted as vectors.

datatype=contour
draws solid color contour plots. When the number of row points is not the same as the
number of column points in the grid, use hnobs= and vnobs= to specify the number of
points. This method creates an hnobs= by vnobs= grid of colored rectangles. Each of the
rectangles should touch all adjacent rectangles. This method works well with a regular
grid of points. The method=square option is a good alternative when the data do not fall
in a regular grid.

datatype=corresp
specifies an ordinary correspondence analysis.

datatype=curve
fits a curve through the scatter plot.

datatype=curve2
fits a curve through the scatter plot and tries to make the labels avoid overprinting the
curve.
datatype=function
draws functions. Typically, no labels or symbols are drawn. This option has a similar effect
to the PROC GPLOT symbol statement options i=join v=none.

datatype=ideal
specifies a PREFMAP ideal point model. See the antiidea=, radii=, and cirsegs=
options.

datatype=mca
specifies a multiple correspondence analysis.

datatype=mdpref
specifies multidimensional preference analysis with vectors with blank labels. Note that
datatype=mdpref can also be used for ordinary principal component analysis.

datatype=mdpref2
specifies MDPREF with vector labels (MDPREF and labels too).

datatype=mds
specifies multidimensional scaling.

datatype=mds ideal
specifies PREFMAP ideal point after the MDS.

datatype=mds vector
specifies PREFMAP after MDS.

datatype=row
specifies a proc corresp profile=row analysis. Column points are plotted as vectors.

datatype=square
plots each point as a solid square. The datatype=square option is useful as a form of
contour plotting when the data do not form a regular grid. The datatype=square option,
unlike datatype=contour, does not try to scale the size of the square so that each square
will touch another square.

datatype=symbol
specifies an ordinary scatter plot.
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datatype=vector
specifies a PREFMAP vector model.

datatype=vector ideal
specifies both PREFMAP vectors and ideal points.

For some datatype= values, a number may be specified after the name. This is primarily useful
for biplot data sets produced by PROC PRINQUAL and PREFMAP data sets produced by PROC
TRANSREG. This number specifies that the lengths of vectors should be changed by this amount.
The number must be specified last. Examples: datatype=mdpref 2, datatype=mds vector 1.5.

The primary purpose of the datatype= option is to provide an easy mechanism for specifying defaults
for the options in the next section (typevar= through outward=).

labelvar= label-variable | blank
specifies the variable that contains the point labels. The default is the last character variable in the
data set. If labelvar= blank is specified, the macro will create a blank label variable.

options= options-list
specifies binary options. Specify zero, one, or more in any order. For example: options=nocenter
nolegend.

border
draws a border box around the outside of the graphics area, like the border goption. This
is the default with style=b unless options=noborder is specified.

close
if a border is being drawn, perform the same adjustments on the border that are performed
on the axes. This option is most useful with contour plots.

diag
draws a diagonal reference line.

expand
specifies Annotate data set post processing, typically for use with extend=close and con-
tour plots. This option makes the plot bigger to fill up more of the window.

noborder
specifies that %PlotIt should not add a border to the plot with style=b.

noback
specifies that %PlotIt should not set the frame color (the background color within the plot
boundary) to white with style=b.

nocenter
do not center. By default, when nocenter is not specified, vsize= and hsize= are set to
their maximum values, and the vpos= and hpos= values are increased accordingly. The x
and y coordinates are increased to position the plot in the center of the full graphics area.
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noclip
do not clip. By default, when noclip is not specified, labels that extend past the edges of
the plot are clipped. This option will not absolutely prevent labels from extending beyond
the plot, particularly when sizes are greater than 1.

nocode
suppresses the printing of the PROC PLOT and goptions statements.

nodelete
do not delete intermediate data sets.

nohistory
suppresses the printing of the iteration history table.

nolegend
suppresses the printing of the legends.

noprint
equivalent to nolegend, nocode, and nohistory.

square
uses the same ticks for both axes and tries to make the plot square by tinkering with the
extend= option. Otherwise, ticks may be different.

textline
put text in the data set, followed by lines, so lines overwrite text. Otherwise text overwrites
lines.

plotvars= two-variable-names
specifies the y-axis variable then the x-axis variable. To plot dim2 and dim3, specify plotvars=dim2
dim3. The datatype= option controls the default variable list.

symlen= n
specifies the length of the symbols. By default, symbols are single characters, but the macro can center
longer strings at the symbol location.

symvar= symbol-variable | symbol
specifies the variable that contains the plotting symbol for input to PROC PLOT. When symbol
is specified, which is the default, the symbol variable is created, typically from the symbols= list,
which may be constructed inside the macro. (Note that the variable symbol is created to contain the
symbol for the graphical scatter plot. The variables symbol and symbol may or may not contain
the same values.) Variables can be specified, and the first symlen= characters are used for the symbol.
When a null value (symvar=) or a constant value is specified, the symbol from the printer plot will
be used (which is always length one, no matter what is specified for symlen=). To get PROC PLOT
pointer symbols, specify symvar=’00’x, (hex null constant). To center labels with no symbols, specify:
symvar=, place=0.
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Observation-Type List Options

Data sets for plotting can have different types of observations that are plotted differently. These options
allow you to specify the types of observations, the variable that contains the observation types, and
the different ways the different types should be plotted. For many types of analyses, these can all
be handled easily with the datatype= option, which sets analysis-specific defaults for the list options.
When you can, you should use datatype= instead of the list options. If you do use the list options,
specify a variable, in typevar=, whose values distinguish the observation types. Specify the list of
valid types in types=. Then specify colors, fonts, sizes, and so on for the various observation types.
Alternatively, you can use these options with datatype=. Specify lists for just those label or symbol
characteristics you want to change, for example colors, fonts or sizes.

The lists do not all have to have the same number of elements. The number of elements in types=
determines how many of the other list elements are used. When an observation type does not match
one of the type= values, the results are the same as if the first type were matched. If one of the other
lists is shorter than the types= list, the shorter list is extended by adding copies of the last element to
the end. Individual list values may be quoted, but quotes are not required. Embedded blanks are not
permitted. If you embed blanks, you will not get the right results. Values of the typevar= variable are
compressed before they are used, so for example, an type value of ’M COEFFI’ must be specified as
’MCOEFFI’.

britypes= type
specifies the types to which bright= applies. The default is britypes=symbol.

colors= colors-list
specifies the default color list for the symcol= and labcol= options. The default is colors=blue red
green magenta cyan orange gold lilac olive purple brown gray rose violet salmon yellow.
With the original color style, style=a, the order of magenta and cyan are switched in the list. With
the default style of style=b magenta comes before cyan.

exttypes= type
specifies the types to always put in the extraobs= data set when they have blank labels. The default
is exttypes=vector.

labcol= label-colors
specifies the colors for the point labels. The default list is constructed from the colors= option.
Examples:

labcol=’red’
labcol=’red’ ’white’ ’blue’

labfont= label-fonts
specifies the fonts for the point labels. Examples:

labfont=’swiss’
labfont=’swiss’ ’swissi’
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labsize= label-sizes
specifies the sizes for the point labels. Examples:

labsize=1
labsize=1 1.5
labsize=1 0

rgbtypes= type
specifies the types to which paint=, red=, green=, and blue= apply. The default is rgbtypes=symbol.

symbols= symbol-list
specifies the plotting symbols. Symbols may be more than a single character. You must specify
symlen=n for longer lengths. Blank symbols must be specified as ’’ with no embedded blanks. Exam-
ples:

symbols=’*’
symbols=’**’
symbols=’*’ ’+’ ’*’ ’’
symbols=’NC’ ’OH’ ’NJ’ ’NY’

symcol= symbol-colors
specifies the colors of the symbols. The default list is constructed from the colors= option. Examples:

symcol=’red’
symcol=’red’ ’white’ ’blue’

symtype= symbol-types
specifies the types of symbols. Valid values are symbol, vector, circle, contour, and square. Ex-
amples:

symtype=’symbol’
symtype=’symbol’ ’vector’
symtype=’symbol’ ’circle’

symfont= symbol fonts
specifies the symbol fonts. The font is ignored for vectors with no symbols. Examples:

symfont=’swiss’
symfont=’swiss’ ’swissi’

symsize= symbol-sizes
specifies the sizes of symbols. Examples:

symsize=1
symsize=1 1.5
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types= observation-types
specifies the observations types. Observation types are usually values of a variable like type . Em-
bedded blanks are not permitted. Examples:

types=’SCORE’
types=’OBS’ ’SUPOBS’ ’VAR’ ’SUPVAR’
types=’SCORE’
types=’SCORE’ ’MCOEFFI’

The order in which values are specified for the other options depends on the order of the types. The
default types for various datatype= values are given next:

corresp: ’VAR’ ’OBS’ ’SUPVAR’ ’SUPOBS’
row: ’VAR’ ’OBS’ ’SUPVAR’ ’SUPOBS’
mca: ’VAR’ ’OBS’ ’SUPVAR’ ’SUPOBS’
column: ’VAR’ ’OBS’ ’SUPVAR’ ’SUPOBS’
mdpref: ’SCORE’ ’CORR’
vector: ’SCORE’ ’MCOEFFI’
ideal: ’SCORE’ ’MPOINT’
mds: ’SCORE’ ’CONFIG’

For combinations of options, these lists are combined in order, but without repeating ’SCORE’, for ex-
ample with datatype=mdpref vector ideal, the default types= list is: ’SCORE’ ’CORR’ ’MCOEFFI’
’MPOINT’.

typevar= variable
specifies a variable that is looked at for the observation types. By default, this will be type if it is in
the input data set.

Internal Data Set Options

The macro creates one or more of these data sets internally to store intermediate results.

extraobs= SAS-data-set
specifies a data set used to contain the extra observations that do not go through PROC PLOT. The
default is extraobs=extraobs.

preproc= SAS-data-set
specifies a data set used to contain the preprocessed data= data set. The default is preproc=preproc.

regdat= SAS-data-set
specifies a data set used to contain intermediate regression results for curve fitting. The default is
regdat=regdat.
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tempdat1= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat1=tempdat1.

tempdat2= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat2=tempdat2.

tempdat3= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat3=tempdat3.

tempdat4= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat4=tempdat4.

tempdat5= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat5=tempdat5.

tempdat6= SAS-data-set
specifies a data set used to hold intermediate results. The default is tempdat6=tempdat6.

Miscellaneous Options

Here are some options that are sometimes needed for certain situations to control the details of the
plots.

antiidea= n
eliminates PREFMAP anti-ideal points. The TRANSREG ideal-point model assumes that small at-
tribute ratings mean that the object is similar to the attribute and large ratings imply dissimilarity to
the attribute. For example, if the objects are food and the attribute is “sweetness,” then the analysis
assumes that 1 means sweet and 9 is much less sweet. The resulting coordinates are usually ideal
points, representing an ideal amount of the attribute, but sometimes they are anti-ideal points and
need to be converted to ideal points. This option is used to specify the nature of the data (small ratings
mean similar or dissimilar) and to request automatic conversion of anti-ideal points.

null value - (antiidea=, the default) - do nothing.

1 - reverses in observations whose TYPE contains ’POINT’ when issq > 0. Specify
antiidea=1 with datatype=ideal for the unusual case when large data values are positive
or ideal.
-1 - reverses in observations whose type contains ’POINT’ when issq < 0. Specify
antiidea=-1 with datatype=ideal for the typical case when small data values are positive
or ideal.

extend= axis-extensions
is used to extend the x and y axes beyond their default lengths. Specify four values, for the left, right,
top, and bottom axes. If the word close is specified somewhere in the string, then macro moves the
axes in close to the extreme data values, and the computed values are added to the specified values
(if any). Sample specifications: extend=2 2, or extend=3 3 -0.5 0.5. Specifying a positive value n
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extends the axis n positions in the indicated direction. Specifying a negative value shrinks the axis.
The defaults are in the range -2 to 2, and are chosen in an attempt to add a little extra horizontal space
and make equal the extra space next to each of the four extreme ticks. When there is enough space,
the horizontal axis is slightly extended by default to decrease the chance of a label slightly extending
outside the plot. PROC PLOT usually puts one or two more lines on the top of the plot than in the
bottom. The macro tries to eliminate this discrepancy. This option does not add any tick marks; it
just extends or shrinks the ends of the axis lines. So typically, only small values should be specified.
Be careful with this option and a positive makefit= value.

font= font
specifies the default font. The default is font=swiss.

hminor= n | do-list
specifies the number of horizontal axis minor tick marks between major tick marks. A typical value is
9. The number cannot be specified when haxis= is specified with plotopts=. Alternatively, specify a
DATA step do list. Note that with log scaling, specify log10’s of the data values. For example, specify
hminor=0.25 to 5 by 0.25, with data ranging up to 10**5.

href= do-list
specifies horizontal-axis reference lines (which are drawn vertically). Specify a DATA step do list. By
default, there are no reference lines.

inc= n
specifies haxis=by inc and vaxis=by inc values. The specified increments apply to both axes. To
individually control the increments, you must specify the PLOT statement haxis= and vaxis= options
on the plotopts= option. When you are plotting variables that have very different scales, you may
need to independently specify appropriate tick increments for both axes to get a reasonable plot. Here
is an example: plotopts=haxis=by 20 vaxis=by 5000.

interpol= ls | tick | no | hlog | vlog | yes
specifies the axis interpolation method.

ls - uses the least-squares method only. This method computes the mapping between data
and positions using ordinary least-squares linear regression. Usually, you should not specify
interpol=ls because slight inaccuracies may result, producing aesthetically unappealing
plots.

hlog - specifies that the x-axis is on a log scale.

no - does not interpolate.

tick - uses the tick mark method. This method computes the slope and intercept using
tick marks and their values. Tick marks are read using the tickfor= format.

vlog - specifies that the y-axis is on a log scale.

yes - the default, interpolates symbol locations, starting with least squares but replacing
them with tick-based estimates when they are available.
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This option makes the symbols, vectors, and circles map to the location they would in a true graphical
scatter plot, not the cell locations from PROC PLOT. This option has no effect on labels, the frame,
reference lines, titles, or ticks. With interpol=no, plots tend to look nicer whereas interpol=yes
plots are slightly more accurate. Note that the strategy used to interpolate can be defeated in certain
cases. If the horizontal axis tick values print vertically, specify interpol=ls. The hlog and vlog
values are specified in addition to the method. For example, interpol=yes vlog hlog.

label= label-statement
specifies a label statement. Note that specifying the keyword label to begin the statement is optional.
You can specify label=typical to request a label statement constructed with ’Dimension’ and the
numeric suffix of the variable name, for example, label dim1 = ’Dimension 1’ dim2 = ’Dimension
2’; when plotvars=dim2 dim1. The label=typical option can only be used with variable names
that consist of a prefix and a numeric suffix.

ls= n | iterative-specification
specifies how line sizes are generated. The default is ls=compute search. When the second word is
search, the macro searches for an optimal line size. See the place= option for more information on
searches. When the first word is compute, the line size is computed from the iteration number so that
the line sizes are: 65 80 100 125 150 175 200. Otherwise the first word is the first linesize and with
each iteration the linesize is incremented by the lsinc= amount. Example: ls=65 search.

lsinc= n
specifies the increment to line size in iterations when line size is not computed. The default is lsinc=15.

lsizes= number-list
specifies the line sizes (thicknesses) for frame, ticks, vectors, circles, curves, respectively. The default
is lsizes=1 1 1 1 1.

maxiter= n
specifies the maximum number of iterations. The default is maxiter=15.

maxokpen= n
specifies the maximum acceptable penalty sum. The default is maxokpen=0. Penalties accrue when
label characters collide, labels get moved too far from their symbols, or words get split.

offset= n
move symbols for coincident points offset= spaces up/down and left/right. This helps to better display
coincident symbols. Specify a null value (offset=,) to turn off offsetting. The default is offset=0.25.

place= placement-specification
generates a placement= option for the plot request. The default is place=2 search. Specify a non-
negative integer. Values greater than 13 are set to 13. As the value gets larger, the procedure is given
more freedom to move the labels farther from the symbols. The generated placement list will be printed
in the log. You can still specify placement= directly on the plotopts= option. This option just gives
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you a shorthand notation. For example:

place=0 - placement=((s=center))

place=1 - placement=((h=2 -2 : s=right left)
(v=1 * h=0 -1 to -2 by alt))

place=2 - placement=((h=2 -2 : s=right left)
(v=1 -1 * h=0 -1 to -5 by alt))

place=3 - placement=((h=2 -2 : s=right left)
(v=1 to 2 by alt * h=0 -1 to -10 by alt))

place=4 - placement=((h=2 -2 : s=right left)
(v=1 to 2 by alt * h=0 -1 to -10 by alt)
(s=center right left * v=0 1 to 2 by alt *
h=0 -1 to -6 by alt * l= 1 to 2))

and so on.

The place= option, along with the ls= option can be used to search for an optimal placement list and
an optimal line size. By default, the macro will create and recreate the plot until it avoids all collisions.
The search is turned off when a placement= option is detected in the plot request or plot options.

If search is not specified with place= or ls=, the specified value is fixed. If search is specified with the
other option, only that option’s value is incremented in the search.

plotopts= options
specifies PLOT statement options. The box option will be specified, even if you do not specify it.
Reference lines should not be specified using the PROC PLOT href= and vref= options. Instead,
they should be specified directly using the href= and vref= macro options. By default, no PLOT
statement options are specified except box.

procopts= options
specifies PROC PLOT statement options. The default is procopts=nolegend.

tickaxes= axis-string
specifies the axes to draw tick marks. The default, tickaxes=LRTBFlb, means major ticks on left (L),
right (R), top (T), and bottom (B), and the full frame (F) is to be drawn, and potentially minor tick
marks on the left (l) and bottom (b). Minor ticks on the right (r) and top (t) can also be requested.
To just have major tick marks on the left and bottom axes, and no full frame, specify tickaxes=LB.
Order and spacing do not matter. hminor= and vminor= must also be specified to get minor ticks.

tickfor= format
specifies the tick format used by interpol=tick. You should change this if the tick values in the
PROC PLOT output cannot be read with the default tickfor=32. format. For example, specify
tickfor=date7. with dates.
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ticklen= n
specifies the length of tick marks in horizontal cells. A negative value can be specified to indicate that
only half ticks should be used, which means the ticks run to but not across the axes. The default is
ticklen=1.5.

tsize= n
specifies the default text size. The default is tsize=1.

vminor= n | do-list
specifies the number of vertical axis minor tick marks between major tick marks. A typical value is
9. The number cannot be specified when vaxis= is specified with plotopts=. Alternatively, specify a
DATA step do list. Note that with log scaling, specify log10’s of the data values. For example, specify
vminor=0.25 to 5 by 0.25, with data ranging up to 10**5.

vref= do-list
specifies vertical reference lines (which are drawn horizontally). Specify a DATA step do list. By
default, there are no reference lines.

Color Options

The symbol and point label colors are set by the labcol= and symcol= options. Here are the other
color options.

bright= n
generates random label colors for britypes= values. In congested plots, it may be easier to see which
labels and symbols go together if each label/symbol pair has a different random color. Colors are
computed so that the mean RGB (red, green, blue) components equal the specified bright= value.
The valid range is 5 ≤ bright ≤ 250. 128 is a good value. Small values will produce essentially black
labels and large values will produce essentially white labels, and so should be avoided. The default is a
null value, bright=, and there are no random label colors. If you get a color table full error message,
you need to specify larger values for the rgbround= option.

cframe= color
specifies the color of the background within the frame. This is analogous to the cframe= SAS/GRAPH
option. With style=b, the default is cframe=white unless options=noback is specified.

color= color
specifies the default color that is used when no other color is set. The default color is black. The
default specification is color=cyanorblack, which means that the default color is black with the
default style=b and cyan with the original style, style=a. Normally, a color name must be specified.
The default value of “cyanorblack” is a special value that allows the macro to choose a color based on
another option. If you specify any other value, the macro will not change it.



%PlotIt Macro 777

curvecol= color
specifies the color of curves in a regression plot. The default comes from color=.

excolors= color-list
excludes observations from the Annotate data set with colors in this list. For example, with a white
background, to exclude all observations that have a color set to white as well as those with a computed
white color, for example from bright= or paint=, specify excolors=white CXFFFFFF. This is done for
efficiency, to make the Annotate data set smaller. (See the paint= option, page 778 for information
on CXrrggbb color specifications.)

framecol= color
specifies the color of the frame. The default comes from color=.

labelcol= color
specifies the color of the variable labels. The default comes from color=.

monochro= color
overrides all other specified colors. This option is useful when you have specified colors and you want
to temporarily override them to send the plot to a monochrome device. By default, when monochro=
is null, this option has no effect. Typical usage: monochro=black.

style= A | B
specifies the output style. The new style, arbitrarily, style “b” is the default. To get the old style,

specify style=a or style= without an argument. The new style has a gray background outside the
plot, a white background inside the plot, and axis and tick colors are black. The new style does
the following: When cback= is not specified in gopplot=, cback=graye0 is added to the gopplot=
specification. When color=cyanorblack is specified (the default), color=cyan is used with style=a
and color=black is used with style=b. The border option is added to the options= list unless
options=noborder is specified. In the colors= list, cyan comes before magenta with style=a, and
magenta comes before cyan with style=b.

tickcol= color
specifies the color of ticks. The default comes from color=.

titlecol= color
specifies the color of the title. The default comes from color=.
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Color Interpolation and Painting

These next options are used to create label and symbol colors using some function of the input data set
variables. For example, you can plot the first two principal components on the x and y axes and show
the third principal component in the same plot by using it to control the label colors. The paint=
option gives you a simple and fairly general way to interpolate colors. The red=, green=, and blue=
options are used together for many other types of interpolations, but these options are much harder
to use. These options apply to rgbtypes= observations. If red=, green=, and blue= are not flexible
enough, for example if you need full statements, specify red=128 (so later code will know you are
computing colors) then insert the full statements you need to generate the colors using adjust1=.

paint= color-interpolation-specification
is used to interpolate between colors based on the values of a variable. The simplest specification is
paint=variable. More generally, specify:

paint=variable optional-color-list optional-data-value-list

The following color names are recognized: red, green, blue, yellow, magenta, cyan, black, white, orange,
brown, gray, olive, pink, purple, violet. For other colors, specify the RGB color name. Colors can be
represented as CXrrggbb where rr is the red value, gg is the green, and bb is blue, all three specified in
hex. The base ten numbers 0 to 255 map to 00 to FF in hex. For example, white is CXFFFFFF (all colors
at their maximum), black is CX000000 (all colors at their minimum), red is CXFF0000 (maximum red,
minimum green and blue), blue is CX0000FF (maximum blue, minimum red and green), and magenta
is CXFF00FF (maximum red and blue, minimum green). When a variable named z is specified with no
other arguments, the default is paint=z blue magenta red. The option paint=z red green 1 10
interpolates between red and green, based on the values of the variable z, where values of 1 or less
map to red, values of 10 or more map to green, and values in between map to colors in between. The
specification paint=z red yellow green 1 5 10, interpolates between red at z=1, yellow at Z=5, and
green at Z=10. If the data value list is omitted, it is computed from the data.

red= expression
green= expression
blue= expression
specify for arithmetic expressions that produce integers in the range 0 to 255. Colors will be created
as follows:

__color = ’CX’ ||
put(%if &red ne %then round(&red, __roured); %else 128; ,hex2.) ||
put(%if &green ne %then round(&green,__rougre); %else 128;, hex2.) ||
put(%if &blue ne %then round(&blue, __roublu); %else 128; ,hex2.);}

The rou variables are extracted from the second through fourth values of the rgbround= option.
Example: red = min(100 + (z - 10) * 3, 255), blue=50, green=50. Then all labels are various
shades of red, depending on the value of z. Be aware that light colors (small red-green-blue values)
do not show up well on white backgrounds and dark colors do not show up well on dark backgrounds.
Typically, you will not want to use the full range of possible red-green-blue values. Computed values
greater than 255 will be set to 255.
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rgbround= RGB-rounding-specification
specifies rounding factors used for the paint= variable and RGB values. The default is rgbround=-240
1 1 1. The first value is used to round the paint= variable. Specify a positive value to have the
variable rounded to multiples of that value. Specify a negative value −n to have a maximum of n
colors. For the other three values, specify positive values. The last three are rounding factors used
to round the values for the red, green, and blue component of the color (see red=). If more than 256
colors are generated, you will get the error that a color was not added because the color table is full.
By default, when a value is missing, there is no rounding. Rounding the paint= variable is useful with
contour plots.

Contour Options

Use these options with contour plots. For example if the grid for a contour plot was generated as
follows.

do x = -4 to 4 by 0.1;
do y = -2 to 2 by 0.1;

... statements ...
end;

end;

then specify hnobs=81, vnobs=41. By default, the square root of the number of contour type observa-
tions is used for both hnobs= and vnobs= (which assumes a square grid).

hnobs= n
specifies the number of horizontal observations in the grid for contour plots.

vnobs= n
specifies the number of vertical observations in the grid for contour plots.

Advanced Plot Control Options

You can use the these next options to add full SAS DATA step statements to strategic places in the
macro, such as the PROC PLOT step, the end of the preprocessing, and last full data steps. These
options do minor adjustments before the final plot is produced. These options allow very powerful
customization of your results to an extent not typically found in procedures. However, they may
require a fair amount of work and some trial and error to understand and get right.

adjust1= SAS-statements
The following variables are created in the preprocessing data set:

lsize - label size
lfont - label font
lcolor - label color
ssize - symbol size
sfont - symbol font
scolor - symbol color
stype - symbol type
symbol - symbol value
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otype - observation type

Use adjust1= to adjust these variables in the preprocessing data set. You must specify complete
statements with semicolons. Examples:

adjust1=%str(__lsize = 1.2; __lcolor = green;)}

adjust1=%str(if z > 20 then do;
__scolor = ’green’; __lcolor = ’green’; end;)}

adjust2= SAS-statements
includes statements with PROC PLOT such as format statements. Just specify the full statement.

adjust3= SAS-statements
adjust4= SAS-statements
specify options to adjust the final Annotate data set. For example, in Swiss fonts, asterisks are
not vertically centered when printed, so adjust3= converts to use the SYMBOL function, so by
default, adjust3=%str(if text = ’*’ and function = ’LABEL’ then do; style = ’ ’; text =
’star’; function = ’SYMBOL’; end;). The default for adjust4= is null, so you can use it to add
new statements. If you add new variables to the data set, you must also include a keep statement.
Here is an example of using adjust4= to vertically print the y-axis label, like it would be in PROC
PLOT.

adjust4=%str(if angle = 90 then do; angle = 270; rotate = 90; keep rotate; end;)

This example changes the size of title lines.

adjust4=%str(if index(comment, ’title’) then size = 2;)

adjust5= SAS-statements
adds extra statements to the final DATA step that is used only for datatype=function. For example,
to periodically mark the function with pluses, specify:

adjust5=%str( if mod(_n_,30) = 0 then do;
size=0.25; function = ’LABEL’; text = ’+’; output; end;)

Other Options

Here are the remaining options for the %PlotIt macro.

cirsegs= n
specifies a circle smoothness parameter used in determining the number of line segments in each circle.
Smaller values create smoother circles. The cirsegs= value is approximately related to the length of
the line segments that compose the circle. The default is cirsegs=.1.

cursegs= n
specifies the number of segments in a regression function curve. The default is cursegs=200.
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debug= vars | dprint | notes | time | mprint
specifies values that control debugging output.

dprint - print intermediate data sets.

mprint - run with options mprint.

notes - do not specify options nonotes during most of the macro.

time - prints total macro run time, ignored with options nostimer;

vars - print macro options and macro variables for debugging.

You should provide a list of names for more than one type of debugging. Example: debug=vars dprint
notes time mprint. The default is debug=time.

hpos= n
specifies the number of horizontal positions in the graphics area.

hsize= n
specifies the horizontal graphics area size in unit= units. The default is the maximum size for the
device. By default, when options=nocenter is not specified, hsize= affects the size of the plot but
not the hsize= goption. When options=nocenter is specified, hsize= affects both the plot size and
the hsize= goption. If you specify just the hsize= but not vsize=, the vertical size will be scaled
accordingly.

makefit= n
specifies the proportion of the graphics window to use. When the makefit= value is negative, the
absolute value will be used, and the final value may be changed if the macro thinks that part of the
plot may extend over the edge. When a positive value is specified, it will not be changed by the macro.
When nonnull, the macro uses GASK to determine the minimum and maximum graphics window sizes
and makes sure the plot can fit in them. The macro uses gopprint= or gopplot= to determine the
device. The default is makefit=-0.95.

nknots= n
specifies the PROC TRANSREG number of knots option for regression functions.

outward= none | ’c’
specifies a string for the PLOT statement outward= option. Normally, this option’s value is constructed
from the symbol that holds the place for vectors. Specify outward=none if you want to not have
outward= specified for vectors. The outward= option is used to greatly increase the likelihood that
labels from vectors will be printed outward−away from the origin.

ps= n
specifies the page size.
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radii= do-list
specifies the radii of circles (in a DATA step do list). The unit corresponds to the horizontal axis
variable. The radii= option can also specify a variable in the input data set when radii vary for each
point. By default, no circles are drawn.

regopts= options
specifies the PROC TRANSREG options for curve fitting. Example: regopts=nknots=10 evenly.

regfun= regression-function
specifies the function for curve fitting. Possible values include:

linear - line

spline - nonlinear spline function, perhaps with knots

mspline - nonlinear but monotone spline function, perhaps with knots

monotone - nonlinear, monotone step function

See PROC TRANSREG documentation for more information

regprint= regression-options
specifies the PROC TRANSREG PROC statement options, typically printing options such as:

noprint - no regression printed output

short - suppress iteration histories

ss2 - regression results

To see the regression table, specify: regprint=ss2 short. The default is regprint=noprint.

unit= in | cm
specifies the hsize= and vsize= unit in inches or centimeters (in or cm). The default is unit=in.

vechead= vector-head-size specifies how to draw vector heads. For example, the default specifica-
tion vechead=0.2 0.05, specifies a head consisting of two hypotenuses from triangles with sides 0.2
units long along the vector and 0.05 units on the side perpendicular to the vector.

vpos= n
specifies the number of vertical positions in the graphics area.

vsize= n
specifies the vertical graphics area size in unit= units. The default is the maximum size for the device.
By default when options=nocenter is not specified, vsize= affects the size of the plot but not the
vsize= goption. When options=nocenter is specified, vsize= affects both the plot size and the
vsize= goption. If you specify just the vsize= but not hsize=, the horizontal size will be scaled
accordingly.
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vtoh= n
specifies the PROC PLOT vtoh= option. The vtoh= option specifies the ratio of the vertical height
of a typical character to the horizontal width. The default is vtoh=2. Do not specify values much
different than 2, especially by default when you are using proportional fonts. There is no one-to-one
correspondence between characters and cells and character widths vary, but characters tend to be
approximately twice as high as they are wide. When you specify vtoh= values larger than 2, near-by
labels may overlap, even when they do not collide in the printer plot. The macro uses this option to
equate the axes so that a centimeter on one axis represents the same data range as a centimeter on the
other axis. A null value can be specified, vtoh=, when you want the macro to just fill the window, like
a typical GPLOT.

Smaller values give you more lines and smaller labels. The specification vtoh=1.75 is a good alternative
to vtoh=2 when you need more lines to avoid collisions. The specification vtoh=1.75 means 7 columns
for each 4 rows between ticks (7 / 4 = 1.75). The vtoh=2 specification means the plot will have 8
columns for each 4 rows between ticks. Note that PROC PLOT sometimes takes this value as a hint,
not as a rigid specification so the actual value may be slightly different, particularly when a value other
than 2.0 is specified. This is generally not a problem; the macro adjusts accordingly.

xmax= n
specifies the maximum horizontal size of the graphics area.

ymax= n
specifies the maximum vertical size of the graphics area.
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Macro Errors

Usually, if you make a mistake in specifying macro options, the macro will print an informative message
and quit. These macros go to great lengths to check their input and issue informative errors. However,
complete error checking like we have with procedures is impossible in macros, and sometimes you will
get a cascade of less than helpful error messages.∗ In that case, you will have to check the input and
hunt for errors. One of the more common errors is a missing comma between options. Sometimes for
harder errors, specifying options mprint; will help you locate the problem. You may get a listing
with a lot of code, almost all of which you can ignore. Search for the error and look at the code that
comes before the error for ideas about what went wrong. Once you think you know which option is
involved, be sure to also check the option before and after in your macro invocation, because that might
be where the problem really is.

The %PhChoice macro uses PROC TEMPLATE and ODS to create customized output tables. Typi-
cally, the instructions for this customization, created by PROC TEMPLATE, are stored in a file under
the sasuser directory with a host dependent name. On some hosts, this name is templat.sas7bitm.
On other hosts, the name is some variation of the name templat. Sometimes this file can be corrupted.
When this happens, these macros will not run correctly, and you will see error messages including
errors about invalid pages. The solution is to find the corrupt file under sasuser and delete it (using
your ordinary operating system file deletion method). After that, this macros should run fine again. If
you have run any other PROC TEMPLATE customizations, you will need to rerun them after deleting
the file. For more information, see “Template Store” or “Item Store” in the SAS ODS documentation.

Sometimes, you will run the %MktEx macro, and everything will seem to run fine in the entire job, but
at the end of your SAS log, you will see the message:

ERROR: Errors printed on page ....

Typically, this is caused by one or more PROC FACTEX steps failing to find the requested design.
When this happens, the macro recovers and continues searching. The macro does not always know in
advance if PROC FACTEX will succeed. The only way for it to find out is for it to try. The macro
suppresses the PROC FACTEX error messages along with most other notes and warnings that would
ordinarily come out. However, SAS still knows that a procedure tried to print an error message, and
prints an error at the end of the log. This error can be ignored.

∗If this happens, please write Warren.Kuhfeld@sas.com, and I will see if I can make the macros better handle that
problem in the next release. Send all the code necessary to reproduce what you have done.



Linear Models and Conjoint Analysis

with Nonlinear Spline Transformations
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Abstract

Many common data analysis models are based on the general linear univariate model, including linear
regression, analysis of variance, and conjoint analysis. This chapter discusses the general linear model
in a framework that allows nonlinear transformations of the variables. We show how to evaluate the
effect of each transformation. Applications to marketing research are presented.∗

Why Use Nonlinear Transformations?

In marketing research, as in other areas of data analysis, relationships among variables are not always
linear. Consider the problem of modeling product purchasing as a function of product price. Purchasing
may decrease as price increases. For consumers who consider price to be an indication of quality,
purchasing may increase as price increases but then start decreasing as the price gets too high. The
number of purchases may be a discontinuous function of price with jumps at “round numbers” such
as even dollar amounts. In any case, it is likely that purchasing behavior is not a linear function of
price. Marketing researchers who model purchasing as a linear function of price may miss valuable
nonlinear information in their data. A transformation regression model can be used to investigate the
nonlinearities. The data analyst is not required to specify the form of the nonlinear function; the data
suggest the function.

The primary purpose of this chapter is to suggest the use of linear regression models with nonlin-
ear transformations of the variables—transformation regression models. It is common in marketing
research to model nonlinearities by fitting a quadratic polynomial model. Polynomial models often
have collinearity problems, but that can be overcome with orthogonal polynomials. The problem that
polynomials cannot overcome is the fact that polynomial curves are rigid; they do not do a good job
of locally fitting the data. Piecewise polynomials or splines are generalizations of polynomials that
provide more flexibility than ordinary polynomials.

∗This chapter is a revision of a paper that was presented to the American Marketing Association, Advanced Research
Techniques Forum, June 14–17, 1992, Lake Tahoe, Nevada. The authors are: Warren F. Kuhfeld, Manager, Multivariate
Models R&D, SAS Institute Inc., Cary NC 27513-2414. Mark Garratt was with Conway | Milliken & Associates, when
this paper was presented and is now with Miller Brewing Company. Copies of this chapter (TS-722J) and all of the macros
are available on the web http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Background and History

The foundation for our work can be found mostly in the psychometric literature. Some relevant
references include: Kruskal & Shepard (1974); Young, de Leeuw, & Takane (1976); de Leeuw, Young,
& Takane (1976); Perreault & Young (1980); Winsberg & Ramsay (1980); Young (1981); Gifi (1981,
1990); Coolen, van Rijckevorsel, & de Leeuw (1982); van Rijckevorsel (1982); van der Burg & de Leeuw
(1983); de Leeuw (1986), and many others. The transformation regression problem has also received
attention in the statistical literature (Breiman & Friedman 1985, Hastie & Tibshirani, 1986) under the
names ACE and generalized additive models.

Our work is characterized by the following statements:

• Transformation regression is an inferential statistical technique, not a purely descriptive technique.

• We prefer smooth nonlinear spline transformations over step-function transformations.

• Transformations are found that minimize a squared-error loss function.

Many of the models discussed in this chapter can be directly fit with some data manipulations and
any multiple regression or canonical correlation software; some models require specialized software.
Algorithms are given by Kuhfeld (1990), de Boor (1978), and in SAS/STAT documentation.

Next, we present notation and review some fundamentals of the general linear univariate model.

The General Linear Univariate Model

A general linear univariate model has the scalar form

y = β0 + β1x1 + β2x2 + ... + βmxm + ε

and the matrix form
y = Xβ + ε

The dependent variable y is an (n × 1) vector of observations; y has expected value E(y) = Xβ and
expected variance V (y) = σ2In. The vector ε = y−Xβ contains the unobservable deviations from the
expected values. The assumptions on y imply E(ε) = 0 and V (ε) = σ2In. The columns of X are the
independent variables; X is an (n × m) matrix of constants that are assumed to be known without
appreciable error. The elements of the column vector β are the parameters. The objectives of a linear
models analysis are to estimate the parameter vector β, estimate interesting linear combinations of the
elements of β, and test hypotheses about the parameters β or linear combinations of β.

We discuss fitting linear models with nonlinear spline transformations of the variables. Note that we
do not discuss models that are nonlinear in the parameters such as

y = exβ + ε

y = β0x
β1 + ε

y =
β1x1 + β2x

2
1

β3x2 + β4x2
2

+ ε
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Our nonlinear transformations are found within the framework of the general linear model.

There are numerous special cases of the general linear model that are of interest. When all of the
columns of y and X are interval variables, the model is a multiple regression model. When all of
the columns of X are indicator variables created from nominal variables, the model is a main-effects
analysis of variance model, or a metric conjoint analysis model. The model

y = β0 + β1x + β2x
2 + β3x

3 + ε

is of special interest. It is a linear model because it is linear in the parameters, and it models y as a
nonlinear function of x. It is a cubic polynomial regression model, which is a special case of a spline.

Polynomial Splines

Splines are curves that are typically required to be continuous and smooth. Splines are usually defined
as piecewise polynomials of degree d whose function values and first d−1 derivatives agree at the points
where they join. The abscissa values of the join points are called knots. The term spline is also used
for polynomials (splines with no knots), and piecewise polynomials with more than one discontinuous
derivative. Splines with more knots or more discontinuities fit the data better and use more degrees
of freedom (df). Fewer knots and fewer discontinuities provide smoother splines that user fewer df. A
spline of degree three is a cubic spline, degree two splines are quadratic splines, degree one splines are
piecewise linear, and degree zero splines are step functions. Higher degrees are rarely used.

A simple special case of a spline is the line,

β0 + β1x

from the simple regression model

y = β0 + β1x + ε

A line is continuous and completely smooth. However, there is little to be gained by thinking of a line
as a spline. A special case of greater interest was mentioned previously. The polynomial

β0 + β1x + β2x
2 + β3x

3

from the linear model

y = β0 + β1x + β2x
2 + β3x

3 + ε

is a cubic spline with no knots. This equation models y as a nonlinear function of x, but does so
with a linear regression model; y is a linear function of x, x2, and x3. Table 1 shows the X matrix,
(1 x x2 x3), for a cubic polynomial, where x = −5,−4, ..., 5. Figure 1 plots the polynomial terms
(except the intercept). See Smith (1979) for an excellent introduction to splines.
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Figure 1. Linear, Quadratic, and Cubic Curves Figure 2. Curves For Knots at −2, 0, 2

Splines with Knots

Here is an example of a polynomial spline model with three knots at t1, t2, and t3.

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > t1)(x− t1)3 +
β5(x > t2)(x− t2)3 +
β6(x > t3)(x− t3)3 + ε

The Boolean expression (x > t1) is 1 if x > t1, and 0 otherwise. The term

β4(x > t1)(x− t1)3

is zero when x ≤ t1 and becomes nonzero, letting the curve change, as x becomes greater than knot t1.
This spline uses more df and is less smooth than the polynomial model

y = β0 + β1x + β2x
2 + β3x

3 + ε

Assume knots at −2, 0, and 2; the spline model is:

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > −2)(x−−2)3 +
β5(x > 0)(x− 0)3 +
β6(x > 2)(x− 2)3 + ε
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Figure 3. A Spline Curve With Knots at −2, 0, 2 Figure 4. The Components of the Spline

Table 2 shows an X matrix for this model, Figure 1 plots the polynomial terms, and Figure 2 plots the
knot terms.

The β0, β1x, β2x
2, and β3x

3 terms contribute to the overall shape of the curve. The

β4(x > −2)(x−−2)3

term has no effect on the curve before x = −2, and allows the curve to change at x = −2. The
β4(x > −2)(x−−2)3 term is exactly zero at x = −2 and increases as x becomes greater than −2. The

Table 1
Cubic Polynomial

Spline Basis

1 -5 25 -125
1 -4 16 -64
1 -3 9 -27
1 -2 4 -8
1 -1 1 -1
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64
1 5 25 125

Table 2
Cubic Polynomial

With Knots at −2, 0, 2

1 -5 25 -125 0 0 0
1 -4 16 -64 0 0 0
1 -3 9 -27 0 0 0
1 -2 4 -8 0 0 0
1 -1 1 -1 1 0 0
1 0 0 0 8 0 0
1 1 1 1 27 1 0
1 2 4 8 64 8 0
1 3 9 27 125 27 1
1 4 16 64 216 64 8
1 5 25 125 343 125 27

Table 3
Basis for a Discontinuous (at 0) Spline

1 -5 25 -125 0 0 0 0
1 -4 16 -64 0 0 0 0
1 -3 9 -27 0 0 0 0
1 -2 4 -8 0 0 0 0
1 -1 1 -1 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 2 4 8 1 2 4 8
1 3 9 27 1 3 9 27
1 4 16 64 1 4 16 64
1 5 25 125 1 5 25 125
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β4(x > −2)(x−−2)3 term contributes to the shape of the curve even beyond the next knot at x = 0,
but at x = 0,

β5(x > 0)(x− 0)3

allows the curve to change again. Finally, the last term

β6(x > 2)(x− 2)3

allows one more change. For example, consider the curve in Figure 3. It is the spline

y = −0.5 + 0.01x +−0.04x2 +−0.01x3 +
0.1(x > −2)(x−−2)3 +

−0.5(x > 0)(x− 0)3 +
1.5(x > 2)(x− 2)3

It is constructed from the curves in Figure 4. At x = −2.0 there is a branch;

y = −0.5 + 0.01x +−0.04x2 +−0.01x3

continues over and down while the curve of interest,

y = −0.5 + 0.01x +−0.04x2 +−0.01x3 +
0.1(x > −2)(x−−2)3

starts heading upwards. At x = 0, the addition of

−0.5(x > 0)(x− 0)3

slows the ascent until the curve starts decreasing again. Finally, the addition of

1.5(x > 2)(x− 2)3

produces the final change. Notice that the curves do not immediately diverge at the knots. The
function and its first two derivatives are continuous, so the function is smooth everywhere.

Derivatives of a Polynomial Spline

The next equations show a cubic spline model with a knot at t1 and its first three derivatives with
respect to x.

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > t1)(x− t1)3 + ε

dy

dx
= β1 + 2β2x + 3β3x

2 +

3β4(x > t1)(x− t1)2

d2y

dx2
= 2β2 + 6β3x +

6β4(x > t1)(x− t1)

d3y

dx3
= 6β3 + 6β4(x > t1)
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Figure 5. A Discontinuous Spline Function Figure 6. A Spline With a Discontinuous Slope

The first two derivatives are continuous functions of x at the knots. This is what gives the spline
function its smoothness at the knots. In the vicinity of the knots, the curve is continuous, the slope of
the curve is a continuous function, and the rate of change of the slope function is a continuous function.
The third derivative is discontinuous at the knots. It is the horizontal line 6β3 when x ≤ t1 and jumps
to the horizontal line 6β3 + 6β4 when x > t1. In other words, the cubic part of the curve changes at
the knots, but the linear and quadratic parts do not change.

Discontinuous Spline Functions

Here is an example of a spline model that is discontinuous at x = t1.

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > t1) +
β5(x > t1)(x− t1) +
β6(x > t1)(x− t1)2 +
β7(x > t1)(x− t1)3 + ε

Figure 5 shows an example, and Table 3 shows a design matrix for this model with t1 = 0. The fifth
column is a binary (zero/one) vector that allows the discontinuity. It is a change in the intercept
parameter. Note that the sixth through eighth columns are necessary if the spine is to consist of two
independent polynomials. Without them, there is a jump at t1 = 0, but both curves are based on the
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same polynomial. For x ≤ t1, the spline is

y = β0 + β1x + β2x
2 + β3x

3 + ε

and for x > t1, the spline is

y = β0 + β4 +
β1x + β5(x− t1) +
β2x

2 + β6(x− t1)2 +
β3x

3 + β7(x− t1)3 + ε

The discontinuities are as follows:
β7(x > t1)(x− t1)3

specifies a discontinuity in the third derivative of the spline function at t1,

β6(x > t1)(x− t1)2

specifies a discontinuity in the second derivative at t1,

β5(x > t1)(x− t1)

specifies a discontinuity in the derivative at t1, and

β4(x > t1)

specifies a discontinuity in the function at t1. The function consists of two separate polynomial curves,
one for −∞ < x ≤ t1 and the other for t1 < x < ∞. This kind of spline can be used to model a
discontinuity in price.

Here is an example of a spline model that is continuous at x = t1 but does not have d− 1 continuous
derivatives.

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > t1)(x− t1) +
β5(x > t1)(x− t1)2 +
β6(x > t1)(x− t1)3 + ε

dy

dx
= β1 + 2β2x + 3β3x

2 +

β4(x > t1) +
2β5(x > t1)(x− t1) +
3β6(x > t1)(x− t1)2

Since the first derivative is not continuous at t1 = x, the slope of the spline is not continuous at t1 = x.
Figure 6 contains an example with t1 = 0. Notice that the slope of the curve is indeterminate at zero.
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Figure 7. B-Splines With Knots at −2, 0, 2

Table 4
Cubic B-Spline With Knots at −2, 0, 2

1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.30 0.54 0.15 0.01 0.00 0.00 0.00
0.04 0.45 0.44 0.08 0.00 0.00 0.00
0.00 0.16 0.58 0.26 0.00 0.00 0.00
0.00 0.02 0.41 0.55 0.02 0.00 0.00
0.00 0.00 0.14 0.71 0.14 0.00 0.00
0.00 0.00 0.02 0.55 0.41 0.02 0.00
0.00 0.00 0.00 0.26 0.58 0.16 0.00
0.00 0.00 0.00 0.08 0.44 0.45 0.04
0.00 0.00 0.00 0.01 0.15 0.54 0.30
0.00 0.00 0.00 0.00 0.00 0.00 1.00

Monotone Splines and B-Splines

An increasing monotone spline never decreases; its slope is always positive or zero. Decreasing monotone
splines, with slopes that are always negative or zero, are also possible. Monotone splines cannot be
conveniently created from polynomial splines. A different basis, the B-spline basis, is used instead.
Polynomial splines provide a convenient way to describe splines, but B-splines provide a better way to
fit spline models.

The columns of the B-spline basis are easily constructed with a recursive algorithm (de Boor, 1978,
pages 134−135). A basis for a vector space is a linearly independent set of vectors; every vector in the
space has a unique representation as a linear combination of a given basis. Table 4 shows the B-spline
X matrix for a model with knots at −2, 0, and 2. Figure 7 shows the B-spline curves. The columns
of the matrix in Table 4 can all be constructed by taking linear combinations of the columns of the
polynomial spline in Table 2. Both matrices form a basis for the same vector space.

The numbers in the B-spline basis are all between zero and one, and the marginal sums across columns
are all ones. The matrix has a diagonally banded structure, such that the band moves one position to
the right at each knot. The matrix has many more zeros than the matrix of polynomials and much
smaller numbers. The columns of the matrix are not orthogonal like a matrix of orthogonal polynomials,
but collinearity is not a problem with the B-spline basis like it is with a polynomial spline. The B-spline
basis is very stable numerically.

To illustrate, 1000 evenly spaced observations were generated over the range -5 to 5. Then a B-spline
basis and polynomial spline basis were constructed with knots at −2, 0, and 2. The eigenvalues for
the centered X′X matrices, excluding the last structural zero eigenvalue, are given in Table 5. In the
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Table 5

Polynomial and B-Spline Eigenvalues

B-Spline Basis

Eigenvalue Proportion Cumulative

0.107872 0.358718 0.35872
0.096710 0.321599 0.68032
0.046290 0.153933 0.83425
0.030391 0.101062 0.93531
0.012894 0.042878 0.97819
0.006559 0.021810 1.00000

Polynomial Spline Basis

Eigenvalue Proportion Cumulative

10749.8 0.941206 0.94121
631.8 0.055317 0.99652
37.7 0.003300 0.99982
1.7 0.000148 0.99997
0.3 0.000029 1.00000
0.0 0.000000 1.00000

polynomial splines, the first two components already account for more than 99% of the variation of
the points. In the B-splines, the cumulative proportion does not pass 99% until the last term. The
eigenvalues show that the B-spline basis is better conditioned than the piecewise polynomial basis.
B-splines are used instead of orthogonal polynomials or Box-Cox transformations because B-splines
allow knots and more general curves. B-splines also allow monotonicity constraints.

A transformation of x is monotonically increasing if the coefficients that are used to combine the
columns of the B-spline basis are monotonically increasing. Models with splines can be fit directly
using ordinary least squares (OLS). OLS does not work for monotone splines because OLS has no
method of ensuring monotonicity in the coefficients. When there are monotonicity constraints, an
alternating least square (ALS) algorithm is used. Both OLS and ALS attempt to minimize a squared
error loss function. See Kuhfeld (1990) for a description of the iterative algorithm that fits monotone
splines. See Ramsay (1988) for some applications and a different approach to ensuring monotonicity.

Transformation Regression

If the dependent variable is not transformed and if there are no monotonicity constraints on the
independent variable transformations, the transformation regression model is the same as the OLS
regression model. When only the independent variables are transformed, the transformation regression
model is nothing more than a different rendition of an OLS regression. All of the spline models presented
up to this point can be reformulated as

y = β0 + Φ(x) + ε

The nonlinear transformation of x is Φ(x); it is solved for by fitting a spline model such as

y = β0 + β1x + β2x
2 + β3x

3 +
β4(x > t1)(x− t1)3 +
β5(x > t2)(x− t2)3 +
β6(x > t3)(x− t3)3 + ε
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where

Φ(x) = β1x + β2x
2 + β3x

3 +
β4(x > t1)(x− t1)3 +
β5(x > t2)(x− t2)3 +
β6(x > t3)(x− t3)3

Consider a model with two polynomials:

y = β0 + β1x1 + β2x
2
1 + β3x

3
1 + β4x2 + β5x

2
2 + β6x

3
2 + ε

It is the same as a transformation regression model

y = β0 + Φ1(x1) + Φ2(x2) + ε

where Φ•(•) designates cubic spline transformations with no knots. The actual transformations in this
case are

Φ̂1(x1) = β̂1x1 + β̂2x
2
1 + β̂3x

3
1

and
Φ̂2(x2) = β̂4x2 + β̂5x

2
2 + β̂6x

3
2

There are six model df. The test for the effect of the transformation Φ1(x1) is the test of the linear
hypothesis β1 = β2 = β3 = 0, and the Φ2(x2) transformation test is a test that β4 = β5 = β6 = 0.
Both tests are F-tests with three numerator df. When there are monotone transformations, constrained
least-squares estimates of the parameters are obtained.

Degrees of Freedom

In an ordinary general linear model, there is one parameter for each independent variable. In the
transformation regression model, many of the variables are used internally in the bases for the trans-
formations. Each linearly independent basis column has one parameter and one model df. If a variable
is not transformed, it has one parameter. Nominal classification variables with c categories have c− 1
parameters. For degree d splines with k knots and d − 1 continuous derivatives, there are d + k
parameters.

When there are monotonicity constraints, counting the number of scoring parameters is less precise.
One way of handling a monotone spline transformation is to treat it as if it were simply a spline
transformation with d+ k parameters. However, there are typically fewer than d+ k unique parameter
estimates since some of those d + k scoring parameter estimates may be tied to impose the order
constraints. Imposing ties is equivalent to fitting a model with fewer parameters. So, there are two
available scoring parameter counts: d + k and a potentially smaller number that is determined during
the analysis. Using d + k as the model df is conservative since the scoring parameter estimates are
restricted. Using the smaller count is too liberal since the data and the model together are being used to
determine the number of parameters. Our solution is to report tests using both liberal and conservative
df to provide lower and upper bounds on the “true” p-values.



796 TS-722J − Linear Models and Conjoint Analysis with Nonlinear Spline Transformations

Dependent Variable Transformations

When a dependent variable is transformed, the problem becomes multivariate:

Φ0(y) = β0 + Φ1(x1) + Φ2(x2) + ε

Hypothesis tests are performed in the context of a multivariate linear model, with the number of depen-
dent variables equal to the number of scoring parameters for the dependent variable transformation.
Multivariate normality is assumed even though it is known that the assumption is always violated.
This is one reason that all hypothesis tests in the presence of a dependent variable transformation
should be considered approximate at best.

For the transformation regression model, we redefine three of the usual multivariate test statistics:
Pillai’s Trace, Wilks’ Lambda, and the Hotelling-Lawley Trace. These statistics are normally computed
using all of the squared canonical correlations, which are the eigenvalues of the matrix H(H + E)−1.
Here, there is only one linear combination (the transformation) and hence only one squared canonical
correlation of interest, which is equal to the R2. We use R2 for the first eigenvalue; all other eigenvalues
are set to zero since only one linear combination is used. Degrees of freedom are computed assuming
that all linear combinations contribute to the Lambda and Trace statistics, so the F-tests for those
statistics are conservative. In practice, the adjusted Pillai’s Trace is very conservative—perhaps too
conservative to be useful. Wilks’ Lambda is less conservative, and the Hotelling-Lawley Trace seems
to be the least conservative.

It may seem that the Roy’s Greatest Root statistic, which always uses only the largest squared canonical
correlation, is the only statistic of interest. Unfortunately, Roy’s Greatest Root is very liberal and only
provides a lower bound on the p-value. The p-values for the liberal and conservative statistics are used
together to provide approximate lower and upper bounds on p.

Scales of Measurement

Early work in scaling, such as Young, de Leeuw, & Takane (1976), and Perreault & Young (1980)
was concerned with fitting models with mixed nominal, ordinal, and interval scale of measurement
variables. Nominal variables were optimally scored using Fisher’s (1938) optimal scoring algorithm.
Ordinal variables were optimally scored using the Kruskal and Shepard (1974) monotone regression
algorithm. Interval and ratio scale of measurement variables were left alone nonlinearly transformed
with a polynomial transformation.

In the transformation regression setting, the Fisher optimal scoring approach is equivalent to using an
indicator variable representation, as long as the correct df are used. The optimal scores are category
means. Introducing optimal scaling for nominal variables does not lead to any increased capability in
the regression model.

For ordinal variables, we believe the Kruskal and Shepard monotone regression algorithm should be
reserved for the situation when a variable has only a few categories, say five or fewer. When there are
more levels, a monotone spline is preferred because it uses fewer model df and because it is less likely
to capitalize on chance.

Interval and ratio scale of measurement variables can be left alone or nonlinearly transformed with
splines or monotone splines. When the true model has a nonlinear function, say

y = β0 + β1log(x) + ε
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or
y = β0 + β1/x + ε

the transformation regression model
y = β0 + Φ(x) + ε

can be used to hunt for parametric transformations. Plots of Φ̂(x) may suggest log or reciprocal
transformations.

Conjoint Analysis

Green & Srinivasan (1990) discuss some of the problems that can be handled with a transformation
regression model, particularly the problem of degrees of freedom. Consider a conjoint analysis design
where a factor with c > 3 levels has an inherent ordering. By finding a quadratic monotone spline
transformation with no knots, that variable will use only two df instead of the larger c − 1. The
model df in a spline transformation model are determined by the data analyst, not by the number
of categories in the variables. Furthermore, a “quasi-metric” conjoint analysis can be performed by
finding a monotone spline transformation of the dependent variable. This model has fewer restrictions
than a metric analysis, but will still typically have error df, unlike the nonmetric analysis.

Curve Fitting Applications

With a simple regression model, you can fit a line through a y × x scatter plot. With a transformation
regression model, you can fit a curve through the scatter plot. The y-axis coordinates of the curve are

ŷ = β̂0 + Φ̂(x)

from the model
y = β0 + Φ(x) + ε

With more than one group of observations and a multiple regression model, you can fit multiple lines,
lines with the same slope but different intercepts, and lines with common intercepts but different slopes.
With the transformation regression model, you can fit multiple curves through a scatter plot. The
curves can be monotone or not, constrained to be parallel, or constrained to have the same intercept.
Consider the problem of modeling the number of product purchases as a function of price. Separate
curves can be simultaneously fit for two groups who may behave differently, for example those who are
making a planned purchase and those who are buying impulsively. Later in this chapter, there is an
example of plotting brand by price interactions.

Figure 8 contains an artificial example of two separate spline functions; the shapes of the two curves
are independent of each other, and R2 = 0.87. In Figure 9, the splines are constrained to be parallel,
and R2 = 0.72. The parallel curve model is more restrictive and fits the data less well than the
unconstrained model. In Figure 8, each curve follows its swarm of data. In Figure 9, the curves find
paths through the data that are best on the average considering both swarms together. In the vicinity
of x = −2, the top curve is high and the bottom curve is low. In the vicinity of x = 1, the top curve
is low and the bottom curve is high.
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Figure 8. Separate Spline Functions, Two Groups Figure 9. Parallel Spline Functions, Two Groups

Figure 10. Monotone Spline Functions, Two Groups
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Figure 10 contains the same data and two monotonic spline functions; the shapes of the two curves are
independent of each other, and R2 = 0.71. The top curve is monotonically decreasing, whereas the bot-
tom curve is monotonically increasing. The curves in Figure 10 flatten where there is nonmonotonicity
in Figure 8.

Parallel curves are very easy to model. If there are two groups and the variable g is a binary variable
indicating group membership, fit the model

y = β0 + β1g + Φ1(x) + ε

where Φ1(x) is a linear, spline, or monotone spline transformation. Plot ŷ as a function of x to see the
two curves. Separate curves are almost as easy; the model is

y = β0 + β1g + Φ1(x× (1− g)) + Φ2(x× g) + ε

When x× (1− g) is zero, x× g is x, and vice versa.

Spline Functions of Price

This section illustrates splines with an artificial data set. Imagine that subjects were asked to rate their
interest in purchasing various types of spaghetti sauces on a one to nine scale, where nine indicated
definitely will buy and one indicated definitely will not buy. Prices were chosen from typical retail
trade prices, such as $1.49, $1.99, $2.49, and $2.99; and one penny more than a typical price, $1.00,
$1.50, $2.00, and $2.50. Between each “round” number price, such as $1.00, and each typical price,
such as $1.49, three additional prices were chosen, such as $1.15, $1.25, and $1.35. The goal is to allow
a model with a separate spline for each of the four ranges: $1.00 — $1.49, $1.50 — $1.99, $2.00 —
$2.49, and $2.50 — $2.99. For each range, a spline with zero or one knot can be fit.

One rating for each price was constructed and various models were fit to the data. Figures 11 through
18 contain results. For each figure, the number of model df are printed. One additional df for the
intercept is also used. The SAS/STAT procedure TRANSREG was used to fit all of the models in this
chapter.

Figure 11 shows the linear fit, Figure 12 uses a quadratic polynomial, and Figure 13 uses a cubic
polynomial. The curve in Figure 13 has a slight nonmonotonicity in the tail, and since it is a polynomial,
it is rigid and cannot locally fit the data values.

Figure 14 shows a monotone spline. It closely follows the data and never increases. A range for the
model df is specified; the larger value is a conservative count and the smaller value is a liberal count.

The curves in Figures 12 through 14 are all continuous and smooth. These curves do a good job of
following the data, but inspection of the data suggests that a different model may be more appropriate.
There is a large drop in purchase interest when price increases from $1.49 to $1.50, a smaller drop
between $1.99 and $2.00, and a still smaller drop between $2.49 and $2.50.

In Figure 15, a separate quadratic polynomial is fit for each of the four price ranges: $1.00 — $1.49,
$1.50 — $1.99, $2.00 — $2.49, and $2.50 — $2.99. The functions are connected. The function over
the range $1.00 — $1.49 is nearly flat; there is high purchase interest for all of these prices. Over the
range $1.50 — $1.99, purchase interest drops more rapidly with a slight leveling in the low end; the
slope decreases as the function increases. Over the range $2.00 — $2.49, purchase interest drops less
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Figure 11. Linear Function, 1 df Figure 12. Quadratic Function, 2 df

Figure 13. Cubic Function, 3 df Figure 14. Monotone Function, 5–7 df
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Figure 15. Discontinuous Polynomial, 11 df Figure 16. Discontinuous Spline Function, 15 df

Figure 17. Discontinuous Monotone Spline, 12–15 df Figure 18. Cell Means, 19 df
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rapidly; the slope increases as the function increases. Over the range $2.50 — $2.99, the function is
nearly flat. At $1.99, $2.49, and $2.99 there is a slight increase in purchase interest.

In Figure 16, there is a knot in the middle of each range. This gives the spline more freedom to follow the
data. Figure 17 uses the same model as Figure 16, but monotonicity is imposed. When monotonicity
is imposed the curves touch fewer of the data values, passing in between the nonmonotonic points. In
Figure 18, the means for each price are plotted and connected. This analysis uses the most model df
and is the least smooth of the plots.

Benefits of Splines

In marketing research and conjoint analysis, the use of spline models can have several benefits. When-
ever a factor has three or more levels and an inherent ordering of the levels, that factor can be modeled
as a quadratic monotone spline. The df used by the variable is controlled at data analysis time; it is
not simply the number of categories minus one. When the alternative is a model in which a factor is
designated as nominal, splines can be used to fit a more restrictive model with fewer model df. Since
the spline model has fewer df, it should yield more reproducible results.

The opposite alternative is also important. Consider a variable with many values, like price in some
examples. Instead of using a restrictive single df linear model, splines can be used to fit a more general
model with more df. The more general model may show information in the data that is not apparent
from the ordinary linear model. This can be a benefit in conjoint analyses that focus on price, in
the analysis of scanner data, and in survey research. Splines give you the ability to examine the
nonlinearities that may be very important in predicting consumer behavior.

Fitting quadratic and cubic polynomial models is common in marketing research. Splines extend that
capability by adding the possibility of knots and hence more general curves. Spline curves can also be
restricted to be monotone. Monotone splines are less restrictive than a line and more restrictive than
splines that can have both positive and negative slopes. You are no longer restricted to fitting just a
line, polynomial, or a step function. Splines give you possibilities in between.

Conclusions

Splines allow you to fit curves to your data. Splines may not revolutionize the way you analyze data,
but they will provide you with some new tools for your data analysis toolbox. These new tools allow
you to try new methods for solving old problems and tackle new problems that could not be adequately
solved with your old tools. We hope you will find these tools useful, and we hope that they will help
you to better understand your marketing data.



Graphical Scatter Plots

of Labeled Points

Warren F. Kuhfeld

Abstract

The %PlotIt (PLOT ITeratively) macro creates graphical scatter plots of labeled points. It is designed
to make it easy to display raw data, regressions, and the results of many other data analyses. You can
draw curves, vectors, and circles, and you can control the colors, sizes, fonts, and general appearance
of the plots. The %PlotIt macro is a part of the SAS autocall library.∗

Introduction

SAS has provided software for producing scatter plots for many years (for example, the PLOT and
GPLOT procedures). For many types of data analyses, it is useful to have each point in the plot
labeled with the value of a variable. However, before the creation of the %PlotIt macro, there was not
a satisfactory way to do this. PROC GPLOT produces graphical scatter plots. Combined with the
Annotate facility, it allows long point labels, but it does not provide any way to optimally position them.
The PLOT procedure can optimally position long point labels in the scatter plot, however PROC PLOT
cannot create a graphical scatter plot. The PROC PLOT label-placement algorithm was developed by
Kuhfeld (1991), and the PROC PLOT options are documented in Base SAS documentation.

The macro, %PlotIt (PLOT ITeratively), creates graphical scatter plots of labeled points. It can fit
curves, draw vectors, and draw circles. It has many options, but only a small number are needed for
many types of plots. The %PlotIt macro uses DATA steps and multiple procedures, including PLOT
and GANNO. The %PlotIt macro is over 5500 lines long, so it is not printed here. It is fully documented
starting on page 753 and in the header comments. This article illustrates through examples some of
the main features of the %PlotIt macro.

∗This chapter originally appeared in the SAS Journal Observations, Fourth Quarter, 1994, pages 23−37. This
version of the chapter has been updated for SAS Version 8.2. Copies of this chapter (TS-722K) and all of the macros are
available on the web http://support.sas.com/techsup/tnote/tnote stat.html#market.

803
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An Overview of the %PlotIt Macro

The %PlotIt macro performs the following steps.

1. It reads an input data set and preprocesses it. The preprocessed data set contains information
such as the axis variables, the point-symbol and point-label variables, and symbol and label types,
sizes, fonts, and colors. The nature of the preprocessing depends on the type of data analysis that
generated the input data set. For example, if the option DATATYPE=MDPREF was specified
with an input data set created by PROC PRINQUAL for a multidimensional preference analysis,
then the %PlotIt macro creates blue points for TYPE = ’SCORE’ observations and red vectors
for TYPE = ’CORR’ observations.

2. A DATA step, using the DATA Step Graphics Interface, determines how big to make the graphical
plot.

3. PROC PLOT determines where to position the point labels. The results are sent to output SAS
data sets using ODS. By default, if some of the point label characters are hidden, the %PlotIt
macro recreates the printer plot with a larger line and page size, and hence creates more cells
and more room for the labels.

4. The PROC PLOT output data sets are read, and information from them and the preprocessed
data set are combined to create an Annotate data set. The label position information is read from
the PROC PLOT output, and all of the symbol, size, font, and color information is extracted
from the preprocessed data set. The Annotate data set contains all of the instructions for drawing
the axes, ticks, tick marks, titles, point symbols, point labels, axis labels, and so on.

5. The Annotate data set is displayed with the GANNO procedure. The %PlotIt macro does not
use PROC GPLOT.

With the %PlotIt macro, you can:

• display plots and create graphics stream files and gout= entries
• easily display the results of correspondence analysis, multidimensional preference analysis, pref-

erence mapping, multidimensional scaling, regression analysis, and density estimation
• use single or multi-character symbols and control their color, font, and size
• use multi-character point labels and control their color, font, and size
• use fixed, variable, and random colors, and use colors to display changes in a third dimension
• automatically determine a good line size, page size, and list of point label placements
• automatically equate the axes for all devices
• control the colors, sizes, fonts, and general appearance of all aspects of the plot
• pre- and post-process the data
• specify many goptions

Since %PlotIt is a macro, you can modify it, change the defaults, add new options, and so on. The
%PlotIt macro is heavily commented to make it easier for you to modify it to suit your needs. There
is substantial error checking and options to print intermediate results for debugging when you do not
get the results you expect. Furthermore, you have complete access to all of the data sets it creates,
including the preprocessed version of the input and the Annotate data set. You can modify the results
by editing the Annotate and preprocessed data sets.
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Figure 1

Examples

This section contains examples of some of the capabilities of the %PlotIt macro. Rather than in-
terpreting the plots or discussing the details of the statistical analyses, this section concentrates on
showing what the %PlotIt macro can do. Most of the examples are based on SAS/STAT example data
sets. Data for all of the examples can be found in the SAS/STAT sample program plotitex.sas.

Example 1: Principal Components of Mammal’s Teeth
Principal component analysis computes a low-dimensional approximation to a set of data. Principal
components are frequently displayed graphically. This example is based on the Mammal’s Teeth data
set. To perform a principal component analysis, specify:

proc princomp data=teeth out=scores(keep=prin1 prin2 mammal);
title "Principal Components of Mammals’ Teeth";
run;

%plotit()

The plot is shown in Figure 1. No options were specified in the %PlotIt macro, so by default a plot
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is constructed from the first two numeric variables and the last character variable in the last data set
created. The %PlotIt macro printed the following information to the log:

Iterative Scatter Plot of Labeled Points Macro

Iteration Place Line Size Page Size Penalty
-------------------------------------------------------

1 2 65 45 34
2 3 80 50 0

The following code will create the printer plot on which the graphical
plot is based:

options nonumber ls=80 ps=50;
proc plot nolegend formchar=’|----|+|---’ data=preproc vtoh=2;

plot Prin2 * Prin1 $ mammal = _symbol_ /
haxis=by 1 vaxis=by 1 box list=1
placement=((h=2 -2 : s=right left) (v=1 to 2 by alt * h=0 -1 to -10
by alt));

label Prin2 = ’#’ Prin1 = ’#’;
run; quit;

The plot was created with the following goptions:

goptions reset=goptions erase hpos=99 vpos=34 hsize=11.71in vsize=7.98in
device=WIN;

The OUT=anno Annotate data set has 148 observations.
The PLOTIT macro used 1.7seconds to create OUT=anno.

The iteration table shows that the %PlotIt macro tried twice to create the plot, with line sizes of 65
and 80. It stopped when all point label characters were plotted with zero penalty.† The %PlotIt macro
displays PROC PLOT code for the printer plot, on which the graphical plot is based. It also displays
the goptions statement that was used with PROC GANNO.‡

There are several notable features of the plot in Figure 1.

1. Symbols for several pairs of points, such as Elk and Reindeer, are coincident. By default, the
%PlotIt macro slightly offsets coincident symbols so that it is clear that more than one point
maps to the same location.

2. Point labels map into discrete rows, just as they would in a printer plot produced by PROC
PLOT. However, unlike printer plots, the %PlotIt macro uses proportional fonts.

3. Symbols are not restricted to fixed cells. Their mapping is essentially continuous, more like PROC
GPLOT’s than PROC PLOT’s.

4. A fixed distance represents the same data range along both axes, which means the axes are
equated so that distances and angles will have meaning. In contrast, procedures such as PLOT
and GPLOT fill the available space by default, so the axes are not equated.

†Penalties accrue when point labels are nonoptimally placed, such as when two label characters map to the same
location. PROC PLOT tries to minimize the penalties for all point labels. See PROC PLOT documentation for more
information.

‡This code could be different depending on your device. By default, the macro uses your default device.
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Figure 2

Example 2: Principal Components of Crime Rates
A typical plot has for each point a single-character symbol and a multi-character label; however, this
is not required. This example is based on the Crime data set. The point labels are state names, and
the symbol for each label is a two-character postal code.

proc princomp data=crime out=crime2;
title ’Crime Rates Per 100,000 Population by State’;
run;

%plotit(data=crime2,plotvars=prin2 prin1,
symvar=postcode,symlen=2,symsize=0.6,paint=larceny,
labelvar=state,label=typical)

This plot request specifies:
• the input data set: crime2
• the y-axis and x-axis variables: prin2 and prin1
• the symbol variable: postcode
• the number of symbol characters: 2
• the size of the symbol font in the plot: 0.6
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Figure 3

• the colors are based on the variable: larceny
• the point label variable: state
• the typical method of generating variable labels for the plot axes

A symbol size of 0.6 instead of the normal 1.0 is specified to make the symbol small, because two
characters are mapping to a location where there is usually just one. The option paint=larceny
creates interpolated label and symbol colors, by default between blue, magenta, and red, so that states
that have a low larceny rate are blue and high-rate states are red. Label=typical for variables prin2
and prin1 generates the following label statement:

label prin2 = ’Dimension 2’ prin1 = ’Dimension 1’;

This plot request is much more complicated than most. Often, you need to specify only the type of
analysis that generated the data set. The plot is shown in Figure 2.

Examples 3 & 4: Correspondence Analysis of the Car Ownership Survey
Correspondence analysis graphically displays crosstabulations. These examples use the Car Survey
data. To perform a correspondence analysis, specify:
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Figure 4

proc corresp data=cars outc=coors;
title ’Car Owners and Car Origin’;
tables marital, origin;
run;

%plotit(data=coors,datatype=corresp)

The plot is shown in Figure 3. With datatype=corresp, the %PlotIt macro automatically incorporates
the proportion of inertia§ into the axis labels and plots the row points in red and the column points in
blue.

For a multiple correspondence analysis, specify:

proc corresp mca observed data=cars outc=coors;
title ’MCA of Car Owners and Car Origin’;
tables origin size type income home marital sex;
run;

%plotit(data=coors,datatype=mca)

The plot is shown in Figure 4.

§Inertia in correspondence analysis is analogous to variance in principal component analysis.
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Figure 5

Examples 5 & 6: Multidimensional Preference Analysis of Recreational Activities
Multidimensional preference analysis is a variant on principal component analysis that simultaneously
displays people and their preferences for objects. Each person is a variable in the input data set, and
each object is a row. Each person is represented in the plot as a vector that points in approximately
the direction of his or her most preferred objects. These examples use the Preferences for Recreational
Activities data set. For multidimensional preference analysis, specify:

proc prinqual cor data=recreate out=rec score std rep;
title1 ’Multidimensional Preference Analysis of Recreational Activities’;
transform identity(sub1-sub56);
id activity;
run;

%plotit(data=rec,datatype=mdpref 3)

The plot is shown in Figure 5. With datatype=mdpref, the %PlotIt macro automatically displays the
people as vectors and the activities as points (based on the TYPE variable). The 3 after the MDPREF
is a scaling factor for the vectors. The lengths of all the vectors are increased by a factor of three to
create a better graphical display. You can also label the vectors by specifying:
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Figure 6

%plotit(data=rec,datatype=mdpref2 3)

MDPREF2 specifies a MDPREF analysis with labeled vectors (the 2 means labels too). This plot is
not shown because in this input data set, each subject is identified by a variable name of the form
sub1, sub2, ..., and the graphical display looks cluttered with all those sub’s. The default point label
variable is the ID statement variable activity, because it is the last character variable in the data set.
PROC PRINQUAL fills in this variable for the TYPE = ’CORR’ observations (the people that plot as
vectors) with the variable names: sub1-sub56. You can preprocess the input data set directly in the
%PlotIt macro to remove the sub’s as follows:

%plotit(data=rec,datatype=mdpref2 3,
adjust1=%str(if _type_ = ’CORR’ then

activity = substr(activity,4);))

The plot is shown in Figure 6. The adjust1 option adds DATA step statements to the end of the
preprocessing step. By default, the %PlotIt macro tries to position the vector labels outward, not
between the vector head and the origin.
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Figure 7

Examples 7 & 8: Preference Mapping of Cars
Preference mapping simultaneously displays objects and attributes of those objects. These examples
use the Car Preference data set to illustrate preference mapping. The following code fits a preference
mapping vector model:

*---Compute Coordinates for a 2-Dimensional Scatter plot of Cars---;
proc prinqual data=carpref out=presults(drop=judge1-judge25) n=2

replace standard scores;
title ’Preference Ratings for Automobiles Manufactured in 1980’;
id model mpg reliable ride;
transform ide(judge1-judge25);
run;

*---Compute Endpoints for Vectors---;
proc transreg data=presults;

title2 ’Preference Mapping, Vector Model’;
model ide(mpg reliable ride)=identity(prin1 prin2);
output tstandard=center coefficients replace out=vector;
id model;
run;
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Figure 8

%plotit(data=vector,datatype=vector 2.5)

The plot is shown in Figure 7. Each attribute is represented as a vector that points in approximately the
direction of the objects with larger values of the attribute. The datatype=vector 2.5 option requests
the vector model, with the vectors stretched by a factor of 2.5. Alternatively, you can represent
attributes as points by specifying:

*---Compute Ideal Point Coordinates---;
proc transreg data=presults;

title2 ’Preference Mapping, Ideal Point Model’;
model identity(mpg reliable ride)=point(prin1 prin2);
output tstandard=center coordinates replace out=ideal;
id model;
run;

%plotit(data=ideal,datatype=ideal,antiidea=1)

The plot is shown in Figure 8. The option datatype=ideal requests a preference mapping, with each
attribute represented as an ideal point. Circles are drawn to show distances between the cars and
the ideal points, which are locations of hypothetical cars that have the ideal amount of the attribute.
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Figure 9

The antiidea=1 option specifies how anti-ideal points are recognized.¶ By default, the labels for the
attributes are larger than the other point labels and hence sometimes extend slightly beyond the plot.
This happened with “Miles per gallon” in Figure 8. You can move the label up one character unit and
to the left 12 character units by adding the following option:

adjust4=%str(if text =: ’Miles’ then do; y = y + 1; x = x - 12; end;)

The adjust4 option adds DATA step statements to the end of the final Annotate DATA step. The
%PlotIt macro has no sense of esthetics; sometimes a little human intervention is needed for the final
production plots.

Examples 9 & 10: Curve Fitting of Birth and Death Rates
It is often useful to display a set of points along with a regression line or nonlinear function. The
%PlotIt macro can fit and display lines and curves (and optionally print the regression and ANOVA
table). These examples use the Vital Statistics data set. The following requests a cubic-polynomial
regression function:

¶Anti-ideal points have their signs wrong, so the macro must reverse them before plotting. When small ratings are
good, specify antiidea=-1, and when small ratings are not good, specify antiidea=1.
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Figure 10

title ’Crude Death Rate as a Function of Crude Birth Rate’;

%plotit(data=vital,vtoh=1.75,datatype=curve2)

The plot is shown in Figure 9. The option vtoh=1.75 specifies the PROC PLOT aspect ratio (vertical
to horizontal). The default is 2.0. Smaller values create plots with more cells for label characters,
which is helpful when the point cloud is relatively dense. The option datatype=curve2 instructs the
%PlotIt macro to fit a curve and have the point labels avoid the curve (the 2 means label avoidance
too).

You can control the type of curve. The %PlotIt macro uses PROC TRANSREG to fit the curve, and
you can specify PROC TRANSREG options. For example, to request a monotone spline regression
function with two knots, specify:

%plotit(data=vital,datatype=curve,bright=128,maxiter=4,
symvar=country,regfun=mspline,nknots=2)

The plot is shown in Figure 10. There are several differences between Figures 9 and 10, in addition to the
difference in the regression function. The option datatype=curve was specified, not datatype=curve2,
so there is more overlap between the point labels and the curve. For each point in the plot, the plotting



816 TS-722K − Graphical Scatter Plots of Labeled Points

symbol is the first letter of the country and the point label is the country. Each label/symbol pair is
a different random color with brightness (average RGB or red-green-blue value) of 128. These options
make it much easier to find the symbol that corresponds to each label. Also, the default vtoh=2 was
used to decrease the number of cells and make the labels larger. With these data, the penalty sum at
iteration four is eight. Specifying maxiter=4 prevents the algorithm from reaching iteration 5, which
prevents the line size from increasing from 125 to 150. This also makes the labels larger. The price is
that some label characters collide (for example, “Germany” and “S”) and the plot looks more cluttered
because there are fewer cells with white space.

Availability

If your site has installed the autocall libraries supplied by SAS and uses the standard configuration of
SAS supplied software, you need only to ensure that the SAS system option mautosource is in effect
to begin using autocall macros. That is, the macros do not have to be included (for example with a
%include statement). They can be called directly. For more information about autocall libraries, refer
to SAS Macro Language: Reference, pages 597–599, and your host documentation.

Base SAS and SAS/GRAPH software are required to run the %PlotIt macro. The datatype=curve and
datatype=curve2 options use PROC TRANSREG, which is in SAS/STAT. All of the other datatype=
values assume an input data set in a form created by a SAS/STAT procedure.

Conclusions

The %PlotIt macro provides a convenient way to display the results from many types of data analyses.
Usually, only a small number of options are needed; the macro does the rest. The %PlotIt macro does
not replace procedures like GPLOT and PLOT. Instead, it makes it easy to generate many types of
plots that are extremely difficult to produce with standard procedures.



Graphical Methods

for Marketing Research

Warren F. Kuhfeld

Abstract

Correspondence analysis, multiple correspondence analysis, preference mapping, and multidimensional
preference analysis are descriptive statistical methods that generate graphical displays from data matri-
ces. These methods are used by marketing researchers to investigate relationships among products and
individual differences in preferences for those products. The end result is a two- or three-dimensional
scatter plot that shows the most salient information in the data matrix. This chapter describes these
methods, shows examples of the graphical displays, and discusses marketing research applications.∗

Introduction

Correspondence analysis (CA), multiple correspondence analysis (MCA), preference mapping
(PREFMAP), and multidimensional preference analysis (MDPREF) are descriptive statistical meth-
ods that generate graphical displays from data matrices. These methods are sometimes referred to as
perceptual mapping methods. They simultaneously locate two or more sets of points in a single plot,
and all emphasize presenting the geometry of the data. CA simultaneously displays in a scatter plot
the row and column labels from a two-way contingency table or crosstabulation constructed from two
categorical variables. MCA simultaneously displays in a scatter plot the category labels from more
than two categorical variables. MDPREF displays both the row labels (products) and column labels
(people) from a data matrix of continuous variables. PREFMAP shows rating scale data projected into
a plot of row labels−for example, from an MDPREF analysis. These methods are used by marketing
researchers to investigate relationships among products and individual differences in preferences for
those products.

This chapter will only discuss these techniques as methods of generating two-dimensional scatter plots.
However, three-dimensional and higher-dimensional results can also be generated and displayed with
modern interactive graphics software and with scatter plot matrices.

∗This chapter is a revision of a paper that was published in the 1992 National Computer Graphics Associa-
tion Conference Proceedings. Copies of this chapter (TS-722L) and all of the macros are available on the web
http://support.sas.com/techsup/tnote/tnote stat.html#market.
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Methods

This section presents the algebra and example plots for MDPREF, PREFMAP, CA, and MCA. These
methods are all similar in spirit to the biplot, which is discussed first to provide a foundation for the
other methods.

The Biplot. A biplot (Gabriel 1981) simultaneously displays the rows and columns of a data matrix
in a low-dimensional (typically two-dimensional) plot. The “bi” in “biplot” refers to the joint display
of rows and columns, not to the dimensionality of the plot. Consider an (n ×m) data matrix Y, an
(n× q) matrix A with row vectors a′1, a′2, ..., a′n, and an (m× q) matrix B with row vectors b′1, b′2, ...,
b′m. The n rows of A correspond to the rows of Y, and the m columns of B′ correspond to the columns
of Y. The rank of Y is q ≤ MIN(n, m). A and B are chosen such that yij = a′ibj . If q = 2 and the rows
of A and B are plotted in a two-dimensional scatter plot, the scalar product of the coordinates a′i and
b′j exactly equals the data value yij . This kind of scatter plot is a biplot; it geometrically shows the
algebraic relationship AB′ = Y. Typically, the row coordinates are plotted as points, and the column
coordinates are plotted as vectors.

When q > 2 and two dimensions are plotted, then a′ibj is approximately equal to yij , and the display
is an approximate biplot.∗ The approximate biplot geometrically shows the algebraic relationship
AB′ ≈ Y. The best values for A and B, in terms of minimum squared error in approximating Y, are
found using a singular value decomposition (SVD),† Y = AB′ = UDV′, where D is a (q× q) diagonal
matrix and U′U = V′V = Iq, a (q × q) identity matrix. Solutions for A and B include A = U and B
= VD, or A = UD and B = V, or more generally A = UDr and B = VD(1−r), for 0 ≤ r ≤ 1. See
Gabriel (1981) for more information on the biplot.

Multidimensional Preference Analysis. Multidimensional Preference Analysis (Carroll 1972) or
MDPREF is a biplot analysis for preference data. Data are collected by asking respondents to rate their
preference for a set of objects. Typically in marketing research, the objects are products−the client’s
products and the competitors’. Questions that can be addressed with MDPREF analyses include: Who
are my customers? Who else should be my customers? Who are my competitors’ customers? Where
is my product positioned relative to my competitors’ products? What new products should I create?
What audience should I target for my new products?

For example, consumers can be asked to rate their preference for a group of automobiles on a 0 to 9
scale, where 0 means no preference and 9 means high preference. Y is an (n×m) matrix that contains
ratings of the n products by the m consumers. The data are stored as the transpose of the typical
data matrix, since the columns are the people. The goal is to produce a plot with the cars represented
as points and the consumers represented as vectors. Each person’s vector points in approximately the
direction of the cars that the person most preferred and away from the cars that are least preferred.

Figure 1 contains an example in which 25 consumers rated their preference for 17 new (at the time)
1980 automobiles. This plot is based on a principal component model. It differs from a proper biplot
of Y due to scaling factors. In principal components, the columns in data matrix Y are standardized
to mean zero and variance one. The SVD is Y = UDV′, and the principal component model is
Y = ((n − 1)1/2U) ((n − 1)−1/2D) (V′). The standardized principal component scores matrix, A =
(n − 1)1/2U, and the component structure matrix, (n − 1)−1/2DV′, are plotted. The advantage of
creating a biplot based on (n−1)1/2U and (n−1)−1/2DV′ instead of U and DV′ is that the coordinates

∗In practice, the term biplot is sometimes used without qualification to refer to an approximate biplot.
†SVD is sometimes referred to in the psychometric literature as an Eckart-Young (1936) decomposition.
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Figure 1. Multidimensional Preference Analysis

do not get smaller as sample size increases. The fit, or proportion of the variance in the data accounted
for by the first two dimensions, is the sum of squares of the first two elements of (n− 1)−1/2D divided
by the sum of squares of all of the elements of (n− 1)−1/2D.

The dimensions of the MDPREF biplot are the first two principal components. The first principal
component represents the information that is most salient to the preference judgments. At one end
of the plot of the first principal component are the most preferred automobiles; the least preferred
automobiles are at the other end of the plot. The second principal component represents the direction
that is most salient to the preference judgments that is orthogonal to the first principal component. The
automobile point coordinates are the scores of the automobile on the first two principal components.
The judge vectors point in approximately the direction of judges most preferred cars, with preference
increasing as the vector moves from the origin.

Let a′i be row i of A = (n − 1)1/2U, b′j be row j of B = (n − 1)−1/2VD, ‖ai‖ be the length of ai,
‖bj‖ be the length of bj , and θ be the angle between the vectors ai and bj . The predicted degree of
(scaled) preference that an individual judge has for an automobile is a′ibj = ‖ai‖ ‖bj‖cosθ. Each car
point can be orthogonally projected onto each judge’s vector. The projection of the ith car on the jth
judge vector is bj((a′ibj)/(b′jbj)), and the length of this projection is ‖ai‖cosθ. The automobile that
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projects farthest along a judge vector has the highest predicted preference. The length of this projection,
‖ai‖cosθ, differs from the predicted preference, ‖ai‖ ‖bj‖cosθ, only by ‖bj‖, which is constant within
each judge. Since the goal is to look at projections of points onto the vectors, the absolute length of
a judge’s vector is unimportant. The relative lengths of the vectors indicate fit, with longer vectors
indicating better fit. The coordinates for the endpoints of the vectors were multiplied by 2.5 to extend
the vectors and create a better graphical display. The direction of the preference scale is important.
The vectors point in the direction of increasing values of the data values. If the data had been ranks,
with 1 the most preferred and n the least preferred, then the vectors would point in the direction of
the least preferred automobiles.

The people in the top left portion of the plot most prefer the large American cars. Other people, with
vectors pointing up and nearly vertical, also show this pattern of preference. There is a large cluster
of people who prefer the Japanese and European cars. A few people, most notably the person whose
vector passes through the “e” in “Chevette”, prefer the small and inexpensive American Cars. There
are no vectors pointing through the bottom left portion of the of the plot, which suggests that the
smaller American cars are generally not preferred by anyone within this group.

The first dimension, which is a measure of overall evaluation, discriminates between the American cars
on the left and the Japanese and European cars on the right. The second dimension seems to reflect
the sizes of the automobiles. Some cars have a similar pattern of preference, most notably Continental
and Eldorado, which share a symbol in the plot. Marketers of Continental or Eldorado may want to
try to distinguish their car from the competition. Dasher, Accord, and Rabbit were rated similarly, as
were Malibu, Mustang, Volare, and Horizon.

This 1980 example is quite prophetic even though it is based on a small nonrandom sample. Very few
vectors point toward the smaller American cars, and Mustang is the only one of them that is still being
made. Many vectors are pointing toward the European and Japanese cars, and they are still doing
quite well in the market place. Many vectors are pointing in the one to two o’clock range where there
are no cars in the plot. One can speculate that these people would prefer Japanese and European
luxury cars such as Accura, Lexus, Infinity, BMW, and Mercedes.

Preference Mapping. Preference mapping‡ (Carroll 1972) or PREFMAP plots resemble biplots, but
are based on a different model. The goal in PREFMAP is to take a set of coordinates for a set of objects,
such as the MDPREF car coordinates in example in Figure 1, and project in external information that
can aid in interpreting the configuration of points. Questions that can be addressed with PREFMAP
analyses include: Where is my product positioned relative to my competitors’ products? Why is my
product positioned there? How can I reposition my existing products? What new products should I
create?

The Preference Mapping Vector Model. Figure 2 contains an example in which three attribute
variables (ride, reliability, and miles per gallon) are displayed in the plot of the first two principal
components of the car preference data. Each of the automobiles was rated on these three dimensions on
a 1 to 5 scale, where 1 is poor and 5 is good. Figure 2 is based on the simplest version of PREFMAP−the
vector model. The vector model assumes that some is good and more is always better. This model is
appropriate for miles per gallon and reliability−the more miles a motorist can travel without refueling
or breaking down, the better. The end points for the attribute vectors are obtained by projecting
the attribute variables into the car space. If the attribute ratings are stored in matrix R, then the
coordinates for the end points are in the matrix β from the multivariate linear regression model R =

‡Preference mapping is sometimes referred to as external unfolding.
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Figure 2. Preference Mapping, Vector Model

Aβ + ε. A is the matrix of standardized principal component scores, or A could be the coordinates
from a multidimensional scaling analysis. The relative lengths of the vectors indicate fit, which is given
by the R2. As with MDPREF, the lengths of all vectors can be scaled by the same constant to make
a better graphical display.

PREFMAP analyses can help in the interpretation of principal component, multidimensional scaling,
and MDPREF analyses by projecting in external information that helps explain the configuration.
Orthogonal projections of the product points on an attribute vector give an approximate ordering of
the products on the attribute. The ride vector points almost straight up showing that the larger cars,
such as the Eldorado and Continental, have the best ride. In Figure 1, it was shown that most people
preferred the DL, Japanese cars, and larger American cars. Figure 2 shows that the DL and Japanese
cars were rated as the most reliable and have the best fuel economy. The small American cars are not
rated highly on any of the three dimensions, although some are on the positive end of miles per gallon.
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Figure 3. Preference Mapping, Ideal Point Model

The Preference Mapping Ideal Point Model. The ideal point model differs from the vector model
in that the ideal point model does not assume that more is better, ad infinitum. Consider the sugar
content of cake. There is an ideal amount of sugar that cake should contain−not enough sugar is not
good, and too much sugar is also not good. In the current example, the ideal number of miles per gallon
and the ideal reliability are unachievable. It makes sense to consider a vector model, because the ideal
point is infinitely far away. This argument is less compelling for ride; the point for a car with smooth,
quiet ride may not be infinitely far away. Figure 3 shows the results of fitting an ideal point model
for the three attributes. In the vector model, results are interpreted by orthogonally projecting the
car points on the attribute vectors. In the ideal point model, Euclidean distances between car points
and ideal points are compared. Eldorado and Continental have the best predicted ride, because they
are closest to the ride ideal point. The concentric circles drawn around the ideal points help to show
distances between the cars and the ideal points. The numbers of circles and their radii are arbitrary.
The overall interpretations of Figures 2 and 3 are the same. All three ideal points are at the edge of
the car points, which suggests the simpler vector model is sufficient for these data.

The ideal point model is fit with a multiple regression model and some pre- and post-processing. First
the A matrix is augmented by a variable that is the sum of squares of columns of A creating A∗. Then
solve for β from R = A∗β + ε. For a two-dimensional scatter plot, the ideal point coordinates are
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given by dividing each coefficient for the two axes by the coefficient for the sum-of-squares variable,
then multiplying the resulting values by −0.5. The coordinates are −0.5 β diag(β3)−1, where diag(β3)
is a diagonal matrix constructed from the third row of β. This is a constrained response-surface model.
The fit is given by the R2. See Carroll (1972) for the justification for the formula.

The results in Figure 3 were modified from the raw results to eliminate anti-ideal points. The ideal
point model is a distance model. The rating data are interpreted as distances between attribute ideal
points and the products. In this example, each of the automobiles was rated on these three dimensions,
on a 1 to 5 scale, where 1 is poor and 5 is good. The data are the reverse of what they should be−a
ride rating of 1 should mean this car is similar to a car with a good ride, and a rating of 5 should mean
this car is different from a car with a good ride. So the raw coordinates must be multiplied by −1 to
get ideal points. Even if the scoring had been reversed, anti-ideal points can occur. If the coefficient for
the sum-of-squares variable is negative, the point is an anti-ideal point. In this example, there is the
possibility of anti-anti-ideal points. When the coefficient for the sum-of-squares variable is negative,
the two multiplications by −1 cancel, and the coordinates are ideal points. When the coefficient for
the sum-of-squares variable is positive, the coordinates are multiplied by −1 to get an ideal point.

Other PREFMAP Models. The ideal point model presented here is based on an ordinary Euclidean
distance model. All points falling on a circle centered around an ideal point are an equal distance from
the ideal point. Two more PREFMAP models are sometimes used. The more general models allow for
differential weighting of the axes and rotations, so ellipses, not circles, show equal weighted distances.
All three ideal point models are response surface models. See Carroll (1972) for more information.

Correspondence Analysis. Correspondence analysis (CA) is a weighted SVD of a contingency table.
It is used to find a low-dimensional graphical representation of the association between rows and
columns of a table. Each row and column is represented by a point in a Euclidean space determined
from cell frequencies. Like MDPREF, CA is based on a singular value decomposition, but ordinary
SVD of a contingency table does not portray a desirable geometry.

Questions that can be addressed with CA and MCA include: Who are my customers? Who else should
be my customers? Who are my competitors’ customers? Where is my product positioned relative to
my competitors’ products? Why is my product positioned there? How can I reposition my existing
products? What new products should I create? What audience should I target for my new products?

CA is a popular data analysis method in France and Japan. In France, CA was developed under the
strong influence of Jean-Paul Benzécri; in Japan, under Chikio Hayashi. CA is described in Lebart,
Morineau, and Warwick (1984); Greenacre (1984); Nishisato (1980); Tenenhaus and Young (1985); Gifi
(1990); Greenacre and Hastie (1987); and many other sources. Hoffman and Franke (1986) provide a
good introductory treatment using examples from marketing research.

Simple CA. This section is primarily based on the theory of CA found in Greenacre (1984). Let N be
an (nr × nc) contingency table of rank q ≤ MIN(nr, nc). Let 1 be a vector of ones of the appropriate
order, I be an identity matrix, and diag() be a matrix-valued function that creates a diagonal matrix
from a vector. Let f = 1′N1, P = (1/f)N, r = P1, c = P′1, Dr = diag(r), and Dc = diag(c). The
scalar f is the sum of all elements in N. P is a matrix of relative frequencies. The vector r contains row
marginal proportions or row masses. The vector c contains column marginal proportions or column
masses. Dr and Dc are diagonal matrices of marginals. The coordinates of the CA are based on the
generalized singular value decomposition of P, P = ADuB′, where A′Dr

−1A = B′Dc
−1B = I. A
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is an (nr × q) matrix of left generalized singular vectors, Du is a (q × q) diagonal matrix of singular
values, and B is an (nc × q) matrix of right generalized singular vectors. The first (trivial) column
of A and B and the first singular value in Du are discarded before any results are displayed. This
step centers the table and is analogous to centering the data in ordinary principal component analysis.
In practice, this centering is done by subtracting ordinary chi-square expected values from P before
the SVD. The columns of A and B define the principal axes of the column and row point clouds,
respectively. The fit, or proportion of the inertia (analogous to variance) in the data accounted for by
the first two dimensions, is the sum of squares of the first two singular values, divided by the sum of
squares of all of the singular values. Three sets of coordinates are typically available from CA, one
based on rows, one based on columns, and the usual set is based on both rows and columns.

The row profile (conditional probability) matrix is defined as R = Dr
−1P = Dr

−1ADuB′. Each (i, j)
element of R contains the observed probability of being in column j given membership in row i. The
values in each row of R sum to one. The row coordinates, Dr

−1ADu, and column coordinates, Dc
−1B,

provide a CA based on the row profile matrix. The principal row coordinates, Dr
−1ADu, and standard

column coordinates, Dc
−1B, provide a decomposition of Dr

−1ADuB′Dc
−1 = Dr

−1PDc
−1 = RDc

−1.
Since Dr

−1ADu = RDc
−1B, the row coordinates are weighted centroids of the column coordinates.

Each column point, with coordinates scaled to standard coordinates, defines a vertex in (nc − 1)-
dimensional space. All of the principal row coordinates are located in the space defined by the standard
column coordinates. Distances among row points have meaning, but distances among column points
and distances between row and column points are not interpretable.

The formulas for the analysis of the column profile matrix can easily be derived by applying the
row profile formulas to the transpose of P. The principal column coordinates Dc

−1BDu are weighted
centroids of the standard row coordinates Dr

−1A. Each row point, with coordinates scaled to standard
coordinates, defines a vertex in (nr − 1)-dimensional space. All of the principal column coordinates
are located in the space defined by the standard row coordinates. Distances among column points
have meaning, but distances among row points and distances between row and column points are not
interpretable.

The usual sets of coordinates§ are given by Dr
−1ADu and Dc

−1BDu. One advantage of using these
coordinates is that both sets are postmultiplied by the diagonal matrix Du, whose diagonal values are
all less than or equal to one. When Du is a part of the definition of only one set of coordinates, that
set forms a tight cluster near the centroid, whereas the other set of points is more widely dispersed.
Including Du in both sets makes a better graphical display. However, care must be taken in interpreting
such a plot. No correct interpretation of distances between row points and column points can be made.
Less specific statements, such as “two points are on the same side of the plot” have meaning.

Another property of this choice of coordinates concerns the geometry of distances between points within
each set. Distances between row (or column) profiles are computed using a chi-square metric. The
rationale for computing distances between row profiles using the non-Euclidean chi-square metric is as
follows. Each row of the contingency table may be viewed as a realization of a multinomial distribution
conditional on its row marginal frequency. The null hypothesis of row and column independence is
equivalent to the hypothesis of homogeneity of the row profiles. A significant chi-square statistic is
geometrically interpreted as a significant deviation of the row profiles from their centroid, c′. The
chi-square metric is the Mahalanobis metric between row profiles based on their estimated covariance
matrix under the homogeneity assumption (Greenacre and Hastie 1987). A parallel argument can be
made for the column profiles.

§This set is often referred to as the French standardization due to its popularity in France.
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Figure 4. Simple Correspondence Analysis

The row coordinates are Dr
−1ADu = Dr

−1ADuB′Dc
−1B = (Dr

−1P)(Dc
−1/2)(Dc

−1/2B). They are
row profiles Dr

−1P rescaled by Dc
−1/2 (rescaled so that distances between profiles are transformed

from a chi-square metric to a Euclidean metric), then orthogonally rotated with Dc
−1/2B to a principal

axes orientation. Similarly, the column coordinates are column profiles rescaled to a Euclidean metric
and orthogonally rotated to a principal axes orientation.

CA Example. Figure 4 contains a plot of the results of a simple CA of a survey of car owners.
The questions included origin of the car (American, Japanese, European), and marital/family status
(single, married, single and living with children, and married living with children). Both variables are
categorical. Table 1 contains the crosstabulation and the observed minus expected frequencies. It can
be seen from the observed minus expected frequencies that four cells have values appreciably different
from zero (Married w Kids/American, Single/American, Married w Kids/Japanese, Single/Japanese).
More people who are married with children drive American cars than would be expected if the rows
and columns are independent, and more people who are single with no children drive Japanese cars
than would be expected if the rows and columns are independent.
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Table 1
Simple Correspondence Example Input

Contingency Table Observed Minus Expected Values

American European Japanese American European Japanese

Married 37 14 51 -1.5133 0.4602 1.0531
Married w Kids 52 15 44 10.0885 0.2655 -10.3540
Single 33 15 63 -8.9115 0.2655 8.6460
Single w Kids 6 1 8 0.3363 -0.9912 0.6549

CA graphically shows the information in the observed minus expected frequencies. The right side of
Figure 4 shows the association between being married with children and owning an American Car.
The left side of the plot shows the association between being single and owning a Japanese Car. This
interpretation is based on points being located in approximately the same direction from the origin
and in approximately the same region of the space. Distances between row points and column points
are not defined.

Multiple Correspondence Analysis. Multiple correspondence analysis (MCA) is a generalization of
simple CA for more than two variables. The input is a Burt table, which is a partitioned symmetric
matrix containing all pairs of crosstabulations among a set of categorical variables. Each diagonal
partition is a diagonal matrix containing marginal frequencies (a crosstabulation of a variable with
itself). Each off-diagonal partition is an ordinary contingency table. Each contingency table above
the diagonal has a transposed counterpart below the diagonal. A Burt table is the inner product of
a partitioned design matrix. There is one partition per categorical variable, and each partition is a
binary design matrix. Each design matrix has one column per category, and a single 1 in each row.
The partitioned design matrix has exactly m ones in each row, where m is the number of categorical
variables. The results of a MCA of a Burt table, N, are the same as the column results from a simple
CA of the design matrix whose inner product is the Burt table. MCA is not a simple CA of the
Burt table. The coordinates for MCA are Dc

−1BDu, from (1/f)N = P = P′ = BDu
2B′, where

B′Dc
−1B = I.

MCA Example. Figure 5 contains a plot of the results of an MCA of a survey of car owners. The
questions included origin of the car (American, Japanese, European), size of car (small, medium, large),
type of car (family, sporty, work vehicle), home ownership (owns, rents), marital/family status (single,
married, single and living with children, and married living with children), and sex (male, female). The
variables are all categorical.

The top-right quadrant of the plot shows that the categories single, single with kids, 1 income, and
renting a home are associated. Proceeding clockwise, the categories sporty, small, and Japanese are
associated. In the bottom-left quadrant we see the association between being married, owning your own
home, and having two incomes. Having children is associated with owning a large American family car.
Such information could be used in marketing research to identify target audiences for advertisements.
This interpretation is based on points being located in approximately the same direction from the origin
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Figure 5. Multiple Correspondence Analysis

and in approximately the same region of the space. Distances between points are not interpretable in
MCA.

Other CA Standardizations. Other standardizations have been proposed for CA by several authors.
The usual goal is to provide a standardization that avoids the problem of row and column distances
being undefined. Unfortunately, this problem remains unsolved. Carroll, Green, and Schaffer (1986)
proposed that simple CA coordinates should be transformed to MCA coordinates before they are
plotted. They argued that all distances are then comparable, but Greenacre (1989) showed that their
assertion was incorrect. Others have also claimed to have discovered a method of defining the between
row and column differences, but so far no method has been demonstrated to be correct.
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Notes

The Geometry of the Scatter Plots. All of the scatterplots in this chapter were created with the
axes equated so that a centimeter on the y-axis represents the same data range as a centimeter on the
x-axis. This is important. Distances, angles between vectors, and projections are evaluated to interpret
the plots. When the axes are equated, distances and angles are correctly represented in the plot. When
axes are scaled independently, for example to fill the page, then the correct geometry is not presented.
The important step of equating the axes is often overlooked in practice.

In a true biplot, A = UDr and B = VD(1−r) are plotted, and the elements of Y can be approximated
from yij ≈ a′ibj . For MDPREF and PREFMAP, the absolute lengths of the vectors are not important
since the goal is to project points on vectors, not look at scalar products of row points and column
vectors. It is often necessary to change the lengths of all of the vectors to improve the graphical display.
If all of the vectors are relatively short with end points clustered near the origin, the display will not
look good. To avoid this problem in Figure 1, both the x-axis and y-axis coordinates were multiplied
by the constant 2.5, to lengthen all vectors by the same relative amount. The coordinates must not be
scaled independently.

Software. All data analyses were performed with Release 8.00 of the SAS System. MDPREF is
performed with PROC PRINQUAL, simple and multiple correspondence analysis are performed with
PROC CORRESP, and PREFMAP is performed with PROC TRANSREG. The plots are prepared
with the SAS %PlotIt autocall macro. If your site has installed the autocall libraries supplied by SAS
Institute and uses the standard configuration of SAS software supplied by the Institute, you need only
to ensure that the SAS system option mautosource is in effect to begin using the autocall macros. See
pages 597–599 and pages 753–783.

Conclusions

Marketing research helps marketing decision makers understand their customers and their competition.
Correspondence analysis compactly displays survey data to aid in determining what kinds of consumers
are buying certain products. Multidimensional preference analysis shows product positioning, group
preferences, and individual preferences. The plots may suggest how to reposition products to appeal to
a broader audience. They may also suggest new groups of customers to target. Preference mapping is
used as an aid in understanding MDPREF and multidimensional scaling results. PREFMAP displays
product attributes in the same plot as the products. The insight gained from perceptual mapping
methods can be a valuable asset in marketing decision making. These techniques can help marketers
gain insight into their products, their customers, and their competition.



Concluding Remarks

I hope you like this book and the new macros. In particular, I hope you find the %MktEx macro to be
very powerful and useful. My goal in writing this book and tool set is to help you do better research
and do it more quickly and more easily. I would like to hear what you think. Many of my examples
and enhancements to the software are based on feedback from people like you. This book has already
been revised many times, and future revisions are likely. If you have comments or suggestions for
future revisions, write Warren F. Kuhfeld, (Warren.Kuhfeld@sas.com) at SAS Institute Inc. My goal
to provide you with enough examples so that you can easily adapt aspects of one or more examples to
fit your particular needs. When I do not succeed, tell me about it and I will try to add a new example
to the next revision. Please direct questions to the technical support division and suggestions to me.
Please email me. I would like to hear from you!

I would like to put in a plug for the American Marketing Association’s Advanced Research Techniques
Forum (ART Forum), which is a conference held each year in June. I have been to every one since
1991, although I will probably miss the 2005 meeting due to my daughter’s high school graduation. It
is a great place to meet academic researchers and top practitioners in the areas of conjoint, choice, and
other branches of marketing research. It always draws a diverse and international crowd. There are a
number of great tutorials, and most years there is one by Don Anderson and myself on choice designs.

I leave you with this old Irish blessing.

May the road rise up
to meet you

may the wind be
always at your back

May the sun shine warm
on your face

And the rain fall soft
upon your fields

... along with this additional thought ...

May your designs always be efficient
and your standard errors small

The Kuhfeld Conundrum

What do all of the random number seeds used in the “Conjoint Analysis Examples,” “Multinomial
Logit, Discrete Choice Modeling,” and “Experimental Design and Choice Modeling Macros” have in
common? Send answers to Warren.Kuhfeld@sas.com. I will send a small prize to the first person to
send me the answer that I have in mind. I first put this challenge out there quite a few years ago now.
I keep hoping that one of these days, one of you will send me the answer.∗ Hints: The relationship is
not mathematical. An answer like “they are all less than 619,” while true, is not what I have in mind.
Think about the order of a row, and heed this admonition: stick to the middle of the road.

∗If you can’t get that one, here is an easy one—no prize for this one though. Find the joke embedded in the index.
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block= defined 644
BLOCKED data set 646
blocking 195-197 244-246 296 304 308-311 346

638-647 665 717-718 723-724
blocking, defined 96
blocks= 208
blocks= defined 665 723
blue bus 284



blue= defined 778
Booth, K.H.V. 103 831
border defined 767
Bose, R.C. 668 831
Bradley, R.A. 38 549 566-570 573-576
Bradley-Terry-Luce model

compared to other simulators 567
defined 566
market share 575

brand choice (aggregate data) example 261
Brand variable 164-166 172-173 264 268-269 316

321 324-328 340 351 354 357 613 616 619
632 735-739

branded design, defined 96
branded defined 660
Breiman, L. 786 831
Breslow likelihood 282
Breslow, N. 282 468-471 481 831
brief 175-176 211 344
bright= defined 776
britypes= defined 769
B-splines 793
Bunch, D.S. 121 125 831
bundles of attributes 363 403
Burt table, correspondence analysis 826
bus 284
by statement, syntax 591
c = 2 - (i eq choice) 148
c variable 146-150 172 177 181 208 268-269 333

356 632 723-724
c*c(2) 149-150 175
c*c(3) 150
Can 240 290 680
cand= 652
cand= defined 649
candidate set 192 285 291 365 370 374 378 403

600 605-606 675 707-709
canditer= defined 692
candy example (choice) 144
candy example (conjoint) 489
canonical correlation 70 161 501
canonical initialization 586
cards, printing in a DATA step 502 516 557
Carmone, F.J. 99 831
Carroll, J.D. 24-25 818-820 823 827 831
Carson, R.T. 101 105 131 134 141 481 831
cat= 729
cat= defined 689
CATMOD procedure, see PROC CATMOD

Cattin, P. 99 836
CB data set 666
cfill= defined 720
cframe= defined 776
chair (generic attributes) example 363
Chakravarti, I.M. 105 108 117 831
change, market share 576 584
check the data entry 151
check defined 652 684
check option 196
chi-square metric, correspondence analysis 824
Chi-Square statistic 152
chocolate candy example (choice) 144
chocolate candy example (conjoint) 489
choice design, defined 96
choice design

60-63 89 157 164-166 171 735
efficiency 62-63 89 248 320-330 364-367 370-

372 375 379 407 600 604 607-610 613
generation 366 370-372 375 379 600-601 605-

613 656-657
generic 89
optimal 89

choice model
141 144-146 154 282-283
coding 68-69 85 173 209 214-216 219 223 255

263-265 269 275-280 333 337 340 357
fitting 174 211 214-216 220 226 257-259 264-

266 273 278-280 334 342 357 360 470-471
474-475 478-479

choice probabilities 154
choice set, defined 96
choice sets 47
choice sets, minimum number 363
choice simulators

Bradley-Terry-Luce model 566
compared 567-568
defined 566
example 573-575
logit model 566
macro 570
maximum utility model 566 569

Choice variable 148
choice-based conjoint 141 485
%ChoicEff macro

5 72-73 82 91-93 130 136 142 166-167 203-
204 248 316 320-324 334 364-367 370-381
399-400 403 407 417 420-422 425-428 432
436-440 452-455 458 461 464-465 597 600-



616 620 626-627 638 641 644 656-657 720
731-732

alternative swapping 374 381
documentation 598-631
set swapping 378 381
versus the %MktEx macro 381

choose 695
Choose variable 183
chosen alternative 148
Chrzan, K. 397 686 831
cirsegs= defined 780
class 172-173 205 209 213 218-219 223 256 264-

266 269 305 319-322 332-334 354 363 366
489 492 505 521 562 566 579-581 594-596
609 751

class PROC TRANSREG syntax 589
class statement 305 650 653
classopts= defined 650
Client variable 714
close defined 767
cluster analysis 546
coded defined 629
coding down 237 650 694
coding the choice model 68-69 85 173 209 214-

216 219 223 255 263-265 269 275-280 333
337 340 357

coding
binary 64 173 209 256 264
effects 64 218
orthogonal 64-65 68-69
price 68-69

coding= defined 650
coefficients 521 562 566 579-581
coefficients PROC TRANSREG syntax 588
Color variable 736-737
color= defined 776
colors= defined 769
column profiles, correspondence analysis 824
column defined 752
column statement 487 750
combinations

printing in a DATA step 502 516 557
unrealistic 552

Conforms 680
confounded 50 101
conjoint analysis

31 35 483-596 797
defined 484
model 491

typical options 594
conjoint measurement 31 483
constant alternative 156 178 261
constrained part-worth utilities 595
CONTENTS procedure, see PROC CONTENTS
converge= 608
converge= defined 628
converge= PROC TRANSREG syntax 586
convergence criterion 586
Cook, R.D. 104 109 124 192 288 366 675 832
Coolen, H. 786 832
coordinate-exchange algorithm 192 675
CORR data set 666
CORR procedure, see PROC CORR
correlations 535
CORRESP procedure, see PROC CORRESP
correspondence analysis 28 40 823-826
Count variable 351-353 632
cov= defined 628
Cox, D.R. 103 831
cprefix= 167 204 249
cross effects 263 268-276 283-286 305 321-322

326-327 332-334 337
cross effects, defined 96
cursegs= defined 780
curve fitting 797
curvecol= defined 777
customizing

multinomial logit output 143
PROC PHREG output 143 748-751
TRANSREG output 486

cyclic design 603
D-efficiency 53 102
D-efficiency, 0 to 100 scale 54 65-67 305
D-optimality 667
data collection

rank data 516
data entry

checking 151
choice 146-148 171 182 208 254 261 276 331

338 351 468
rank data 503 516
rating-scale data 489 561
simulation 577 581

data
collection, rank data 516
generating artificial 253 330
processing 183 219 378 473 476 489 503 516

561



validation, rank data 516
data= 149 166-167 171-172 177 203 248 320 347

356 367 521 562 566 579-581 594-596 601
629 633 645 661 714-715 720 723-724

data= defined 628 633 644 661 665 720 724 764
data= PROC TRANSREG syntax 585
datatype= defined 765
Davey, K.S. 99 109 832
Dawson, J.E. 668 832
Day, N.E. 468 831
de Boor, C. 786 793 831
De Cock, D. 668 832
de Launey, W. 3 668 832
de Leeuw, J. 786 796 831-836
debug= defined 781
define statement 487
degree, splines 590
degree= 216
degree= PROC TRANSREG syntax 590
demographic information 338
DenDF variable 565
depend variable 534 587
depvar variable 534-537 541-542 564 579-581

derivatives
splines 790

DeSarbo, W.S. 108 835
DESIGN data set 636 652 675 691
design

attributes 483-485
differences 498 630 637 647 653 689
efficient choice 62-63 89 248 320-330 364-367

370-372 375 379 407 600 604 607-610 613
efficient linear 53-54 60-61 101-102 498 509-

512 520 549 552-553 667
evaluating efficiency 196 243 684
evaluation 160 194 197 232 242 292 297 300

303-305 348 499 509 552 635
example 498 509 552
factors 47 101
fractional-factorial 50 101
full-factorial 49-50 101-102 192 285 519 600
generation 158 178 188 196 232-235 243 287

292 297 300 303 346 363-365 374 378 383-
386 389 600-601 605-606 609-611 638 641
656-660 667-669 675 712 715-721 736-737

holdouts 511
key 79 164-165 200 222 246 316 353 378 605

609-611 624 641 656-658 710 735-739
levels 47 101 110

methods compared 381
nonorthogonal 511 552-553
runs 47 100 156 185 230 234 294-296 345 364

496 550 740
saturated 68
shifted 89-91
size 156 185 230 234 294-296 345 364 496 550

682 740-743
testing 166 203 248 316

design 173 209 255 264
Design variable 187 369
design= 165 171-172 201 723 735 738-739
design= defined 724 734 739
Dest variable 206
detail defined 629
detfuzz= defined 699
Dey, A. 668 832
diag defined 767
differences (machine) in designs 630 637 647 653

689
different designs 498
diminishing returns on iterations 291
discontinuous functions

sample specification 596
splines 791

discrete choice 141-465
dog analogy 412
dolist= defined 720
dollar format 347
drop= 608 628
drop= defined 628
&droplist variable 564-566 577 581
dropping variables 174 209
Duan, L. 837
dummy variables 61
dummy PROC TRANSREG syntax 586
DuMouchell, W. 115 832
Duncan, G.J. 476 833
duplicate runs 678
dups defined 729
Dykstra, O. 104 832
Eckart, C. 23 818 832
edit statement 487 750
effects coding 64 218-219 609-610 626
effects 218 609
efficiency

choice design 62-63 89 248 320-330 364-367
370-372 375 379 407 600 604 607-610 613

evaluating for a given design 196 243 684



linear design 53-54 60-61 101-102 498 509-512
520 549 552-553 667

Efficiency variable 369
eigenvalues 52-53
Elrod, T. 99 109 397 686 831-832
errors in running macros 784
%EvalEff macro

305
evaluation, design 499 509 552
evenly spaced knots 590
evenly PROC TRANSREG syntax 590
examine= 161 196 501 650 683
examine= defined 650 683
examining the design 160 194 197 232 242 292

297 300 303-305 348 635
example

Bradley-Terry-Luce model 575
brand choice (aggregate data) 261
candy (choice) 144
candy (conjoint) 489
chair (generic attributes) 363
chocolate candy (choice) 144
chocolate candy (conjoint) 489
design 498 509 552
fabric softener 156
food product (availability) 283
frozen diet entrées (advanced) 509
frozen diet entrées (basic) 496
logit model 575
market share 569 575-576
maximum utility model 569
metric conjoint analysis 489 521 562
new products 576 583
nonmetric conjoint analysis 492 505
nonorthogonal design 549
partial profiles 397
prescription drugs (allocation) 345
simulation 569 575-576
spaghetti sauce 549
stimulus creation 502 516 557
vacation 184
vacation (alternative-specific) 229

exchange= 430 686-688 693
exchange= defined 695
excolors= defined 777
existing design, improving 383
expand defined 767
expansion

class 589

polynomial spline 590
experimental design

47-139
defined 47
evaluation 160 194 197 232 242 292 297 300

303-305 348 635
generation 158 178 188 196 232-235 243 287

292 297 300 303 346 363-365 374 378 383-
386 389 600-601 605-606 609-611 638 641
656-660 667-669 675 712 715-721 736-737

saturated 68
shifted 89-91
size 156 185 230 234 294-296 345 364 496 550

682 740-743
testing 166 203 248 316

extend= defined 772
external attributes 338
external unfolding 820
extraobs= defined 771
extreme value type I distribution 283
exttypes= defined 769
f variable 385
f1 variable 616
f2 variable 616
fabric softener example 156
facopts= defined 650
FACTEX procedure, see PROC FACTEX
factors, design 47 101
factors statement 652
factors= 650-651 657
factors= defined 645 650 661 665
failed initialization 677
FASTCLUS procedure, see PROC FASTCLUS
Federer, W.T. 123 835
Fedorov, modified 192 600 675
Fedorov, V.V. 104-105 110 115 124 192 288 296-

298 366-367 600 651 675-676 832
Fiedler, J.A. 833
file defined 684
file statement 169
filepref= defined 764
FINAL data set 721
Finkbeiner, C.T. 568 832
Fisher, R. 796 832
fitting the choice model 87 149 152 174 211 214-

216 220 226 257-259 264-266 273 278-280
334 342 357 360 470-471 474-475 478-479

fixed choice sets 385
fixed= 385



fixed= defined 628 695
flags= 367 379 601 626-628
flags= defined 627
font= defined 773
food product (availability) example 283
football 52
Form variable 178 208 259
FORMAT procedure, see PROC FORMAT
format statement 223 724
format= defined 665
formats 155-158 163 180 246 255 261 276 312 319
formatting a weight variable 520 592
&forms variable 178
fractional-factorial design 50 101
framecol= defined 777
Franke, G.R. 28 823 833
FREQ data set 666
FREQ procedure, see PROC FREQ
freq statement 259 278-280 334 357 360
Freq variable 278
FREQ variable 259 333-334
freq= 356 633
freq= defined 633
freqs= 665
freqs= defined 665
frequencies, n-way 665
frequency variable 259-261 276-280
Friedman, J.H. 786 831
frozen diet entrées (advanced) example 509
frozen diet entrées (basic) example 496
FSUM data set 666
full-factorial design 49-50 101-102 192 285 519

600
G-efficiency 54 102
Gabriel, K.R. 22-23 818 832
Gail, M.H. 481 832
GANNO procedure, see PROC GANNO
Garratt, M. 3 58 99 122 286 785 834
gdesc= defined 764
Gellat, C.D. 676 833
general linear univariate model 786
generate statement 651
generate= defined 651
generic attribute, defined 96
generic attributes 211
generic design 89 363-370 374-381
generic design, defined 97
generic defined 661
geometric mean 53 102

Gifi, A. 28 484 786 823 832-833
GLM procedure, see PROC GLM
glossary 96
gname= defined 765
gopplot= defined 763
gopprint= defined 763
gopts2= defined 764
gopts= defined 764
gout= defined 765
GPLOT procedure, see PROC GPLOT
graphical scatter plots 753-783 803-828
Green, P.E. 31 99 105 118 121 483 797 827 831-

833
green= defined 778
Greenacre, M.J. 28 823-824 827 833
Hadamard matrices 668 685 712-713
Hadamard, J. 668 833
Hastie, T. 28 786 823-824 833
Hayashi, C. 28 823
header statement 487
Hedayat, A.S. 123 668 833-835
Hensher, D.A. 831
hminor= defined 773
hnobs= defined 779
Hoffman, D.L. 28 823 833
Hoffman, S.D. 476 833
holdouts

design 511
validation 535

holdouts= 385 389
holdouts= defined 696
host differences 498 630 637 647 653 689
hpos= defined 781
href= defined 773
HRLowerCL 751
HRUpperCL 751
hsize= defined 781
Huber, J. 3 99 121-124 128 133-134 366 833
(i eq choice) 148
i variable 687 701
ibd= 435
ibd= defined 734
id statement 174 209 256 264
ID statement, syntax 591
id= defined 645
ideal point model 27 822
identity attribute, sample specification 595
identity 173 214 264-265 269 322 334 489 521

562 566 579-581 593-596 751



identity PROC TRANSREG syntax 589
IIA 269 275 283 476-480
IIA, defined 97
IML procedure, see PROC IML
imlopts= defined 700
importance

average 542-544
defined 492
inflated 492
outtest= 585

improving an existing design 383
inc= defined 773
Income variable 340
independence 175
independence from irrelevant alternatives 269

275 283
Index variable 369 608
indicator variables 61 64
individual R-square 542 564-565 579-582
inertia, correspondence analysis 824
infinite, see recursion
inflated, importance 492
information matrix 53 102
informats 577
Ini 680
init= 167 196 203 248 320 383-385 399 604 608

628-629 684 695 709
init= defined 628 690
initblock= defined 645
initialization failed 677
initialization switching 678
initvars= 604 608 628
initvars= defined 629
input data 146
input function 172 202
input statement 146
int defined 684
int= 365 600
int= defined 720
interact= 652
interact= defined 651 683 745
interactions 49 222 233 258 284-285 307-308 316
interpol= defined 773
interval scale of measurement 102 483 589 787

796
intiter= 167 203 248 321 604 629-630
intiter= defined 629
invalid page errors 784
ireplace 505 521 562 566 579-581 594-596

ireplace PROC TRANSREG syntax 588
iter= 407 648 651
iter= defined 629 636 645 651 692
iteration

history suppressed 587
history, %MktEx 678-680
maximum number of 586
metric conjoint analysis 491
nonmetric conjoint analysis 492

iterative algorithm 586
j1 variable 688 697 701 707-709
j2 variable 688 697 701 708-709
j3 variable 688 701 708-709
Johnson, R.M 121 831
Jones, B. 3 115 832
justinit defined 684
justparse defined 746
keep= 316 651
keep= defined 651 739
Kendall Tau 535
Kent, J.T. 835
KEY data set

%MktLab 623 713-720
%MktRoll 79 605 609-611 624 641 656-658 710

735-739
Key data set

%MktLab 312 347
%MktRoll 164-165 200 222 246 316 353 378

key= 165 312 316 347-348 597 710 713-715 718
722 735-739

key= defined 720 739
Kharaghania, H. 668 833
Kirkpatrick, S. 676 833
knots

defined 787
evenly spaced 590
in splines 787-802
number of 591
specifications 590

knots= 216 596
knots= PROC TRANSREG syntax 590
Krieger, A.B. 121 833
Krishnamurthi, L. 492 836
Kruskal, J.B. 30 786 796 834
Kuhfeld, W.F. 1-3 21 34-35 46-47 58 99 121-124

130 136 141 286 467 481-483 597 668 785-
786 794 803 817 829-831 834-836

labcol= defined 769
label prefix option 586



label separator characters 587
label, variable 149-152 163 167 172 209 214-216

219 256 263-265 269-280 312 321 333 337
340 718-720 750-751

label statement 724
label= defined 774
labelcol= defined 777
labels= 718
labels= defined 720
labelvar= defined 767
labfont= defined 769
labsize= defined 770
large data sets 259 276
largedesign defined 685
largedesign option 410
Lazari, A.G. 99 105 113 121 134 285 305 481 834
Lebart, L. 28 823 834
levels

design 47 101 110
order 586

levels= defined 696
libname 163
libref 163
likelihood 143 146 149-150 175 228 259 268 279-

282 468-471 479-481
lineage defined 685 729
linear design 60 63 157 164-166 185 200 230 246

312 316-317 363 381 403 735
linear design, defined 97
linear defined 661
linesleft= 169
LIST data set 666
list defined 636 682 711 745
list= defined 645 666
Lodge variable 201 209 223 247 256
-2 LOG L 152 268 279-282 480
LOGISTIC procedure, see PROC LOGISTIC
logit model

compared to other simulators 567
defined 566
market share 575

Louviere, J.J. 3 99 109 121 141 483 831-834
lprefix= 167 174 204 209 249 256 264-266 321

562 566 579-581
lprefix= PROC TRANSREG syntax 586
ls= defined 774
lsinc= defined 774
lsizes= defined 774
Lu, Y. 668 836-837

Lubin, J.H. 481 832
Luce, R.D. 38 549 566-570 573-576
machine differences 498 630 637 647 653 689
macro

autocall 597
documentation 597-784
errors 784
notes, %MktEx 677
variables 157 178

macros
%ChoicEff 5 72-73 82 91-93 130 136 142 166-

167 203-204 248 316 320-324 334 364-367
370-381 399-400 403 407 417 420-422 425-
428 432 436-440 452-455 458 461 464-465
597-631 638 641 644 656-657 720 731-732

%EvalEff 305
macro; 677
%MktAllo 142 356-357 597 632-634
%MktBal 142 304 597 635-637 683
%MktBlock 142 244 304 308-310 597 638-647

717-718
%MktDes 5 597-598 648-654 691
%MktDups 142 403 407 416 425 432 438-439

597 630 655-662
%MktEval 5 72 76 109 142 160-161 194 197-198

232 242 292 297-298 301 347-348 499-501
509-511 552 555 597 635 638 646 663-666
718

%MktEx 3-6 34 51 61-63 72 75 93-95 99 104 111
142-143 158-161 164-168 178 186-188 191-
197 203 232-237 241-243 286-287 292 297-
300 303-304 346-347 363-367 374 378 381-
386 389-390 393 401-405 410-416 420-425
430-431 435 438-439 445-446 449-455 458-
461 464-465 497-501 509-512 519 549-553
597-601 605-611 614 635 638 644 648-649
653 656-660 663 667-696 699-709 712-721
725 728-737 741-744 784 829

%MktKey 5 72 78 142 200 353 378-379 406 416
425 438 597 624 710-711 735

%MktLab 72 93 143 172 178 197 311-313 347-
348 365 398 498-499 509-511 552 597 600-
601 606 623-624 638 657 675 696 712-722

%MktMerge 73 84 142 148-149 171 208 223 255
331 339 597 723-724

%MktOrth 91 143 187 597-598 689 725-732
%MktPPro 143 435 452-455 458 461 464-465

597 731-734
%MktRoll 5 61 72 79 142 164-165 200-201 223



247 312 316-317 353 363 370 377-378 407
416 425 432 438 597 605-606 609-612 623-
624 638 641 644 656-658 710 723-724 735-
739

%MktRuns 72-76 103 142 156 185 230 234 286
294-296 345 364 496-497 549-550 597-598
636 651 682 729 740-747 784

%PhChoice 73 87 142-143 150 175 211 214 257
264 334 358 597 748-752 784

%PlotIt 597-598 753-783 803-816 828
%SIM 570 575 580-582

Mahajan, V. 108 835
main effects 49 284-285 307
&main variable 707-709
makefit= defined 781
Manski, C.F. 141 834
Mardia, K.V. 136 835
Market Research Analysis Application 35
market share

Bradley-Terry-Luce model 566 575
change 576 584
example 569
logit model 566 575
maximum utility model 566 569
simulation 569

mass, correspondence analysis 823
mautosource 598
max= 234 742 745
max= defined 745
maxdesigns= 695
maxdesigns= defined 692
maximum number of iterations 586
maximum utility model

compared to other simulators 567
defined 566
example 569

maxiter= 292 367 594-596 601 629 635-636 692-
693

maxiter= defined 629 636 645 651 692 774
maxiter= PROC TRANSREG syntax 586
maxlev= 725
maxlev= defined 729 746
maxn= 725
maxn= defined 729
maxokpen= defined 774
maxstages= 410
maxstages= defined 693
maxstages=1 685
maxstarts= 635-636

maxstarts= defined 636
maxtime= 194 292 405 410 430 693-695
maxtime= defined 693
maxtries= 635
maxtries= defined 637
MCA 28 42 826-827
McFadden, D. 112 122 141 283-284 468 834-835
McKelvey, R.D. 467 835
MDPREF 24 43 818-820
MDS 30 44
MEANS procedure, see PROC MEANS
Meixia, M. 668 837
memory, running with less 259
method= 521 562 566 579-581
method= defined 651 764
method= PROC TRANSREG syntax 586
metric conjoint analysis

31
defined 484
example 489-490 521 562
iteration 491
sample specification 594
versus nonmetric 484 594

Meyer, R.K. 104 111 192 675 835
Micro variable 316 319-321 326
Miller, F.L. 104 835
Miller, R. 833
minimum number of choice sets 363
mintry= 299 393
mintry= defined 683
missing 312
missing statement 312 561
Mitchell, T.J. 104 835
%MktAllo macro

142 356-357 597 632-633
documentation 632-634

%MktBal macro
142 304 597 635-636 683
documentation 635-637

%MktBlock macro
142 244 304 308-310 597 638 641 644-646 717-

718
documentation 638-647

%MktDes macro
5 597-598 648-653 691
documentation 648-654

MKTDESCAT data set 730
MKTDESLEV data set 730
%MktDups macro



142 403 407 416 425 432 438-439 597 630 655-
661

documentation 655-662
%MktEval macro

5 72 76 109 142 160-161 194 197-198 232 242
292 297-298 301 347-348 499-501 509-511
552 555 597 635 638 646 663-665 718

documentation 663-666
%MktEx macro

3-6 34 51 61-63 72 75 93-95 99 104 111 142-
143 158-161 164-168 178 186-188 191-197
203 232-237 241-243 286-287 292 297-300
303-304 346-347 363-367 374 378 381-386
389-390 393 401-405 410-416 420-425 430-
431 435 438-439 445-446 449-455 458-461
464-465 497-501 509-512 519 549-553 597-
601 605-611 614 635 638 644 648-649 653
656-660 663 667-670 675-678 681-689 695
699-707 712-721 725 728-737 741-744 784
829

algorithm 191-194 675-676
documentation 667-696 699-709
notes 677
versus the %ChoicEff macro 381
common options explained 158 188 196

mktex defined 729
%MktKey macro

5 72 78 142 200 353 378-379 406 416 425 438
597 624 710-711 735

documentation 710-711
%MktLab macro

72 93 143 172 178 197 311-313 347-348 365
398 498-499 509-511 552 597 600-601 606
623-624 638 657 675 696 712-721

documentation 712-722
%MktMerge macro

73 84 142 148-149 171 208 223 255 331 339
597 723

documentation 723-724
%MktOrth macro

91 143 187 597-598 689 725 728 732
documentation 725-730

%MktPPro macro
143 435 452-455 458 461 464-465 597 731-734
documentation 731-734

%MktRoll macro
5 61 72 79 142 164-165 200-201 223 247 312

316-317 353 363 370 377-378 407 416 425
432 438 597 605-606 609-612 623-624 638

641 644 656-658 710 723-724 735-738
documentation 735-739

%MktRuns macro
72-76 103 142 156 185 230 234 286 294-296

345 364 496-497 549-550 597-598 636 651
682 729 740-745

documentation 740-747
errors 784
with interactions 234

mktruns defined 729
model comparisons 228 268 281 479-480
model 489 492 505 521 562 566 581 594-596 627
model statement 149-150 173-175 209-211 256

264-265 269 305 377 601 626 652-653
model statement

options, TRANSREG 586
transformation options, TRANSREG 590
transformations 589

model= 367 601 626-628
model= defined 626
monochro= defined 777
monotone spline

589 595 793
sample specification 595

monotone 492 505 592-595
monotone PROC TRANSREG syntax 589
MORALS algorithm 586
morevars= defined 629
Morineau, A. 28 823 834
mother logit 268 275 284 334 478-479
mother logit model, defined 97
mspline 592 595-596
mspline PROC TRANSREG syntax 589
multidimensional preference analysis 24 43 818-

820
multidimensional scaling 30 44
multinomial logit 144 149-150 175 263-265 283

467-481
multiple choices 345
multiple correspondence analysis 28 42 826-827
multiple defined 746
multiple2 defined 746
Mut 680
mutate= 692-693
mutate= defined 693
mutations 193 676
mutiter= 694
mutiter= defined 694
.N special missing value 714



n variable 187 369
n= 158 178 235 285 600 610-611 629 651
n= defined 629 636 651 682 746
Nachtsheim, C.J. 104 109-111 124 192 288 366

675 832 835
nalts= 167 171 203 208 248 320 331 356 379 606

626-628 633 644-647 661 723
nalts= defined 627 633 645 661 724
nblocks= defined 645
new products example 576 583
next= defined 645
nfill= 398
nfill= defined 721
Nishisato, S. 28 823 835
nknots= 216 595
nknots= defined 781
nknots= PROC TRANSREG syntax 591
nlev= 650 653
nlev= defined 651
noback defined 767
noborder defined 767
nocenter defined 767
noclip defined 768
nocode defined 629 652 768
nodelete defined 768
nodups defined 630 685
nodups option 161 501 511 684 692
nofinal defined 685
nohistory defined 685 768
nolegend defined 768
nominal scale of measurement 796
nominal variables 589
None alternative 285 316 334 337 342-344
nonlinear transformations 785
nonmetric conjoint analysis

31
defined 484
example 492 505
iteration 492
sample specification 594
versus metric 484 594

nonorthogonal design 511 552-553
noprint 566 579-581
noprint defined 637 661 768
noprint PROC TRANSREG syntax 586
norestoremissing 173 209 219 223 256 264
nosort defined 646 685
nosort option 385 691
not available 714

notests defined 630
notruncate 360
nowarn defined 739
nowarn option 201
nozeroconstant 173 209 255 264
nsets= 167 171 203 208 248 320 367 601 626 723
nsets= defined 627 724
nudge approach 422
number of choice sets, minimum 363
number of runs 47 100 156 185 230 234 294-296

345 364 496 550 740
number of stimuli 496
NumDF variable 565
NUMS data set 746
n-way frequencies 665
ODS 143 485 748
ods exclude statement 486 489 492 505 521 562

579-581 594-596
ods listing statement 535
ods output statement 535
offset= defined 774
onoff defined 752
OPTEX procedure, see PROC OPTEX
optimal choice design 89
options, TRANSREG

algorithm 586-587
output 587-588
transformation 590-591

options defined 660
options= 410
options= defined 629 637 646 652 684 729 739

746 767
options=+- 686
options=3 686
options=512 686 729 746
options=accept 450 678 684-686 689 707-709
options=allcode 652
options=border 767
options=branded 660
options=check 196 652 684
options=close 767
options=coded 629
options=detail 629
options=diag 767
options=dups 729
options=expand 767
options=file 684
options=generic 661
options=int 684



options=justinit 684
options=justparse 746
options=largedesign 410 685
options=lineage 685 729
options=linear 661
options=mktex 729
options=mktruns 729
options=multiple 746
options=multiple2 746
options=noback 767
options=noborder 767
options=nocenter 767
options=noclip 768
options=nocode 629 652 768
options=nodelete 768
options=nodups 161 501 511 630 684-685 692
options=nofinal 685
options=nohistory 685 768
options=nolegend 768
options=noprint 637 661 768
options=nosort 385 646 685 691
options=notests 630
options=nowarn 201 739
options=orthcan 630
options=parent 729
options=progress 637
options=refine 685
options=render 685
options=resrep 410-411 685 701-703
options=source 746
options=square 768
options=textline 768
optiter= 405 410 691-694
optiter= defined 694
order of the spline 596
order= 256 505
order= defined 696
order= PROC TRANSREG syntax 586
order=data 173 209
order=matrix 235 241 297-300
order=random 405 410 421 430 686
order=random=n 430
ordering the attribute levels in the output 586
ordinal scale of measurement 796
ordinal variables 589-590
orthcan defined 630
orthogonal 50 54
orthogonal and balanced 51 54 66-68 157
orthogonal array 50

orthogonal coding 64-69
otherfac= defined 652
otherint= defined 652
out= 165 171-173 209 256 264 347 356 521 562

566 579-581 588 633 646 657 675 684 691
714-715 720 723-724 735-739

out=
predicted utilities 588
syntax 588
transformation 588

out= defined 630 633 636 646 652 661 691 721
724 734 739 746 765

outall= 684 730
outall= defined 691 729
outcat= defined 730
outcb= defined 666
outcorr= defined 666
OUTDUPS data set 661
outest= 149
outfreq= defined 666
outfsum= defined 666
outlev= 727-730
outlev= defined 730
outlist= defined 661 666
output delivery system 143 485 748
output options, TRANSREG 587-588
output 492 521 587 594-596
output statement 174 209 256 264
outr= 675 684 691 713
outr= defined 646 691
outtest= 521 541 562 566 579-581
outtest=

importance 585
part-worth utilities 585
R-square 585
syntax 585
utilities 585

outward= defined 781
p 505 521 562 566 579-581 588 594-596
p PROC TRANSREG syntax 588
page errors 784
page, new 181
paint= defined 778
Paley, R.E.A.C 668 835
Pang, S. 668 836
param=orthref 305
parameters 144 149 152-154 216 219 282-285 468-

469 473 478 481
parent defined 729



partial profiles 397 402-461 464-465 686
partial= 398 401-405 684-688 691 709
partial= defined 686
part-worth utilities

constrained 595
defined 484
output option 588
outputting predicted 588
outtest= 585
printing 587
summing to zero 591

part-worth utility 31 144 154 218 254 258
&pass variable 707-709
Pattern variable 737
pbad variable 688

p depend variable 534-537 587
Pearson r 535
perceptual mapping 22
permanent SAS data set 163-164 499 552 588 627

646 652 661 691 721
Perreault, W.D. 786 796 835
%PhChoice macro

73 87 142-143 150 175 211 214 257 264 334
358 597 748 751-752 784

documentation 748-752
errors 784

PHREG procedure, see PROC PHREG
Place variable 201 209 222-223 247 256
place= defined 774
PLAN procedure, see PROC PLAN
PLOT procedure, see PROC PLOT
%PlotIt macro

597-598 753-758 761-763 767 780 803-816 828
documentation 753-783

plotopts= defined 775
plotting the transformation 492
plotvars= defined 768
point labels, scatter plots 753
point= 148 181
polynomial splines 590 785-802
post= defined 765
Pre 680
predicted utilities

option 588
out= 588
variables 534

preference mapping 25 820
prefix, label option 586
prefix= defined 721

PREFMAP 25 820
preproc= defined 771
prescription drugs (allocation) example 345
price

assigning actual 172 202 216 223 247 255
coding 68-69
pricing study 156 614
quadratic 68-69 216 220 285
sample specification 596

Price variable 164-166 172-173 177 201-203 209
213-214 223 247 256 264 268-269 284 312
316 321 324-328 357 613 632 735-737

PriceL variable 216
principal row coordinates, correspondence anal-

ysis 824
PRINCOMP procedure, see PROC PRINCOMP
PRINQUAL procedure, see PROC PRINQUAL
print= 161 501
print= defined 646 666 734
printing questionnaire 502 516 557
Prob variable 369
probability of choice 144-146 154-155 177-178 283

469-473
PROBIT procedure, see PROC PROBIT
PROC CATMOD 472
PROC CONTENTS 541
PROC CORR 535
PROC CORRESP 754 808-809
PROC DISCRIM 757
PROC FACTEX 192 648-653 675 691 707-708
PROC FASTCLUS 546
PROC FORMAT 81 155 158 171 202 246 261 276

312 499 509-511 520 552 577 592
PROC FREQ 656
PROC GANNO 759
PROC GLM 306-307
PROC GPLOT 145 291 494 568
PROC IML 367 435 443 447 687 731 755
PROC LOGISTIC 467
PROC MEANS 177 542
PROC OPTEX 192 291 305 648-653 675-677 685

691 695 707-708
PROC PHREG 87 143 149 152 174-175 209-211

214-220 226 257-261 264-266 273 278-280
334 342 357 360 470-475 478-481 748

PROC PHREG output, customizing 143 748-751
PROC PHREG, common options explained 149
PROC PLAN 192 648-649 652 675 691 707-708
PROC PLOT 756-758 768 771-775 779-780 783



PROC PRINCOMP 805-807
PROC PRINQUAL 754-755 810-812
PROC PROBIT 467
PROC SCORE 177
PROC SORT 155 183 494 503 507 537 546 583
PROC SUMMARY 259 332 353
PROC TEMPLATE 143 485-487 748-751 784
PROC TRANSPOSE 180-182 503 518 542 561

564 581 622
PROC TRANSREG

85 173-175 209-219 222-223 255 263-265 269
273-280 333 337 340 357 377-378 489 492
505 521 562 566 579-581 585-592 748 751
754 812-813

advanced sample 595
common options explained 173 255
customizing output 486
discontinuous price sample 596
monotone spline sample 595
nonmetric example 492
nonmetric sample 594
rank data sample 594
samples 594-596
simple example 489
specifications 585
syntax 585-592
typical example 521

processing
data 183 219 378 473 476 489 503 516 561
results 507 535-537 541-542 545-546 564 570

573-583
procopts= defined 652 775
progress defined 637
proportional hazards 143 149 279 470
proportions, analyzing 360
proximity data 30
ps= defined 781
pseudo-factors 650
pspline 216
pspline PROC TRANSREG syntax 590
put function 172 202
put statement 254
quadratic price effects 68-69 216 220 285
quantitative attributes 68-69
quantitative factor 177 213 216 258
questionnaire

169 178-182 206 251
printing 502 516 557

radii= defined 782

Raktoe, B.L. 123 835
Ramsay, J.O. 786 794 835
Ran 680
random mutations 193 240 676
random number seeds 158 188 195 291 304 308

367 498 601 630 637 646 653 689
randomization 49 163 178 251 316 499
RANDOMIZED data set 675 691
range= 725
range= defined 730
rank data

data collection 516
data entry 503 516
data validation 516
reflect 594
sample specification 594
versus rating-scale data 594

rank PROC TRANSREG syntax 590
Rank variable 503-507
Rao, C.R. 668 835
Rao, V.R. 31 483 833
Rating variable 490
rating-scale data

data entry 489 561
versus rank data 594

recursion, see infinite
red bus 284
red= defined 778
reference level 64 154 213 218-219 285
Reference variable 187
refine defined 685
reflect 505 521 594-596
reflect

rank data 594
syntax 591

reflection 505 591
regdat= defined 771
regfun= defined 782
regopts= defined 782
regprint= defined 782
Reibstein D.J. 492 836
render defined 685
repeat= defined 694
replacing independent variables, ireplace 588
residuals PROC TRANSREG syntax 588
reslist= 446 450
reslist= defined 687
resmac= 446 450
resmac= defined 687



resolution 50 101
resrep defined 685
resrep option 410-411 701-703
restrictions 286-287 292 297 300 303 397 402-461

464-465 551 687-688 707
restrictions not met 678
restrictions= 287 292 297 300 303 404 410 413

420 423 430 438 684-691
restrictions= defined 687
RESULTS data set 630
results processing 507 535-537 541-542 545-546

564 570 573-583
Reynolds, M.L. 30 835
rgbround= defined 779
rgbtypes= defined 770
ridge= 455
ridge= defined 646 700
ridging 455 608 646 700
rolled out data set 587
row profiles, correspondence analysis 824
RowHeader 750
R-square

individual 542 564-565 579-582
outtest= 585

Rubinstein, L.V. 481 832
Run variable 645-647 717
run= defined 652
runs, number of 47 100 156 185 230 234 294-296

345 364 496 550 740
s 769 776
sample specification

discontinuous functions 596
identity attribute 595
metric conjoint analysis 594
monotone attribute 595
monotone spline 595
nonmetric conjoint analysis 594
price 596
rank data 594

sasuser 163
saturated design 68 156-157 185 230
scales of measurement 796
scatter plots 753
Scene variable 201 209 223 247 256
Schaffer, C.M. 827 831
Schiffman, S.S. 30 835
SCORE procedure, see PROC SCORE
score= 177
second choice 146 149-150

seed= 158 367 498 601 630 637 646 653 689
seed= defined 630 637 646 653 689
separator characters 587
separators= 204 249 256 265-266 269 321 489

492 505 521 562 566 579-581
separators= PROC TRANSREG syntax 587
sequential algorithm 305
Set 647
set statement 148 181
Set variable 146 149-151 166-167 172 175 178

181-183 203 248 259-261 268-269 278 320
354 369 399 645 739

set= defined 647 739
setvars= 171 208 723
setvars= defined 724
Shape variable 736-737
shelf talker 283 316
Shelf variable 316 319-321 326
shelf-talker 311 316 338
Shepard, R.N. 786 796 834
short 489 505 521 562 566 579-581 594-596
short PROC TRANSREG syntax 587
Side variable 247 256
%SIM macro

570 575 580-582
simulated annealing 193 240-241 676 692 699
simulation

data entry 577 581
example 569 575-576
market share 569
observations 519 537 541 592

simulators
Bradley-Terry-Luce model 566
compared 567-568
example 573
logit model 566
macro 570
maximum utility model 566 569

Size variable 736-737
size= defined 653
Sloane, N.J.A. 3 668 833-835
Smith, P.L. 787 835
So, Y.C. 3 141 467
SORT procedure, see PROC SORT
source defined 746
source statement 750
source stat.phreg statement 748
source stat.transreg statement 486
spaghetti sauce example 549



special missing value 312
spline

monotone 589 595
spline 592
spline PROC TRANSREG syntax 590
splines

592 785-802
degree 590
derivatives 790
discontinuous functions 791
monotone 793
order 596
with knots 788

square defined 768
Srinivasan, V. 31 483 797 833
standard column coordinates, correspondence

analysis 824
statement

class 305 650 653
column 750
edit 750
factors 652
file 169
format 223 724
freq 259 278 360
generate 651
id 174 209 256 264
input 146
label 724
missing 312
model 149-150 173-175 209-211 256 264-265

269 305 377 601 626 652-653
output 174 209 256 264
put 254
set 148 181
source stat.phreg 748
source stat.transreg 486
source 750
strata 149 175 261 278
where 305 332 357 654

statements= 511
statements= defined 721 724
Statistic variable 542
Steckel, J.H. 108 835
Steinberg, D. 831
step= 652-653
step= defined 653
stimuli, number of 496 549-550
stimulus creation, DATA step 502 516 557

stmts= 223
stopearly= 677
stopearly= defined 699
stopping early 677
Stove variable 312
strata 149-151 175-176 259-261 276 280-282 470-

471 481
strata statement 149 175 261 278
structural zeros 154 219 228
Stufken, J. 668 832-833
style= 753 767-769 776
style= defined 777
style=a 753
Style=RowHeader 750
subdesign 285 305
Subj variable 146 149-151 172 175 261-262 268-

269 333
subject attributes 338
submat= defined 630
subsequent choice 146 149-150 208 261
Suen, C.Y. 3 668 835-836
suitable orthogonal coding 64
SUMMARY procedure, see PROC SUMMARY
summary table 150-151 279 337
summing to zero, part-worth utilities 591
survival analysis 143 149 470
Swait, J. 831
switching initialization 678
symbols= defined 770
symcol= defined 770
symfont= defined 770
symlen= defined 768
symsize= 700
symsize= defined 770
symtype= defined 770
symvar= defined 768
Tab 240 680
tabiter= 405 410
tabiter= defined 694
tabsize= defined 699
Taguchi, G. 668 836
Takane, Y. 786 796 834-836
target= defined 699
Tayfeh-Rezaiea, R. 668 833
t depend variable 534-537 587
tempdat1= defined 772
tempdat2= defined 772
tempdat3= defined 772
tempdat4= defined 772



tempdat5= defined 772
tempdat6= defined 772
TEMPLATE procedure, see PROC TEMPLATE
template, utilities table 486
temporary 169 616

Tenenhaus, M. 823 836
Terry, M.E. 38 549 566-570 573-576
textline defined 768
Tibshirani, R. 786 833
tickaxes= defined 775
tickcol= defined 777
tickfor= defined 775
ticklen= defined 776
ties=breslow 143 149-150 175 279
time (computer), saving 259
Timmermans, H. 831
titlecol= defined 777
Tobias, R.D. 3 58 99 122 141 286 834
trace 53
trade-offs 483
TRank variable 507
transformation

class 589
identity 589
monotone spline 589 595
monotone 589
mspline 589 595
options, TRANSREG 590-591
out= 588
plot 492
polynomial spline 590
pspline 590
rank 590
regression 785 794-795
spline 590

TRANSPOSE procedure, see PROC TRANS-
POSE

TRANSREG procedure, see PROC TRANSREG
& trgind variable 175-177 211-216 220 226 257-

259 264-266 270 273 278-280 334 342 357
360 534 537 545-546

try variable 687 701
tsize= defined 776
-2 LOG L 152 268 279-282 480
type= 177
types= 630-631
types= defined 630 771
typevar= 630-631
typevar= defined 631 771

typical options, conjoint analysis 594
Unb 680
unbalanced= defined 694
unit= defined 782
UNIVARIATE algorithm 586
unrealistic combinations 552
utilities

31
constrained 595
defined 484 491
outputting predicted 588
outtest= 585
predicted 534
printing 587
table, template 486

utilities 489 492 505 521 562 566 579-581 594-
596

utilities PROC TRANSREG syntax 587
vacation (alternative-specific) example 229
vacation example 184
validation, holdouts 535
Value variable 542 565
values= 718-722
values= defined 722
van der Burg, E. 786 831
van Rijckevorsel, J. 786 832 835
variable label 149-152 163 167 172 209 214-216

219 256 263-265 269-280 312 321 333 337
340 718-720 750-751

variable
Age 340
Alt 178 642 645
Alt 739
bad 286-287 411 687-688
bbad 688

Block 201 347 357 638 645 717
Brand 164-166 172-173 264 268-269 316 321

324-328 340 351 354 357 613 616 619 632
735-739

c 146-150 172 177 181 208 268-269 333 356
632 723-724

Choice 148
Choose 183
Client 714
Color 736-737
Count 351-353 632
DenDF 565
depend 534 587
depvar 534-537 541-542 564 579-581



Design 187 369
Dest 206
&droplist 564-566 577 581
Efficiency 369
f 385
f1 616
f2 616
Form 178 208 259
&forms 178
Freq 278
FREQ 259 333-334
i 687 701
Income 340
Index 369 608
j1 688 697 701 707-709
j2 688 697 701 708-709
j3 688 701 708-709
Lodge 201 209 223 247 256
&main 707-709
Micro 316 319-321 326
n 187 369
NumDF 565
&pass 707-709
Pattern 737
pbad 688

p depend 534-537 587
Place 201 209 222-223 247 256
Price 164-166 172-173 177 201-203 209 213-

214 223 247 256 264 268-269 284 312 316
321 324-328 357 613 632 735-737

PriceL 216
Prob 369
Rank 503-507
Rating 490
Reference 187
Run 645-647 717
Scene 201 209 223 247 256
Set 146 149-151 166-167 172 175 178 181-183

203 248 259-261 268-269 278 320 354 369
399 645 739

Shape 736-737
Shelf 316 319-321 326
Side 247 256
Size 736-737
Statistic 542
Stove 312
Subj 146 149-151 172 175 261-262 268-269 333
t depend 534-537 587
TRank 507

& trgind 175-177 211-216 220 226 257-259
264-266 270 273 278-280 334 342 357 360
534 537 545-546

try 687 701
Value 542 565
w 319-321 332 511 534
weight 521 577
x 688 701 708
x1 688 701
x2 701
x[j] 688
xmat 688 701 708

variables
interval 589
nominal 589
ordinal 589-590
predicted utilities 534
replacing in output data set 588
residuals 588

variance matrix 53 102
vars= 197 356 633
vars= defined 633 645 661 665 722
Vecchi, M.P. 676 833
vechead= defined 782
vector model 26 820
view= 305
Violations 680
vminor= defined 776
vnobs= defined 779
vpos= defined 782
vref= defined 776
vsize= defined 782
vtoh= defined 783
w variable 319-321 332 511 534
Wang, J.C. 3 668 836
Wang, Y. 668 836
Warwick, K.M. 28 823 834
Watson, W. 3 35
weight format 520 592
weight 521 579-581 594-596
weight statement

holdouts 592
sample specification 595
syntax 592

weight variable 521 577
weight= 321
weight= defined 631
weighted loss function 592
Weiguo, L. 668 837



whack approach 420-422 430
where statement 305 332 357 654
where= 177
where= defined 654
Wiley, J.B. 121 831
Williamson, J. 668 836
Wind, Y. 31 99 105 118 483 833
Winsberg, S. 786 836
Wish, M. 30 834
With Covariates 152 228 268
Wittink, D.R. 99 492 833 836
Woodworth, G. 99 121 141 834
worksize= 700
Wu, C.F.J. 668 836
x variable 688 701 708
x1 variable 688 701
x2 variable 701
x= defined 734

x[j] variable 688
xmat variable 688 701 708
xmax= defined 783
Xu, H. 668 836
ymax= defined 783
Young, F.W. 3 30 484 786 796 823 834-836
Young, G. 23 818 832
Zavoina, W. 467 835
zero= 173 203 209 213-214 218-219 248-249 256

264-265 275 321-322 334 399 489 492 505
521 562 566 579-581 594-596 613

zero=list 214 256
zero= PROC TRANSREG syntax 591
zero=’ ’ 256 607
Zhang, Y.S. 3 668 836-837
Zheng, Z. 668 837
Zwerina, K. 3 121-124 128 133-134 366 833


